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Abstract
The problem of robust predictive control for multivariable ill-

conditioned systems is addressed in this work. A technique for de-
signing robust disturbance models is presented, which is based on an
off-line min-max optimization problem. It is shown that the most
common disturbance model – the output disturbance model – is not
robust to modeling errors when the process model is ill-conditioned.
On the other hand the input disturbance model shows robustness to
uncertainties, and the optimal disturbance model obtained with the
technique proposed is close to the input disturbance model. Applica-
tion to a well-known ill-conditioned distillation column is presented.
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1 Introduction

In the last two decades Model Predictive Control (MPC) has become one the most studied
and applied control techniques both in academia and in the process industries. MPC arose
from the pioneering industrial applications called Dynamic Matrix Control (DMC) [7] and
Identification and Command (IDCOM) [23]. There are number of features that rendered
MPC interesting:
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• ability of operating on multivariable systems

• ability of dealing with non-minimum phase processes without requiring factorization
in minimum and non-minimum phase, as required by other model based control
technique (e.g. IMC)

• direct handling of input and output process constraints, using Quadratic Program-
ming [8]

These control algorithms used finite impulse or step response models to predict the process
behavior. Using past input information, the future control action is evaluated by minimiz-
ing a quadratic objective function in which the error between the predicted output and the
reference signal appears together with a term related to the amplitude of the control ac-
tion. Only the first control action is implemented and this optimization is repeated at each
sampling time. In order to obtain offset-free control, the model is updated with feedback
information. Comparing the current measured process output and the current predicted
output, a constant bias term is added to the future model forecasts.

Despite its popularity, some of the assumptions on which the original formulation of
MPC were based, limit the controller performance [14].

First of all, the use of a finite step (or impulse) response model may require a huge
number of coefficients and does not allow to deal with open-loop unstable processes. Open-
loop unstable and integrating dynamics are likely to occur in the process industries. Lee
et al. [11] presented a state-space formulation of DMC that allowed to handle integrating
processes, still using finite step response models. The most “natural” way to describe
stable and unstable processes is, however, to use state-space models [16] or autoregressive
models like in the Generalized Predictive Control (GPC) [4] [5].

Shinskey [27] clearly pointed out that DMC is able to outperform PID controllers on
set-point changes but not on load changes introduced upstream of a dominant lag. Actually,
the most efficient way to reject disturbances is to include them into a feed-forward scheme,
and DMC can easily accomplish this end provided that the disturbance is measurable and
its dynamic has been identified. The problem of a bad rejection of slow disturbances in
DMC is strictly related to the addition of constant bias term based on feedback information.
Lundström et al. [12] proposed a solution to this problem by modeling the disturbance as a
double integrated white noise sequence. Under this assumption, therefore, the disturbance
is assumed to be a ramp with piece-wise constant slope. In the GPC framework, the
disturbance is modeled by the choice of the observer polynomial (usually called T (q−1)).
Clarke and Mohtadi [3] clarify the role of this polynomial for enhancing the robustness and
shaping the disturbance response. Typically, the polynomial T is chosen such that 1/T
is a low-pass filter. Yoon and Clarke [31] provide useful consideration for the choice of T
based on frequency analysis and they show how the disturbance polynomial can increase
the robustness to plant-model mismatch. Prada et al. [19] present a comparative study of
DMC and GPC, emphasizing the role of the polynomial T . Details for the multivariable
extension of GPC can be found in [6] [13]. However, all the tuning considerations reported
in the cited papers are given for SISO systems and they do not deal with ill-conditioned
processes, which is the objective of this paper.
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In the process industries (and in particular in chemical applications) ill-conditioned
processes are rather frequent. A great effort of facing this problem has been carried out
in the classical feedback framework [29], [1] [9], [24], [10], and in Internal Model Control
theory [15], [2], [26]. Ill-conditioned processes arise when two (or more) manipulated inputs
have almost the same effect to controlled variables. A tight control of processes with large
interactions, like the ill-conditioned ones, requires an inversion of the process model. How-
ever, because of the ill-conditioning, this inversion becomes sensitive to input uncertainties
and plant-model mismatch [29]. In the industrial implementations of MPC, this problem
is faced in several ways [20]:

• In DMC, the input move suppression factor are adjusted to improve the conditioning
of the matrix to be inverted.

