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Abstract

This paper establishes stability properties for robust minmax model
predictive control (RMPC) under stagewise bounded disturbances, ad-
dressing nonlinear discrete time systems where disturbances are con-
strained independently at each time step. Building on the input-to-
state practical stability framework for minmax model predictive con-
trol (Limon, Alamo, Salas, and Camacho, 2006; Lazar, De La Pena,
Heemels, and Alamo, 2008; Raimondo, Limon, Lazar, Magni, and ndez
Camacho, 2009), we provide a self-contained worst-case stability anal-
ysis for the stagewise-bounded formulation with policy parametriza-
tion. We introduce worst-case input-to-state stability Lyapunov func-
tions and prove that the RMPC optimal cost satisfies the required
Lyapunov properties on the robust feasible set. The resulting sta-
bility guarantee is practical rather than asymptotic: the closed-loop
system converges to a neighborhood of the origin whose size depends
on the assumed disturbance bound. Crucially, because the controller is
designed for the worst-case disturbance, even if the actual disturbance
realization is zero the system may converge only to this neighborhood
rather than to the origin itself. The analysis provides a parallel deter-
ministic worst-case counterpart to recent stochastic model predictive
control (SMPC) stability theory. A numerical example illustrates non-
intuitive behavior arising from worst-case optimization incentives.
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1 Introduction

The disturbance attenuation regulator formulates robust control as a deterministic minmax
game between controller and disturbance. In this sequential dynamic noncooperative zero-
sum game, the disturbance optimizes first and the control optimizes second, with the control
objective to maintain low cost despite any admissible bounded disturbance. Two constraint
structures bound disturbances differently and produce distinct control strategies. First one,
the signal bound disturbance attenuation regulator, constrains total energy through a single
squared signal norm bound over all time steps. Second one, the stage bound disturbance
attenuation regulator, independently constrains energy at each time step through stagewise
squared norm bounds.

The stage bound formulation addresses a fundamental limitation of the signal bound
approach. Aggregate signal bound constraints impose temporal coupling wherein the ad-
missible disturbance at each stage depends on all past disturbance realizations through
a remaining energy budget. This coupling treats the disturbance as an adversarial agent
that strategically allocates energy from a fixed budget to maximize system cost. While this
game-theoretic perspective provides theoretical insights, it is less representative of physi-
cal disturbances in practical applications. Actual disturbances arising from environmental
conditions, measurement noise, or model uncertainty do not possess knowledge of past real-
izations nor strategically coordinate to deplete an energy budget. Stage bound constraints
eliminate this artificial coupling by independently bounding disturbance magnitude at each
stage, naturally accommodating persistent disturbances that act consistently over time or
time-varying disturbances whose bounds change with operating conditions. Consequently,
the stage bound formulation appears more suitable for designing controllers robust to the
types of uncertain disturbances encountered in practical control applications.

When the stage bound disturbance attenuation problem is solved within a receding
horizon framework with constant disturbance bounds at each stage, the resulting control
scheme is equivalent to RMPC. At each time step, the controller solves a finite horizon
minmax optimization over all possible disturbance sequences satisfying stagewise bound
constraints, applies the first control action, and repeats this process as new state mea-
surements become available. This receding horizon implementation provides a natural
bridge between the classical game-theoretic disturbance attenuation literature and modern
RMPC.

Literature Review RMPC for systems with bounded disturbances has been extensively
studied in both linear and nonlinear settings. Early work on linear RMPC includes Kothare,
Balakrishnan, and Morari (1996), who developed linear matrix inequality based offline de-
signs for polytopic uncertainty, and Chisci, Rossiter, and Zappa (2001), who addressed
constraint tightening for systems with persistent bounded disturbances and established
convergence to robust positively invariant sets. Tube-based approaches for linear systems,
developed by Langson, Chryssochoos, Rakovié¢, and Mayne (2004) and Mayne, Seron, and
Rakovié¢ (2005), guarantee robust constraint satisfaction and practical stability by main-
taining trajectories within invariant tubes around nominal predictions.

For nonlinear systems, Magni, Raimondo, and Scattolini (2006) developed early RMPC
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frameworks using regional input-to-state stability (ISS) concepts and dynamic game formu-
lations. Critically, Limon et al. (2006) provided a rigorous input-to-state practical stability
(ISpS) analysis for RMPC with general bounded uncertainties, proving that if terminal
ingredients yield an ISpS-Lyapunov function, then the RMPC value function is also an
ISpS-Lyapunov function and the closed loop achieves input-to-state practical stability.
Lazar et al. (2008) further developed ISS/ISpS conditions for minmax nonlinear MPC, de-
riving explicit state bounds and dual-mode conditions for asymptotic stability. Raimondo
et al. (2009) provided a comprehensive survey unifying the ISS/ISpS framework for RMPC,
explicitly articulating that standard minmax formulations with persistent bounded distur-
bances guarantee only practical stability rather than asymptotic convergence to the origin.
More recent developments include He, Ji, and Yu (2013) for continuous-time systems and
Sasfi, Zeilinger, and Kohler (2023) using control contraction metrics for adaptive RMPC.

For SMPC, McAllister and Rawlings (2023) established that nonlinear SMPC renders
the origin robustly asymptotically stable in expectation under basic regularity assump-
tions. Their analysis introduced stochastic input-to-state stability Lyapunov functions and
proved that the SMPC optimal cost function satisfies the required decrease conditions,
thereby guaranteeing convergence properties for the closed-loop stochastic system. To our
knowledge, a self-contained treatment for the standard stagewise-bounded RMPC formula-
tion in the policy parametrization framework, and its explicit parallel with SMPC stability
theory, has not been worked out in the existing literature.

Contributions. Building on the ISS/ISpS framework for RMPC developed by Limon
et al. (2006), Lazar et al. (2008), Raimondo et al. (2009), and the ISS comparison the-
ory of Jiang and Wang (2001), this paper provides a specialized, self-contained worst-case
stability analysis for nonlinear RMPC with stagewise bounded disturbances. The analy-
sis parallels the SMPC framework of McAllister and Rawlings (2023) but addresses the
deterministic worst-case setting, requiring careful treatment of maxima over compact dis-
turbance sequence sets and deterministic selection of control laws from possibly set-valued
optimal solutions. The main contributions are:

e Adaptation of input-to-state stability concepts to the stagewise-bounded disturbance
setting through worst-case input-to-state stability (WISS) Lyapunov functions and
robust asymptotic stability in worst-case sense (RASiW), making explicit the depen-
dence on the disturbance set magnitude |[|[W]].

e Complete existence and regularity analysis for the RMPC value function under stage-
wise bounded disturbances, including lower semicontinuity and robust positive invari-
ance of the feasible set.

e Building on the ISpS-Lyapunov results of Limon et al. and Lazar et al., proof that the
RMPC optimal cost is a WISS-Lyapunov function under standard terminal region and
terminal cost assumptions, yielding explicit KX£-K bounds on closed-loop trajectories.

e Demonstration that RMPC with stagewise bounded disturbances renders the origin
robustly asymptotically stable in worst-case sense (a practical ISS-type property de-
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pending on ||W||), providing a parallel deterministic worst-case counterpart to SMPC
stability results.

e Clarification of the connection between stagewise-bounded disturbance attenuation
and RMPC, contrasting stagewise bounds with classical signal-energy formulations.

e Numerical example demonstrating nonintuitive behavior where RMPC, due to worst-
case incentives and asymmetric stage costs, deliberately drives the state away from
the origin.

