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1 Introduction

Model predictive control (MPC) is widely recognized as a high performance, yet practical, control
technology. This model-based control strategy uses a prediction of system response to establish an
appropriate control response. An attractive attribute of MPC technology is its ability to systemati-
cally account for process constraints. The effectiveness of MPC is dependent on a model of accept-
able accuracy and the availability of sufficiently fast computational resources. These requirements
limit the application base for MPC. Even so, applications abound in the process industries, and
are becoming more widespread [5, 24].

Traditionally, control of large, networked systems is achieved by designing local, subsystem-
based controllers that ignore the interactions between the different subsystems. A survey of de-
centralized control methods for large-scale systems is available in [25]. It is well known that a
decentralized control philosophy may result in poor systemwide control performance if the sub-
systems interact significantly. Centralized MPC, on the other hand, is impractical for control of
large-scale, geographically expansive systems, such as power systems. A distributed MPC frame-
work is appealing in this context; the distributed MPC controllers must, however, account for the
interactions between the subsystems. These and other issues critical to the success of distributed
MPC are examined in this paper.

Each MPC, in addition to determining the optimal current response, also generates a predic-
tion of future subsystem behavior. By suitably leveraging this prediction of future subsystem
behavior, the various subsystem-based MPCs can be integrated and the overall system perfor-
mance improved. A discussion on economic and performance benefits attainable by integrating
subsystem-based MPCs is available in [15, 21]. One of the goals of this paper, however, is to
illustrate that a simple exchange of predicted subsystem trajectories (communication) does not nec-
essarily improve overall system control performance.

A few distributed MPC formulations are available in the literature. A distributed MPC frame-
work was proposed in [11], for the class of systems that have independent subsystem dynamics
but are linked through their cost functions. More recently in [10], an extension of the method de-
scribed in [11] that handles systems with weakly interacting subsystem dynamics was proposed.
Stability is proved through the use of a conservative, consistency constraint that forces the pre-
dicted and assumed input trajectories to be close to each other. Also, as pointed out by the author,
the stability analysis in [10] requires the number of agents to be at least 10 ; this requirement on
the minimum number of agents raises concerns on the applicability of the distributed MPC frame-
work proposed in [10] in a general setting. Furthermore, the performance of the distributed MPC
framework in [10] is different from that of centralized MPC. A distributed MPC algorithm for
unconstrained, linear time-invariant (LTI) systems was proposed in [6, 18]. For the models con-
sidered in [6, 18], the evolution of the states of each subsystem is assumed to be influenced only by
the states of interacting subsystems and local subsystem inputs. This choice of modeling frame-
work can be restrictive. In many cases, such as the two area power network with FACTS device
(Section 5.7.5) and most chemical plants, the evolution of the subsystem states is also influenced
by the inputs of interconnected subsystems. More crucially for the distributed MPC framework
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proposed in [6, 18], the subsystem-based MPCs have no knowledge of each other’s cost/utility
functions. It is known from noncooperative game theory that if such pure communication-based
strategies (in which competing agents have no knowledge of each others cost functions) converge,
they converge to the Nash equilibrium (NE) ([1, 2]). In most cases involving a finite number of
agents, the NE is different from the Pareto optimal (PO) solution [8, 9, 23]. In fact, nonconvergence
or suboptimality of pure communication-based strategies may result in unstable closed-loop be-
havior in some cases. A four area power network example is used here (Section 5.7.4) to illustrate
instability due to communication-based MPC. Such examples are not uncommon. A distributed
MPC framework in which the effect of interconnected subsystems are treated as bounded un-
certainties was proposed in [19]. Stability and optimality properties have not been established
however.

Most interconnected power systems rely on automatic generation control (AGC) for control-
ling system frequency and tie-line interchange [31]. These objectives are achieved by regulating
the real power output of generators throughout the system. To cope with the expansive nature
of power systems, a distributed control structure has been adopted for AGC. Also, various lim-
its must be taken into account, including restrictions on the amount and rate of generator power
deviation. AGC therefore provides a very relevant example for illustrating the performance of
distributed MPC in a power system setting.

Flexible AC transmission system (FACTS) devices allow control of the real power flow over se-
lected paths through a transmission network [16] . As transmission systems become more heavily
loaded, such controllability offers economic benefits [20] . However FACTS controls must be coor-
dinated with each other, and with other power system controls, including AGC. Distributed MPC
offers an effective means of achieving such coordination, whilst alleviating the organizational and
computational burden associated with centralized control.

This paper is organized as follows. In Section 2, a brief description of the different modeling
frameworks is presented. Notation used in this paper is introduced in Section 3. In Section 4, a de-
scription of the different MPC based systemwide control frameworks is provided. A simple exam-
ple that illustrates the unreliability of communication-based MPC is presented. An implementable
algorithm for terminal penalty-based distributed MPC is described in Section 5. Properties of this
distributed MPC algorithm and closed-loop properties of the resulting distributed controller are
established subsequently. Three examples are presented to assess the performance of the terminal
penalty-based distributed MPC framework. Two useful extensions of the proposed distributed
MPC framework are described in Section 6. An algorithm for terminal control-based distributed
MPC is described in Section 7. Two examples are presented to illustrate the efficacy of the terminal
control-based distributed MPC framework. Conclusions of this study are provided in Section 8.
Some supporting material and proofs of results in the paper are available in Appendices A- B.

2 Models

Distributed MPC relies on decomposing the overall system model into appropriate subsystem
models. A system comprised of M interconnected subsystems will be used to establish these
concepts.
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Centralized model. The overall system model is represented as a discrete, linear time-invariant
(LTI) model of the form

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

in which k denotes discrete time and

A =


A11 A12 . . . A1M

...
...

. . .
...

Ai1 Ai2 . . . AiM
...

...
. . .

...
AM1 AM2 . . . AMM

 B =


B11 B12 . . . B1M

...
...

. . .
...

Bi1 Bi2 . . . BiM
...

...
. . .

...
BM1 BM2 . . . BMM



C =


C11 0 . . . 0
0 C22 . . . 0
...

...
. . .

...
0 . . . . . . CMM

 u =
[
u1

′ u2
′ . . . uM

′] ′ ∈ Rm

x =
[
x1

′ x2
′ . . . xM

′] ′ ∈ Rn y =
[
y1
′ y2

′ . . . yM
′] ′ ∈ Rz.

For each subsystem i = 1, 2, . . . ,M , the triplet (ui, xi, yi) represents the subsystem input, state
and output vector respectively. The centralized model pair (A,B) is assumed to be stabilizable
and (A,C) is detectable 1.

Decentralized model. In the decentralized modeling framework, it is assumed that the interac-
tion between the subsystems is negligible. Subsequently, the effect of the external subsystems on
the local subsystem is ignored in this modeling framework. The decentralized model for subsys-
tem i = 1, 2, . . . ,M is

xi(k + 1) = Aiixi(k) + Biiui(k)
yi(k) = Ciixi(k)

Partitioned model (PM). The PM for subsystem i combines the effect of the local subsystem
variables and the effect of the states and inputs of the interconnected subsystems. The PM for
subsystem i is obtained by considering the relevant partition of the centralized model and can be
explicitly written as

xi(k + 1) = Aiixi(k) + Biiui(k) +
∑
j 6=i

(Aijxj(k) + Bijuj(k)) (1a)

yi(k) = Ciixi(k) (1b)

1In the applications considered here, local measurements are typically a subset of subsystem states. The structure
selected for the C matrix reflects this observation. A general C matrix may be used, but impacts possible choices for
distributed estimation techniques [29].
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3 Notation

For any matrix P , λmax(P ) and λmin(P ) denote the maximum and minimum (absolute) eigen-
value of P respectively. For any subsystem i = 1, 2, . . . ,M , let the predicted state and input
at time instant k + j, j ≥ 0 , based on data at time k be denoted by xi(k + j|k) ∈ Rni and
ui(k + j|k) ∈ Rmi respectively. We have the following definitions for the infinite horizon pre-
dicted state and input trajectory vectors in the different MPC frameworks

Centralized state trajectory : x(k)
′
=

[
x(k + 1|k)′, x(k + 2|k)′, . . . . . .

]
Centralized input trajectory : u(k)

′
=

[
u(k|k)′, u(k + 1|k)′, . . . . . .

]
State trajectory (subsystem i) : xi(k)

′
=

[
xi(k + 1|k)′, xi(k + 2|k)′, . . . . . .

]
Input trajectory (subsystem i) : ui(k)

′
=

[
ui(k|k)′, ui(k + 1|k)′, . . . . . .

]
Let N denote the control horizon. The following notation is used to represent the finite horizon
predicted state and input trajectory vectors in the different MPC frameworks

Centralized state trajectory : x(k)
′
=

[
x(k + 1|k)′, x(k + 2|k)′, . . . , x(k + N |k)′

]
Centralized input trajectory : u(k)

′
=

[
u(k|k)′, u(k + 1|k)′, . . . , u(k + N − 1|k)′

]
State trajectory (subsystem i) : xi(k)

′
=

[
xi(k + 1|k)′, xi(k + 2|k)′, . . . , xi(k + N |k)′

]
Input trajectory (subsystem i) : ui(k)

′
=

[
ui(k|k)′, ui(k + 1|k)′, . . . , ui(k + N − 1|k)′

]
4 MPC frameworks for systemwide control

The set of admissible controls for subsystem i,Ωi ⊆ Rmi is assumed to be a nonempty, compact,
convex set with 0 ∈ int(Ωi) . The set of admissible controls for the whole plant Ω is defined to be
the Cartesian product of the admissible control sets Ωi,∀ i = 1, 2, . . . ,M .

The stage cost at stage t ≥ k along the prediction horizon is defined as

Li(xi(t|k), ui(t|k)) =
1
2

[
xi(t|k)′Qixi(t|k) + ui(t|k)′Riui(t|k)

]
(2)

in which Qi ≥ 0 , Ri > 0 are symmetric weighting matrices and (Ai, Q
1/2
i ) is detectable. The cost

function φi(·) for subsystem i is defined over an infinite horizon and is written as

φi (xi,ui;xi(k)) =
∞∑

t=k

Li (xi(t|k), ui(t|k)) (3)

with xi(k|k) ≡ xi(k) . For any system, the constrained stabilizable set (also termed Null con-
trollable domain) X is the set of all initial states x ⊆ Rn that can be steered to the origin by
applying a sequence of admissible controls (see [28, Definition 2]). It is assumed throughout
that the initial system state vector x(k) ∈ X , in which X denotes the constrained stabilizable
set for the overall system. A feasible solution to the corresponding optimization problem, there-
fore, exists. For notational simplicity, we drop the time dependence of the state and input tra-
jectories in each MPC framework. For instance in the centralized MPC framework, we write
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x ← x (k) and u ← u (k) . In the distributed MPC framework, we use x i ← x i(k) and
u i ← u i(k), ∀ i = 1, 2, . . . M .

Four MPC based systemwide control frameworks are described below. In each MPC frame-
work, the controller is defined by implementing the first input in the solution to the corresponding
optimization problem.

