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Abstract

The goal of state estimation is to reconstruct the state of a system from process mea-
surements and a model. State estimators for most physical processes often must ad-
dress many different challenges, including nonlinear dynamics, states subject to hard
constraints (e.g. nonnegative concentrations), and local optima. In this article, we com-
pare the performance of two such estimators: the extended Kalman filter (EKF) and
moving horizon estimation (MHE). We illustrate conditions that lead to estimation fail-
ure in the EKF when there is no plant-model mismatch and demonstrate such failure via
several simple examples. We then examine the role that constraints, the arrival cost, and
the type of optimization (global versus local) play in determining how MHE performs
on these examples. In each example, the two estimators are given exactly the same in-
formation, namely tuning parameters, model, and measurements; yet MHE consistently
provides improved state estimation and greater robustness to both poor guesses of the
initial state and tuning parameters in comparison to the EKF.

1 Introduction

It is well established that the Kalman filter is the optimal state estimator for uncon-
strained, linear systems subject to normally distributed state and measurement noise.
Many physical systems, however, exhibit nonlinear dynamics and have states subject
to hard constraints, such as nonnegative concentrations or pressures. Hence Kalman
filtering is no longer directly applicable. As a result, many different types of nonlinear
state estimators have been proposed, such as extended Kalman filters, moving horizon
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estimation, model inversion, and Bayesian estimation. Soroush reviews current nonlin-
ear state estimation techniques [16]. Chen et al. present a new method for Bayesian
maximum likelihood estimation [15]. Of these methods, extended Kalman filtering has
garnered the most interest due to its relative simplicity and demonstrated efficacy in
handling nonlinear systems. Examples of implementations include estimation for the
production of silicon/germanium alloy films [6], polymerization reactions [7], and fer-
mentation processes [5]. However, the extended Kalman filter, or EKF, is at best an ad
hoc solution to a difficult problem, and hence there exist many barriers to the practical
implementation of EKFs (see, for example, Wilson et al. [21]). Some of these problems
include the inability to accurately incorporate physical state constraints and poor use
of the nonlinear model. In order to overcome these problems, we propose the use of
moving horizon estimation (MHE) as a computationally feasible online solution for state
estimation. MHE is an online optimization strategy that accurately employs the nonlin-
ear model and incorporates constraints into the optimization. In this paper, we first
outline the basics of nonlinear observability, extended Kalman filtering, and moving
horizon estimation. We then present several motivating chemical engineering examples
in which the accurate incorporation of both state constraints and the nonlinear model
are paramount for obtaining accurate state estimates.

2 Formulation of the Estimation Problem

In chemical engineering systems, most processes consist of continuous processes with
discrete measurements. In general, one derives a first principles model by assuming
that the continuous process is deterministic, and then one uses Bayesian estimation to
estimate the model parameters from process measurements. This model is equivalent
to:

xk+1 = F̄(xk, uk, θ) (1a)

yk = h(xk)+ vk (1b)

in which

• xk is the state of the system at time tk,

• uk is the system input at time tk (assumes a zero order hold over the interval
[tk, tk+1)),

• θ is the system parameters,

• yk is the system measurement at time tk, and

• vk is aN (0, Rk) noise 1.

1N (m,P) denotes a normal distribution with mean m and covariance P .
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The function F̄(xk, uk, θ) is commonly the solution to a set of differential-algebraic
equations. If the measurement noises (vk’s) are assumed normally distributed, deter-
mining the optimal parameter estimates corresponds to a weighted least squares op-
timization of the measurement residuals (i.e. yk − h(xk)) with respect to the model
parameters θ.

In contrast to equation (1), many recent models permit random disturbances to affect
the model propagation step. Parameter estimation for nonlinear variations of such
models is a subject of on-going research. For this work, we choose the discrete stochastic
system model

xk+1 = F(xk, uk)+G(xk, uk)wk (2a)

yk = h(xk)+ vk (2b)

in which

• wk is aN (0,Qk) noise,

• F(xk, uk) is the solution to a first principles, differential equation model, and

• G(xk, uk) yields a matrix with full column rank.

We believe that by appropriately choosing both a first principles model and a noise
structure, we can identify both the model parameters and the state and measurement
noise covariance structures. Such identification will proceed iteratively as follows:

1. Assuming a noise structure, identify the model parameters.

2. Assuming a model, model parameters, and a noise structure, identify the covari-
ance structures.

This identification procedure is an area of current research, but we maintain that such
a procedure will yield a rough, yet useful stochastic model from the system measure-
ments.

Ideally, state estimators should solve the problem

x+T = arg max
xT

p(xT |y0, . . . , yT ) (3)

in which p(xT |y0, . . . , yT ) is the probability that the state of the system is xT given mea-
surements y0, . . . , yT . Equation (3) is referred to as the maximum likelihood estimate.
In the special case that the system is not constrained and in equation (2)

1. F(xk, uk) is linear with respect to xk,

2. h(xk) is linear with respect to xk, and

3. G(xk, uk) is a constant matrix,
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the maximum likelihood estimator is the Kalman filter. The Kalman filter is a recursive
estimator whose form is conducive for online implementation. For the more general
formulation given by equation (2), online solution of the exact maximum likelihood
estimate is impractical, and approximations must be used to obtain state estimates in
real time.

3 Nonlinear Observability

The determination of observability for nonlinear systems such as equation (2) is sub-
stantially more difficult than for linear systems. For linear systems, either one state
is the optimal estimate, or infinitely many states are optimal estimates, in which case
the system is unobservable. Nonlinear systems have the additional complication that
finitely many states may be locally optimal estimates. Definitions of nonlinear observ-
ability should account for such a condition. Concepts such as output-to-state stability
[20] offer promise for a rigorous mathematical definition of nonlinear observability, but
currently no easily implemented tests for such determination exist. In lay terms, such a
definition for deterministic models should roughly correspond to “for the given model
and measurements, if the measurement data are close, the initial conditions generating
the measurements are close.”

One approximate method of checking nonlinear observability is to examine the time-
varying Gramian [3]. This test actually establishes the observability criterion for linear,
time-varying systems. By approximating nonlinear systems as linear time-varying sys-
tems, we can obtain a rough estimate of the degree of observability for the system by
checking the condition number of the time-varying Gramian. In general, ill-conditioned
Gramians indicate poor observability because different initial conditions can recon-
struct the data arbitrarily closely [6].

4 Extended Kalman Filtering

The extended Kalman filter is one approximation for calculating equation (3). The EKF
linearizes nonlinear systems, then applies the Kalman filter (the optimal, unconstrained,
linear state estimator) to obtain the state estimates. The tacit approximation here is
that the process statistics are multivariate normal distributions. We summarize the
algorithm for implementing the EKF presented by Stengel [17], employing the following
notation:

• E[α] denotes the expectation of α,

• Ak denotes the value of the function A at time tk,

• xk|l refers to the value of x at time tk given measurements up to time tl,

• x̂ denotes the estimate of x, and
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• x̄0 denotes the a priori estimate of x0, that is, the estimate of x0 with knowledge
of no measurements.