• In SMC-IDCOM by Setpoint Inc, the user defines a priority ranking of controlled
variables. When a high-condition number is detected, the controller drops low priority
variables until a well-conditioned sub-process remains.

• In RMPCT (Robust Model Predictive Control Technology by Honeywell), the Singu-
lar Value Thresholding (SVT) method is used in which a singular value decomposition
of the process model is carried out. Singular values below a threshold magnitude are
discarded, and a process with a much lower ill-conditioning is reassembled and used
for control.

Semino and Pannocchia [25], [17], propose to modify the nominal model in order to de-
crease the controller ill-conditioning. Application of “modified” DMC to a simulated binary
distillation column can be found in [18].

In this paper, the problem of robust control of multivariable ill-conditioned processes
is addressed in the general framework of MPC. The state-space formulation is chosen, and
different disturbance models are selected and compared.

This paper is organized as follows. In Section 2 the MPC algorithm is summarized,
which uses infinite horizon and state estimation. In Section 3 the choice of the disturbance
model is addressed, by presenting tools useful for comparing different disturbance models.
In Section 4 a case study, taken from the literature, is presented, in which the role of the
disturbance model is emphasized by several simulations. Finally, in Section 5 we summarize
the main results of this work.

2 MPC algorithm

2.1 Plant description

We assume that the plant is described by the following time-invariant, linear and discrete
equations (the subscript p denotes “plant”):

xk+1 = Apxk + Bpuk + Dpd̄

yk = Cpxk + Ppd̄ (1)
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where x ∈ Rn, u ∈ Rm, y ∈ Rp. d̄ represents the plant disturbance vector while Dp and Pp

are the dynamic matrices of the disturbance itself.

2.2 Model description and state estimation

The model used by the MPC controller is the following:

xk+1 = Amxk + Bmuk + Dmdk

dk+1 = dk

yk = Cmxk + Pmdk (2)

where, in general, the dynamic matrices Am, Bm and Cm can be different from the cor-
responding plant matrices. Here, the integrated disturbance vector dk ∈ Rnd is added in
order to obtain offset-free control in the presence of plant-model mismatch and/or unmod-
eled disturbances. The choice of the disturbance model matrices Dm and Pm is a key-issue
of this paper and, therefore, it is carefully discussed in the next section.

The augmented state [xT
k dT

k ]T is estimated from the plant measurements yk by us-
ing the Linear Quadratic filtering theory. In this framework, the state is described as a
stochastic variables and the model equations can be written as:

xk+1 = Amxk + Bmuk + Dmdk + wx
k

dk+1 = dk + wd
k

yk = Cmxk + Pmdk + vk (3)

where wx
k , wd

k and vk are zero-mean uncorrelated random sequences that satisfy:

wx ∼ (0, Qx) wd ∼ (0, Qd) v ∼ (0, Rv)

Thus, the model equations for the prediction become:

x̂k+1|k = Amx̂k|k + Bmuk + Dmd̂k|k

d̂k+1|k = d̂k|k

ŷk = Cmx̂k|k + Pmd̂k|k (4)

Given the current measurement yk, the filtering equations are:

x̂k|k = x̂k|k−1 + Lx(yk − ŷk|k−1)

d̂k|k = d̂k|k−1 + Ld(yk − ŷk|k−1) (5)

where Lx and Ld are the gain matrices of the steady-state Kalman filter. Several algorithms
are available to compute this steady-state filter.
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2.3 Regulator

The MPC control law used requires steady-state targets for the state and the input vectors.
In the general case of different number of inputs and outputs, an optimization problem can
be posed and solved with the respect of input and state constraints [21]. If we consider the
unconstrained square case, a simpler solution exists.