Relationship to SMPC. The analysis framework of this paper parallels the SMPC
stability results of McAllister and Rawlings (2023). However, the deterministic worst-
case setting requires fundamentally different treatment that precludes direct application of
stochastic results. Key distinctions include the use of suprema over compact disturbance
sets rather than expectations with respect to probability measures, deterministic selection
of single-valued control laws from possibly set-valued optimal solutions, and worst-case
input-to-state stability Lyapunov functions in place of stochastic input-to-state stability
Lyapunov functions. Consequently, while the structure of basic properties (existence, mea-
surability, cost decrease) and stability definitions follows the stochastic framework, each
result requires reformulation and proof for the worst-case setting. The proofs presented
herein address these distinctions and establish the analogous stability guarantees for RMPC
under stagewise bounded disturbances.

Organization. Section 2 formulates the RMPC problem with stagewise bounded distur-
bances and states the required assumptions. Section 3 establishes basic properties including
existence of optimal solutions and regularity of the value function. Section 4 proves optimal
cost decrease under worst-case disturbances. Section 5 defines robust asymptotic stabil-
ity in worst-case sense, introduces worst-case input-to-state stability Lyapunov functions,
and proves the main stability theorem for RMPC. Section 6 presents a numerical exam-
ple demonstrating the nonintuitive behavior that RMPC may exhibit. Section 7 presents
conclusions.

Notation. Let I and R denote the integers and reals. Let superscripts and subscripts
denote dimensions and restrictions (e.g., R%, denotes nonnegative real-valued vectors of
dimension n). Let |-| denote the Euclidean norm. For z € R", |z| _ = max;e (1,..n} |Til
denotes the infinity norm. For product spaces we use the sum norm |(z,w)| := |z| + |w|.
For a closed set S C R? and z € R%, |z|g := inf,eg |z — y| denotes the Euclidean point-to-
set distance. For a compact set W C RP, we define |[W|| := maxy,ew |w| as the maximum
norm of any element in W. A function f : R™ — R is lower semicontinuous if and only if
the set {x € R" : f(z) <y} is closed for every y € R.

The function o : R>g — R is in class K if it is continuous, strictly increasing, and
a(0) = 0. The function o : R>g — R>p is in class Ko if a(-) € K and unbounded, i.e.,
limg o0 a(s) = 00. A function 8 : R>g X I>g — R>q is in class KL if for every k € I>¢ the
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function 5(-, k) is in class K and for fixed s € R> the function §(s, -) is nonincreasing and
limg_,00 B(s, k) = 0.

2 Problem Set Up

2.1 Stage bound disturbance attenuation problem

Consider the discrete time system
ot = flz,u,w) (1)

in which z € X C R"” is the state, u € U C R™ is the control, w € RP? is a disturbance, and
27T is the successor state. The function f : X x U x R? — X is continuous.

We assume no probabilistic description of the disturbance. Instead, the disturbance is
constrained by a deterministic bound at each time step. For a control horizon N € I>q,
denote the control sequence u := (u(0),...,u(N — 1)) and disturbance sequence w :=
(w(0),...,w(N—1)). The stage bound disturbance attenuation regulator (StDAR) (Man-
nini and Rawlings, 2026) seeks a control sequence that minimizes the worst-case cost over all
disturbances satisfying independent stagewise constraints [w(k)| < ay, for each k € Ijg y_1).

Define the stage cost £ : X x U — R and terminal cost V; : X — R>q. The finite horizon
StDAR is

N—-1
min max > Uak),ulk)) + Vi(z(N))
k=0

subject to system dynamics (1) and the stagewise constraints
lw(k)| <ar VEk €Ny

The StDAR problem defines the optimal control policy for a single finite horizon. When
this problem is solved repeatedly in a receding horizon framework, applying the first control
action, shifting the horizon, and re-optimizing with new measurements, the resulting closed-
loop strategy is RMPC. To analyze the stability of this infinite horizon closed-loop system,
we assume the disturbance magnitude bounds are time-invariant, i.e., a; = « for all k.

In this context, it is convenient to define a compact disturbance set W := {w € RP :
|lw| < a}. The stagewise constraints on the sequence w are then equivalent to requiring w
to lie in the Cartesian product set W/

lwk)| <a Yk <= weWx...xW=w"

To characterize the size of the uncertainty for stability analysis, we define the magnitude
of the disturbance set as the maximum norm of any single disturbance realization

W]l := max|ew]
weWw

This definition ensures that ||[W|| = «, providing a tight scalar bound that does not scale
with the horizon length N. The RMPC problem is then formulated as the minmax opti-
mization over w € WV,
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2.2 Robust Minmax Model Predictive Control

We adopt the policy parameterization approach of McAllister and Rawlings (2023) cf.
Rawlings, Mayne, and Diehl (2020, Ch. 3). Let the policy be 7 : X x V — U with V C R¢
compact and (-, ) continuous, and require

7(z,0) = kp(r) VoeXy (2)

Define fr(z,v,w) := f(z,n(x,v),w) and denote by ¢(k;x,v,w) the state at time k gen-
erated by fr from initial condition x, parameter sequence v = (v(0),...,v(N — 1)), and
disturbance sequence w € WV,

We consider hard state and input constraints (z,u) € Z C X x U. For RMPC, all
constraints must be satisfied for every feasible disturbance sequence. The set of admissible
parameter sequences for a given initial state z is

Vi(x) = {veV": (x(k),n(z(k),v(k))) € Z
vw e WY k€l n_q
z(N) € Xy Ywe WV}
in which z(k) = ¢(k;x,v,w). The set of admissible initial states is X" := {& € X : V" (z) #
0}.

Define the cost functional

2

(z,v,w) Z Uz (k),v(k))) + Vi(x(N))

k=0
in which z(k) := ¢(k;z,v,w) and w € WY, The worst-case cost is

Vii(a,v) = max Jy (@, v, w)

The RMPC problem for any z € X" is

Py(z): Vi(z) = min Vi(z,v) = min max Ji(z,v,w 3
) V(@) = min Vi(ov) = min | max Ji (o v.w) ®)
The optimal solutions are defined by v"%(x) := arg minyeyr(y) V3 (z,v) for z € X"
Define the one-step control law

K"(z) := {m(z,v(0)) : v= (v(0),...,v(N = 1)) e v'%z)} CU

and fix a deterministic selection rule x"(z) € K" (x).
We make the following standard assumption for the disturbance.

Assumption 1 (Disturbance). The not random support W is compact and contains the
origin. The magnitude of the disturbance set is |[W|| := maxyecw |w|.

Remark 1. Requiring bounded W is essential for RMPC to ensure that worst-case con-
straints can be satisfied and that the terminal set remains robustly positive invariant. This
is analogous to the bounded support Assumption 1 in SMPC (McAllister and Rawlings,
2023).
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2.3 Assumptions

The following regularity assumptions are analogous to those used in SMPC (McAllister
and Rawlings, 2023).

Assumption 2 (Continuity of system and cost). The functions f : X x U x RP — X
7:XxV =0T, 0:XxU—=R,and Vy: Xy = R>g are continuous. The function ¢(z, u) is
lower-bounded for all (z,u) € Z. Furthermore, f(0,0,0) =0, £(0,0) =0, and V}(0) = 0.