The assumed prior knowledge is identical to that of the Kalman filter:

x̄0 given (4a)

P0 = E[(x − x̄0)(x − x̄0)T ] (4b)

Rk = E[vkvTk ] (4c)

Qk = E[wkwT
k ] (4d)

The inputs uk are also assumed to be known.
The approximation uses the following linearized portions of equation (2)

Ak =
∂F(x,u)
∂xT

∣∣∣∣
x=xk,u=uk

(5)

Ck =
∂h(x)
∂xT

∣∣∣∣
x=xk

(6)

to implement the following algorithm:

1. At each measurement time, compute the filter gain L and update the state estimate
and covariance matrix:

Lk = Pk|k−1CTk [CkPk|k−1CTk + Rk]−1 (7)

x̂k|k = x̂k|k−1 + Lk(yk − h(x̂k|k−1)) (8)

Pk|k = Pk|k−1 − LkCkPk|k−1 (9)

2. Propagate the state estimate and covariance matrix to the next measurement time
via the equations:

x̂k+1|k = F(x̂k, uk) (10)

Pk+1|k = AkPk|kATk +GkQkGTk (11)

3. Let k← k+ 1. Return to step 1.

Until recently, few properties regarding the stability and convergence of the EKF have
been proven. Recent publications present bounded estimation error and exponential
convergence arguments for the continuous and discrete EKF forms given detectability,
small initial estimation error, small noise terms, and perfect correspondence between
the plant and the model [12, 13, 14]. However, depending on the system, the bounds
on initial estimation error and noise terms may be unreasonably small. Also, initial
estimation error may result in bounded estimate error but not exponential convergence,
as illustrated by Chaves and Sontag [2].
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5 Moving Horizon Estimation

This section briefly recaps the points made by Rao et al. [9]. One alternative to solving
the maximum likelihood estimate is to maximize a joint probability for a trajectory of
state values, i.e., {

x∗0 , . . . , x
∗
T

}
= arg max

x0,...,xT
p(x0, . . . , xT |y0, . . . , yT ) (12)

For unconstrained, linear systems, maximizing the joint probability given in equation (12)
yields the equivalent state estimate as maximizing the desired marginal distribution of
equation (3):

x+T = x∗T (13)

For nonlinear systems or systems with constraints, equation (13) does not hold.
Computationally, it is easiest to consider the logarithmic transformation of equa-

tion (12)

arg min
x0,...,xT

− logp(x0, . . . , xT |y0, . . . , yT ) = arg max
x0,...,xT

p(x0, . . . , xT |y0, . . . , yT ) (14)

because, by assuming that the a priori state estimate is a N (x̄0,Π0) distributed noise,
minimization (14) subject to the nonlinear model (2) gives rise to a least-squares opti-
mization:2

ΦT = min
x0,...,xT

Γ(x0)+
T−1∑
k=0

wT
kQ

−1
k wk +

T∑
k=0

vTk R
−1
k vk (15a)

s.t.: Γ(x0) = (x0 − x̄0)TΠ−1(x0 − x̄0) (15b)

xk+1 = F(xk, uk)+G(xk, uk)wk (15c)

yk = h(xk)+ vk (15d)

Equation (15) is known as the full information problem. Up to here, we have carefully
maintained correspondence with the probabilistic interpretation of our problem. One
salient feature of virtually all physical models necessitates a departure from this inter-
pretation: constraints. Physically motivated constraints include, for example, nonneg-
ative concentrations, saturation conditions, etc. Using optimization (15) as a suitable
starting place, we propose to estimate the state via

ΦT = min
x0,...,xT

Γ(x0)+
T−1∑
k=0

wT
kQ

−1
k wk +

T∑
k=0

vTk R
−1
k vk (16a)

2See Appendix 10.3 for details.
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s.t.: Γ(x0) = (x0 − x̄0)TΠ−1(x0 − x̄0) (16b)

xk+1 = F(xk, uk)+G(xk, uk)wk (16c)

yk = h(xk)+ vk (16d)

x ∈ X,w ∈W, v ∈ V (16e)

in which the sets X, W, and V contain all feasible values of the system state, state distur-
bances, and measurement disturbances, respectively. As more data come online, this
problem increases in size. One way to overcome computational limitations is to refor-
mulate the problem over a fixed-size estimation horizon, N. This estimation technique
is known as moving horizon estimation, or MHE. The constrained MHE optimization is:

ΦT = min
xT−N+1,...,xT

Φ̄T−N +
T−1∑

k=T−N+1

wT
kQ

−1
k wk +

T∑
k=T−N+1

vTk R
−1
k vk (17a)

s.t.: xk+1 = F(xk, uk)+G(xk, uk)wk (17b)

yk = h(xk)+ vk (17c)

x ∈ X,w ∈W, v ∈ V (17d)

The arrival cost, Φ̄T−N , summarizes the past information up to the observer horizon.
Rao et al. [10] explore estimating this cost for constrained linear systems with the corre-
sponding cost for an unconstrained linear system. More specifically, the following two
schemes are examined:

1. a “filtering” scheme, in which the optimization accounts for the effects of past
data by penalizing deviations of the initial estimate in the horizon from an a priori
estimate; and

2. a “smoothing” scheme, in which the optimization accounts for the effects of past
data by penalizing deviations of the trajectory of states in the estimation horizon
from an a priori estimate.3

For these schemes, MHE is roughly equivalent to maximizing the following probability:

max
xT−N+1,...,xT

p(xT−N+1, . . . , xT |y0, . . . , yT ) (18)

For unconstrained, linear systems, the MHE optimization (17) collapses to the Kalman
filter for both of these schemes. For nonlinear systems, Tenny and Rawlings [19] es-
timate the arrival cost by approximating the constrained, nonlinear system as an un-
constrained, linear time-varying system and applying the corresponding filtering and
smoothing schemes. They conclude that the smoothing scheme is superior to the filter-
ing scheme because the filtering scheme induces oscillations in the state estimates due

3See Appendix sections 10.1 and 10.2 for derivations of the smoothing and filtering formulations.
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to unnecessary propagation of initial error. Here, the tacit assumption is that the prob-
ability distribution around the optimal estimate is a multivariate normal. The problem
with this assumption is that nonlinear systems may exhibit multiple peaks (i.e. local
optima) in this probability distribution. Approximating the arrival cost with either the
smoothing or filtering scheme in the presence of multiple local optima will likely skew
all future estimates.