The target calculation is based on the assumption that the disturbance estimate remains
constant in the future, i.e. ds = d̂k|k. Therefore, we can write:

xs|k = Amxs|k + Bmus|k + Dmd̂k|k

ȳ = Cmxs|k + Pmd̂k|k (6)

from which

us|k = G−1
u ȳ −G−1

u (Pm + Gd)d̂k|k

xs|k = (I −Am)−1[Bmus|k + Dmd̂k|k] (7)

where:
Gu = Cm(I −Am)−1Bm Gd = Cm(I −Am)−1Dm

are the model steady-state gains of the input u and of the input disturbance estimate d.
The regulator objective function is defined over an infinite horizon [22] and is given by:

Φ(π) =
1
2

∞∑
j=0

{
(ŷk+j|k − ȳ)T Q(ŷk+j|k − ȳ) + (uk+j − us|k)

T R(uk+j − us|k)

+(uk+j − uk+j−1)T S(uk+j − uk+j−1)
}

(8)

where ȳ is the set-point reference vector, π = {uk, uk+1, , uk+2, . . .} is the input sequence.
Q, R and S are positive definite tuning matrices; usually, either R or S is zero. Eqn. 8
can be rewritten into the standard Linear-Quadratic formulation by augmenting the state
vector:

xj ←
[

x̂k+j|k − xs|k
uk+j−1 − us|k

]
, uj ← uk+j − us|k,

Q←
[
CT QC 0

0 S

]
, R← R + S, M =

[
0
−S

]
where xs|k and us|k are the state and the input target, as previously defined. Hence, the
objective function becomes:

Φ(π) =
1
2

∞∑
j=0

(
xT

j Qxj + uT
j Ruj + 2xT

j Muj

)
(9)

Then the regulation problem is defined in terms of finding the optimal sequence π, by
solving:

min
π

Φ(π) (10)
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subject to the model Eqn. 3 and, in general, subject to constraints on the input and the
output. Only the first element of the optimal sequence π∗ is injected into the plant and
this optimization is repeated at each sampling time.

The unconstrained problem was formulated and solved by Kalman, and the solution is
the well-known linear feedback control law:

uk = Kx(x̂k|k − xs|k) + Ku(uk−1 − us|k) + us|k (11)

where Kx and Ku are the gain matrices of LQ regulator. Several numerical subroutines
are available for solving this problem as well.

3 Choice of the disturbance model

3.1 Observability limitations

Using the Hautus lemma [30], we can obtained a number a conditions that have to be
satisfied in order for the augmented system to be observable.

Lemma 3.1 (Hautus observability) For a linear system defined by the matrices A ∈
Rn×n, B ∈ Rn×m, C ∈ Rp×n, the Hautus observability matrix is:

H =
[
λI −A

C

]
The following properties are equivalent:

• (A,C) is an observable pair

• rankH = n ∀λ ∈ C

• rankH = n ∀λ(A)

In order to update the augmented state with (5) and therefore, to compute the Kalman
gain matrices Lx and Ld, the augmented system has to be observable. The augmented
system matrices are:

Ã =
[
Am Dm

0 Ind

]
, B̃ =

[
Bm

0

]
, C̃ =

[
Cm Pm

]
Applying the Hautus lemma, we obtain that (Ã, C̃) is observable if and only if the following
condition is satisfied

rank

λI −Am −Dm

0 (λ− 1)Ind

Cm Pm

 = rank H̃ = n + nd ∀λ(Ã) (12)

Since Ã is block diagonal its eigenvalues are the union of the eigenvalues of Am and of Ind

(i.e. 1), the following theorem can be stated:
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Theorem 3.1 The augmented system (Ã, C̃) is observable if and only if the original system
is observable and:

rank
[
I −Am −Bm

Cm Pm

]
= n + nd (13)

From the previous theorem we also obtain a limitation on the dimension of the distur-
bance vector d, which is defined by the following lemma.

Lemma 3.2 Given a observable system with n states and p independent output, the max-
imum number of integrated disturbances that can be added without loosing observability is
given by:

nd ≤ p (14)

Since each integrated disturbance is responsible for the removal of the offset in one of
the outputs, and since we want to remove offset in all the output, we choose:

nd = p (15)

3.2 Closed-loop system evolution

In this paragraph we write the evolution of the closed-loop system by using the equations
presented for the plant, the state estimator and the regulator. Again, we remark the
assumptions over which this calculation is based:

• The system is square.

• Input and state constraints are not active.