Centralized MPC. In the centralized MPC framework, the MPC for the overall system solves the
following optimization problem

min
x,u

φ (x,u;x(k)) =
∑

i

wiφi (xi,ui;xi(k))

subject to
x(l + 1|k) = Ax(l|k) + Bu(l|k), k ≤ l

ui(l|k) ∈ Ωi, k ≤ l, i = 1, 2, . . . ,M

where wi > 0 ,
∑

wi = 1 .
For any system, centralized MPC achieves the best attainable performance (Pareto optimal)

as the effect of interconnections among subsystems are accounted for exactly. Furthermore, any
conflicts among controller objectives are resolved optimally.

Decentralized MPC. In the decentralized MPC framework, each subsystem-based MPC solves
the following optimization problem

min
xi,ui

φi (xi,ui;xi(k))

subject to
xi(l + 1|k) = Aiixi(l|k) + Biiui(l|k), k ≤ l

ui(l|k) ∈ Ωi, k ≤ l

Each decentralized MPC solves an optimization problem to minimize its (local) cost function.
The effects of the interconnected subsystems are assumed to be negligible and are ignored. In
many situations, however, the above assumption is not valid and leads to reduced control perfor-
mance.

Distributed MPC. The partitioned model for each subsystem i = 1, 2, . . . ,M is assumed to
be available. Two formulations for distributed MPC namely, communication-based MPC and
cooperation-based MPC, are considered. Distributed MPC formulations based on pure commu-
nication based strategies are available in the literature [6, 18]. In the sequel, the suitability of
pure communication based MPC, as a candidate systemwide control formulation, is assessed.
For both communication and cooperation-based MPC, several subsystem optimizations and ex-
change of variables between subsystems are performed during a sample time. An optimization
and exchanges of variables is termed an iterate. We may choose not to iterate to convergence. The
iteration number is denoted by p .
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Communication-based MPC. For communication-based MPC 2, the optimal state-input trajec-
tory (x p

i , u p
i ) for subsystem i, i = 1, 2, . . . ,M at iterate p is obtained as the solution to the

optimization problem

min
xi,ui

φi (xi,ui;xi(k))

subject to

xi(l + 1|k) = Aiixi(l|k) + Biiui(l|k) +
∑
j 6=i

[Aijx
p−1
j (l|k) + Biju

p−1
j (l|k)], k ≤ l

ui(l|k) ∈ Ωi, k ≤ l

Each communication-based MPC utilizes the objective function for that subsystem only. For each
subsystem i at iteration p , only that subsystem input sequence u i is optimized and updated. The
other subsystems’ inputs remain at u p−1

j ,∀ j = 1, 2, . . . ,M, j 6= i . If the communication-based
iterates converge, then at convergence, the Nash equilibrium (NE) is achieved. In this work, the
term communication-based MPC alludes to the above framework at convergence of the exchanged
trajectories.
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Figure 1: A Nash equilibrium exists. Communication-based iterates, however, do not converge to
the Nash equilibrium.

Instability under communication-based MPC. Figure 1 illustrates nonconvergence of commun-
ication-based MPC for a two subsystem case. The details of the example are omitted here for
brevity. For initial values of inputs at the origin and in the absence of input constraints, the se-
quence of communication-based iterates diverges to infinity. For a compact feasible region (the

2Similar strategies have been proposed by [6, 18]
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box in Figure 1), the sequence of communication-based iterates is trapped at the boundary of the
feasible region (Point 5 ). For this system, the NE is at point n .

In the communication-based MPC framework, each subsystem’s MPC has no information
about the objectives of the interconnected subsystems’ MPCs. Convergence of the exchanged
state and input trajectories is implicitly assumed and is, therefore, a drawback of this formulation.
In many cases, the NE cannot be achieved using pure communication-based strategies [2]. Even
in cases where convergence to the NE is achieved, pure communication-based strategies cannot
guarantee closed-loop stability. Communication-based MPC is, therefore, an unreliable strategy
for systemwide control.

Feasible cooperation-based MPC (FC-MPC). To arrive at a reliable distributed MPC framework,
we need to ensure that the subsystems’ MPCs cooperate, rather than compete, with each other in
achieving systemwide objectives. The local controller objective φi(·) is replaced by an objective
that measures the systemwide impact of local control actions. The simplest choice for such an
objective is a strict convex combination of the controller objectives i .e., φ(·) =

∑
i wiφi(·), wi >

0,
∑

i wi = 1 .
In large-scale implementations, the system sampling interval may be insufficient to allow con-

vergence of an iterative, cooperation-based algorithm. In such cases, the cooperation-based algo-
rithm has to be terminated prior to convergence of exchanged trajectories. The final calculated
input trajectories are used to define a suitable distributed MPC control law. To enable intermedi-
ate termination, it is necessary that all iterates generated by the cooperation-based algorithm are
strictly systemwide feasible (i.e., satisfy all model and inequality constraints) and the resulting nom-
inal distributed control law is closed-loop stable. Such a distributed MPC algorithm is presented
in Section 5.

For notational convenience, we drop the k dependence of x i(k), u i(k), i = 1, 2, . . . ,M . It is
shown in Appendix A that each x i can be expressed as

xi = Eiiui + fiixi(k) +
∑
j 6=i

[Eijuj + fijxj(k)]. (6)

We consider open-loop stable systems here. Extensions of the distributed MPC methodology
to handle large, open-loop unstable systems are described in Sections 6.2 and 7.

For open-loop stable systems, the FC-MPC optimization problem for subsystem i , denoted
Fi , is defined as

Fi , min
ui

M∑
r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

(7a)

subject to
ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (7b)
ui(t|k) = 0, k + N ≤ t (7c)

The infinite horizon input trajectory u i is obtained by augmenting u i with the input sequence
ui(t|k) = 0, k+N ≤ t . The infinite horizon state trajectory x i is derived from x i by propagating
the terminal state xi(k + N |k) using (1) and ui(t|k) = 0, k + N ≤ t,∀ i = 1, 2, . . . ,M . The cost
function Φi(·) is obtained by eliminating the state trajectory x i from (3) using (6) and the input,
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state parameterization described above. The solution to the optimization problem Fi is denoted
by u

∗(p)
i . By definition,

u
∗(p)
i = [u∗(p)

i (k|k)′, u∗(p)
i (k + 1|k)′, . . . . . .]′ and

u
∗(p)
i = [u∗(p)

i (k|k)′, u∗(p)
i (k + 1|k)′, . . . , u∗(p)

i (k + N − 1|k)′]′

5 Terminal penalty FC-MPC

5.1 Optimization

For the quadratic form of φi(·) given by (3), the FC-MPC optimization problem (7), for each sub-
system i = 1, 2, . . . ,M , can be written as

Fi , min
ui

1
2
ui

′Riui +

rrri(x(k)) +
∑
j 6=i

Hiju
p−1
j


′

ui (8a)

subject to
ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (8b)

in which

Ri = Ri +
M∑

j=1

Eji
′QjEji +

M∑
j=1

Eji
′
∑
l 6=j

TjlEli

Qi = diag
(
wiQi(1), . . . , wiQi(N − 1), Pii

)
Tij = diag

(
0, . . . , 0, Pij

)
Ri = diag

(
wiRi(0), wiRi(1), . . . , wiRi(N − 1)

)
rrri(x(k)) =

M∑
j=1

Eji
′ Qj gj(x(k)) +

M∑
j=1

Eji
′
∑
l 6=j

Tjlgl(x(k))

Hij =
M∑
l=1

Eli
′QlElj +

M∑
l=1

Eli
′
∑
s 6=l

TlsEsj gi(x(k)) =
M∑

j=1

fijxj(k)

and

P =


P11 P12 . . . . . . P1M

P21 P22 . . . . . . P2M
...

...
. . . . . .

...
PM1 PM2 . . . . . . PMM

 (9)

is a suitable terminal penalty matrix. Restricting attention (for now) to open-loop stable systems
simplifies the choice of P . For each i = 1, 2, . . . ,M , let Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi .
The terminal penalty P can be obtained as the solution to the centralized Lyapunov equation

A′ P A− P = −Q (10)
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in which Q = diag(w1Q1, w2Q2, . . . , wMQM ) . The centralized Lyapunov equation (10) is solved
off line. The solution to (10), P , has to be recomputed if the subsystems’ models and/or cost
functions are altered.

5.2 Algorithm and properties

At time k , let pmax(k) represent the maximum number of permissible iterates for the sampling
interval. The following algorithm is employed for cooperation-based distributed MPC.

Algorithm 1 (Terminal penalty FC-MPC).
Given u 0

i (k), xi(k), Qi, Ri, i = 1, 2, . . . ,M
pmax(k) ≥ 0 and ε > 0

p← 1, ρi ← Γε,Γ� 1
while ρi > ε for some i = 1, 2, . . . ,M and p ≤ pmax

do ∀ i = 1, 2, . . . ,M

u
∗(p)
i ∈ arg(Fi) , (see (8))

end (do)
for each i = 1, 2, . . . ,M

u p
i = wi u

∗(p)
i + (1− wi) u p−1

i

ρi = ‖u p
i − u p−1

i ‖
Transmit u p

i to each interconnected subsystem j = 1, 2, . . . ,M, j 6= i .
end (for)
p← p + 1
end (while)

The state trajectory for subsystem i generated by the input trajectories u 1, u 2, . . . , uM and ini-
tial state z is represented as x i(u 1, u 2, . . . , uM ; z) . At each iterate p in Algorithm 1, the state
trajectory for subsystem i = 1, 2, . . . ,M can be calculated as x p

i (u p
1, u p

2, . . . , u p
M ;x(k)) . At each

k , pmax(k) represents a design limit on the number of iterates; the user may choose to terminate
Algorithm 1 prior to this limit.

The infinite horizon input and state trajectories (x p
i , u p

i ) can be obtained following the dis-
cussion in Section 4. Denote the cooperation-based cost function after p iterates by

Φ(u p
1, u p

2, . . . , u p
M ;x(k)) =

M∑
r=1

wrΦr

(
u p

1, u p
2, . . . , u p

M ;xr(k)
)
.

The following properties can be established for the FC-MPC formulation (8) employing Algo-
rithm 1.

Lemma 1. Given the distributed MPC formulation Fi defined in (7) and (8), ∀ i = 1, 2, . . . ,M , the
sequence of cost functions

{
Φ(u p

1, u p
2, . . . , u p

M ;x(k))
}

generated by Algorithm 1 is nonincreasing with
iteration number p .

A proof is given in Appendix B.
Using Lemma 1 and the fact that Φ(·) is bounded below assures convergence of the sequence

of cost functions with iteration number.
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Consider the centralized MPC optimization problem obtained by eliminating the subsystem
states using the PM equations (1), ∀ i = 1, 2, . . . ,M .

min
u1,u2,...,uM

Φ (u1,u2, . . . ,uM ;x(k)) =
M∑
i=1

wiΦi (u1,u2, . . . ,uM ;xi(k)) (11a)

subject to
ui(l|k) ∈ Ωi, k ≤ l ≤ k + N − 1, (11b)
ui(l|k) = 0, k + N ≤ l (11c)

∀ i = 1, 2, . . . ,M

From the definition of φi(·) (3), we have Ri > 0 . Hence, Ri > 0,∀ i = 1, 2, . . . ,M (8). It
follows that Φi(·) is strictly convex. Using convexity of Ω = Ω1 × Ω2 × . . . × ΩM and strict
convexity of Φ(·) , the solution (u ∗

1, . . . , u ∗
M ) to the centralized MPC optimization problem (11)

exists and is unique. By definition, u ∗
i = [u ∗

i
′, 0, 0, . . .] .