Rao [8] further considers several optimal and suboptimal approaches for estimating
the arrival cost via a series of optimizations. These approaches stem from the property
that, in a deterministic setting (no state or measurement noise), MHE is an asymptot-
ically stable observer as long as the arrival cost is underbounded. One simple way of
estimating the arrival cost, therefore, is to implement a uniform prior. Computation-
ally, a uniform prior corresponds to not penalizing deviations of the initial state from
the a priori estimate; that is, Φ̂T−N is a constant in optimization (17). The effect of
different choices of arrival cost upon the performance of MHE will be illustrated later
in this paper.

From a theoretical perspective, Rao et al. showed that MHE is an asymptotically
stable observer in a deterministic modeling framework [11, 8]. Furthermore, recent
advances in numerical computation have ensured that real-time implementation of MHE
strategies for the local optimization of problems such as (17) are possible [18, 19]. We
now seek to demonstrate by simulation examples that MHE is a necessary and practical
tool for state estimation of chemical process systems.

6 Example 1

Consider the gas-phase, reversible reaction

2A
k̄
-→ B k̄ = 0.16 (19)

with stoichiometric matrix
ν =

[
−2 1

]
(20)

and reaction rate
r = k̄P2

A (21)

We define the state and measurement to be

x =
[
PA
PB

]
, yk =

[
1 1

]
xk (22)

where Pj denotes the partial pressure of species j. We assume that the ideal gas law
holds (high temperature, low pressure), and that the reaction occurs in a well-mixed,
isothermal batch reactor. From first principles, the model for this system is

ẋ = f(x) = νTr , x0 =
[
3 1

]T
(23)
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For state estimation, consider the following parameters:

∆t = tk+1 − tk = 0.1, Π0 = diag(62,62), Gk = diag(1,1),

Qk = diag(0.0012,0.0012), Rk = 0.12, x̄0 =
[
0.1 4.5

]T
(24)

Note that the initial guess, x̄0, is poor. The actual plant experiences N (0,Qk) noise
in the state and N (0, Rk) noise in the measurements. We now examine the estimation
performance of both the EKF and MHE for this system.

6.1 Comparison of Results

Figure 1 demonstrates that the EKF converges to incorrect estimates of the state (the
partial pressures). In addition, the EKF estimates that the partial pressures are negative,
which is physically unrealizable. To explain why this phenomenon occurs, we examine
the probability density p(xk|y0, . . . , yk). Recall that the goal of the maximum likelihood
estimator is to determine the state xk that maximizes this probability density. Since we
know the statistics of the system, we can calculate this density by successively

1. using the discretized version of the nonlinear model

xk+1 = F(xk,wk) =


xk,1

2k̄∆txk,1 + 1

xk,2 +
k̄∆tx2

k,1

2k̄∆txk,1 + 1

+wk (25)

to propagate the probability density from p(xk|y0, . . . , yk) to p(xk+1|y0, . . . , yk)
via

p(xk+1,wk|y0, . . . , yk) = p(xk|y0, . . . , yk)p(wk)

∣∣∣∣∣∣∣
∂F(xk,wk)

∂xTk

∂F(xk,wk)
∂wT

k
∂wk
∂xTk

∂wk
∂wT

k

∣∣∣∣∣∣∣
−1

(26)

and then

2. using measurements to update p(xk|y0, . . . , yk−1) to p(xk|y0, . . . , yk)

p(xk|y0, . . . , yk) =
p(xk|y0, . . . , yk−1)pvk(yk − Cxk)∫∞

−∞ p(xk|y0, . . . , yk−1)pvk(yk − Cxk)dxk
(27)

Therefore, the expression for the probability density we are interested in is

p(xk|y0, . . . , yk) =
∫∞
−∞ . . .

∫∞
−∞Ωkdw0 . . . dwk−1∫∞

−∞ . . .
∫∞
−∞
∫∞
−∞Ωkdw0 . . . dwk−1dxk

(28)
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in which

Ωk =
k−1∏
j=0

(
2k̄∆txj,1 + 1

)2
 exp

−1
2

(x0 − x̄0)TΠ−1
0 (x0 − x̄0)+

k∑
j=0

vTj R
−1vj +

k−1∑
j=0

wT
j Q

−1wj


(29)

We can numerically evaluate equation (28) using the integration package Bayespack [4].
Figure 2 presents a contour plot of the results for p(x1|y0, y1) with transformed axes

t =
√

2

[
1 −1
1 1

]−1

x

This plot clearly illustrates the formation of two peaks in the probability density. How-
ever, only one of these peaks corresponds to a region where both the partial pressures
for species A and B are positive. The real problem is that the process prohibits nega-
tive partial pressures, whereas unconstrained estimators permit updating of the state
to regions where partial pressures may be negative. Since the EKF falls into the uncon-
strained estimator category with a local optimization (at best), the estimation behavior
in Figure 1 is best explained as a poor initial guess leading to an errant region of attrac-
tion.

One method of preventing negative estimates for the partial pressure is to “clip” the
EKF estimates. In this strategy, partial pressures rendered negative by the filter update
are zeroed. As seen in Figure 3, this procedure results in an improved estimate in that
the EKF eventually converges to the true state, but estimation during the initial dynamic
response is poor. Also, only the estimates are “clipped”, not the covariance matrix. Thus
the accuracy of the approximate covariance matrix is now rather questionable.

Alternatively, we can optimally constrain the partial pressures by applying MHE.
Figure 4 presents the MHE results for a horizon length of one time unit (N = 11 mea-
surements). These results indicate significant improvement over those of either the EKF
or the clipped EKF.

To explore further the differences between the full information and maximum like-
lihood estimates, we examine contour plots of the projection

max
x0,...,xk−1

p(x0, . . . , xk|y0, . . . , yk) (30)

noting again the equivalence between this probability and the full information cost func-
tion Φk given by equation (14). Figure 5 confirms of our previous assertion that the
full information and maximum likelihood estimates are not equivalent for nonlinear
systems. In fact, the global optima are even different. However, the full information
formulation retains the dominant characteristic of the maximum likelihood estimate,
namely the formation of two local optima.

6.2 Evaluation of Arrival Cost Strategies

The next logical question is: does MHE retain the same properties as the maximum like-
lihood estimate? The short answer is: it depends on what approximation one chooses
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Figure 1: Extended Kalman filter results. (a) plots the evolution of the actual (solid line)
and EKF updated (dashed line) concentrations. (b) plots the evolution of the actual (solid
line), measured (points), and EKF updated (dashed line) pressure estimates.
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Figure 2: Contours of p(x1|y0, y1)

for the arrival cost.
Figures 6 through 8 compare contours of the maximum likelihood estimate, uncon-

strained MHE with a smoothing update, and unconstrained MHE with a uniform prior,
respectively, given five measurements. Figure 7 shows that the smoothing update bi-
ases the contours of the state estimate so much that the estimator no longer predicts
multiple optima. This biasing occurs because the update has “smoothed” the estimate
around only one of the optima in the estimator. Using MHE with a uniform prior, on the
other hand, retains the property of multiple optima in the estimator as seen in Figure 8.