Combining Eqs. 1, 5 and 4 we can write a relation between the plant and the model
state. Thereafter, using Eqs. 11 and 7, we obtain an expression of the control action as a
function of the plant and the model state. Finally, we obtain:

xk

x̂k|k
d̂k|k
uk−1

 = Λ


xk−1

x̂k−1|k−1

d̂k−1|k−1

uk−2

 + Ξȳ + Θd̄ (16)

where the matrices Λ, Ξ and Θ are reported in Appendix A.1. Let zk be the augmented
state:

zk =


xk

x̂k|k
d̂k|k
uk−1


The closed-loop system evolution can be described by:

zk+1 = Λzk + Ξȳ + Θd̄

yk = Γzk + Ppd̄ (17)



TWMCC Technical Report 2001-02 8

where
Γ =

[
Cp 0 0 0

]
The set-point reference ȳ and the plant disturbance d̄ appear in Eqn. 17 as exogenous
terms.

Eqn. 17 is the base of further analyses and, therefore, a number of comment are appro-
priate:

• The initial state z0 depends on the initial plant and model state and the last input. If
we assume that the plant and the model states are at the origin, the initial augmented
state is zero.

• Using z-transforms, Eqn. 17 can be used to evaluate the transfer functions from the
the exogenous terms (i.e. the set-point reference and the disturbance) to the plant
output usually referred to as “Complementary Sensitivity Function” and “Sensitivity
Function”. With minor changes, analogue transfer functions from the exogenous
terms to the manipulated input can be computed.

• Writing an appropriate Lyapunov equation, we can use Eqn. 17 in order to evaluate
to plant objective function for any given plant and model.

The latter approach is used in the next paragraph for comparing and selecting different
disturbance models.

3.3 Performance evaluation

By augmenting the state with the exogenous terms, Eqn. 17 can be written as:

z̃k+1 = Ψz̃k (18)

where

z̃k =



xk

x̂k|k
d̂k|k
uk−1

ȳ
d̄

 Ψ =

Λ Ξ Θ
0 I 0
0 0 I



The initial augmented state is:

z̃0 =



x0

x̂0 + Lx[Cpx0 + Ppd̄− (Cmx̂0 + Pmd̂0)]
d̂0 + Ld[Cpx0 + Ppd̄− (Cmx̂0 + Pmd̂0)]

0
ȳ
d̄

 (19)
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The plant objective function is the measure of the controller performance and is given
by Eqn. 8 in which the output estimate ŷ are replaced by the real plant output y. The
objective function can be written in terms of augmented state z̃ as:

Φ =
∞∑

j=0

z̃T
j Q̃z̃j

= zT
0

{
Q̃ + ΨT Q̃Ψ + (Ψ2)T Q̃Ψ2 + · · ·

}
z0 (20)

where Q̃ is reported in Appendix A.2. The term within brackets can be evaluated as
solution of the following Lyapunov equation:

S̃ = Q̃ + ΨT S̃Ψ (21)

Finally, the objective function becomes:

Φ = z̃T
0 S̃z̃0 (22)

A number of comments are appropriate:

• Given a plant and a model, and specified the set-point reference and the plant dis-
turbance, Eqn. 22 can be used to evaluate the closed-loop performance, without
requiring simulations.

• A number of tuning knobs (regulator and estimator penalty matrices, disturbance
model matrices) can be adjusted in order to minimize the objective function. Let χ
be the chosen set of tuning parameters. We can pose an optimization problem as
shown below:

min
χ

Φ (23)

Since the purpose of this paper is to understand the implications of the disturbance
model, we regard regulator and estimator penalty matrices as fixed and we only
change the matrices Dm and Pm in order to minimize the objective function.

• In general the plant matrices are not exactly known. The true plant lies in a
(bounded) region around the nominal plant (i.e. the model). Hence, Eqn. 22 can be
used to find the worst case of performance within the plant region, by maximizing
the objective function:

max
Ap,Bp,Cp

Φ (24)

• Combining the minimization and maximization, Eqn. 22 can be used to find the
tuning parameters that guarantee the best performance in the worst case of plant-
model mismatch:

min
χ

max
Ap,Bp,Cp

Φ (25)
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3.4 Disturbance model matrices

The disturbance model is defined by the matrices Dm and Pm that appear in Eqn. 4. Among
all the infinite combinations of these matrices, two of them have a particular physical
interpretation:

1. Output disturbance model , obtained by setting Dm = 0 and Pm = I. With this choice
the difference between the predicted and the actual plant output is assumed to be
caused by an output step disturbance, which remains constant in the future. This is
the choice of all industrial implementations of MPC [20].