Assumption 3 (Properties of constraint sets). The state constraint set X C R™ is closed
and contains the origin. The sets Z C X x U and Xy C X are compact and contain the
origin. The input sets U C R™ and V C R? are compact and contain the origin.

To ensure robust recursive feasibility and performance, the following terminal control
law assumption is required.

Assumption 4 (Terminal control law). There exists a continuous terminal control law
ky: Xy — U such that for all z € X

flz,kp(z),w) € Xy YweW (4)
Vi(f (2, ks (2),0)) < Vi(z) = Uz, wp(2)) (5)

Furthermore, (z,r¢(x)) € Z for all x € X¢, and 7(x,0) = ry¢(x) for all z € Xy.

Remark 2. In contrast to nominal MPC, the set X; may be empty. For a given model,
constraint sets, and disturbance set W, there may be no nontrivial pair (Xy, kr) satisfying
(4)—(5). In particular, if W is too large relative to the admissible constraints, there may be
no compact robust positively invariant set Xy C X with (z,x¢(z)) € Z and the terminal
cost decrease property; in this case Xy (and hence X") can be empty. All subsequent
feasibility and stability results are therefore conditional on the existence of such a terminal
pair (X¢, ky) for the chosen disturbance set.

For tracking problems, the following assumption is required.

Assumption 5 (Tracking cost bounds). There exists ay(-) € Ko such that £(z,u) >
ay(|z|) for all (x,u) € Z. Furthermore, X; contains the origin in its interior and X" is
bounded.

The following sets have been defined: X C R" is the state constraint set, U C R™ is the
input constraint set, W C RP is the disturbance set, V C R? is the policy parameter set,
Z C X x U is the state-input constraint set, Xy C X is the terminal set, V" (x) C V¥ is the
set of admissible parameter sequences for initial state z, X" C X is the set of admissible
initial states, and K" (z) C U is the optimal one-step control law.

We establish that the terminal set is contained in the robust feasible set.

Lemma 1 (Terminal set contained in robust feasible set). Let Assumptions 1—4 hold. Then
XpCar.
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Proof. Pick any x € Xy and consider the parameter sequence v := (0,...,0) € VN, By (2),
7(£,0) = ky(§) for all £ € Xy. For any disturbance sequence w = (w(0),...,w(N — 1)) €
WY, the closed-loop trajectory under (x,v,w) satisfies

z(0) ==z z(k+1) = f(z(k), ky(z(k)),w(k)) k=0,...,N—1

Assumption 4 gives f(xz(k),rr(x(k)),w) € Xy for all z(k) € Xy and all w € W, so by
induction z(k) € Xy for all k =0,..., N. Moreover, (z(k), kf(x(k))) € Z for all z(k) € X
by Assumption 4, and z(N) € Xy by construction. Thus, the pair (x,v) satisfies all stage
and terminal constraints for every w € W/ i.e., v € V'(z).

Since we have found a v € V"(x), the set V"(z) is nonempty. By the definition X" :=
{z € X: V"(2) # 0}, this implies x € X". As o € X; was chosen arbitrarily, we conclude
X; C A7 O

3 Basic Properties of Robust Minmax Model Predictive Con-
trol

Before proceeding to stability guarantees for RMPC, we establish that a solution to P,
exists and verify regularity of the optimal cost function.
We begin with the following result for the feasible set.

Lemma 2. Let Assumptions 1-3 hold. Then the set
2 = {(z,v) e Xx VN : v e V'(2)}
s closed.
Proof. Define for each w € WV the set
Zy(w) ={(z,v) e X x vV ne(x,v,w) <0 Vk €N}
with
(b(ks @, vow), 7(d (ks 2, v, w), 0(k) |z (k< N —1)

¢ N;l‘,V,W)|Xf

Nk (x, v, w)
/r]N (x7 v7 W)
Continuity of f, 7 implies continuity of 6 in (z,v) for fixed w (Rawlings et al., 2020, Prop.

2.1). Since point-to-set distance to closed sets is continuous, each 7 is continuous; hence
Z}(w) is closed. By the definition of V"(z), constraints hold for all w and

Zr= () 2Zn(w)
wewN

an intersection of closed sets, thus closed. ]

Using Lemma 2, we establish that solutions to the RMPC optimization problem exist.



TWCCC Technical Report 2026-01 9

Proposition 3 (Existence of minima). Let Assumptions 1-3 hold. Then for each x € X7,
the function V3 (x,-) is continuous on V" (x), the set V" (x) is compact, and a solution to
Py (x) exists.

Proof. For (z,v) € Z§, by continuity of f and m, (ZA)(/C;.T,V,W) is continuous in (z,v,w)
for all £ (Rawlings et al., 2020, Prop. 2.1), hence Jy (x,v,w) is continuous in (x,v,w).
Since W/ is compact, the map (x,v) — Vi (z,v) := maxycwn Jiv(z, v, w) is continu-
ous on Z}; by Berge’s maximum theorem (Berge, 1963) cf. (Rockafellar and Wets, 1998,
Theorem 1.17).

By Lemma 2, Z%; is closed. Hence for fixed x, V"(z) = {v : (x,v) € Z} C V¥ is
closed, and since V is compact, V¥ is compact. Thus V" (x) is compact. Since v — Vi (z,v)
is continuous on the compact set V" (x), a solution to Py (x) exists by Weierstrass’s theorem
(Rawlings et al., 2020, Prop. A.7). O

We next establish regularity of the optimal cost function and closedness of the feasible
set.

Proposition 4 (Lower semicontinuity of the optimal cost). Let Assumptions 1-3 hold.
Then V](}O : X" — R is lower semicontinuous, the set X" is closed, and for every x € X"
the minimizer set v'(x) = argminyeyr(y) Vi (2,v) is nonempty and compact.

Proof. Closedness of X". By Lemma 2, Z C X X V¥ is closed and, by Assumption 3, X
is closed and V¥ is compact. The projection mx : X x V& — X is a closed map when the
second factor is compact; hence

X" =7x(28) = {z € X:3Iv e V¥ with (z,v) € 2§}

is closed in X and therefore closed in R"™.
Lower semicontinuity of V](}D. By Proposition 3, the map

b '_> Vr ) = JT ) )
(,%) = V(. v) i= max Ji(e,v,w)

is continuous on X x V&, Define the feasible-set mapping
V() :={veVV:(z,v)e 2y} re X"

V" (x) is nonempty for each € X" by definition of X". Since V¥ is compact and Z%
is closed, V" (z) is compact for each x € X" and the graph of V" is closed; hence V' (-) is
upper semicontinuous with compact values.
Let
G(z,v) = =Vx(z,v) (z,v) € X" x VN

Then G is continuous and

V(z):= sup G(z,v)=— inf Vi(z,v)=-Vi(x) re X"
veVT(x) vevr(z)
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By Berge’s maximum theorem (Berge, 1963) cf. (Rockafellar and Wets, 1998, Theo-
rem 1.17) (applied to the maximization of G over V" (z)), V is upper semicontinuous on
X7. Hence V{0 = —V is lower semicontinuous on X

Nonempty compact argmin sets. For each fixed x € X", V" (z) is compact and nonempty,
and v — Vi (x,v) is continuous (Proposition 3). By Weierstrass’s theorem, the minimum
over V"(x) is attained and the argmin set v"(x) is nonempty and compact. O

To define the closed-loop system, we fix a deterministic selection from the optimal
control law. For each x € X", the optimal parameter set v'(x) C V¥ is nonempty and
compact by Proposition 4. Choose a deterministic selection

v (z) = (v"(0;2),..., v (N — 1;2)) € v'O(x) re X"
Define the single-valued feedback law
K (z) =7 (z,0"(0;2)) reX”

By construction, " (z) € K" (z) for all x € A7,
We next establish robust positive invariance of the feasible set under this feedback law.