Increasing the number of measurements in the estimation horizon can overcome the
biasing of the smoothing update. Figure 9 shows the eventual reemergence of multiple
optima in the estimator upon increasing the estimation horizon from four (i.e. Figure 7)
to ten. However, the optima are still heavily biased by the smoothing update.

We speculate that any approximation of the arrival cost using the assumption that
the process is a time-varying linear system may lead to substantial biasing of the es-
timator. A short estimation horizon further compounds such biasing because the in-
formation contained in the data can no longer overcome the prior information (i.e. the
arrival cost). This situation is analogous to cases in Bayesian inference when the prior
dominates and distorts the information contained in the data [1]. We expect the EKF
to demonstrate similar biasing since it is essentially a suboptimal MHE with a short
estimation horizon and an arrival cost approximated by a filtering update. For such
approximations to work well, one must have a system that does not exhibit multiple
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Figure 3: Clipped extended Kalman filter results. (a) plots the evolution of the actual
(solid line) and clipped EKF updated (dashed line) concentrations. (b) plots the evolu-
tion of the actual (solid line), measured (points), and clipped EKF updated (dashed line)
pressure estimates.
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trations. (b) plots the evolution of the actual (solid line), measured (points), and MHE
updated (dashed line) pressure estimates.
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Figure 5: Contours of max
x0

p(x1, x0|y0, y1).

local optima in the probability distribution.
The optimization strategy further obfuscates the issue of whether or not to approxi-

mate the arrival cost via linearization (e.g. the smoothing and filtering updates). Ideally,
one would implement a global optimizer so that MHE could then distinguish between
local optima. With global optimization, approximating the arrival cost with a uniform
prior and making the estimation horizon reasonably long is preferable to approximat-
ing the arrival cost as a multivariate normal because of the observed biasing effect.
Currently, though, only local optimization strategies can provide the computational
performance required to perform the MHE calculation in real time. For this case, it may
be preferable to use a linear approximation of the arrival cost and then judiciously apply
constraints to prevent multiple optima in the estimator. The examples considered next
examine the estimator performance of this type of MHE.

7 EKF Failure

The results of the preceding example indicate that multiple optima may arise in the
estimation problem. In this section, we outline the conditions that generate this phe-
nomenon in two classes of chemical reactors. We then present several examples that
demonstrate failure of the EKF as an estimator.

If there is no plant-model mismatch, measurement noise, or state noise, one defini-
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Figure 6: Contours of p(x4|y0, . . . , y4).
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Figure 7: Contours of max
x1,...,x3

p(x1, . . . , x4|y0, . . . , y4) with the arrival cost approximated

using the smoothing update.
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Figure 8: Contours of max
x1,...,x3

p(x1, . . . , x4|y0, . . . , y4) with the arrival cost approximated

as a uniform prior.
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p(x1, . . . , x10|y0, . . . , y10) with the arrival cost approxi-

mated using the smoothing update.
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tion of estimator failure is
lim
k→∞

∣∣x̂k|k − xk∣∣ > ε (31)

for some ε > 0 (|x| is a norm of x). That is, the estimator is unable to reconstruct
the true state no matter how many measurements it processes. For stable systems, i.e.
those systems tending to a steady state, we expect that

x̂k|k = x̂k−1|k−1 (32)

in the same limit as equation (31). We now examine the discrete EKF given such condi-
tions. Recall that the following equations dictate the propagation and update steps:

x̂k|k−1 = F(x̂k−1|k−1, uk−1) (33a)

Pk|k−1 = Ak−1Pk−1|k−1ATk−1 +Gk−1Qk−1GTk−1 (33b)

x̂k|k = x̂k|k−1 + Lk(yk − h(x̂k|k−1)) (33c)

Pk|k = Pk|k−1 − LkCkPk|k−1 (33d)

Lk = Pk|k−1CTk [CkPk|k−1CTk + Rk]−1 (33e)

At steady state, the following equalities hold:

x̂k|k = x̂k−1|k−1 (34a)

Pk|k = Pk−1|k−1 (34b)

Combining expressions (33) and (34) yields:

0 = F(x̂k−1|k−1, uk−1)− x̂k|k−1 (35a)

0 = Ak−1Pk−1|k−1ATk−1 +Gk−1Qk−1GTk−1 − Pk|k−1 (35b)

0 = x̂k|k−1 + Lk(yk − h(x̂k|k−1))− x̂k−1|k−1 (35c)

0 = Pk|k−1 − LkCkPk|k−1 − Pk−1|k−1 (35d)

Lk = Pk|k−1CTk [CkPk|k−1CTk + Rk]−1 (35e)

If both equations (31) and (35) hold, then the EKF has failed as an estimator.
One solution to equation (35) results when multiple steady states satisfy the steady-

state measurement. This phenomenon corresponds to the case that

x̂k|k = x̂k|k−1 = x̂k−1|k−1 (36)

yk = h(x̂k|k−1) (37)

x̂k|k ≠ xk (38)

We would expect the EKF to fail when

1. the system model and measurement are such that multiple states satisfy the
steady-state measurement, and
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2. the estimator is given a poor initial guess of the state.

Condition 1 does not imply that the system is unobservable; rather, this condition states
that the state cannot be uniquely determined from solely the steady-state measurement.
For such a case to be observable, the process dynamics must make the system observ-
able. Condition 2 implies that the poor initial guess skews the estimates (x̂k|k’s) toward
a region of attraction not corresponding to the actual state (xk’s).

For well-mixed systems consisting of reaction networks, the null space of the stoi-
chiometric matrix in combination with the number (and type) of measurements dictate
whether or not multiple steady states can satisfy the steady-state measurement. More
specifically, the nonlinearity of the system must be present at steady state so that mul-
tiple steady states can satisfy the steady-state measurement. Define:

• ν , the stoichiometric matrix of size r × s, in which r is the number of reactions
and s is the number of species;

• ρ, the rank of ν (ρ = r if there are no linearly dependent reactions);

• η, the nullity of ν ;

• n, the number of measurements; and

• nm, the number of measurements that can be written as a linear combination of
states (e.g. y = x1 + x2 and (x1 + x2)y = x1).

For batch reactors, conservation laws yield a model of the form

d
dt
(xVR) = νTr(x)VR (39)

in which

• x is an s-vector containing the concentration of each species in the reactor,

• VR is the volume of the reactor, and

• r(x) is an r -vector containing the reaction rates.

For this system ρ specifies the number of independent equations at equilibrium. In
general, we will require that

1. all reactions are reversible

2. the following inequalities hold:

number of “linear”
equations
nm + ρ

<
number of estimated

species
s

≤
number of independent

equations
n+ ρ
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Note that the batch reactor preserves the nonlinearity of the reaction rates in the steady-
state calculation. Also, the combination of batch steady-state equations and measure-
ments may or may not be an over-specified problem.

