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Abstract

With utility markets moving toward more complicated and time-varying rate structures, it is becoming increasingly

di�cult to operate energy-intensive processes at low cost. As the capacity of intermittent renewable generation

grows, price volatility is likely to increase, and so current heuristic strategies can lead to expensive and ine�cient

operation. Fortunately, with improvements in computational power and greater availability of raw data, there exists a

signi�cant potential to use optimization techniques in real time to reduce costs and improve performance. Model

predictive control (MPC) is an advanced process control technique whereby process inputs are chosen by solving, in

real time, an optimization problem with an embedded process model. While MPC has traditionally been limited to

steady-state tracking problems, recent advances have enabled its application to a wider class of systems.

To this end, we present a formulation of mixed-integer MPC (MIMPC) that allows the inclusion of discrete-valued

decision variables in addition to standard continuous variables, and we show that MIMPC possesses the same stability

properties as standard MPC. In addition, we formulate suboptimal MIMPC, which relaxes the requirement that true

optimal solutions be found at each timestep, which signi�cantly improves computational tractability. We then present

extensions of tracking MIMPC to demonstrate inherent robustness and consider economic (rather than tracking)

objective functions. Using these techniques, we formulate standard production scheduling problems as an instance

of economic MIMPC, and we show how the inclusion of terminal constraints in the open-loop problem leads to

improved closed-loop performance.

As a speci�c application, we discuss real-time cost optimization for large-scale energy systems systems in

commercial buildings. Such systems are signi�cant consumers of electricity and are subject to both time-varying

prices and peak demand charges assessed based on a customer’s maximum instantaneous use of electricity over a

month. Using MIMPC and approximate equipment models, the operation of central energy plants (including discrete

on/o� decisions) can be optimized online. By using various forms of energy storage, time-varying price and e�ciency

di�erences can be exploited by the optimizer, reducing utility costs and electricity usage. Through examples, we

demonstrate that these techniques can be applied to large-scale building energy systems to lower costs and reduce

energy usage.
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Chapter 1

Introduction

How beauteous mankind is!
O brave new world,
That has such [utility pricing structures] in it!

— Miranda
The Tempest

With increased attention toward the negative impact of carbon and other greenhouse gas emissions on global

climate, it is apparent that broad changes need to be made to primary energy consumption habits. Within the United

States, energy use in buildings accounted for 41% of energy consumption and 40% of carbon emission in 2010. Of these

�gures, residential buildings constituted 54% of energy use, with commercial buildings consuming the remaining

46% (US Department of Energy, 2011). With such a large contribution to national energy consumption, even modest

e�ciency improvement would have a large e�ect in absolute terms.

While across-the-board reduction would be ideal, existing architecture often precludes any sweeping cuts without

sacri�cing performance. Furthermore, due to cyclic occupation, resource consumption in buildings is highly time-

varying (Touretzky and Baldea, 2014), and speci�cally for electricity, the onus of meeting transient demand pro�les

is placed directly on suppliers. Since the e�ciency of electricity generation is highly dependent on load, aggregate

energy e�ciency can decrease signi�cantly in times of high demand (Gyam� et al., 2013). To combat this e�ect,

electricity suppliers are transitioning from �at rate structures to more complicated real-time market utility prices and

peak demand charges (Albadi and El-Saadany, 2007). As a result of these demand response strategies, consumers are

encouraged to purchase additional electricity when it is abundant and discouraged from purchasing when scarce. The

intended e�ect is that �exible customers reduce their utility bill, while network-wide primary e�ciency is increased.

An example demand response e�ort is shown in Figure 1.1. In Figure 1.1a, the nominal use pro�le leads to high

utility costs, and the consumer’s peak corresponds to the grid-wide peak. By contrast, Figure 1.1b shows shifted

consumption to �atten demand and reduce peak purchase. Although the optimized pro�le consumes slightly more

electricity overall, grid-wide primary energy e�ciency increases due to lower demand variance.
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(a) Nominal consumption scenario. The high purchase
peak coincides with the highest electricity price, leading to
signi�cant time-of-use and peak demand charges.
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(b) Optimized consumption scenario. The peak has been
reduced and shifted to a time of lower electricity price,
leading to lower electricity prices and demand variance.

Figure 1.1: Example demand response scenario. By shifting usage, signi�cantly lower electricity costs can be achieved.

Unfortunately, it is di�cult for consumers to determine exactly how to modify their consumption in accordance

with these economic signals. Complicated and possibly uncertain pricing structures leave building operators largely

adrift with only minimal feedback in the form of a monthly utility bill. Thus, without a means to reliably and optimally

make electricity usage decisions, the ultimate result is higher cost to end-users and lower network-wide e�ciency.