Lemma 2. Consider Φ(·) positive definite quadratic and Ωi,∀ i = 1, 2, . . . ,M be convex, compact.
Let the solution to Algorithm 1 after p iterates be (u p

1, . . . , u p
M ) with an associated cost function value

Φ(u p
1, . . . , u p

M ;x(k)) , in which u p
i = [u p

i
′, 0, 0, . . .]′ . Denote the unique solution to (11) by (u ∗

1, u ∗
2,

. . . , u ∗
M ) , in which u ∗

i = [u ∗
i
′, 0, 0, . . .]′ , and let Φ(u ∗

1, u ∗
2, . . . , u ∗

M ;x(k)) represent the optimal cost
function value. The solution obtained at convergence of Algorithm 1 satisfies

lim
p→∞

Φ(up
1,u

p
2, . . . ,u

p
M ;x(k)) = Φ(u∗1,u

∗
2, . . . ,u

∗
M ;x(k)) and

lim
p→∞

(up
1,u

p
2, . . . ,u

p
M ) = (u∗1,u

∗
2, . . . ,u

∗
M )

A proof is given in Appendix B.

5.3 Distributed MPC control law

At time k , let the FC-MPC algorithm (Algorithm 1) be terminated after p(k) iterates, with

u
p(k)
i (k;x(k)) =

[
u

p(k)
i (k;x(k))′, up(k)

i (k + 1;x(k))′, . . .
]
′, (12)

∀ i = 1, 2, . . . ,M

representing the solution to Algorithm 1 after p(k) cooperation-based iterates. The distributed
MPC control law is obtained through a receding horizon implementation of optimal control whereby
the input applied to subsystem i is

ui(k) = u
p(k)
i (k;x(k)). (13)

5.4 Feasibility of FC-MPC optimizations

Since x(0) ∈ X , there exists a set of feasible, open-loop input trajectories (u 1, u 2, . . . , uM ) such
that xi(k) → 0, ∀ i = 1, 2, . . . ,M and k sufficiently large. Convexity of Ωi,∀ i = 1, 2, . . . ,M
and Algorithm 1 guarantee that given a feasible input sequence at time k = 0 , a feasible input
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sequence exists for all future times. One trivial choice for a feasible input sequence at k = 0 is
ui(k + l|k) = 0, l ≥ 0, ∀ i = 1, 2, . . . ,M . This choice follows from our assumption that each Ωi is
nonempty and 0 ∈ int(Ωi) . Existence of a feasible input sequence for each subsystem i at k = 0
ensures that the FC-MPC optimization problem (7), (8) has a solution for each i = 1, 2, . . . ,M and
all k ≥ 0 .

5.5 Initialization

At discrete time k + 1 , define ∀ i = 1, 2, . . . ,M

u 0
i (k + 1) ′ =

[
u

p(k)
i (k + 1;x(k))′, up(k)

i (k + 2;x(k))′, . . . , up(k)
i (k + N − 1;x(k))′, 0, 0, . . .

]
(14)

It follows that u 0
1(k+1), u 0

2(k+1), . . . , u 0
M (k+1) constitute feasible subsystem input trajectories

with an associated cost function Φ
(
u 0

1(k + 1), u 0
2(k + 1), . . . , u 0

M (k + 1);x(k + 1)
)

.

5.6 Nominal closed-loop stability

Given the set of initial subsystem states xi(0), ∀ i = 1, 2, . . . ,M . Define J̃N (x(0)) to be the
value of the cooperation-based cost function with the set of zero input trajectories ui(k + j|k) =
0, j ≥ 0,∀ i = 1, 2, . . . ,M . At time k , let J0

N (x(k)) represent the value of the cooperation-
based cost function with the input trajectory initialization described in (14). For notational con-
venience we drop the function dependence of the generated state trajectories and write x i ≡
x i(u 1, u 2, . . . , uM ; z), ∀ i = 1, 2, . . . ,M . The value of the cooperation-based cost function after
p(k) iterates is denoted by J

p(k)
N (x(k)) . Thus,

J
p(k)
N (x(k)) =

M∑
i=1

wiφi

(
x

p(k)
i ,u

p(k)
i ;x(k)

)
(15a)

=
M∑
i=1

wi

∞∑
j=0

Li

(
x

p(k)
i (k + j|k), up(k)

i (k + j|k)
)

(15b)

At k = 0 , we have using Lemma 1 that J
p(0)
N (x(0)) ≤ J0

N (x(0)) = J̃N (x(0)) . It follows
from (14) and Lemma 1 that

0 ≤ J
p(k)
N (x(k)) ≤ J0

N (x(k)) = J
p(k−1)
N (x(k − 1))−

M∑
i=1

wiLi(xi(k − 1), up(k−1)
i (k − 1)), ∀ k > 0

(16)

Using the above relationship recursively from time k to time 0 gives

J
p(k)
N (x(k)) ≤ J̃N (x(0))−

k−1∑
j=0

M∑
i=1

wiLi(xi(j), u
p(j)
i (j)) ≤ J̃N (x(0)), (17)

From (15), we have 1
2λmin(Q)‖x(k)‖2 ≤ J

p(k)
N (x(k)) . Using (17), gives J

p(k)
N (x(k)) ≤ J̃N (x(0)) =

1
2x(0)′Px(0) ≤ 1

2λmax(P )‖x(0)‖2 . From the previous two cost relationships, we obtain ‖x(k)‖ ≤



TWMCC Technical Report 2006-05 13

√
λmax(P )
λmin(Q) ‖x(0)‖ , which shows that the closed-loop system is Lyapunov stable [30, p. 265]. In fact,

using the cost convergence relationship (16) the closed-loop system is also attractive, which proves
asymptotic stability under the distributed MPC control law.

Lemmas 1 and 2 can be used to establish the following (stronger) exponential closed-loop
stability result.

Theorem 1. Given Algorithm 1 using the distributed MPC optimization problem (8) with N ≥ 1 . In
Algorithm 1, let 0 < pmax(k) ≤ p∗ <∞ , ∀ k ≥ 0 . If A is stable, P is obtained from (10), and

Qi(0) = Qi(1) = . . . = Qi(N − 1) = Qi > 0
Ri(0) = Ri(1) = · · · = Ri(N − 1) = Ri > 0

∀ i = 1, 2, . . . ,M

then the origin is an exponentially stable equilibrium for the closed-loop system

x(k + 1) = Ax(k) + Bu(k)

in which
u(k) =

[
u

p(k)
1 (k;x(k))′, . . . , up(k)

M (k;x(k))′
]
′

for all x(k) ∈ Rn and any p(k) = 1, 2, . . . , pmax(k) .

A proof is given in Appendix B.

Remark 1. If (A,Q
1
2 ) is detectable, then the weaker requirement Qi ≥ 0 , Ri > 0 , ∀i = 1, ...,M

is sufficient to ensure exponential stability of the closed-loop system under the distributed MPC
control law.

5.7 Examples

5.7.1 Power system terminology and control area model

For the purposes of AGC, power systems are decomposed into control areas, with tie-lines pro-
viding interconnections between areas [16]. Each area typically consists of numerous generators
and loads. It is common, though, for all generators in an area to be lumped as a single equivalent
generator, and likewise for loads. That model is adopted in all subsequent examples. Some basic
power systems terminology is provided in Table 1. The notation ∆ is used to indicate a devia-
tion from steady state. For example, ∆ω represents a deviation in the angular frequency from its
nominal operating value (60 Hz.).

Consider any control area i = 1, 2, . . . ,M , interconnected to control area j, j 6= i through a tie
line. A simplified model for such a control area i is given in (18). Area i

d∆ωi

dt
+

1
Ma

i

Di∆ωi +
1

Ma
i

∆P ij
tie −

1
Ma

i

∆Pmechi
= − 1

Ma
i

∆PLi (18a)

d∆Pmechi

dt
+

1
TCHi

∆Pmechi
− 1

TCHi

∆Pvi = 0 (18b)

d∆Pvi

dt
+

1
TGi

∆Pvi −
1

TGi

∆Prefi
+

1

Rf
i TGi

∆ωi = 0 (18c)
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Table 1: Basic power systems terminology.
ω : angular frequency of rotating mass
δ : phase angle of rotating mass

Ma : Angular momentum
D : percent change in load

percent change in frequency
Pmech : mechanical power
PL : nonfrequency sensitive load
TCH : charging time constant (prime mover)
Pv : steam valve position
Pref : load reference setpoint
Rf : percent change in frequency

percent change in unit output
TG : governor time constant
P ij

tie : tie-line power flow between areas i and j
Tij : tie-line (between areas i and j) stiffness coefficient
Kij : FACTS device coefficient (regulating impedance between areas i and j)

tie-line power flow between areas i and j

d∆P ij
tie

dt
= Tij (∆ωi −∆ωj) (18d)

∆P ji
tie = −∆P ij

tie (18e)

5.7.2 Performance comparison

The cumulative stage cost Λ is used as an index for comparing the performance of different MPC
frameworks. Define

Λ =
1
t

t−1∑
k=0

M∑
i=1

Li (xi(k), ui(k)) . (19)

where t is the simulation horizon.

5.7.3 Two area power system network

An example with two control areas interconnected through a tie line is considered. The controller
parameters and constraints are given in Table 2. A control horizon N = 15 is used for each MPC.
The controlled variable (CV) for area 1 is the frequency deviation ∆ω1 and the CV for area 2 is
the deviation in the tie-line power flow between the two control areas ∆P 12

tie . From the control
area model (18), if ∆ω1 → 0 and ∆P 12

tie → 0 then ∆ω2 → 0 .
For a 25% load increase in area 2 , the load disturbance rejection performance of the FC-MPC

formulation is evaluated and compared against the performance of centralized MPC (cent-MPC),
communication-based MPC (comm-MPC) and standard automatic generation control (AGC) with
anti-reset windup. The load reference setpoint in each area is constrained between ±0.3 . In
practice, a large load change, such as the one considered above, would result in curtailment of
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AGC and initiation of emergency control measures such as load shedding. The purpose of this
exaggerated load disturbance is to illustrate the influence of input constraints on the different
control frameworks.

The relative performance of standard AGC, cent-MPC and FC-MPC (terminated after 1 iter-
ate) rejecting the load disturbance in area 2 is depicted in Figure 2. The closed-loop trajectory
of the FC-MPC controller, obtained by terminating Algorithm 1 after 1 iterate, is almost indis-
tinguishable from the closed-loop trajectory of cent-MPC. Standard AGC performs nearly as well
as cent-MPC and FC-MPC in driving the local frequency changes to zero. Under standard AGC,
however, the system takes in excess of 400 seconds to drive the deviational tie-line power flow to
zero. With the cent-MPC or the FC-MPC framework, the tie-line power flow disturbance is rejected
in about 100 seconds. A closed-loop performance comparison of the different control frameworks
is given in Table 3. The comm-MPC framework stabilizes the system but incurs a control cost that
is nearly 18% greater than that incurred by FC-MPC (1 iterate). If 5 iterates per sampling interval
are allowed, the performance of FC-MPC is almost identical to that of cent-MPC.