For continuously stirred tank reactors (CSTRs), conservation laws yield a model of
the form

d
dt
(xVR) = Qf cf −Qox + νTr(x)VR (40)

where

• x is an s-vector containing the concentration of each species in the reactor,

• VR is the volume of the reactor,

• Qf is the volumetric flow rate into the reactor,

• cf is an s-vector containing the inlet concentrations of each species,

• Qo is the effluent volumetric flow rate, and

• r(x) is an r -vector containing the reaction rates.

Here η specifies the number of linear algebraic relationships among the s species at equi-
librium because the null space represents linear combinations of the material balances
that eliminate nonlinear reaction rates. We will require

number of “linear” equations
nm + η

< number of estimated species
s

(41)

If equation (41) is an equality instead of an inequality, then determination of the steady
state is generally a well-defined, linear problem with a unique solution. Note that the left
hand side of equation (41) is actually an upper bound since we could potentially choose
a measurement contained within the span of the null space (a linear combination of the
null vectors). However, such measurements would be invariant and hence would give
no dynamic information. Also, equation (41) is only a necessary condition. EKF failure
for CSTRs modeled by equation (40) must be confirmed by verifying that equation (35)
holds. This requirement differs from the batch case because in general, the CSTR design
equation (40) yields a sufficient number of equations to calculate all possible steady
states, whereas the batch design equation (39) does not.

We now examine several examples that illustrate these points.

7.1 Example 2

Consider the gas-phase, reversible reactions

A
k1-⇀↽-
k2

B+ C (42a)

2B
k3-⇀↽-
k4

C (42b)
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k =
[
0.5 0.05 0.2 0.01

]T
(42c)

with stoichiometric matrix

ν =
[
−1 1 1
0 −2 1

]
(43)

and reaction rates

r =
[
k1cA − k2cBcC
k3c2

B − k4cC

]
(44)

We define the state and measurements to be

x =
[
cA cB cC

]T
(45a)

y =
[
RT RT RT

]
x (45b)

where cj denotes the concentration of species j, R is the ideal gas constant, and T is
the reactor temperature 4. We assume that the ideal gas law holds (high temperature,
low pressure). We consider state estimation for both a batch reactor and a CSTR.

7.1.1 Batch Reactor

From first principles, the model for a well-mixed, constant volume, isothermal batch
reactor is

ẋ = f(x) = νTr (46)

x0 =
[
0.5 0.05 0

]T
(47)

We consider state estimation with the following parameters:

∆t = tk+1 − tk = 0.25 (48a)

Π0 = diag
(

0.52,0.52,0.52
)

(48b)

Gk = diag (1,1,1) (48c)

Qk = diag
(

0.0012,0.0012,0.0012
)

(48d)

Rk = 0.252 (48e)

x̄0 =
[
0 0 4

]T
(48f)

Note that the initial guess, x̄0, is poor. The actual plant experiences N (0,Qk) noise
in the state and N (0, Rk) noise in the measurements. We now examine the estimation
performance of both the EKF and MHE for this system.

Figure 10 demonstrates that the EKF cannot reconstruct the evolution of the state
for this system. In fact, the EKF appears to converge to incorrect steady-state estimates

4For the simulations, RT = 32.84.
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of the state. Table 1 presents the results of solving the equations in (35) for this system.
Note that the concentrations of components A and B are negative, indicating that the
EKF has converged to an unphysical state estimate. To prevent negative concentrations,
we next implement an ad hoc clipping strategy in which negative filtered values of the
state are set to zero (i.e. if x̂k|k < 0, set x̂k|k = 0). Figure 11 plots these clipped EKF
results. Here, the clipped EKF drives the predicted pressure three orders of magnitude
larger than the measured pressure before eventually converging to the actual states.
Figure 12 presents the results of applying MHE. For these results, we have constrained
the state to prevent estimation of negative concentrations. The figures demonstrate
that MHE swiftly converges to the correct state estimates.

A little algebraic analysis reveals that multiple steady states satisfy the steady-state
measurement for this system. At steady state, the model and measurement equations
yield one linear equation (assuming no noise in the steady-state measurement yss )

cA + cB + cC =
yss
RT

(49)

and two nonlinear equations

k1cA = k−1cBcC (50)

k2c2
B = k−2cC (51)

Solving for the steady-state solution using equations (49)-(51):

cC =
k2

k−2
c2
B = K2c2

B (52)

cA =
k−1k2

k1k−2
c3
B =

K2

K1
c3
B (53)

0 = K2

K1
c3
B +K2c2

B + cB −
yss
RT

(54)

Descartes’ rule of signs states that for polynomials with real coefficients, the number
of positive, real roots is either the number of sign changes between consecutive coeffi-
cients or two less than this number. Since equilibrium constants and the steady-state
measurement are positive, equation (54) has at most one positive root. Thus there is
only one physically realizable steady state. MHE is a natural estimation tool for this
system since its incorporation of constraints can thus prevent the estimator from con-
verging to unphysical steady states.
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Figure 10: Extended Kalman filter results. (a) plots the evolution of the actual (solid
line) and EKF updated (dashed line) concentrations. (b) plots the evolution of the actual
(solid line), measured (points), and EKF updated (dashed line) pressure estimates.
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Figure 11: Clipped extended Kalman filter results. (a) plots the evolution of the actual
(solid line) and clipped EKF updated (dashed line) concentrations. (b) plots the evolu-
tion of the actual (solid line), measured (points), and clipped EKF updated (dashed line)
pressure estimates.
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Figure 12: Moving horizon estimation results, states constrained to x ≥ 0, smoothing
initial covariance update, and horizon length of 2.5 time units (N = 11 measurements).
(a) plots the evolution of the actual (solid line) and MHE updated (dashed line) concen-
trations. (b) plots the evolution of the actual (solid line), measured (points), and MHE
updated (dashed line) pressure estimates.
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Component
Predicted EKF
Steady State

Actual Steady
State

A −0.0274 0.01241
B −0.2393 0.1837
C 1.1450 0.6753

Table 1: EKF steady-state behavior, no measurement or state noise

7.1.2 CSTR

From first principles, the model for a well-mixed, isothermal CSTR reactor is

ẋ =
Qf
VR
cf −

Qo
VR
x + νTr (55)

cf =
[
0.5 0.05 0

]T
(56)

x0 =
[
0.5 0.05 0

]T
(57)

Qf = Qo = 1 (58)

VR = 100 (59)

We consider state estimation with the following measurement and parameters:

yk =
[
RT RT RT

]
xk (60a)

∆t = tk+1 − tk = 0.25 (60b)

Π0 = diag
(

42,42,42
)

(60c)

Gk = diag (1,1,1) (60d)

Qk = diag
(

0.0012,0.0012,0.0012
)

(60e)

Rk = 0.252 (60f)

x̄0 =
[
0 0 3.5

]T
(60g)

Again, the initial guess, x̄0, is poor. The actual plant experiences N (0,Qk) noise in
the state and N (0, Rk) noise in the measurements. We now examine the estimation
performance of both the EKF and MHE for this system.