2. Input disturbance model, obtained by setting Dm = Bm and Pm = 0. With this
choice the difference between the predicted and the actual plant output is assumed
to be caused by an input step disturbance, which remains constant in the future.

Despite its large use, the output disturbance model is rather unrealistic in the process in-
dustry. In fact, disturbances always enter upstream of the dominant process time constant
and, in many cases, at the same point as the manipulated variables [27]. For ill-conditioned
processes, moreover, input uncertainties act like disturbances entering at the input, and
this is the reason why DMC (and similar MPC controllers) are sensitive to input uncer-
tainties [12]. On the other hand, the input disturbance model is able to reject quickly
disturbances with slow dynamics (sometimes called “ramp-like”). Moreover, the input
disturbance model renders the MPC controller not sensitive to input uncertainty and,
therefore, it increases the controller robustness for ill-conditioned processes.

In general, we can choose a disturbance model that has both Dm and Pm by solving an
optimization problem like Eqn. 25. In order to simplify the problem, we can assume the
following disturbance model:

Dm = BmΩD; Pm = IΩP (26)

where ΩD = diag[ωD
1 , . . . , ωD

m] and ΩD = diag[ωP
1 , . . . , ωP

p ], in which ωD
i and ωP

i are coef-
ficients in [0, 1]. Since we consider square systems only, ΩD and ΩP are diagonal matrices
of the same dimension (equal to the number of inputs or outputs). Thus, the optimal
disturbance model can be found by solving the following:

min
ΩD,ΩP

max
Ap,Bp,Cp

Φ (27)

It is important to point out that the result of this optimization depends on the exogenous
signals, i.e. the set-point reference and the plant disturbance. For different plant distur-
bances, for example, different optimal tuning parameters are obtained. In the case study,
we provide a further clarification of this point.

4 Case study

4.1 Plant and model description

The case analyzed here is a well-known binary distillation column [28] with the modifi-
cations applied by Lundström et al. [12] in order to include a measurement delay. The
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nominal model is: [
yD

xB

]
= e−θs

 0.878
1+τ1s

(
0.014
1+τ2s −

0.878
1+τ1s

)
1.082
1+τ1sgL(s)

(
−0.014
1+τ2s −

1.082
1+τ1s

)[
Lt

Vb

]
(28)

where yD and xD are the top and the bottom logarithmic compositions, respectively, Lt and
Vb are the reflux rate and the boil-up rate, respectively. The characteristic time constants
are τ1 = 194min and τ2 = 15min and the delay time is θ = 1min. gL(s) expresses the liquid
flow dynamic:

gL(s) =
1

(1 + θL/nT s)nT
(29)

where θL = 2.46min and nT should be equal to the number of trays. As Lundström et al.
[12], we choose nT = 5 in order to avoid a model of unnecessary high order. Choosing a
sampling time of 1min, a state-space realization of this model has been found. The system
has 12 states, 2 inputs and 2 outputs. This column is a typical example of multivariable
ill-conditioned system.

Independent input uncertainty is considered for robustness analysis, in which the mag-
nitude of the uncertainty is bounded:[

∆Lt

∆Vb

]
actual

=
[
1 + δ1 0

0 1 + δ2

] [
∆Lt

∆Vb

]
computed

−0.2 ≤ δ1, δ2 ≤ 0.2 (30)

4.2 Disturbance models and tuning

Output and input disturbance models, as described in Section 3.4, are used and compared.
We denote MPC1 the controller based on the output disturbance model and MPC2 the
controller based on the input disturbance model. Moreover, when an optimal disturbance
model is found by solving Eqn. 27, we denote MPC3 the controller based on this disturbance
model. For this example, the optimization problem of Eqn. 27 becomes:

min
ωD

1 ,ωD
2 ,ωP

1 ,ωP
2

max
δ1,δ2

Φ (31)

s.t.