Notice from Figure 2 that the initial response of AGC is to increase generation in both areas.
This causes a large deviation in the tie-line power flow. On the other hand under comm-MPC and
FC-MPC, MPC-1 initially reduces area 1 generation and MPC-2 orders a large increase in area 2
generation (the area where the load disturbance occurred). This strategy enables a much more
rapid restoration of tie-line power flow.

Table 2: Model parameters and input constraints for the two area power network model (Exam-
ple 5.7.3).

D1 = 2 D2 = 2.75
Rf

1 = 0.03 Rf
2 = 0.07

Ma
1 = 3.5 Ma

2 = 4.0
TCH1= 50 TCH2 = 10
TG1 = 40 TG2 = 25
Q1 = diag(1000, 0, 0) Q2 = diag(0, 0, 0, 1000)
R1 = 1 R2 = 1
T12 = 7.54 ∆samp = 0.1 sec

-0.3≤∆Pref1≤0.3
-0.3≤∆Pref2≤0.3

Table 3: Performance of different control formulations w.r.t. cent-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100 .

Λ ∆Λ%
standard AGC 39.26 189

comm-MPC 15.82 18.26
FC-MPC (1 iterate) 13.42 0.26
FC-MPC (5 iterates) ∼ 13.38 ∼ 0

cent-MPC 13.38 –
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Figure 2: Performance of different control frameworks rejecting a load disturbance in area 2 .
Change in frequency ∆ω1 , tie-line power flow ∆P 12

tie and load reference setpoints ∆Pref1 ,∆Pref2 .
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5.7.4 Four area power system network

CONTROL AREA 2 CONTROL AREA 3

P23
tie

CONTROL AREA 1
CONTROL AREA 4

P34
tie

P12
tie

Figure 3: Four area power system.

Consider the four area power system shown in Figure 3. The model for each control area
follows from (18). Model parameters are given in Table 4. In each control area, a change in local
power demand (load) alters the nominal operating frequency. The MPC in each control area i
manipulates the load reference setpoint Prefi

to drive the frequency deviations ∆ωi and tie-line
power flow deviations ∆P ij

tie to zero. Power flow through the tie lines gives rise to interactions
among the control areas. Hence a load change in area 1 , for instance, causes a transient frequency
change in all control areas.

The relative performance of cent-MPC, comm-MPC and FC-MPC is analyzed for a 25% load
increase in area 2 and a simultaneous 25% load drop in area 3 . This load disturbance occurs at
5 sec . For each MPC, we choose a prediction horizon of N = 20 . In the comm-MPC and FC-MPC
formulations, the load reference setpoint (∆Prefi

) in each area is manipulated to reject the load
disturbance and drive the change in local frequencies (∆ωi) and tie-line power flows (∆P ij

tie) to
zero. In the cent-MPC framework, a single MPC manipulates all four ∆Prefi

. The load reference
setpoint for each area is constrained between ±0.5 .

The performance of cent-MPC, comm-MPC and FC-MPC (1 iterate) are shown in Figure 4.
Only ∆ω2 and ∆P 23

tie are shown as the frequency and tie-line power flow deviations in the other
areas display similar qualitative behavior. Likewise, only ∆Pref2 and ∆Pref3 are shown as other
load reference setpoints behave similarly. The control costs are given in Table 5. Under comm-
MPC, the load reference setpoints for areas 2 and 3 switch repeatedly between their upper and
lower saturation limits. Consequently, the power system network is unstable under comm-MPC.
The closed-loop performance of the FC-MPC formulation, terminated after just 1 iterate, is within
26% of cent-MPC performance. If the FC-MPC algorithm is terminated after 5 iterates, the per-
formance of FC-MPC is within 4% of cent-MPC performance. By allowing the cooperation-based
iterative process to converge, the closed-loop performance of FC-MPC can be driven to within any
pre-specified tolerance of cent-MPC performance.

5.7.5 Two area power system with FACTS device

In this example, we revisit the two area network considered in Section 5.7.3. In this case though,
a FACTS device is employed by area 1 to manipulate the effective impedance of the tie line and
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Table 4: Model, regulator parameters and input constraints for four area power network of Fig-
ure 3.

D1 = 3 D2 =0.275
Rf

1 =0.03 Rf
2 = 0.07

Ma
1 = 4 Ma

2 = 40
TCH1= 5 TCH2 = 10
TG1 = 4 TG2 = 25
D3 = 2.0 D4 = 2.75
Rf

3 =0.04 Rf
4 = 0.03

Ma
3 = 35 Ma

4 = 10
TCH3= 20 TCH4 = 10
TG3 = 15 TG4 = 5
T12 =2.54 T23 = 1.5
T34 = 2.5 ∆samp = 1 sec

-0.5≤∆Pref1≤0.5
-0.5≤∆Pref2≤0.5
-0.5≤∆Pref3≤0.5
-0.5≤∆Pref4≤0.5

Q1 = diag(5, 0, 0) R1 = 1
Q2 = diag(5, 0, 0, 5) R2 = 1
Q3 = diag(5, 0, 0, 5) R3 = 1
Q4 = diag(5, 0, 0, 5) R4 = 1

Area States MVs CVs
1 ∆ω1,∆Pmech1 ,∆Pv1 ∆Pref1 ∆ω1

2 ∆ω2,∆Pmech2 ,∆Pv2 ,∆P 12
tie ∆Pref2 ∆ω2,∆P 12

tie

3 ∆ω3,∆Pmech3 ,∆Pv3 ,∆P 23
tie ∆Pref3 ∆ω3,∆P 23

tie

4 ∆ω4,∆Pmech4 ,∆Pv4 ,∆P 34
tie ∆Pref4 ∆ω4,∆P 34

tie

Table 5: Performance of different MPC frameworks relative to cent-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100 .

Λ× 10−2 ∆Λ%
cent-MPC 7.6 –

comm-MPC ↑ ∞ ↑ ∞
FC-MPC (1 iterate) 9.6 26
FC-MPC (5 iterates) 7.87 3.7
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Figure 4: Performance of different control frameworks rejecting a load disturbance in areas
2 and 3 . Change in frequency ∆ω2 , tie-line power flow ∆P 23

tie and load reference setpoints
∆Pref2 ,∆Pref3 .
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control power flow between the two interconnected control areas. The control area model follows
from (18). In order to incorporate the FACTS device, (18a) in area 1 is replaced by

d∆δ12

dt
= (∆ω1 −∆ω2)

d∆ω1

dt
= − 1

Ma
1

D1∆ω1 −
1

Ma
1

T12∆δ12 +
1

Ma
1

K12∆X12 +
1

Ma
1

∆Pmech1 −
1

Ma
1

∆PL1

and in area 2 by

d∆ω2

dt
= − 1

Ma
2

D2∆ω2 +
1

Ma
2

T12∆δ12 −
1

Ma
2

K12∆X12 +
1

Ma
2

∆Pmech2 −
1

Ma
2

∆PL2

where ∆X12 is the impedence deviation induced by the FACTS device. The tie-line power flow
deviation becomes

∆P 12
tie = −∆P 21

tie = T12∆δ12 −K12∆X12

Notice that if ∆X12 = 0 , the model reverts to (18). Controller parameters and constraints are given
in Table 6. The MPC for area 1 manipulates ∆Pref1 and ∆X12 to drive ∆ω1 and the relative phase
difference ∆δ12 = ∆δ1 − ∆δ2 to zero. The MPC for area 2 manipulates ∆Pref2 to drive ∆ω2 to
zero.

Table 6: Model parameters and input constraints for the two area power network model. FACTS
device operated by area 1 .

D1 = 3 D2 = 0.275
Rf

1 = 0.03 Rf
2 = 0.07

Ma
1 = 4 Ma

2 = 40
TCH1= 5 TCH2 = 10
TG1 = 4 TG2 = 25
T12 = 2.54 K12 = 1.95
Q1 = diag(100, 0, 0, 100) Q2 = diag(100, 0, 0)
R1 = 1 R2 = 1
N = 15 ∆samp= 1 sec

-0.3≤∆Pref1≤0.3
-0.1≤∆X12≤0.1
-0.3≤∆Pref2≤0.3

The relative performance of cent-MPC, comm-MPC and FC-MPC rejecting a simultaneous
25% increase in the load of areas 1 and 2 is investigated. The closed-loop performance of the
different MPC frameworks is shown in Figure 5. The associated control costs are given in Table 7.
The performance of FC-MPC (1 iterate) is within 28% of cent-MPC performance. The perfor-
mance of comm-MPC, on the other hand, is highly oscillatory and significantly worse than that of
FC-MPC (1 iterate). While comm-MPC is stabilizing, the system takes nearly 400 sec to reject the
load disturbance. With FC-MPC (1 iterate), the load disturbance is rejected in less than 80 sec . If
5 iterates per sampling interval are possible, the FC-MPC framework achieves performance that
is within 2.5% of cent-MPC performance.
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Figure 5: Performance of different control frameworks rejecting a load disturbance in area 2 .
Change in relative phase difference ∆δ12 , frequency ∆ω2 , tie-line impedence ∆X12 due to the
FACTS device and load reference setpoint ∆Pref2 .

Table 7: Performance of different MPC frameworks relative to cent-MPC, ∆Λ% =
Λconfig−Λcent

Λcent
× 100 .

Λ× 10−2 ∆Λ%
cent-MPC 3.06 –

comm-MPC 9.53 211
FC-MPC (1 iterate) 3.92 28
FC-MPC (5 iterates) 3.13 2.3
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6 Extensions

6.1 Penalty and constraints on the rate of change of input

The proposed distributed MPC framework can be extended to penalize and constrain the rate of
change of inputs. The notation ∆ui(k) = ui(k) − ui(k − 1) represents the change in input from
time k − 1 to time k . The constraints on the rate of change of input are of the form ∆umin

i ≤
∆ui ≤ ∆umax

i , i = 1, 2, . . . ,M , which represent limits on how fast the actuators/valves can move
in reality. The stage cost Li(xi(k), ui(k),∆ui(k)) for each subsystem i = 1, 2, . . . ,M at time k is
defined as

Li(xi(k), ui(k),∆ui(k) =
1
2

[
xi(k)′Qixi(k) + ui(k)′Riui(k) + ∆ui(k)′Si∆ui(k)

]
(20)

in which Qi, Ri, Si ≥ 0, Ri+Si > 0 with (Ai, Q
1/2
i ) detectable. To convert (20) to standard form (2),

we augment the state vector for subsystem i with the subsystem input ui(k− 1) obtained at time
k − 1 [22]. The stage cost (20) can be re-written as

Li(zi(k), ui(k)) =
1
2

[
zi(k)′Q̃izi(k) + ui(k)′R̃iui(k) + 2zi(k)′M̃iui(k)

]
(21)

in which

zi(k) =
[

xi(k)
ui(k − 1)

]
Q̃i =

[
Qi

Si

]
R̃i = Ri + Si M̃i =

[
0
−Si

]
The augmented PM for subsystem i = 1, 2, . . . ,M is

zi(k + 1) = Ãiizi(k) + B̃iiui(k) +
∑
j 6=i

[
Ãijzj(k) + B̃ijuj(k)

]
(22)

in which

Ãij =
[
Aij 0
0 0

]
, ∀ i, j = 1, 2, . . . ,M

B̃ii =
[
Bii

I

]
, B̃ij =

[
Bij

0

]
, ∀ i, j = 1, 2, . . . ,M, j 6= i

The cost function for subsystem i is defined as

φi(zi,ui;x(k)) =
∞∑

j=k

Li(zi(j|k), ui(j|k)) (23)

The constraints on the rate of change of input for each subsystem i = 1, 2, . . . ,M can, there-
fore, be expressed as

∆u min
i ≤ Di ui ≤∆u max

i (24a)
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in which

∆u min
i =


∆umin

i − ui(k − 1)
∆umin

i
...