Figure 13 demonstrates that, similarly to the batch case, the EKF appears to converge
to an incorrect steady-state estimate. This observation is confirmed by determining the
EKF steady state assuming no state or measurement noise. Calculating the EKF steady
state via equations (35) and assuming no state or measurement noise yields the results
in Table 2. Some steady-state analysis of the system sheds light on the cause of this
phenomenon. Assuming no noise in the steady-state measurement, the system has one
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linear steady-state measurement yss

cA + cB + cC =
yss
RT

(61)

and one linear combination resulting from ρ, the null space of the stoichiometric matrix

ρ =
[
3 1 2

]
(62)

3cA + cB + 2cC = 3cAf + cBf + 2cCf (63)

Therefore the steady-state calculation is a nonlinear problem, and this system satisfies
both conditions required for EKF failure.

Figure 14 presents the EKF estimation results for implementation of a clipping strat-
egy. Although clipping eliminates estimation error, this strategy causes a lengthy period
of overestimation of the pressure, in some cases by two orders of magnitude.

Figure 15 presents the results of applying MHE. For these results, we have con-
strained the state to prevent estimation of negative concentrations. These figures demon-
strate that MHE swiftly converges to the correct state estimates.

Component
Predicted EKF
Steady State

Actual Steady
State

A −0.0122 0.0224
B −0.1364 0.2006
C 1.1746 0.6411

Table 2: EKF steady-state behavior, no measurement or state noise

7.2 Example 3

Reconsider the batch model given in section 7.1, but with the following updated param-
eters

k =
[
0.5 0.4 0.2 0.1

]T
(64a)

Rk = 0.12 (64b)

and new measurement
yk =

[
−1 1 1

]
xk (65)

Note that the measurement has no physical meaning. Solving for the steady-state solu-
tion in terms of cB yields

0 = −K2

K1
c3
B +K2c2

B + cB −yss (66)



TWMCC Technical Report 2002-03 28

C

C

B

B

A
A

(a)

Time

C
o

n
ce

n
tr

at
io

n

302520151050

3

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

(b)

Time

Pr
es

su
re

302520151050

30

28

26

24

22

20

18

16

Figure 13: Extended Kalman filter results. (a) plots the evolution of the actual (solid
line) and EKF updated (dashed line) concentrations. (b) plots the evolution of the actual
(solid line), measured (points), and EKF updated (dashed line) pressure estimates.
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Figure 14: Clipped extended Kalman filter results. (a) plots the evolution of the actual
(solid line) and clipped EKF updated (dashed line) concentrations. (b) plots the evolu-
tion of the actual (solid line), measured (points), and clipped EKF updated (dashed line)
pressure estimates.
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Figure 15: Moving horizon estimation results, states constrained to x ≥ 0, smoothing
initial covariance update, and horizon length of 2.5 time units (N = 11 measurements).
(a) plots the evolution of the actual (solid line) and MHE updated (dashed line) concen-
trations. (b) plots the evolution of the actual (solid line), measured (points), and MHE
updated (dashed line) pressure estimates.
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Again using Descartes’ rule of signs and taking into account the specified parameters,
equation (66) has two positive roots and one negative root. In contrast to the previous
example, there are multiple physically realizable steady states. We now examine the
effect of poor initial conditions upon the estimation behavior of the EKF and MHE.

Table 3 presents the a priori initial conditions for state estimation. Comparison
of Figures 16 and 17 demonstrates that given a poor estimate of the initial state, the
EKF cannot reconstruct the evolution of the state while MHE can. Figures 18 and 19
show that given an even poorer estimate of the initial state, both the EKF and MHE fail
to reconstruct the evolution of the state. To improve the quality of the estimates, we
constrain the concentrations in the estimators so that

0 ≤ cj ≤ 4.5, j = A, B, C (67)

Figures 20 and 21 demonstrate that with this extra knowledge, MHE converges to the
true state estimates while the clipped EKF estimates are trapped on the constraint. Fi-
nally, we relax the concentration constraints to

0 ≤ cj ≤ 5.5, j = A, B, C (68)

Not surprisingly, the clipped EKF estimates remain trapped on the constraint, as shown
in Figure 22. The quality of the MHE estimates is a function of the estimation horizon,
as seen in Figure 23. If the estimation horizon is too short, the MHE estimates are
pinned against the state constraint; increasing the horizon remedies this problem. For
short horizons, we suspect that the data in the estimation horizon cannot overcome the
biasing of the arrival cost approximation (with the smoothing scheme), hence resulting
in state estimates pinned against the constraint. Changing arrival cost approximations
(e.g. switching from the smoothing scheme to a uniform prior) when constraints are
active may constitute one way of addressing this problem without having to increase
the estimation horizon.

Table 4 summarizes the estimation results examined in this section.

Figures x̄0

16, 17
[
3 0.1 3

]T
18-23

[
4 0 4

]T
Table 3: A priori initial conditions for state estimation

8 Conclusions

Virtually all chemical engineering systems contain nonlinear dynamics and/or state con-
straints. The need to incorporate this information into state estimation is illustrated
by the examples presented in this paper. These examples demonstrate that even with
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Figure 16: Extended Kalman filter results. (a) plots the evolution of the actual (solid
line) and EKF updated (dashed line) concentrations. (b) plots the evolution of the actual
(solid line), measured (points), and EKF updated (dashed line) pressure estimates.
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Figure 17: Moving horizon estimation results, states constrained to x ≥ 0, smoothing
initial covariance update, and horizon length of 2.5 time units (N = 11 measurements).
(a) plots the evolution of the actual (solid line) and MHE updated (dashed line) concen-
trations. (b) plots the evolution of the actual (solid line), measured (points), and MHE
updated (dashed line) pressure estimates.
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Figure 18: Extended Kalman filter results. (a) plots the evolution of the actual (solid
line) and EKF updated (dashed line) concentrations. (b) plots the evolution of the actual
(solid line), measured (points), and EKF updated (dashed line) pressure estimates.
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Figure 19: Moving horizon estimation results, states constrained to x ≥ 0, smoothing
initial covariance update, and horizon length of 2.5 time units (N = 11 measurements).
(a) plots the evolution of the actual (solid line) and MHE updated (dashed line) concen-
trations. (b) plots the evolution of the actual (solid line), measured (points), and MHE
updated (dashed line) estimates.
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Figure 20: Clipped extended Kalman filter results, states clipped to 0 ≤ x ≤ 4.5. (a)
plots the evolution of the actual (solid line) and clipped EKF updated (dashed line) con-
centrations. (b) plots the evolution of the actual (solid line), measured (points), and
clipped EKF updated (dashed line) estimates.
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Figure 21: Moving horizon estimation results, states constrained to 0 ≤ x ≤ 4.5,
smoothing initial covariance update, and horizon length of 2.5 time units (N = 11 mea-
surements). (a) plots the evolution of the actual (solid line) and MHE updated (dashed
line) concentrations. (b) plots the evolution of the actual (solid line), measured (points),
and MHE updated (dashed line) estimates.
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Figure 22: Clipped extended Kalman filter results, states clipped to 0 ≤ x ≤ 5.5. (a)
plots the evolution of the actual (solid line) and clipped EKF updated (dashed line) con-
centrations. (b) plots the evolution of the actual (solid line), measured (points), and
clipped EKF updated (dashed line) estimates.
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Figure 23: Moving horizon estimation results, states constrained to 0 ≤ x ≤ 5.5, and
smoothing initial covariance update. (a) plots the effect of horizon length on the evolu-
tion of the actual (solid line) and MHE updated (dashed line) C concentration. (b) plots
the evolution of the actual (solid line), measured (points), and MHE updated (dashed
line) estimates. Values of N on the plots correspond to the horizon length in time units.
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Estimator x̄0 Constraints Horizon Length 5 Estimates Converge?