0 ≤ ωD
1 , ωD

2 , ωP
1 , ωP

2 ≤ 1
−0.2 ≤ δ1, δ2 ≤ 0.2

For all controllers, same tuning parameters have been chosen:

Q = 50I; R = 0; S = I

For all estimators, the following covariance matrices have been chosen:

Qx = 10−6I; Qd = I; Rv = 10−6I
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4.3 Set-point change

A set-point change in the output unfavorable direction is considered in this section (ob-
tained via Singular Value Decomposition, SVD):

ȳ =
[
−0.78094
0.62460

]
In Figure 1 the value of the objective function vs the input uncertainties δ1 and δ2 is
reported for MPC1 (based on the output disturbance model). The corresponding plot for
MPC2 (based on the input disturbance model) is reported in Figure 2. From Figures 1 and 2
it appears that the robustness of MPC1 is poor when the input uncertainties have opposite
sign. On the other hand, the input disturbance model guarantees a robust performance
over the entire input uncertainty region. Moreover, for this set-point change, the solution
of the optimization in Eqn. 31 is:

Ω∗D =
[
0.1963 0

0 1.0000

]
; Ω∗P =

[
0 0
0 0

]
Hence, the optimal disturbance model for this set-point change is “almost” equal to the
input disturbance model. In Figure 3 a comparative simulation of MPC1, MPC2 and MPC3

(based on the optimal disturbance model) is reported for the uncertain case with:

δ1 = 0.2; δ2 = −0.2

From Figure 3 it is clear that, despite the input uncertainty, MPC2 guarantees a good per-
formance because the input disturbance model quickly corrects the plant-model mismatch.
MPC1, instead, provides a sluggish and slow set-point change because the output distur-
bance model does not properly correct the input uncertainty. Moreover, the responses of
MPC2 and MPC3 are almost identical.

4.4 Rejection of an output disturbance

The rejection of an output disturbance is considered in this section. Again, we consider
a disturbance in the unfavorable direction of the plant, because this is the most difficult
direction to reject:

d̄ =
[
−0.78094
0.62460

]
In Figure 4 the value of the objective function vs the input uncertainties δ1 and δ2 is re-
ported for MPC1, while the corresponding plot for MPC2 is reported in Figure 5. From
Figures 4 and 5 it appears that MPC1 rejects the disturbance better than MPC2 in nominal
conditions and when the input uncertainties have the same sign. However, when the input
uncertainties have opposite sign, the output disturbance model is not able to correct prop-
erly this plant-model mismatch and the performance rapidly degrades. On the other hand,
MPC2 is able to face the input uncertainties and it guarantees a more robust performance
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in the uncertain plant region. Moreover, for this disturbance rejection, the solution of the
optimization in Eqn. 31 is:

Ω∗D =
[
0.8312 0

0 0.0005

]
; Ω∗P =

[
0.0421 0

0 0.9599

]
In Figure 6 a comparative simulation of MPC1, MPC2 and MPC3 is reported for the
uncertain case with:

δ1 = −0.2; δ2 = 0.2

From 6 it appears that MPC1 does not reject quickly the output disturbance when input
uncertainty is present, while MPC2 is faster even though the plant disturbance acts at the
output. Finally, MPC3 guarantees a performance that is slightly better than MPC2.

4.5 Rejection of an input disturbance

In this section the rejection of an input disturbance in the favorable direction is considered:

d̄ = 10
[
−0.70655
0.70766

]
In Figure 7 the value of the objective function vs the input uncertainty δ1 and δ2 is reported
for MPC1, while the corresponding plot for MPC2 is reported in Figure 8. From Figures 7
and 8 it appears that the performance of MPC1 is poor even in nominal conditions. When
input uncertainty is present, the disturbance rejection performance is even worse. MPC2,
instead, guarantees a good performance, which is almost insensitive to the plant-model
mismatch. Moreover, for this disturbance rejection, the solution of Eqn. 31 is:

Ω∗D =
[
1.0000 0

0 1.0000

]
; Ω∗P =

[
0.0014 0

0 0.0013

]
In Figure 9 a comparative simulation of MPC1, MPC2 and MPC3 is reported for the
uncertain case with:

δ1 = −0.2; δ2 = 0.2

Figures 9 clearly shows the the MPC1 is not adequate to reject disturbance with slow
dynamics. This behavior is amplified by the plant ill-conditioning in the presence of input
uncertainty. On the other hand, MPC2 guarantees a robust performance that is almost
equal to the performance of MPC3 based on the optimal disturbance model.