Lemma 5 (Robust positive invariance). Let Assumptions 1—4 hold and fix the deterministic
selection k" : X" — U defined above. Then X" is robustly positive invariant for the closed
loop

at = f(z, K (), w) weWw

and the closed-loop trajectory ¢" (k;x,wy,) is well-defined for all x € X", all wy, € W¥, and
all k € ]IZO'

Proof. Step 1: Successor feasibility. Fix any x € X" and any w(0) € W. By definition of
X7, V"(x) # 0, and by construction of v'™* we can take

vi=v"(z) = (v*(0),...,v" (N -1)) € vi(z) K'(x)= m(z,v*(0))
Define the successor state
= [ w7 (2),w(0)) = £, m(z,0*(0)), w(0))
We construct a candidate feasible parameter sequence at 2% by the shift-append rule
vhi= (v*(1),...,v (N —1),0) e V¥

We claim vt € V" (xT), i.e., starting from 2T this sequence satisfies all state-input con-
straints and the terminal constraint for every disturbance sequence of length V.
Step 2: State matching and constraint preservation. Let an arbitrary disturbance tail

wh = (w(l),...,w(N)) € wh
be given. Form the combined disturbance sequence

w = (w(0),w(l),...,w(N)) € WV



TWCCC Technical Report 2026-01 11

Consider the state sequence generated from x under the optimal parameters v* and dis-
turbance w’

z(0) == x(k+1):= f(x(k:),ﬂ(az(k:), v*(k)),w(k)) k€ T N1

By feasibility of v* € V"(z), we have for every w € WY, hence in particular for the prefix
(w(0),...,w(N — 1)) of w', that

(a(k), m(a(k), 0" (k) €2 kelpn g  (N)€X; (6)
Next, consider the state sequence from T with parameters v and disturbance tail
e
w
27 (0) := 27
T (k+1) = f($+<k),ﬂ'($+(k), v (k+1)),w(k + 1)) k€T n-g

gt (N) = flzt(N = 1),7(z"(N - 1),0),w(N))
We show by induction that
x (k) =z(k+1) Vk € Ijpn—1) (7)
For k = 0, this follows directly from the definition of 2™
2t (0) =2t = f(z,7(z,v"(0)),w(0)) = z(1)
Assume 2t (k) = z(k + 1) for some k € Tjg y_g). Then

et (k+1) = fla®(k), m(z" (k),v*(k+ 1)), w(k + 1))
= f(x(k + 1), m(x(k+1),0"(k+1)),w(k+ 1))
z(k +2)

which completes the induction and proves (7).
From (6) and (7) we obtain, for k € Ijg y_g),

(ZL'+(]€),7T({L‘+(]€), v*(k + 1))) = (:L‘(k‘ + 1), w(x(k+1),0"(k+ 1))) €7

so the stage constraints up to k = N — 2 are satisfied for any tail w.
At the last input stage kK = N — 1, the appended parameter 0 satisfies

m(xT(N —1),0) = k(™ (N - 1))
Using 27 (N — 1) = z(N) € Xy from (7) and Assumption 4, we have
(zH(N =1),7(z" (N —1),0)) = (z(N),ks(z(N))) € Z

so the stage constraint at K = N — 1 also holds.
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Step 8: Terminal set invariance. Finally, terminal feasibility at the end of the shifted
horizon follows from robust positive invariance of X; under x;:

zH(N) = f(ac+(N — 1), 7zt (N — 1),0),w(N))
= f(z(N),ks(z(N)), w(N)) € Xy Yw(N) e W

by Assumption 4. Thus, for the arbitrary tail w© € W, the sequence v* satisfies all
constraints and the terminal condition from z™, i.e., v € V"(a™) and therefore 21 € X".
Since x € X" and w(0) € W were arbitrary, we have shown

Ve e X" YweW: f(x,nr(x),w)e)(r

so X" is robustly positive invariant for the closed loop #* = f(z, k" (z),w), w € W.
Step 4: Well-defined closed-loop trajectory. Given any x € X" and any disturbance
sequence Wo, = (w(0),w(1),...) € W20 define inductively

(ZST(O; T, (Z)) =T ¢r(k + 1 x7wk+1) = f(¢r<k7 :C,Wk), "Qr((br(k; :c,wk)),w(k))

By robust positive invariance, ¢"(k;z, wy) € A7 for all k € 1>, hence k" (¢" (k; z, wy)) is
well-defined for all k. This proves that the closed-loop trajectory exists for all £ € I>¢ and
all disturbance sequences, completing the proof. O

4 Optimal Cost Decrease in Worst-Case Sense

We now establish that the optimal cost for RMPC satisfies a cost decrease inequality along
the closed-loop trajectory under worst-case disturbances. This parallels the expected-
value decrease for SMPC (McAllister and Rawlings, 2023), but uses uniform bounds over
all disturbances.

We use the following technical result from Allan, Bates, Risbeck, and Rawlings (2017,
Prop. 20).

Proposition 6. Let C C D C R" with C compact and D closed. If f : D — R”
is continuous, there exists a(-) € Koo such that, for all x € C and y € D, we have

[f(x) = f(y)] < a(lz —yl)

The following result establishes a uniform bound on the terminal cost increase due to
disturbances.

Lemma 7. Let Assumptions 1-4 hold. Then there exists o(-) € K such that, for all z € Xy
and allw e W

Vi(f (2, 5 p(2), w)) < Vi(z) — (2, 5¢(x)) + o (W)

Proof. Define F': Xy x W — R by F(z,w) := V¢(f(z,r¢(x),w)). By continuity of Vy, f,
and ry, the map F is continuous. Apply Proposition 6 with C' = D = Xy x W (compact,
hence closed) to obtain &(-) € K such that for all x € Xy and w € W

|F(x,w) - F(l‘,O)’ < &( ’(CL‘,’U)) - (.’L‘,O)‘)
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We endow Xy x W with the sum norm |(z,w)| := |z| + |w|, hence |(z,w) — (z,0)| = |w|
and
F(z,w) < F(x,0) + a(|w)

Using the terminal cost decrease (5), V¢(f(x,kf(x),0)) < Vi(x) — €(x, kf(x)), we obtain
(x

Vi(f(z,k5p(x),w)) < Vi(x) = Uz, k5(x)) + a(|w]) < Vi(z) =z, kp(z)) + a([[W])
a(s) t

since |w| < ||[W]| for all w € W. Define o(s) := &(s) to obtain the claim. O

We now extend the terminal region cost decrease to the entire robust feasible set.
This result constitutes the central stability argument of the paper, as it establishes the
dissipation inequality required to characterize the optimal value function as a Lyapunov
function.

Proposition 8. Let Assumptions 1—4 hold. Then X" is robustly positive invariant for the
control law K", and there exists o(-) € K such that, for all x € X" and all w € W

VP (f(x, K" (2), w)) < ViP(x) = Uz, & (2)) + o ([W])

Proof. By Lemma 5, X" is robustly positive invariant. Fix z € X" and w(0) € W. Pick
v* = (v*(0),...,v*(N — 1)) € v"9(z) with x"(z) = 7(z,v*(0)).