EKF
[
3 0.1 3

]T
x ≥ 0 NA No

MHE
[
3 0.1 3

]T
x ≥ 0 2.5 time units (N = 11) Yes

EKF
[
4 0 4

]T
x ≥ 0 NA No

MHE
[
4 0 4

]T
x ≥ 0 2.5 time units (N = 11) No

EKF
[
4 0 4

]T
0 ≤ x ≤ 4.5 NA No

MHE
[
4 0 4

]T
0 ≤ x ≤ 4.5 2.5 time units (N = 11) Yes

EKF
[
4 0 4

]T
0 ≤ x ≤ 5.5 NA No

MHE
[
4 0 4

]T
0 ≤ x ≤ 5.5 2.5 time units (N = 11) No

MHE
[
4 0 4

]T
0 ≤ x ≤ 5.5 5 time units (N = 21) No

MHE
[
4 0 4

]T
0 ≤ x ≤ 5.5 10 time units (N = 41) Yes

Table 4: Effects of a priori initial conditions, constraints, and horizon length on state
estimation. N denotes the number of measurements in the estimation horizon.

perfect concordance between the model and the physical plant, it is possible for the
nominal EKF to fail to converge to the true state when

1. the system model and measurement are such that multiple states satisfy the
steady-state measurement, and

2. the estimator is given a poor initial guess of the state.

Given the same estimator tuning, model, and measurements as the EKF, MHE provides
improved state estimation and greater robustness to poor guesses of the initial state.
These benefits arise because MHE incorporates physical state constraints into an opti-
mization, accurately uses the nonlinear model, and optimizes over a trajectory of states
and measurements.

The issue of global versus local optimization and the selection of an arrival cost also
have substantial impact on the behavior of MHE. If one could implement a global opti-
mization strategy in real time, approximating the arrival cost with a uniform prior and
making the estimation horizon reasonably long is preferable to an approximate multi-
variate normal arrival cost because of the latter’s biasing effect on the state estimates.
With local optimization, our results indicate that multivariate normal approximations to
the arrival cost combined with judicious use of constraints can prevent multiple optima
in the estimator and generate acceptable estimator performance.

It is reasonable to expect that more complicated models than the ones proposed here
may yield multiple optima corresponding to both physically realizable and unrealizable
states. Since MHE permits incorporation of constraints into its optimization, it is the
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natural choice for preventing estimation of physically unrealizable states. Since MHE
employs a trajectory of measurements as opposed to measurements at only a single
time, it is better suited than the EKF for distinguishing among the remaining physically
realizable states.
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10 Appendix

10.1 Derivation of the MHE Smoothing Formulation

Assume that the system is Markov, that is,

p(xk+1|x0, . . . , xk) = p(xk+1|xk)
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p(xT−N+1, . . . , xT |y0, . . . , yT ) (69)

=p(xT−N+1|y0, . . . , yT ) p(xT−N+2, . . . , xT |y0, . . . , yT , xT−N+1) (70)

=p(xT−N+1|y0, . . . , yT )
p(xT−N+2, . . . , xT , y0, . . . , yT |xT−N+1)

p(y0, . . . , yT |xT−N+1)
(71)

=p(xT−N+1|y0, . . . , yT )
p(y0, . . . , yT |xT−N+1)

p(xT−N+2, . . . , xT |xT−N+1) p(y0, . . . , yT |xT−N+1, . . . , xT )

(72)

=p(xT−N+1|y0, . . . , yT )
p(y0, . . . , yT |xT−N+1)

p(y0, . . . , yT−N|xT−N+1, . . . , xT , yT−N+1, . . . , yT )×

p(xT−N+2, . . . , xT |xT−N+1)p(yT−N+1, . . . , yT |xT−N+1, . . . , xT ) (73)

= p(xT−N+1|y0, . . . , yT )
p(y0, . . . , yT |xT−N+1)

p(y0, . . . , yT−N|xT−N+1, . . . , xT , yT−N+1, . . . , yT )× T−1∏
k=T−N+1

p(xk+1|xk)
 T∏

k=T−N+1

p(yk|xk)
 (74)

= p(xT−N+1|y0, . . . , yT )
p(yT−N+1, . . . , yT |xT−N+1)

 T−1∏
k=T−N+1

p(xk+1|xk)
 T∏

k=T−N+1

p(yk|xk)
×

p(y0, . . . , yT−N|xT−N+1, . . . , xT , yT−N+1, . . . , yT )
p(y0, . . . , yT−N|xT−N+1, yT−N+1, . . . , yT )

(75)

= p(xT−N+1|y0, . . . , yT )
p(yT−N+1, . . . , yT |xT−N+1)

 T−1∏
k=T−N+1

p(xk+1|xk)
 T∏

k=T−N+1

p(yk|xk)
×

p(xT−N+2, . . . , xT |xT−N+1, y0, . . . , yT )
p(xT−N+2, . . . , xT |xT−N+1, yT−N+1, . . . , yT )

(76)

= p(xT−N+1|y0, . . . , yT )
p(yT−N+1, . . . , yT |xT−N+1)

 T−1∏
k=T−N+1

p(xk+1|xk)
 T∏

k=T−N+1

p(yk|xk)
 (77)

The corresponding probabilistic manipulations are:
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From Equation To Equation Manipulation of Boxed Quantity

(69) (70) p(a,b|c) = p(a|b, c)p(b|c)
(70) (71) p(a,b|c) = p(a|b, c)p(b|c)

(71) (72) p(a|b, c) = p(a,b|c)
p(b|c)

(72) (73) p(a,b|c) = p(a|b, c)p(b|c)
(73) (74) p(a,b|c) = p(a|b, c)p(b|c) and the Markov property

(74) (75) p(a,b|c) = p(a|b, c)p(b|c)