5 Conclusions

In this paper the problem of robust predictive control of multivariable ill-conditioned pro-
cesses has been addressed by analyzing the implications of the choice of the disturbance
model. A state-space realization of the closed-loop system has been obtained, which per-
mits to evaluate the performance of the MPC controller. This tools has been used to
analyze the robustness of different disturbance models in a bounded region where the
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plant could lay, for any given set-point change or disturbance rejection. Moreover, a min-
max optimization can be posed in order to find the disturbance model that guarantees the
best performance in the worst case of plant-model mismatch. In particular, the output
disturbance model and the input disturbance model have been compared for the control of
a well-known ill-conditioned distillation column. For different cases of set-point change or
disturbance rejection the optimal disturbance model has been found.

Industrial implementations of Model Predictive Control (like DMC) use an output dis-
turbance model to correct the model prediction in the presence of plant-model mismatch.
However, for ill-conditioned systems, the output disturbance model is not robust to input
uncertainty and does not guarantee a good performance. Moreover, the output distur-
bance model is too slow when rejecting disturbances with slow dynamics (“ramp-like”
disturbances). This problem becomes more dramatic when input uncertainty is present.
It is important to point out that when there is input uncertainty the output disturbance
model is not able to reject properly even an output disturbance for which it is optimally
designed.

The input disturbance model, on the other hand, is able to overcome both the problems
of robustness for ill-conditioned processes and the rejection of slow-dynamics disturbances.
The increment in robustness clearly appears by comparing the objective function over the
plant-model mismatch region. Moreover, in many cases the optimal disturbance model and
the input disturbance model guarantee almost the same robust performance.

The output disturbance model shows a better performance than the input disturbance
model only in the rejection of a “pure” output disturbance, which is unlike to occur in the
process industries [27]. However, when input uncertainty is considered the weak robustness
of the output disturbance model appears and the performance rapidly degrades.
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A Matrices

A.1 Matrices of Eqn. 16

Λ =
[
Λ1 Λ2 Λ3 Λ4

]
Λ1 =


Ap

LxCpAp

LdCpAp

0

 ; Λ2 =


BpβBpKx

(I − LxCm)(Am + BmKx) + LxCpBpKx

−LdCm(Am + BmKx) + LdCpBpKx

Kx



Λ3 =


Bpβ

(I − LxCm)(Dm + Bmβ)− LxPm + LxCpBpβ
I − LdCm(Dm + Bmβ)− LdPm + LdCpBpβ

β



Λ4 =


BpKu

(Bm − LxCmBm + LxCpBp)Ku

(−LdCmBm + LdCpBp)Ku

Ku
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Ξ =


Bpα

Bmα− LxCmBmα + LxCpBpα
−LdCmBmα + LdCpBpα

α

 ; Θ =


Dp

Lx(CpDp + Pp)
Ld(CpDp + Pp)

0


α = (I −Ku −Kx(I −Am)−1Bm)G−1

u ; β = −α(Pm + Gd)−Kx(I −Am)−1Dm

A.2 Matrices of Eqn. 20

Q̃ =
[
Q1 Q2 Q3 Q4 Q5 Q6

]

Q1 =



CT
p QCp

0
0
0

−QCp

P T
p QCp

 ; Q2 =



0
KT

x (R + S)Kx

(β − δ)T RKx + βT SKx

KT
u RKx + (Ku − I)T SKx

(α− γ)T RKx + αT SKx

0



Q3 =



0
[(β − δ)T RKx + βT SKx]T

(β − δ)T R(β − δ) + βT Sβ
KT

u R(β − δ) + (Ku − I)T Sβ
(α− γ)T R(β − δ) + αT Sβ

0

 ; Q4 =



0
[KT

u RKx + (Ku − I)T SKx]T

[KT
u R(β − δ) + (Ku − I)T Sβ]T

KT
u RKu + (Ku − I)T S(Ku − I)

(α− γ)T RKu + αT S(Ku − I)
0



Q5 =



−CT
p Q

[(α− γ)T RKx + αT SKx]T

[(α− γ)T R(β − δ) + αT Sβ]T

[(α− γ)T RKu + αT S(Ku − I)]T

Q + (α− γ)T R(α− γ) + αT Sα
−P T

p

 ; Q6 =



CT
p QPp

0
0
0
−Pp

P T
p QPp


γ = G−1

u ; δ = G−1
u (Pm + Gd)