Case N = 1: For N = 1, we have V{%(z) > J{(z,v*,w(0)) = l(z,r"(z)) + Vi(z™).
Since 7 € Xy and 0 € V" (27), Lemma 7 gives V(™) < V{(27,0) = maxyew([l(z T, k¢ (z
Vi(f(a®, mp(at),w)] < Vi(@®)+o(|W]). Thus V70(2") < V@) —L(z, &" (2))+o ([|W])).

Case N > 2: Define the successor state zt = f(z,x"(z), w(0)). Define the shifted
parameter sequence v := (v*(1),...,v*(N —1),0) € VV. As established in the proof of
Lemma 5, this specific shifted sequence is feasible, i.e., v € V" (a™).

We first relate the cost of an arbitrary disturbance sequence at the next step to a
specific sequence at the current step (see Figure 1 for an illustration of this construction).
Let w = (@(0),...,w(N — 1)) € WY be any disturbance sequence for the shifted problem
starting at 7. Construct the disturbance sequence w' := (w(0),w(0), ..., w(N—-2)) € WV
for the problem starting at z. Denote z(k) := ¢(k;z, v, w') and z 7 (k) := ¢(k;xT,v T, W).
As established in Lemma 5 (Step 2), we have 1 (k) = z(k+ 1) for k =0,...,N — 1 and
zT(N —1) =z(N) € Xj.

Evaluating Jy; along the two trajectories yields

N-2
Iyt vt W) = Uzt (k), m(z" (k),v*(k+1))) + A" (N=1), 55 (zT(N-1)))
k=0
+ V(T (N-1), f”vf( T(N-1)),@(N - 1))
= (x, v wh) = b, 57 (@) = Vi(@(N))
+ U (z(N), rwp(z(N )))+Vf( f@(N), ky(z(N)), w(N - 1))

)+

)
By Lemma 7 (applied at () € Xy with disturbance @w(N—1)), and noting that |@(N — 1) <

||W]||, we obtain

—Vi(@(N)) + €@ (N), 55 (@(N))) + VA (@(N), g (2(N)), (N = 1))) < o([|W]))
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We substitute this bound into the previous expansion for Jj (z*,v ™, W) to obtain
T (@®, 97 %) < Ji(, v wh) — e, w7 () + o (|WI)) (8)

Now we consider the worst-case disturbance at z*. Since W' is compact and Jy(xt,vT,)
is continuous, a maximizer exists. Let w* € W be such a sequence, i.e.,

Iyt v W) = max Jy(at, v, w) =Vi(zt,vTh)

w/ceWN

Let wi := (w(0),@w*(0),...,0*(N — 2)) € WY be the specific sequence constructed by
prepending w(0) to the first N — 1 elements of w*. Applying (8) with w = w* and
w! = wt, we obtain

Vi(at, v ) < Jj(z, v wh) — iz, 57 (2) + o (W)
By the definition of the value function at x, we have

Tiy(a, v wh) < max (e, v, w) = Vile,v)
W

Since v* € v"¥(z), we have Vi (z,v*) = ViP(z). Thus we have
V("9 F) < VR (2) — £z, &7 () + o ([W]))
Since v € V" (zT), suboptimality implies Vi°(zT) < Vi (z*,vT). Therefore
Vi (@™) < VR (@) — U, w7 () + o (| W)

Because w(0) € W was arbitrary, the bound holds for all w € W. O

5 Worst-Case Stability: RASiW

We adapt classical input-to-state stability concepts to the stagewise-bounded disturbance
setting. The robust asymptotic stability in worst-case sense (RASiW) notion parallels
input-to-state practical stability (ISpS) from the RMPC literature (Limon et al., 2006;
Lazar et al., 2008; Raimondo et al., 2009), specialized to our stagewise-bounded disturbance
formulation with explicit dependence on the disturbance set magnitude |[W||. Similarly,
worst-case input-to-state stability (WISS) Lyapunov functions are natural adaptations of
ISS-Lyapunov concepts to the worst-case setting.

5.1 Robust Asymptotic Stability in Worst-Case Sense

Discrete time Lyapunov stability theory for nominal systems relies on comparison lemmas
to convert Lyapunov decrease conditions into explicit stability estimates (Sontag, 1989).
Jiang and Wang (2001) extended this framework to input-to-state stability for discrete
time nonlinear systems subject to bounded inputs. The results below adapt these ISS
comparison arguments to scalar recursions with a constant perturbation parameter arising
from a fixed stagewise disturbance bound.
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Optimal: v*, wi

Candidate: v, w
Figure 1: Horizon-shifting argument in Proposmon 8 (for N > 2). For any disturbance
sequence w = (0(0),...,w(N—1)) € WY at 2, define w! := (w(0),@w(0),...,H(N-2)) €
W at x. The optimal parameters v* = (v*(()),...,v*( —1)) satisfy z(N) € X for
all w € WY by feasibility. The shifted candidate v = (v*(1),...,v*(N—1),0) satisfies
(k) = z(k+1) for k = 0,...,N—1, so both trajectories reach 27 (N—1) = z(N) € Xj.
Comparing trajectories shows that the first-stage cost ¢(z,x"(z)) is dropped from the
horizon while the terminal—step mismatch is bounded by o(||W||) via Lemma 7, yielding

VP (f (@57 (@), w) < VP (2) — L@, 57 (2) + o (| W]).

Definition 1 (RASiW). The origin is robustly asymptotically stable in worst-case sense
(RASiW) for the system ™ = f(x, k" (z),w), w € W on the robustly positive invariant set
X7 if there exist 8(-,-) € KL and v(-) € K such that the closed-loop trajectory satisfies

0" (ks 2, wie)| < B(|z|, k) +~([[WI]) (9)
for all z € X", k € I[>9, and wy, € Wk,

Definition 2 (WISS-Lyapunov Function). A lower semicontinuous function V : X" — Rxg
is a worst-case input-to-state stability (WISS) Lyapunov function on the robustly positive
invariant set X7 for the system 21 = f(x, k" (x),w), w € W if there exist a1 (+), aa(-), as(:) €
Ks and o2(+),03(-) € K such that

o (|z]) < V(z) < ao(lz]) + o2 ([[W]]) (10)
V(f(z, k" (z),w)) < V(z) — as(|z|) + os(]|[W]]) (11)
forall z € X" and w € W.

The connection between WISS-Lyapunov functions and RASiW bounds follows from
standard ISS comparison arguments. We first establish a discrete time comparison lemma
adapted from the ISS literature (Jiang and Wang, 2001; Sontag, 1989).

Lemma 9 (discrete time comparison). Let u(-) € Koo and ¢ > 0. Suppose the nonnegative
sequence y : I>g — R>q satisfies

y(k+1) <y(k) — p(y(k)) +c (12)
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for all k € I>g. Then there exist By (-,-) € KL and vy () € K such that
y(k) < By (y(0), k) + vy (c)
for all k € I>q.

Proof. Since p(-) € Ko, the function p : R>9 — R>q is continuous, strictly increasing,
unbounded, and satisfies 1(0) = 0. Hence p is a bijection and admits a continuous inverse
p=t i Rsg — Ry with p=t € Koo (Khalil, 2002, Lemma 4.2).