∆umin
i

 ∆u max
i =


∆umax

i − ui(k − 1)
∆umax

i
...

∆umax
i

 (24b)

Di =


I
−I I

−I I
. . .
−I I

 (24c)

Following the model manipulation described in Appendix A, with each (Aij , Bij) pair re-
placed by the corresponding (Ãij , B̃ij) pair (from the augmented PM (22)), gives

zi = Eiiui + fiizi(k) +
∑
j 6=i

[Eijuj + fijzj(k)], ∀ i = 1, 2, . . . ,M (25)

in which z i = [zi(k + 1|k)′, . . . , zi(k + N |k)′]′ . Similar to Section 4, the augmented state vector
zi in (23) can be eliminated using (25). The cost function φi(·) can therefore be re-written as a
function Φi(u 1, . . . , uM ; z(k)) where z = [z1

′, z2
′, . . . , zM

′]′ . For φi(·) defined in (23), the FC-
MPC optimization problem for subsystem i is

u
∗(p)
i ∈ arg min

ui

1
2
ui

′Riui +

rrri(z(k)) +
M∑
j 6=i

Hiju
p−1
j


′

ui (26a)

subject to
ui(j|k) ∈ Ωi, k ≤ j ≤ k + N − 1 (26b)

∆u min
i ≤ Di ui ≤∆u max

i (26c)
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in which

Ri =
(
Ri + Eii

′QiEii + 2Eii
′Mi

)
+

M∑
j 6=i

Eji
′QjEji +

M∑
j=1

Eji
′
∑
l 6=j

TjlEli

Hij =
M∑
l=1

Eli
′QlElj + Mi

′Eij + Eji
′Mj +

M∑
l=1

Eli
′
∑
s 6=l

TlsEsj

rrri(z(k)) =
(
Eii

′Qigi(z(k)) + Mi
′gi(z(k)) + pppizi(k)

)
+

M∑
j 6=i

Eji
′Qjgj(z(k)) +

M∑
j=1

Eji
′
∑
l 6=j

Tjlgl(z(k))

Qi = diag
(
wiQ̃i(1), . . . , wiQ̃i(N − 1), P̃ii

)
Tij = diag

(
0, . . . , 0, P̃ij

)
Ri = diag

(
wiR̃i(0), wiR̃i(1), . . . , wiR̃i(N − 1)

)
pppi
′ =

[
wiM̃i 0 . . . 0

]
Mi =


0 wiM̃i

0 wiM̃i

0
. . .
. . . wiM̃i

0 0 . . . . . . 0


The terminal penalty P̃ is obtained as the solution to the centralized Lyapunov equation (10)

with each Aij , Qi replaced by Ãij , Q̃i respectively ∀ i, j = 1, 2, . . . ,M .

6.2 Unstable systems

In the development of the proposed distributed MPC framework, it was convenient to assume
that the system is open-loop stable. That assumption can be relaxed however. For any real matrix
A ∈ Rn×n the Schur decomposition [13, p. 341] is defined as

A =
[
Us Uu

] [
As A12

0 Au

] [
U ′

s

U ′
u

]
(27)

in which U =
[
Us Uu

]
is a real and orthogonal n × n matrix, the eigenvalues of As are strictly

inside the unit circle, and the eigenvalues of Au are on or outside the unit circle. Let Uu
′ =

[Uu1
′, Uu2

′, . . . , UuM
′] .

Define Ti′ = [0, 0, . . . , I] such that xi(k + N |k) = Ti′x i(k) . To ensure closed-loop stability
while dealing with open-loop unstable systems, a terminal state constraint that forces the unstable
modes to be at the origin at the end of the control horizon is necessary. The control horizon must
satisfy N ≥ r , in which r is the number of unstable modes.

For each subsystem i = 1, 2, . . . ,M at time k , the terminal state constraint can be written as

Uu
′x(k + N |k) =

∑
i

Uui
′xi(k + N |k)

=
∑

i

(TiUui)
′xi(k)

= 0

(28)
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From (28) and (6), the terminal state constraint can be re-written as a coupled input constraint of
the form

J1u1 + J2u2 + . . . + JMuM = −c(x(k)) (29a)

in which

Ji =
M∑

j=1

(
TjUuj

) ′Eji c(x(k)) =
M∑

j=1

(
TjUuj

) ′gj(x(k)) (29b)

∀ i = 1, 2, . . . ,M

Using the definitions in (8), the FC-MPC optimization problem for each i = 1, 2, . . . ,M is

Funstb
i , min

ui

1
2
ui

′Riui +

rrri(x(k)) +
∑
j 6=i

Hiju
p−1
j


′

ui (30a)

subject to
ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (30b)

Jiui +
M∑
j 6=i

Jju
p−1
j = −c(x(k)) (30c)

The optimization problem (30) is solved within the framework of Algorithm 1. To initialize
Algorithm 1, a simple linear/quadratic program is solved to compute subsystem input trajecto-
ries that satisfy the constraints in (30) for each subsystem. To ensure feasibility of the end con-
straint (30c), it is assumed that the initial state x(0) ∈ XN , the N-step stabilizable set for the sys-
tem. Since XN ⊆ X , the system is constrained stabilizable. It follows from Algorithm 1, Section 5.3
and Section 5.5 that XN is an invariant set for the nominal closed-loop system, which ensures that
the optimization problem (30) is feasible for each subsystem i = 1, 2, . . . ,M for all k ≥ 0 and
any p(k) > 0 . It can be shown that all iterates generated by Algorithm 1 are systemwide feasible,
the cooperation-based cost function Φ(u p

1, u p
2, . . . , u p

M ;x(k)) is a nonincreasing function of the
iteration number p , and the sequence of cooperation-based iterates is convergent 3. An important
distinction, which arises due to the presence of the coupled input constraint (30c), is that the limit
points of Algorithm 1 (now solving optimization problem (30) instead) are no longer necessar-
ily optimal. The distributed MPC control law based on any intermediate iterate is feasible and
closed-loop stable, but may not achieve optimal (centralized) performance at convergence of the
iterates.

7 Terminal control FC-MPC

The terminal penalty-based FC-MPC framework considered earlier utilizes a suboptimal param-
eterization of the postulated input trajectories, and at convergence achieves performance that is
within a pre-specified tolerance of a modified infinite horizon optimal control problem (11) . The

3The proof is identical to that presented for Lemma 1 and is, therefore, omitted.



TWMCC Technical Report 2006-05 26

performance of terminal penalty FC-MPC at convergence is infinite horizon optimal (solution
of (4)) only in the limit as N → ∞ . The motivation behind terminal control-based FC-MPC is
to achieve infinite horizon optimal (centralized, constrained LQR) performance at convergence
using finite values of N .

The standard notation O∞ is used to represent the maximal output admissible set [12] for the
centralized system (A,B, C) . Since Ωi,∀ i = 1, 2, . . . ,M is convex, Ω is convex. Hence, from [12,
Theorem 2,1], O∞ is convex. We will assume that each Ωi is a polytope i.e.,

Ωi ,

{
ui

∣∣∣∣Diui ≤ di, di > 0
}

(31)

The determination of O∞ , in this case, involves the solution to a set of linear programs.
Let K denote the optimal, centralized linear quadratic regulator (LQR) gain and let Π denote

the solution to the corresponding centralized discrete steady-state Riccati equation i.e.,

Π = Q+ A′ΠA−A′ΠB(R+ B′ΠB)−1B′ΠA (32a)

K = −(R+ B′ΠB)−1B′ΠA (32b)

in which Q = diag(w1Q1, w2Q2, . . . , wMQM ) and R = diag(w1R1, w2R2, . . . , wMRM ) . Conditions
for existence of a solution to (32) are well known [3, 7].

Using a subsystem-wise partitioning for K and Π gives

K =


K11 K12 . . . K1M

K21 K22 . . . K2M
...

. . . . . .
...

KM1 KM2 . . . KMM

 Π =


Π11 Π12 . . . Π1M

Π21 Π22 . . . Π2M
...

. . . . . .
...

ΠM1 ΠM2 . . . ΠMM

 (33)

7.1 Optimization

The terminal control FC-MPC optimization problem for subsystem i is

min
ui

M∑
r=1

wrΦr

(
up−1

1 , . . . ,up−1
i−1 ,ui,u

p−1
i+1 , . . . ,up−1

M ;xr(k)
)

(34a)

subject to
ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (34b)

ui(t|k) = Kiixi(t|k) +
∑
j 6=i

Kijxj(t|k), k + N ≤ t (34c)

To explicitly consider, for each subsystem, the dependence of the finite input trajectory on the
control horizon length (N) , we write

ui(k;N) =
[
ui(k|k)′, ui(k + 1|k)′, . . . , ui(k + N − 1|k)′

] ′, ∀ i = 1, 2, . . . ,M (35)

The finite state trajectory for subsystem i , generated by the set of input trajectories u 1(k;N), . . . ,
uM (k;N) is represented as x i(u 1(k;N), . . . , uM (k;N);x(k)) . For notational convenience, we
write x i(k;N)← x i(u 1(k;N), . . . , uM (k;N);x(k)) .
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Using the definitions in (8) and redefining

Qi = diag
(
wiQi(1), . . . , wiQi(N − 1),Πii

)
Tij = diag

(
0, . . . , 0,Πij

)
the optimization problem (34), for φi(·) quadratic (3), can be written as

PN
i , min

ui(k;N)

1
2
ui(k;N)′Riui(k;N) +

rrri(x(k)) +
∑
j 6=i

Hiju
p−1
j (k;N)


′

ui(k;N) (36a)

subject to
ui(t|k) ∈ Ωi, k ≤ t ≤ k + N − 1 (36b)

Remark 2. At each iterate p , the validity of the terminal set constraint xp(k + N |k) ∈ O∞ must be
verified. A subsystem-based procedure to certify the above condition (i.e., ensure feasibility of the
unconstrained centralized control law) is presented in Section 7.3.

Remark 3. Consider a set of input trajectories u 1(k;N), . . . , uM (k;N) such that x(k+N |k) ∈ O∞ .
Since O∞ is a positively invariant set for the system x(k + 1) = (A + BK)x(k) , an infinite input
trajectory, u i(k) , can be constructed as

ui(k) =
[
ui(k;N)′, ui(k + N |k)′, ui(k + N + 1|k)′, . . . . . .

]
, ∀ i = 1, 2, . . . ,M (37)

in which ui(k+N + j|k) = Vi
′ [K(A + BK)jx(k + N |k)

]
, 0 ≤ j . The matrix Vi = [0, . . . , Imi , . . .]