(75) (76)
p(a|b, c, d)
p(a|b,d) = p(c|a,b,d)

p(c|b,d)
(76) (77) 1 by the Markov property

10.2 Derivation of the MHE Filtering Formulation

From the smoothing formulation, we can recover the filtering formulation by manipu-
lating the first term of (77):

p(xT−N+1|y0, . . . , yT )
p(yT−N+1, . . . , yT |xT−N+1)

(78)

=
p(xT−N+1, y0, . . . , yT )

p(yT−N+1, . . . , yT |xT−N+1)p(y0, . . . , yT )
(79)

=
p(xT−N+1, yT−N+1, . . . , yT |y0, . . . , yT−N) p(y0, . . . , yT−N)

p(yT−N+1, . . . , yT |xT−N+1)p(y0, . . . , yT )
(80)

= p(yT−N+1, . . . , yT |xT−N+1, y0, . . . , yT−N)
p(yT−N+1, . . . , yT |xT−N+1)

p(xT−N+1|y0, . . . , yT−N)p(y0, . . . , yT−N)
p(y0, . . . , yT )

(81)

= p(y0, . . . , yT−N)
p(y0, . . . , yT )

p(xT−N+1|y0, . . . , yT−N) (82)

= p(xT−N+1|y0, . . . , yT−N)
p(yT−N+1, . . . , yT |y0, . . . , yT−N)

(83)

(84)

The corresponding probabilistic manipulations are:
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From Equation To Equation Manipulation of Boxed Quantity

(78) (79) p(a|b) = p(a,b)
p(b)

(79) (80) p(a,b, c) = p(a,b|c)p(c)
(80) (81) p(a,b|c) = p(a|b, c)p(b|c)
(81) (82) 1 by the Markov property

(82) (83)
p(a,b)
p(b)

= p(a|b)

The filtering formulation of MHE is thus

p(xT−N+1, . . . , xT |y0, . . . , yT ) =

p(xT−N+1|y0, . . . , yT−N)
p(yT−N+1, . . . , yT |y0, . . . , yT−N)

 T−1∏
k=T−N+1

p(xk+1|xk)
 T∏

k=T−N+1

p(yk|xk)
 (85)

10.3 Equivalence of the Full Information and Least Squares Formulations

Starting with the maximum likelihood estimate, we rewrite equation (14) using equa-
tion (85):

max
x0,...,xT

p(x0, . . . , xT |y0, . . . , yT ) (86)

= min
x0,...,xT

− logp(x0, . . . , xT |y0, . . . , yT ) (87)

= min
x0,...,xT

− log

p(x0)

 T−1∏
k=T−N+1

p(xk+1|xk)
 T∏

k=T−N+1

p(yk|xk)
 (88)

= min
x0,...,xT

− logp(x0)−
T−1∑

k=T−N+1

logp(xk+1|xk)−
T∑

k=T−N+1

logp(yk|xk) (89)

We can then calculate the conditional probabilities in equation (89) by first rewriting the
joint distributions as functions of independent random variables

p(xk+1, xk) = p(Gkwk)p(xk) (90)

p(yk, xk) = p(vk)p(xk) (91)

and then calculating the conditional probabilities

p(xk+1|xk) = p(Gkwk), p(Gwk) ∼N (0, GkQkGTk ) (92)

p(yk|xk) = p(vk), p(vk) ∼N (0, Rk) (93)

(94)
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N (m,P)-distributed multivariate normals have probability functions of the form

p(x) = 1
(2π)n/2|P |1/2 exp

[
−1

2
(x −m)TP−1(x −m)

]
(95)

where n is the number of elements of the variable x. Therefore

min
xk,xk+1

− logp(xk+1|xk) = min
xk,xk+1

− logp(Gkwk) (96)

= min
xk,xk+1

1
2
wT
kQ

−1
k wk (97)

and

min
xk
− logp(yk|xk) =min

xk
− logp(vk) (98)

=min
xk

1
2
vTk R

−1
k vk (99)

Plugging these values into equation (89) yields the minimization presented in equa-
tion (15).

10.4 Evolution of a Nonlinear Probability Density

We are interested in determining formulas for the evolution of the probability density
p(xk|y0, . . . , yk) for the system

xk+1 =


xk,1

2k∆txk,1 + 1

xk,2 +
k∆tx2

k,1

2k∆txk,1 + 1

+wk (100a)

yk =
[
1 1

]
xk + vk (100b)

We view future states (xk’s) as functions of the random variables with known statistics
(x0, wk’s, and vk’s). First update the a priori estimate, x̄0, with the first measurement,
y0, by

1. writing the joint probability density p(x0, y0) as a function of p(x0, v0)

p(x0, y0) = p(x0, v0)

∣∣∣∣∣ I 0
C I

∣∣∣∣∣
−1

(101a)

= p(x0)p(v0) (x0 and v0 are independent) (101b)
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2. calculating the conditional probability density p(x0|y0)

p(x0|y0) =
p(x0, y0)
p(y0)

(102a)

= p(x0, y0)∫∞
−∞ p(x0, y0)dx0

(102b)

= p(x0)pv0(y0 − Cx0)∫∞
−∞ p(x0)pv0(y0 − Cx0)dx0

(102c)

=
exp

[
−1

2(x0 − x̄0)TΠ−1
0 (x0 − x̄0)− 1

2(y0 − Cx0)TR−1
k (y0 − Cx0)

]
∫∞
−∞ exp

[
−1

2(x0 − x̄0)TΠ−1
0 (x0 − x̄0)− 1

2(y0 − Cx0)TR−1
k (y0 − Cx0)

]
dx0

(102d)

Now propagate p(x0|y0) to the next measurement time to obtain p(x1|y0):

p(x1,w0|y0) = p(x0,w0|y0)

∣∣∣∣∣∣∣
∂x1

∂xT0
∂x1

∂wT
0

∂w0

∂xT0
∂w0

∂wT
0

∣∣∣∣∣∣∣
−1

(103a)

= p(x0,w0|y0)
(

2k̄∆x0,1 + 1
)2

(103b)

= p(x0|y0)p(w0)
(

2k̄∆x0,1 + 1
)2

(103c)

p(x1|y0) =
∫∞
−∞
p(x1,w0|y0)dw0 (104)

=
∫∞
−∞
p(x0|y0)p(w0)

(
2k̄∆x0,1 + 1

)2
dw0 (105)

p(x1|y0, y1) =
p(x1|y0)pv1(y1 − Cx1)∫∞

−∞ p(x1|y0)pv1(y1 − Cx1)dx1
(106a)

=
∫∞
−∞Ω1dw0∫∞

−∞
∫∞
−∞Ω1dw0dx1

(106b)

where

Ω1 =
∫∞
−∞

(
2k̄∆x0,1 + 1

)2
exp

−1
2

(x0 − x̄0)TΠ−1
0 (x0 − x̄0)+wT

0Q
−1
k w0 +

1∑
j=0

vTj R
−1
k vj

dw0

(107)
For future times, it is straightforward to derive equations (28) and (29).
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