Step 1: Reduce to a max-type recursion. For the given ¢ > 0, define

Se 1= 1(20)
If ¢ = 0 then s, = p~1(0) = 0. For any s > s. we have u(s) > 2c.
Define 1
pis) =5 — Suls)
for s > 0. Since p is continuous, so is p1. Moreover p;(0) = 0 and for all s >0
pr(s) = — guls) < s

because p(s) > 0 for s > 0.
We define the nondecreasing envelope of p;

p2(s) := max p1(7)

for s > 0. By construction p3(0) = p1(0) = 0, the function ps is nondecreasing and
continuous, and for s > 0 we have p;(7) < 7 < s for all 7 € (0, s] and p1(0) = 0 < s, hence
p2(s) = maxo<r<s p1(7) < s. Thus, we obtain

p2(0) =0 0<pa(s) <sforall s>0 p2 nondecreasing and continuous (13)

Note also that p;(s) < pa(s) for all s > 0 by construction.
Consider the recursion (12). We distinguish two cases.
Case 1: y(k) > sc. Then u(y(k)) > 2c and

y(k+1) <y(k) — p(y(k)) +c < y(k) - %M(y(k‘)) =p(y(k)) < p2(y(k))

Case 2: y(k) < sc. In this case
y(k+1) < y(k) — p(y(k)) +c <y(k) +ec<sc+c
Define
v(e) :=sc4+c=p(2) +c
Since p=t € Koo and ¢+ ¢ is in Ky, their sum is v(+) € Koo C K and v(0) = 0.
Combining the two cases yields

y(k +1) < max{pz(y(k)),~(c)} (14)
for all k € I>o.
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Step 2: Construct a contraction map dominating ps. Define

\s) i= 55+ pa(s)

for s > 0. From (13) we have 0 < pa(s) < s for all s > 0, hence 0 < A(s) < s. For s > 0,

we have

Mo = 22O ot

since pa(s) < s. Moreover A\(0) = 0 and since s — s and py are continuous and nonde-
creasing with at least one strictly increasing component, A(-) is continuous and strictly
increasing. Thus A(-) € K and

A0)=0 0<A(s)<sfors>0 \() strictly increasing (15)

By construction ps(s) < A(s) for all s > 0.
Using (14) and pa2(-) < A(+) yields

y(k +1) < max{A(y(k)),v(c)} (16)

for all k£ € I>o.

Step 3: Comparison with the contraction iterates. Define the iterates of A\(-) by
A(s) :=5 MHI(s) := A(\F(s))

for k € I>g. For each fixed k, the function ME(-) is continuous and strictly increasing with
A¥(0) = 0. From (15) and induction we have \*(s) < s for all s > 0 and k > 1. For any
fixed s > 0, define the sequence sp := s and sp4; := A(sg) for k € I>9. From (15) we
have 0 < sp41 = A(sg) < sk whenever s; > 0, so the sequence is strictly decreasing and
bounded below by zero, hence converges to some L > 0. By continuity of A(-) we have
L = limg 00 Sgpt1 = limg_y00 A(sg) = A(L). From A(s) < s for all s > 0 it follows that the
only fixed point is L = 0. Thus s, = A*(s) — 0 as k — oo for every s > 0.
We claim that

y(k) < max{\*(y(0)),7(c)} (17)

for all k € I>9. We proceed by induction. For k = 0, (17) reduces to y(0) < max{y(0),v(c)},
which holds. Assume (17) holds for some k € [>¢. Using (16) we have

y(k+1) < max{A(y(k)),7(c)}

By the induction hypothesis

y(k) < max{\*(y(0)),7(c)}

Since A is strictly increasing

Ay(k)) < Amax{A\*(y(0)),7(c)}) = max{\**!(y(0)), A(v(c))}
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From (15) we have A(s) < s for s > 0, hence A(y(c)) < 7y(c) for all ¢ > 0. Therefore

My(k)) < max{A*(y(0)), v(c)}

Combining with (16) gives

y(k +1) < max{A(y(k)),v(c)}
< max{max{)\kﬂ(y(o))a v(e)} ()}
= max{)\k+1(y(0))77(0)}

which is (17) with k£ + 1. Thus the claim holds for all .
Using the elementary inequality max{a,b} < a+ b for a,b > 0 yields

y(k) < X(y(0)) +v(c)

for all k € I>o.

Step 4: Definition of fy (-, ) and 7y (). Define

By (s, k) = Ne(s) 7y (e) i= 7(e) = ' (20) + ¢

For each fixed k, the map s — fy(s,k) is continuous, strictly increasing, and satisfies
By (0,k) = 0, hence By (-, k) € K. For each fixed s > 0, the map k& — Sy (s, k) is nonin-
creasing and limy_,~ Sy (s, k) = 0 because A(s) < s for s > 0. Thus By (-,) € KL. The
function 7y is the sum of two Ko functions ¢ + p~1(2¢) and ¢ +— ¢, hence vy () € Koo C K.
From the inequality y(k) < A*(y(0)) 4+ v(c) we conclude

y(k) < By (¥(0), k) + vy (c)

for all k € I>¢, which completes the proof. ]

We establish that WISS-Lyapunov functions ensure RASiW. This result adapts stan-
dard ISS-Lyapunov theory (Jiang and Wang, 2001; Limon et al., 2006) to the stagewise-
bounded disturbance setting.

Proposition 10. If the system x* = f(z,x"(2),w), w € W admits a WISS-Lyapunov
function V : X" — R>q on the robustly positive invariant set X", and X" is bounded, then
the origin is RASIW on X7.

Proof. Fix z(0) € X" and a disturbance sequence woo, = (w(0),w(1),...) with w(k) € W
and |w(k)| < [[W]| for all & € I>g. Let the closed-loop trajectory be

w(k+1) = fz(k), 5" (2(k)), w(k))

for k € I>g. Since X" is robustly positive invariant, z(k) € X" for all k € I>g, so V(z(k))
and the WISS inequalities are well-defined for all k. Define Y (k) := V (z(k)).
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Step 1: Lyapunov inequalities in scalar ISS form. From the WISS bounds (10) we
have

ar(|z(k)]) <Y (k) (18)
Y(k) < az(l(k)]) + o2([[WI) (19)

for all £ € I>¢. The decrease condition (11) gives
Y(k+1) <Y(k) — as(|z(k)]) + os(|W]) (20)

for all k and all admissible w(k).
Since a;(-) € Kuo, it admits an inverse o ' (-) € Koo (Khalil, 2002, Lemma 4.2). Define
1(s) := az(a;*(s)) € Koo. From (18) we obtain
o '(Y(K) > lz(k)] = (Y (k) = as(|z(k)])

Define §(z) := p(V(z)) — as(|z|) for z € X", which satisfies §(z) > 0 by the lower WISS
bound in (10). Since X" is bounded, let || X7 := sup{|z| : # € X"} < co. From the upper
WISS bound in (10), for all z € X",

Vi(z) < ag(|z]) + o2([[W]]) < ca(| X)) + o2([[W])
Hence, by monotonicity of u(-) € Ko, we have
n(V(z) < plaa(|X7])) + o2([W]) =€ &7
Thus the constant

c([[WII) := o3(|[WI) + sup 3(z) < o3([W) + plaa([[ &) + o2(|[WI])) < oo

is well-defined. Since X" is fixed, we write c(||W||) suppressing the dependence on X".
Combining (20) yields

Y(k+1) <Y(k) = (Y (k) + c(|[W]]) (21)

for k € Hzo.