′

is defined such that ui = Vi
′u .

7.2 Initialization

To initialize the terminal control FC-MPC algorithm, it is necessary to calculate a set of subsystem
input trajectories that steers the system state to O∞ at the end of each MPC’s control horizon. For
the initial system state x(0) /∈ O∞ , such a set of subsystem input trajectories can be computed by
solving a simple quadratic program (QP). One formulation for this initialization QP is described
as follows,

LN(x(k)) = arg mineu(k;N)
‖ũ(k;N)‖2 (38a)

subject to

T ′
(

E ũ(k;N) + g(x(k))
)
∈ O∞ (38b)

ui(k + j|k) ∈ Ωi,
j = 0, 1, . . . , N − 1
i = 1, 2, . . . ,M

(38c)
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in which

E =


E11 E12 . . . E1M

E21 E22 . . . E2M
...

. . . . . .
...

E1M E2M . . . EMM

 Ti =


0
...
...
I

 ũ(k;N) =


u1(k;N)
u2(k;N)

...
uM (k;N)



T = diag(T1, T2, . . . , TM ) g(x(k)) =


g1(x(k))
g2(x(k))

...
gM (x(k))


with Eij defined in Appendix A, and g i(x(k)) defined in (8). The definition of Ti is such that
xi(k + N |k) = Ti′x i(k) .

Let XN be the set of states for which the QP (38) is feasible. We have XN ⊆ XN ⊆ X . Con-
strained stabilizability, therefore, follows. The QP (38) is a centralized calculation; distributed
versions for this initialization QP can be derived using techniques similar to those presented here,
but are not pursued in this paper.

7.3 Algorithm

In the terminal control FC-MPC algorithm (presented below as Algorithm 3), a dummy terminal
system state vector ζp

i (k;N) is required for each subsystem i at iterate p . The vector ζp
i (k;N), i =

1, 2, . . . ,M is constructed using the subsystem-based procedure described below.

Algorithm 2 (Computing ζp
i (k;N) ).

Given at iterate p , u
∗(p)
i (k;N) and u p−1

j (k;N),∀ j = 1, 2, . . . ,M, j 6= i .
do ∀ l = 1, 2, . . . ,M

if l = i
Calculate x

∗(p)
i (u p−1

1 (k;N), . . . , u
∗(p)
i (k;N), . . . , u p−1

M (k;N);x(k))
x
∗(p)
i (k + N |k)← Ti′ x

∗(p)
i (·)

else if l 6= i
Calculate dummy state trajectory

z
∗(p)
l (·) = x

∗(p)
l (u p−1

1 (k;N), . . . , u
∗(p)
i (k;N), . . . , u p−1

M (k;N);x(k))
z
∗(p)
l (k + N |k)← Tl′ z

∗(p)
l (·)

end (if)
end(do)

ζp
i (k;N)← [z∗(p)

1 (k+N |k)′, . . . , z∗(p)
i−1 (k+N |k)′, x∗(p)

i (k+N |k)′, z∗(p)
i+1 (k+N |k)′, . . . , z∗(p)

M (k+N |k)′]′

The following algorithm can be employed for the terminal control version of cooperation-
based distributed MPC.

Algorithm 3 (Terminal control FC-MPC).
Given (xi(k)) , Qi, Ri, ∀ i = 1, 2, . . . ,M
pmax(k) ≥ 0, ε > 0 and p← 1
1. Choose a finite horizon N0 . N ← N0 .
2. If x(0) /∈ O∞
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a. Calculate
[
u 0

1(k;N)′, u 0
2(k;N)′, . . . , u 0

M (k;N)′
] ′ ∈ argLN(x(k)) (Section 7.2)

b. Construct u 1(k), u 2(k), . . . , uM (k) (see Remark 3 in Section 7.1)

else
Construct u i(k;N) and u i(k), i = 1, 2, . . . ,M (Remark 3)

end(if)
3. ρi ← Γε,Γ� 1
4. while ρi > ε for some i = 1, 2, . . . ,M and p ≤ pmax

do ∀ i = 1, 2, . . . ,M

u
∗(p)
i (k;N) ∈ argPN

i , (see (36))
Calculate ζp

i (k;N) using Algorithm 2
if ζp

i (k;N) /∈ O∞
(i) Increase N
(ii) Extract u p−1

j (k;N) from u p−1
j (k), ∀ j = 1, 2, . . . ,M

(iii) Goto step 4.
end (if)

end (do)
for each i = 1, 2, . . . ,M

u p
i (k;N) = wi u

∗(p)
i (k;N) + (1− wi) u p−1

i (k;N)
Transmit u p

i to each interconnected subsystem j = 1, 2, . . . ,M, j 6= i .
ρi = ‖u p

i (k;N)− u p−1
i (k;N)‖

end (for)
Construct u p

1(k), u p
2(k), . . . , u p

M (k) (Remark 3)
p← p + 1

end (while)

If ζp
i (k;N) ∈ O∞,∀ i = 1, 2, . . . ,M then from convexity of O∞ and noting from Algorithm 3

that xp(k+N |k) =
∑

i wiζ
p
i (k;N) , we have xp(k+N |k) ∈ O∞ . Define the shifted input trajectory

for subsystem i at time k + 1 as

u 0
i (k + 1) =

u
p(k)
i (k + 1|k)′, . . . , up(k)

i (k + N − 1|k)′,

 M∑
j=1

Kijx
p(k)
j (k + N |k)

 ′

 ′ (39)

For the nominal case, the set of shifted input trajectories (39) is a feasible set of input trajectories
at time k + 1 . In the nominal case, therefore, the initialization QP (38) has to be solved only once
at k = 0 .

Lemmas 1 and 2 established for terminal penalty FC-MPC (Section 5) are also valid for ter-
minal control FC-MPC. At convergence of the exchanged input trajectories, the performance of
terminal control FC-MPC is within a pre-specified tolerance of the infinite horizon optimal (cen-
tralized, constrained LQR [26, 28]) performance. If (A,B) is stabilizable, (A,C) and (A,Q

1
2 ) are

detectable, and Qi ≥ 0, Ri > 0, ∀ i = 1, 2, . . . ,M , the terminal control FC-MPC control law is
nominally asymptotically stable for all values of the iteration number p(k) > 0 .
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7.4 Examples

7.4.1 Two area power system with FACTS device

We revisit the two area power system considered in Section 5.7.5. A 28% load increase affects area
1 at time 10 sec and simultaneously, an identical load disturbance affects area 2 . The controller
parameters are R1 = diag(1, 1), R2 = 1, Q1 = diag(10, 0, 0, 10), Q2 = diag(10, 0, 0),∆samp = 2 sec.
The controlled variables (CVs) for the MPC in area 1 are ∆ω1 and ∆δ12 . The CV for the MPC in
area 2 is ∆ω2 . In this case, we evaluate the load disturbance rejection performance of terminal
control FC-MPC (FC-MPC (tc)) and compare it against the performance of terminal penalty FC-
MPC (FC-MPC (tp)) and centralized constrained LQR (CLQR).

The relative performance of FC-MPC(tc), FC-MPC(tp) and CLQR rejecting the described load
disturbance is shown in Figure 6. For terminal control FC-MPC employing Algorithm 3, an initial
control horizon length (N0) of 20 is selected. This choice of N is sufficient to steer the dummy
state vectors ζi(·),∀ i = 1, 2, . . . ,M to O∞ throughout the period where the effect of the load
disturbance persists. The terminal penalty FC-MPC employs Algorithm 1 (Section 5) .
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Figure 6: Comparison of load disturbance rejection performance of terminal control FC-MPC,
terminal penalty FC-MPC and CLQR. Change in frequency ∆ω1 , tie-line power flow ∆P 12

tie , load
reference setpoints ∆Pref1 and ∆Pref2 .

Due to an increase in load in both control areas, the MPCs (in areas 1 and 2 ) order an in-
crease in generation. In Figure 6, the transient tie-line power flow and frequency deviations under
FC-MPC (tc, 1 iterate) are almost identical to the infinite horizon optimal CLQR performance.
The incurred control costs are given in Table 8. FC-MPC (tc, 1 iterate) achieves a performance
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improvement of about ∼ 16% compared to FC-MPC (tp, 1 iterate). If 5 iterates per sampling
interval are permissible, the disturbance rejection performance of FC-MPC (tc, 5 iterates) is within
0.5% of CLQR performance. The performance loss incurred under FC-MPC (tp, 5 iterates), rela-
tive to CLQR performance, is about 13% , which is significantly higher than the performance loss
incurred with FC-MPC (tc, 5 iterates).

Table 8: Performance of different control formulations relative to centralized constrained LQR
(CLQR), ∆Λ% =

Λconfig−Λcent
Λcent

× 100 .
Λ× 10−3 ∆Λ%

CLQR 1.77
FC-MPC (tp, 1 iterate) 2.21 25
FC-MPC (tc, 1 iterate) 1.93 9.2

FC-MPC (tp, 5 iterates) 2 12.9
FC-MPC (tc, 5 iterates) 1.774 < 0.2

7.4.2 Unstable four area power network

Consider the four area power network described in Section 5.7.4. In this case though, Ma
4 = 40

to force the system to be open-loop unstable. The regulator parameters are specified in Table 9.
The sampling interval ∆samp = 2 sec . At time 10 sec, the load in area 2 increases by 15% and
simultaneously, the load in area 3 decreases by 15% . The load disturbance rejection performance
of terminal control FC-MPC (FC-MPC(tc)) is investigated and compared to the performance of the
benchmark CLQR.

Figure 7 depicts the disturbance rejection performance of FC-MPC (tc) and CLQR. Only quanti-
ties relating to area 2 are shown as variables in other areas displayed similar qualitative behavior.
The associated control costs are given in Table 10. For terminal control FC-MPC terminated after
1 iterate, the load disturbance rejection performance is within 13% of CLQR performance. If 5
iterates per sampling interval are possible, the incurred performance loss drops to < 1.5% .

Table 9: Regulator parameters for unstable four area power network.
Q1 = diag(50, 0, 0) R1 = 1

Q2 = diag(50, 0, 0, 50) R2 = 1
Q3 = diag(50, 0, 0, 50) R3 = 1
Q4 = diag(50, 0, 0, 50) R4 = 1

Table 10: Performance of terminal control FC-MPC relative to centralized constrained LQR
(CLQR), ∆Λ% =

Λconfig−Λcent
Λcent

× 100 .
Λ× 10−2 ∆Λ%

CLQR 4.91
FC-MPC (tc, 1 iterate) 5.52 12.4
FC-MPC (tc, 5 iterates) 4.97 1.2
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Figure 7: Performance of FC-MPC (tc) and CLQR, rejecting a load disturbance in areas 2 and 3 .
Change in local frequency ∆ω2 , tie-line power flow ∆P 23

tie and load reference setpoint ∆Pref2 .
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8 Discussion and conclusions

Centralized MPC is not well suited for control of large-scale, geographically expansive systems
such as power systems. However, performance benefits obtained with centralized MPC can be
realized through distributed MPC strategies. Distributed MPC strategies rely on decomposition
of the overall system into interconnected subsystems, and iterative optimization and exchange of
information between these subsystems. An MPC optimization problem is solved within each sub-
system, using local measurements and the latest available external information (from the previous
iterate).