Step 2: Scalar ISS estimate for Y (k). By Lemma 9 applied to (21), there exist
By (-,+) € KL and vy (+) € K such that

Y (k) < By (Y(0), k) + v (c([[WI]) (22)

for all k € ]IZO'
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Step 3: Convert from V-bound to a state bound. From (18) and (22) we obtain

2(0)] < a7 (By (Y (0), k) + 7 (e([WI)))

From (19) at £k = 0 we have Y (0) < aa(|z(0)]) + o2(]|[W]|). Using property (B.15) from
Rawlings et al. (2020, App. B), for any a,b > 0 and k € I>¢ we have

By (a+b,k) < By (2a, k) + By (2b,0)
Applying this with a = as(|2(0)|) and b = oo(||W]|) yields
By (Y(0), k) < By (2az(|z(0)]), k) + By (202(|W][), 0)

Using property (B.14) from Rawlings et al. (2020, App. B) for sums of K functions, we
have
ar ' (A+ B) <oy (24) + a1 (2B)

Let A = By (2az(|z(0)]), k) and B = By (202([|WI]),0) + vy (c([W]])), then
(k)| < a7 (28y (2a2(|2(0)]), k) + a1 (2By (202([ W), 0) + 27y (c(|W]))))
Define (s, k) := a; ' (2By (2a2(s), k)) € KL. Then
(k)| < B(|2(0)] , k) + ay ' (28y (202([[W]), 0) + 27y (c(|[W]))))

If ||[W]| = 0, the nominal case follows directly from the standard Lyapunov theorem (Rawl-
ings et al., 2020, Theorem B.15) using (10)—(11), so |z(k)| < B(]z(0)|, k); since any v(-) € K
satisfies y(0) = 0, the RASiW bound holds. For |W| > 0, define

I
V(s) = Wy (28y (202([[W]]),0) + 29y (c([[W]]))) s s >0

Then 7(-) € K and (|W])) = a1 (28y (202(|W])), 0) + 27y (c([W]))), so

|z(k)] < B(|2(0)] k) +~ (W)

for all k € I>o and all disturbance sequences with |w(k)| < ||[W|. This is exactly the
RASIiW property (9) on X7. O

5.2 RASiW of RMPC

The remainder of this section establishes that the RMPC optimal cost function is a WISS-
Lyapunov function, thereby proving RASiW of the closed loop. We first establish the upper
bound for the optimal cost function.

Lemma 11. Let Assumptions 1-5 hold. Then there exist as(-) € K and o2(-) € K such
that
V(@) < aa(lz]) + o2 (| WI))

forallz e X7.
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Proof. Fix z € Xy and apply the terminal control law for IV steps, i.e., choose the feasible
parameter sequence v = 0 € VY so that 7(-,0) = rs(-) by (2). By Assumption 4 and
Lemma 7, for each step and every w € W, we have

Vi(e(k +1)) = Vi(z(k)) < —l(a(k), rp(2(K))) + o ([|W])

Summing k = 0 to N — 1 yields, for every w € WV

N-1
Uz (k), wp(2(K))) + Vi(x(N)) < Vi(z) + No([W])
k=0

The left-hand side equals Jy (x,0,w), hence

max Jy(z,0,w) < Vi(x) + No(||W]])
weWwN
By optimality, Vi°(z) < Vi(z) + No(|W||) for z € X;.
Since V; is continuous on the compact set Xy and V¢(0) = 0, we apply Rawlings and
Risbeck (2015, Prop. 14) to obtain &y () € K such that Vy(x) < ay(|z|) for all z € Xy. Let
Xy := sup,ex, [z]. We extend as(+) to as() € Koo by defining

(5) = {df(S) 0< 5 < |Xy]
ar(IXs )+ (s = IXsl) s> 1%y

Thus Vi2(z) < as(|z]) + No(|W])) for all z € X;.
Define
W (z) := max{V{"(x) — No(||W]|), 0}

for z € X". For z € Xy we have W (x) < Vy(z) < as(|z|). By Proposition 4, Vi is lower
semicontinuous on X", hence W is also lower semicontinuous. Assumption 5 states that
Xy contains the origin in its interior, so there exists p > 0 such that {z : |z| < p} C X[.
For |z| < p we have W (z) < ay(|z|). Therefore

limsup W (z) < limsup af(|z]) = af(0) =0

r—0 z—0

On the other hand, lower semicontinuity and W (0) = 0 give

liminf W(z) > W(0) =0
z—0

Hence lim,_,o W(z) = 0, i.e., W is continuous at zero.

By Assumption 5 and Proposition 4, X" is closed and bounded, hence compact. Since
2}, is closed (Lemma 2) and contained in the compact set X x V. it is compact. The cost
function J% (x, v, w) is continuous on the compact set Z5 x WY (where 2(N) € Xy, so V is
well-defined). Thus J}; is bounded on this set. Since ViP(x) = minyeyr(y) maxyewn Jiy (2, v, w),
it follows that Vi?(z) is bounded on X". Consequently, W (z) is bounded (and thus locally
bounded) on X”. Since W is lower semicontinuous, continuous at zero, W(0) = 0, and
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locally bounded on the closed set X", we apply Rawlings and Risbeck (2015, Prop. 14) to
obtain &s(-) € K such that W(z) < ag(|z|) for all z € X7
Let || X7 := supgecyr |z]. We extend &a(-) to aa(:) € Koo by

r(s) 1= {d2<s> 0<s< A7)
Ga( A7) + (s = 47]) s > 7]

Define o3(s) := No(s) € K. Then

Vi (@) = o2(|W]) = Vi (2) = No([[W])) < W (z) < az(]a])

SO
Vi2(x) < as(lz]) + o2(|W])
for all x € A", which completes the proof. O

We establish that the stage cost is dominated by the value function. For any z € X",
any v € V"(x) and any w € W¥
N-1
T, v, w) = Lz, w(a,0(0)) + Y La(k),m(x(k), (k) + Vi(z(N))
k=1
> Uz, m(z,v(0)))

Hence

Vy(z,v) = max Jy(z,v,w) > {(z,7(z,v(0)))
wewnN

Taking the minimum over v € v"?(x) and using x"(x) € K"(x) gives
Uz, k" (x)) < VR (@) (23)

for all x € A"
We establish the main stability result for RMPC.

Theorem 12. Let Assumptions 1-5 hold. Then the origin is RASiW for the system
zt = f(z,k"(z),w), w € W on the robustly positive invariant set X"

Proof. By Lemma 5, X" is robustly positive invariant under ", and by Assumption 5 the
set X" is bounded. Moreover, V{? is lower semicontinuous on X" by Proposition 4.

We show that Vi is a WISS-Lyapunov function on X". From Assumption 5 and (23),
we obtain the lower bound a1 (|z|) < V{%(x) with a1(-) := ay(-) € Keo. Lemma 11 gives
the upper bound Vi (x) < as(|z]) + a2(]|W]|) for some as(-) € Koo and o2(+) € K. Finally,
Proposition 8 together with £(x, k" (x)) > ay(|x|) yields

VR (f (2,67 (2), w)) < V(@) = ae(l]) + o (|W])

ie., (11) with a3(-) = au(-) € Koo and o3(-) = o(+) € K.
Thus Vi is a WISS-Lyapunov function on the robustly positive invariant and bounded
set X”. Applying Proposition 10 gives the RASiW property on X". O
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We establish that the stage cost satisfies analogous worst-case asymptotic bounds.

Corollary 13 (¢-RASiW). Let Assumptions 1-5 hold. Then there exist B¢(-,-) € KL and
() € K such that

U(o" (ks wi), k7 (9" (ks 2, wi))) < Be(lz], k) + e ([[W])
forallz € X7, k € I>0, and wy € Wk,

Proof. As shown in the proof of Theorem 12, Vj\}o is a WISS-Lyapunov function on &™.
Along the closed loop z(k + 1) = f(z(k),s"(z(k)),w(k)), set Y(k) = ViP(z(k)). By
Proposition 10 (specifically Step 2 of its proof), Y (k) satisfies the bound

Y (k) < B(Y(0), k) +7(IWI])

for some 3(-,-) € KL and 7(-) € K. Using the WISS upper bound Y (0) < ax(|z])+o2(||W]|)
and property (B.15) from Rawlings et al. (2020, App. B), we have

Y (k) < Blaa(]) + o2 (W), k) + (W) < B(2az(|z]), k) + B(202(][W])), 0) + 3(|W]))
Since {(z, k" (z)) < Vi%(x) = Y (k) along the trajectory, we obtain
(k). 5" (x(K))) < B(az(|z]), k) + B202([W])), 0) + F(||WI])
Define

Bu(s, k) :== B(2aa(s), k), () = B(202(s),0) +7(s)
Then By(-,-) € KL, () € K, and the claimed bound follows. O

6 Numerical Example

We illustrate the theoretical results with a liquid level control problem adapted from McAl-
lister and Rawlings (2023). The system consists of two tanks in series as shown in Figure 2,
where the objective is to regulate the liquid height in each tank. Tank 1 drains into tank
2 by gravity driven flow at a rate proportional to the height in tank 1. We extend the
nominal setup of McAllister and Rawlings (2023) to the worst-case disturbance setting by
treating the proportionality constant as an uncertain parameter subject to bounded dis-
turbances, and we apply the RMPC design developed in Section to guarantee worst-case
stability properties.

Let h; denote the height in tank i and F; € [0,2] the flow rate, where F is the inlet
to tank 1 and Fj is the outlet from tank 2. The flow from tank 1 to tank 2 is (1 + w)h
where w € W := {-0.3,0,0.3} represents uncertainty in the proportionality constant. The
target steady state is hi = hj = Fy = F; = 1. Define state and input deviation variables
x = [h1 — hi, he — hi] and u = [F} — F}, F5 — F5]'. The continuous-time dynamics are

dzy
dt

dzz
dt

=—(14+w)xrs +u +w

=(1+w)xy —ug +w
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Figure 2: Liquid level control with two tanks. Tank 1 drains into tank 2 by gravity-driven
flow with uncertain proportionality constant. Taken from McAllister and Rawlings (2023).

The nominal system with w = 0 is linear. The parametric uncertainty produces multi-
plicative terms (1 + w)z; that render the system nonlinear. Moreover, the additive term
w ensures the disturbance effect does not vanish at the origin.

We discretize these equations exactly for all w € W using zero-order hold with sampling
time A = 1. The finite support permits exact worst-case evaluation by enumerating all
disturbance sequences. Flow rate constraints produce u; € [—1,1]. The stage cost is
(z,u) = 2’Qx + v Ru with

0.1 0 0.1 0
Q_[O 20} R_[O 0.1}
The large penalty on xy strongly discourages height deviations in tank 2.

The terminal cost is Vy(x) = 2/Px where P is the Ho solution, and the terminal
constraint is Xy := {x : [z| < 0.4}. We solve both the nominal and RMPC problems via
dynamic programming over discretized state and control grids.

Figure 3 shows closed-loop trajectories for horizon N = 5 from x(0) = 0. Thin lines
show all disturbance realizations and thick lines with markers show the nominal trajectory
with w = 0. Nominal MPC (left) regulates both states near the origin. RMPC (right)
drives z; significantly negative, moving away from the origin and violating the terminal
constraint |z| < 0.4 during the transient. This counterintuitive behavior arises because
the large penalty on x9 makes it optimal in the worst case to reduce tank 1 height, thereby
limiting disturbance propagation to tank 2 through gravity-driven flow. RMPC sacrifices

regulation of x1 to achieve superior worst-case performance on the heavily weighted state
9.
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Figure 3: Closed-loop trajectories for nominal MPC (left) and RMPC (right) with horizon
N = 5. Thin lines show all disturbance realizations; thick lines with markers show nominal
trajectory with w =0

Figure 4 compares the worst-case closed-loop performance of nominal MPC and RMPC.
The top panel shows max,,cyr |2(k)|,,, the maximum state norm over all disturbance real-
izations at each time step. The bottom panel shows max, ey £(z(k), u(k)), the maximum
stage cost over all disturbance realizations. While RMPC achieves lower worst-case stage
costs as expected from the minmax formulation, the worst-case state norm under RMPC
exceeds that of nominal MPC. This occurs because RMPC deliberately drives z; nega-
tive to limit disturbance propagation to the heavily weighted state zo, sacrificing state
regulation to optimize worst-case cost performance.

7 Conclusion

This paper established robust asymptotic stability in worst-case sense for RMPC under
stagewise bounded disturbances. Building on the input-to-state practical stability frame-
work for min-max MPC (Limon et al., 2006; Lazar et al., 2008; Raimondo et al., 2009),
we provided a self-contained analysis by defining worst-case input-to-state stability Lya-
punov functions and proving that the RMPC optimal cost satisfies the required Lyapunov
properties.

The main result (Theorem 12) guarantees that for any initial state z(0) € X" and
any disturbance sequence satisfying |w(k)| < ||[W]||, the robust feasible set X" is robustly
positive invariant and the state satisfies the RASiW bound

[z(k)| < B(z(0)], k) +~([[W]])

with 5(-,-) € KL and 7(-) € K. The KL function (-, ) ensures that the effect of the initial
state decays with time, while v(||W]||) characterizes the size of the ultimate neighborhood.
When [|[W|| = 0, the system converges to the origin.

The stability guarantee is practical rather than asymptotic. Because the controller is
designed for the worst-case disturbance magnitude |[W||, even if the actual disturbance
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Figure 4: Worst-case closed-loop performance for nominal MPC and RMPC with horizon
N = 5. Top: maximum state norm maxycyr |2(k)|,, over all disturbance realizations.
Bottom: maximum stage cost maxy,cywr £(z(k), u(k)) over all disturbance realizations.

realization is identically zero, the closed-loop system may converge only to a neighborhood
of the origin rather than to the origin itself. The controller has no mechanism to exploit
favorable disturbance realizations; it commits to a policy that performs well under the
worst case, and this conservatism persists regardless of the actual disturbance experienced.

The analysis parallels the SMPC framework of McAllister and Rawlings (2023) but
addresses the deterministic worst-case setting. Key differences include the use of suprema
over compact disturbance sets rather than expectations, deterministic selection of control
laws from possibly set-valued optimal solutions, and WISS-Lyapunov functions in place of
SISS-Lyapunov functions. The results establish a parallel deterministic worst-case counter-
part to SMPC stability theory, demonstrating that RMPC achieves practical input-to-state
stability under standard regularity and terminal constraint assumptions.
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