Various forms of distributed MPC have been considered. It is shown that communication-
based MPC is an unreliable strategy for systemwide control. Feasible cooperation-based MPC (FC-
MPC) precludes the possibility of parochial controller behavior by forcing the MPCs to cooperate
towards attaining systemwide objectives. A terminal penalty version of FC-MPC was initially
established. The solution obtained at convergence of the FC-MPC algorithm is identical to the
centralized MPC solution (and therefore, Pareto optimal). In addition, the FC-MPC algorithm can
be terminated prior to convergence without compromising feasibility or closed-loop stability of
the resulting distributed controller. This feature allows the practitioner to terminate the algorithm
at the end of the sampling interval, even if convergence is not achieved.

A terminal control FC-MPC framework, which achieves infinite horizon optimal performance
at convergence, has also been described. For small values of N , the performance of terminal
control FC-MPC is superior to that of terminal penalty FC-MPC.

The computational overhead in terminal control FC-MPC, compared to terminal penalty FC-
MPC, is in the determination of an N that steers the terminal system state inside the maximal out-
put admissible set O∞ . A judicious choice of N0 and an effective heuristic for increasing N will
improve implementation efficiency. Also, O∞ must be recalculated every time a setpoint change
is planned. Selection of an appropriate N and determination of O∞ are not, however, issues
confined to distributed MPC. They are concerns in the centralized MPC framework as well [26].

An alternate strategy for terminal control FC-MPC is to explicitly enforce a terminal constraint
that forces each subsystem-based estimate of the state vector (ζi) to be in O∞ . For small N ,
this strategy typically leads to excessively aggressive controller response, which is undesirable.
Enforcing the terminal set constraint ζi(·) ∈ O∞, i = 1, 2, . . . ,M explicitly results in a coupled
input constraint. For this formulation, feasibility and stability of the resulting control law can be
proved. Optimality at convergence, however, is not necessarily obtained.

Examples were presented to illustrate the applicability and effectiveness of the proposed dis-
tributed MPC framework for automatic generation control (AGC). First, a two area network was
considered. Both communication-based MPC and cooperation-based MPC outperformed AGC
due to their ability to handle process constraints. The controller defined by terminating Algo-
rithm 1 after 5 iterates achieves performance that is almost identical to centralized MPC. Next,
the performance of the different MPC frameworks are evaluated for a four area network. For this
case, communication-based MPC leads to closed-loop instability. FC-MPC (1 iterate) stabilizes
the system and achieves performance that is within 26% of centralized MPC performance. The
two area network considered earlier, with an additional FACTS device to control tie line impe-
dence, is examined subsequently. Communication-based MPC stabilizes the system but gives un-
acceptable closed-loop performance. The FC-MPC framework is shown to allow coordination of
FACTS controls with AGC. The controller defined by terminating Algorithm 1 after just 1 iterate
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gives an ∼ 190% improvement in performance compared to communication-based MPC. For this
case, therefore, the cooperative aspect of FC-MPC was very important for achieving acceptable re-
sponse. Next, the two area network with FACTS device was used to compare the performance of
terminal penalty FC-MPC and terminal control FC-MPC. As expected, terminal control FC-MPC
outperforms terminal penalty FC-MPC for short horizon lengths. Finally, the performance of ter-
minal control FC-MPC is evaluated on an unstable four area network. FC-MPC (tc, 5 iterates)
achieves performance that is within 1.5% of the centralized constrained LQR performance.
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A Model Manipulation

To ensure strict feasibility of the FC-MPC algorithm, it is convenient to eliminate the states x i ,
i = 1, 2, . . . ,M using the PM (1). Propagating the model for each subsystem through the control
horizon N gives

xi = Eiiui + f iixi(k) +
∑
j 6=i

[Eijuj + gijxj + f ijxj(k)]

∀ i = 1, 2, . . . ,M (40)
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in which

Eij =


Bij 0 . . . . . . 0

AiiBij Bij 0 . . . 0
...

...
...

. . .
...

AN−1
ii Bij . . . . . . . . . Bij

 f ij =


Aij

AiiAij
...

AN−1
ii Aij



gij =


0 0 . . . . . . 0

Aij 0 0 . . . 0
...

...
. . . . . .

...
AN−2

ii Aij AN−3
ii Aij . . . . . . 0

 .

Combining the models in (40), ∀ i = 1, 2, . . . ,M , gives the following system of equations

Ax̃ = Eũ + Gx(k) (41)

in which

G =


f11 f12 . . . f1M

f21 f22 . . . f2M
. . . . . . . . . . . .

fM1 . . . . . . fMM

 E =


E11 E12 . . . E1M

E21 E22 . . . E2M

. . . . . . . . . . . .
EM1 . . . . . . EMM



A =


I −g12 . . . −g1M

−g21 I . . . −g2M
. . . . . . . . . . . .
−gM1 . . . . . . I

 x̃ =


x1

x2
...

xM

 ũ =


u1

u2
...

uM

 (42)

Since the system is LTI, a solution to the system (41) exists for each permissible RHS. Matrix A is
therefore invertible and consequently, we can write for each i = 1, 2, . . . ,M

xi = Eiiui + fiixi(k) +
∑
j 6=i

[Eijuj + fijxj(k)]. (43)

in which Eij and fij , ∀ j = 1, 2, . . . ,M denote the appropriate partitions of A−1E and A−1G
respectively.

B Terminal penalty FC-MPC

Lemma 3 (Minimum principle for constrained, convex optimization). Let X be a convex set and let
f be a convex function over X . A necessary and sufficient condition for x∗ to be a global minimum of f
over X is

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ X

A proof is given in [4, p. 194]
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Proof of Lemma 1. From Algorithm 1 we know that

Φ
(
up−1

1 , . . . up−1
i−1 ,u

∗(p)
i ,up−1

i+1 , . . . ,up−1
M ;x(k)

)
≤ Φ

(
up−1

1 ,up−1
2 , . . . ,up−1

M ;x(k)
)

(44)

∀ i = 1, 2, . . . ,M

Therefore, from the definition of u p
i (Algorithm 1) we have

Φ
(
up

1,u
p
2, . . . ,u

p
M ;x(k)

)
= Φ

(
w1u

∗(p)
1 + (1− w1)u

p−1
1 , . . . , wMu

∗(p)
M + (1− wM )up−1

M ;x(k)
)

= Φ
(
w1u

∗(p)
1 + w2u

p−1
1 + . . . + wMup−1

1 , w1u
p−1
2 + w2u

∗(p)
2 + . . . + wMup−1

2 ,

. . . . . . , w1u
p−1
M + w2u

p−1
M + . . . + u

∗(p)
M ;x(k)

)
By convexity of Φ(·),

≤
M∑

r=1

wrΦ
(
up−1

1 , . . . ,up−1
r−1,u

∗(p)
r ,up−1

r+1, . . . ,u
p−1
M ;x(k)

)
≤

M∑
r=1

wrΦ
(
up−1

1 , . . . ,up−1
r−1,u

p−1
r ,up−1

r+1, . . . ,u
p−1
M ;x(k)

)
= Φ

(
up−1

1 ,up−1
2 , . . . ,up−1

M ;x(k)
)

(45)

in which equality is obtained if u p
i = u p−1

i ,∀ i = 1, 2, . . . ,M .

Proof of Lemma 2. Since the level set

S0 = {(u 1, u 2, . . . , uM ) | Φ(u 1, u 2, . . . , uM ;x(k)) ≤ Φ(u 0
1, u 0

2, . . . , u 0
M ;x(k))}

is closed and bounded (hence compact), a limit point for Algorithm 1 exists. We have that (u ∗
1, . . . , u ∗

M )
is the unique solution for the centralized MPC optimization problem (Equation (11)). Let Φ∗ =
Φ(u ∗

1, u ∗
2, . . . , u ∗

M ;x(k)) . Define u∞
i = [u∞

i
′, 0, 0, . . .]′ . Assume that the sequence (u p

1, u p
2, . . . , u p

M ) ,
generated by Algorithm 1, converges to a feasible subset of the nonoptimal level set

S∞ = {(u 1, u 2, . . . , uM ) | Φ(u 1, u 2, . . . , uM ;x(k)) = Φ∞}

Since Φ(·) is strictly convex and by assumption of nonoptimality Φ∞ > Φ∗ . Let (u∞
1 , . . . , u∞

M ) ∈
S∞ be generated by Algorithm 1 for p large. To establish convergence of Algorithm 1 to a point
rather than a limit set, we assume the contrary and show a contradiction. Suppose that Algo-
rithm 1 does not converge to a point. Our assumption here implies that there exists ( v 1, . . . , v M ) ∈
S∞ generated by the next iterate of Algorithm 1 with ( v 1, . . . , v M ) 6= (u∞

1 , . . . , u∞
M ) .

Consider the set of optimization problems

z∞i = arg min
ui

Φ(u∞1 , . . . ,u∞i−1,ui,u
∞
i+1, . . . ,u

∞
M ;x(k)) (46a)

ui(l|k) ∈ Ωi, 0 ≤ l ≤ N − 1 (46b)
ui(l|k) = 0, N ≤ l (46c)

∀ i = 1, 2, . . . ,M
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We have z∞
i = [ z ∞

i
′, 0, 0, . . .]′ in which z ∞

i = [z∞i (0)′, . . . , z∞i (N − 1)′]′ . By assumption, there
exists at least one i for which z∞

i 6= u∞
i . WLOG let z∞

1 6= u∞
1 . By definition, v i = wi z ∞

i +
(1 − wi)u∞

i , ∀ i = 1, 2, . . . ,M . It follows that v i = [ v i
′, 0, 0, . . .]′ . Since ( v 1, v 2, . . . , v M ) ∈

S∞ , Φ(v 1, . . . , v M ;x(k)) = Φ∞ . Using convexity of Φ(·) , we have

Φ∞ = Φ(v1, . . . ,vM ;x(k)) = Φ(w1z
∞
1 + (1− w1)u∞1 , . . . , wMz∞M + (1− wM )u∞M ;x(k))

< w1Φ(z∞1 ,u∞2 , . . . ,u∞M ;x(k)) + . . .

. . . + wMΦ(u∞1 , . . . ,u∞M−1,z
∞
M ;x(k))

< w1Φ∞ + . . . wMΦ∞

= Φ∞

in which the strict inequality follows from z∞
i 6= u∞

i for at least one i = 1, 2, . . . ,M . Hence, a
contradiction.

Suppose now that (u p
1, u p

2, . . . , u p
M ) → (u∞

1 , u∞
2 , . . . , u∞

M ) 6= (u ∗
1, u ∗

2, . . . , u ∗
M ) . Since the

optimizer is unique, Φ(u ∗
1, u ∗

2, . . . , u ∗
M ;x(k)) < Φ(u∞

1 , u∞
2 , . . . , u∞

M ;x(k)) .
Since (u p

1, u p
2, . . . , u p

M ) , generated using Algorithm 1, converges to (u∞
1 , u∞

2 , . . . , u∞
M ) , we

have

u∞i = arg min
ui

Φ(u∞1 , . . . ,u∞i−1,ui,u
∞
i+1, . . . ,u

∞
M ;x(k)) (47a)

ui(l|k) ∈ Ωi, 0 ≤ l ≤ N − 1 (47b)
ui(l|k) = 0, N ≤ l (47c)

∀ i = 1, 2, . . . ,M

From Lemma 3,

∇ujΦ(u∞1 , . . . ,u∞M ;x(k))′(u∗j − u∞j ) ≥ 0

∀ j = 1, 2, . . . ,M

Define ∆u j = u ∗
j − u∞

j and ∆u j = u ∗
j − u∞

j = [∆u j
′, 0, 0, . . .]′ ∀ j = 1, 2, . . . ,M . We have,

from our assumption (u∞
1 , u∞

2 , . . . , u∞
M ) 6= (u ∗

1, u ∗
2, . . . , u ∗

M ) , that ∆u i 6= 0 for at least one
index i , 1 ≤ i ≤M .

A second order Taylor series expansion around (u∞
1 , u∞

2 , . . . , u∞
M ) gives

Φ(u∗1,u
∗
2, . . . ,u

∗
M ;x(k)) = Φ(u∞1 + ∆u1,u

∞
2 + ∆u2, . . . ,u

∞
M + ∆uM ;x(k))

= Φ(u∞1 , . . . ,u∞M ;x(k)) +
M∑

j=1

∇ujΦ(u∞1 , . . . ,u∞M ;x(k))′∆uj︸ ︷︷ ︸
≥0, Lemma 3

+
1
2

 ∆u1
...

∆uM


′

∇2Φ(u∞1 , . . . ,u∞M ;x(k))

 ∆u1
...

∆uM


︸ ︷︷ ︸

≥0, since Φ(·) p.d. quadratic

(48)
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Using (48) and optimality of (u ∗
1, u ∗

2, . . . , u ∗
M ) gives

Φ(u∗1, . . . ,u
∗
M ;x(k)) = Φ(u∞1 , . . . ,u∞M ;x(k)) + β(∆u1, . . . ,∆uM )

≤ Φ(u∞1 , . . . ,u∞M ;x(k)) (49)

in which β(·) is a positive definite function (from (48)). We have from (49) that β(·) ≤ 0 , which
implies β(∆u 1, . . . ,∆uM ) = 0 . It follows, therefore, that u∞

j = u ∗
j , ∀ j = 1, 2, . . . ,M . Using

the above relation gives u∞
j = [u∞

j
′, 0, 0, . . .]′ = u ∗

j , ∀ j = 1, 2, . . . ,M .
Hence, Φ(u ∗

1, u ∗
2, . . . , u ∗

M ;x(k)) = Φ(u∞
1 , u∞

2 , . . . , u∞
M ;x(k)) .

Lemma 4. Let the input constraints in (8) be specified in terms of a collection of linear inequalities. Con-
sider the closed ball Bε(0) , in which ε > 0 is chosen such that the input constraints in each FC-MPC
optimization problem (8) are inactive for each x(k) ∈ Bε(0) . The distributed MPC control law defined by
the FC-MPC formulation of Theorem 1 is a Lipschitz continuous function of x(k) for all x(k) ∈ Bε(0) .

Proof. Since 0 ∈ int(Ω1×Ω2× . . .×ΩM ) and the origin is Lyapunov stable and attractive with the
cost relationship given by (16), it is possible to choose ε > 0 such that for any x(k) ∈ Bε(0) , input
constraints in the optimization problem Fi, ∀ i = 1, 2, . . . ,M (8) are inactive.

Consider the FC-MPC optimization problem of (8). Since Ri > 0 , the solution to the FC-MPC
optimization problem is unique. The parameters that vary in the data are x(k) and the input
trajectories [u p(k)−1

1 , u
p(k)−1
2 , . . . , u

p(k)−1
i−1 , u

p(k)−1
i+1 , . . . , u

p(k)−1
M ] .

For subsystem i , let u
∗(p)
i (·) represent the solution to (8) at iterate p . Let x(k), z(k) ∈ Bε(0) .

By construction of Bε(0) , none of the input constraints are active. By definition u
∗(p)
i = [u ∗(p)

i
′, 0, 0 . . .]′ .

Invoking [14, Theorem 3.1], ∃ ρ <∞ such that

‖u ∗(p)
i (· ;x(k))−u

∗(p)
i (· ; z(k))‖ ≤ ρ

‖x(k)− z(k)‖2 +
M∑
j 6=i

‖u p−1
j (x(k))− u p−1

j (z(k))‖2
1/2

(50)

Using the definitions of u p
i (·), u p

i (·) , and from Algorithm 1, we have

‖up(k)
i (x(k))− u

p(k)
i (z(k))‖ = ‖up(k)

i (x(k))− u
p(k)
i (z(k))‖

≤ wi‖u∗(p)
i (· ;x(k))− u

∗(p)
i (· ; z(k))‖

+ (1− wi) ‖up(k)−1
i (x(k))− u

p(k)−1
i (z(k))‖

≤ ρwi

‖x(k)− z(k)‖2 +
M∑
j 6=i

‖up(k)−1
j (x(k))− u

p(k)−1
j (z(k))‖2

1/2

+ (1− wi) ‖up(k)−1
i (x(k))− u

p(k)−1
i (z(k))‖, ∀ k ≥ 0, p(k) ≥ 1

(51)

At time k = 0 , u 0
i = [0, 0, . . .]′, ∀ i = 1, 2, . . . ,M , independent of the system state. It follows

by induction that u
p(0)
i (x(0)) is a Lipschitz continuous function of x(0) for all p(0) > 0 . For

k > 0 , we have

u 0
i (x(k)) =

[
u

p(k−1)
i (k;x(k − 1)), up(k−1)

i (k + 1; x(k − 1)), . . . , up(k−1)
i (k + N − 2;x(k − 1)), 0

]
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Since the models are causal, u 0
i is independent of x(k) . Subsequently, using (51) and by induc-

tion, u
p(k)
i (x(k)) is Lipschitz continuous w.r.t x(k) for any p(k) > 0 and all k ≥ 0 . By definition,

u
p(k)
i (x(k)) = [u p(k)

i (x(k))′, 0, 0, . . .]′, ∀ k ≥ 0 . Hence, u
p(k)
i (x(k)) is a Lipschitz continuous func-

tion of x(k) for all k ≥ 0 and any p(k) > 0 . In Algorithm 1, if 0 < pmax(k) ≤ p∗ <∞ , ∀ k ≥ 0 , a
global Lipschitz constant can be estimated.

Proof of Theorem 1. Since Q > 0 and A is stable, P > 0 [27]. The constrained stabilizable set
X for the system is Rn . To prove exponential stability, we use the value function J

p(k)
N (x(k)) as a

candidate Lyapunov function. We need to show [30, p. 267] that there exists constants a, b, c > 0
such that

a‖x(k)‖2 ≤ Jp
N (x(k)) ≤ b‖x(k)‖2 (52a)

∆Jp
N (x(k)) ≤ −c‖x(k)‖2 (52b)

in which ∆J
p(k)
N (x(k)) = J

p(k+1)
N (x(k + 1))− J

p(k)
N (x(k)) .

Let ε > 0 be chosen such that the input constraints remain inactive for x ∈ Bε(0) . Such an ε
exists because the origin is Lyapunov stable and 0 ∈ int(Ω1 × . . .ΩM ) . Since Ωi,∀ i = 1, 2, . . . ,M
is compact, there exists σ > 0 such that ‖u i‖ ≤ σ . For any x satisfying ‖x‖ > ε , ‖u i‖ <
σ
ε ‖x‖, ∀ i = 1, 2, . . . ,M . For x(k) ∈ Bε(0) , we have from Lemma 4 that u

p(k)
i (x(k)) is a Lipschitz

continuous function of x(k) . There exists, therefore, a constant ρ > 0 such that ‖u p(k)
i (x(k))‖ ≤

ρ‖x(k)‖ , ∀ 0 < p(k) ≤ p∗ . Define Ku = max (σ
ε , ρ)2 , in which Ku > 0 and independent of x(k) .

The above definition gives ‖up(k)
i (k + j;x(k))‖ ≤

√
Ku‖x(k)‖, ∀ i = 1, 2, . . . ,M, k ≥ 0 and all

0 < p(k) ≤ pmax(k) . For j ≥ 0 , define u(k + j|k) = [up(k)
1 (k + j;x(k))′, . . . , up(k)

M (k + j;x(k))′]′ . By

definition, u(k|k) ≡ u(k) . We have ‖u(k + j|k)‖ =
√∑M

i=1 ‖u
p(k)
i (k + j;x(k))‖2 ≤

√
KuM‖x(k)‖ .

Similarly, define x(k + j|k) = [xp(k)
1 (k + j|k)′, . . . , xp(k)

M (k + j|k)′]′, ∀ j ≥ 0 . By definition x(k|k) ≡
x(k) .

Since A is stable, there exists c > 0 such that ‖Aj‖ ≤ cλj [17, Corollary 5.6.13, p. 199], in
which λmax(A) ≤ λ < 1 . Hence,

‖x(k + j|k)‖ ≤ ‖Aj‖‖x(k)‖+
j−1∑
l=0

‖Aj−1−l‖‖B‖‖u(k + l|k)‖

≤ cλj‖x(k)‖+
j−1∑
l=0

cλj−1−l‖B‖‖u(k + l|k)‖

≤ c

(
1 +

‖B‖
1− λ

√
MKu

)
‖x(k)‖, ∀ j > 0,

since
∑j

l=0 λl ≤
∑∞

l=0 λl = 1
1−λ , ∀ j ≥ 0 . Let R = diag(w1R1, w2R2, . . . , wMRM ) and Γ =
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[
c
(
1 + ‖B‖

1−λ

√
MKu

)]2
.

J
p(k)
N (x(k)) =

1
2

M∑
i=1

wi

∞∑
j=0

[
‖xp(k)

i (k + j|k)‖2Qi
+ ‖up(k)

i (k + j|k)‖2Ri

]

=
1
2

N−1∑
j=0

[
x(k + j|k)′Qx(k + j|k) + u(k + j|k)′Ru(k + j|k)

]
+

1
2
x(k + N |k)′Px(k + N |k)

≤ 1
2

[ N−1∑
j=0

(
λmax(Q)‖x(k + j|k)‖2 + λmax(R)‖u(k + j|k)‖2

)
+ λmax(P )‖x(k + N |k)‖2

]
≤ 1

2
[Nλmax(Q)Γ + Nλmax(R)KuM + λmax(P )Γ] ‖x(k)‖2

≤ b‖x(k)‖2

in which 0 < 1
2 [Nλmax(Q)Γ + Nλmax(R)KuM + λmax(P )Γ] ≤ b .

Also, 1
2λmin(Q)‖x(k)‖2 ≤ J

p(k)
N (x(k)) Furthermore,

J
p(k+1)
N (x(k + 1))− J

p(k)
N (x(k)) ≤ J0

N (x(k + 1))− J
p(k)
N (x(k))

= −
M∑
i=1

wiLi

(
xi(k), up(k)

i (k;x(k))
)

≤ −
M∑
i=1

wiLi (xi(k), 0)

= −1
2
x(k)′Qx(k)

≤ −1
2
λmin(Q)‖x(k)‖2 (53)

which proves the theorem.