As a means of realizing these cost savings and e�ciency improvements, we propose the application of model

predictive control (MPC). Under MPC, an approximate system model is combined with forecasts of relevant external

parameters to create an optimization problem that is solve online and in real time to make process decisions (Rawlings

et al., 2017b). Traditionally, application of MPC has been restricted to systems in which the end goal is setpoint tracking

and for which the decision space is continuous (often, convex). However, recent results (Amrit et al., 2011; Angeli et al.,

2012) have extended applicability to systems with arbitrary objective functions rather than just measures of distance

to setpoint. This capability allows MPC to optimize tangible measures of system performance, e.g., the complicated

electricity price structures described in the previous paragraph. We wish to further extend MPC theory to cover

systems with discrete-valued actuators, which allows higher-level decisions, such as switching a piece of equipment

on or o�, to be made optimally rather than via heuristic methods. As mixed-integer optimization techniques are

steadily improving (Belotti et al., 2013), the scope of tractable online optimization problems is increasing as well.

Especially with the growth of intermittent renewables in the electricity grid, it is important to have dispatchable

loads that can respond to pricing changes to avoid stranded power. Thus, a strategy like MPC that enables buildings

to react and adjust utility demand in real time can help address major challenges facing the ever-changing electricity

grid, all while reducing costs for end consumers.
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1.1 Outline

To advance our goal of tractable real-time optimization strategies for energy systems in commercial buildings, we

highlight �ve major contributions of this work as follows:

• Extension of MPC stability theory to time-varying systems with discrete actuators (Chapter 2)

• Expansion of economic MPC theory to include time-varying systems, discrete actuators, and peak charges

(Chapter 3)

• Formulation closed-loop scheduling as an instance of economic MPC with provable nominal closed-loop

properties (Chapter 4)

• Creation of a tractable MILP model for real-time cost optimization of central energy plants (Chapter 5)

• Development of two decomposition strategies for large-scale airside/waterside optimization (Chapter 6)

Each of these topics is brie�y introduced in the following sections.

1.1.1 Mixed-Integer Model Predictive Control

To incorporate the additional class of discrete-valued decisions, we extend standard MPC theory to include systems

with both continuous- and discrete-valued actuators. We refer to this development as mixed-integer model predictive

control (MIMPC). Despite the addition of discrete decisions, the basic structure of MPC remains unchanged. At each

timestep, an optimization problem is solved to determine an optimal trajectory of states and inputs for the system to

follow, but only the �rst input is actually used. After waiting for the system to evolve (possibly being a�ected by

disturbances), the process is repeated. We illustrate the structure of an MIMPC controller in Figure 1.2. Using an

approximate system model, the optimizer determines how to drive the system’s output variables y to their setpoints

by manipulating inputs u. As shown in this example, these inputs can include both continuous “how much” decisions,

as well as discrete “yes or no” choices. A typical use case would be to not only choose at what level to operate a piece

of equipment, but also to decide whether to keep it on or switch it o�.

The addition of discrete-valued actuators raises a number of stability and robustness issues for closed-loop

control. In particular, discrete actuators violate a (historically very common) assumption of local convexity and

controllability. However, as we will demonstrate, careful attention to the assumptions regarding the geometry of

the input set will reveal that many results already apply to systems with discrete actuators, and many more results

can be extended by relaxing the restrictive assumptions. Since our intended application is building energy systems,

which are inherently time-varying, we also extend standard results to the arbitrary time-varying case, which covers

periodic and time-invariant systems as a special case. Finally, because of the challenges associated with �nding
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Figure 1.2: Diagram of an MIMPC controller. At each timestep, an optimal control problem is solved to determine
the value of inputs u based on the measured outputs y. Note that the optimization problem includes both continuous
and discrete decisions.
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(a) Diagram of standard tracking MPC objective function.
Deviations from the origin are penalized symmetrically.

(b) Diagram of economic MPC objective function. Asym-
metric costs often re�ect tangible performance methods.

Figure 1.3: Comparison of tracking MPC vs. economic MPC objective functions.

globally optimal solutions to mixed-integer optimization problems, we also present a suboptimal formulation for

MPC that, among other things, does not require globally-optimal solutions to be found at any time.

1.1.2 Extensions of MIMPC

Although the results for tracking MIMPC provide a characterization of nominal performance, they raise a handful of

practical implementation questions. Chief among them are what happens when the system model is not exact and

how are the system’s setpoints chosen. For the �rst question, we can consider any system behavior that di�ers from

the model as the e�ect of disturbances. While bounded disturbances can be addressed at design time via robust MPC,

the resulting control laws are often conservative. Instead, a useful property to have is inherent robustness, which

means that the nominal control law cannot be destabilized by arbitrarily small disturbances. We demonstrate that

this property holds under only slightly stronger assumptions that were required for stability in the previous chapter.

For the second question, operating setpoints are generally chosen by performing some sort of economic analysis

at a higher layer. While this decomposition works for many systems and can be justi�ed by timescale separation, it is

not always clear that a system can be optimally operated at steady state. For example, in time-varying systems, there

may not exist a feasible steady-state operating point. To address these cases, we extend results about economic MPC

to the time-varying discrete-actuator case. In contrast to standard tracking MPC, the objective function can be chosen

arbitrarily to represent tangible quantities of interest, rather than having to be designed speci�cally to stabilize a

given setpoint. We illustrate these di�erences in Figure 1.3. With this modi�cation, it is no longer necessary to know

the optimal operating point a-priori, and economic performance is optimized dynamically and online, rather than

statically and o�ine.
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(a) Example optimal schedule. With discrete representation
of time, decision variables are inherently discrete-valued.

U2
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(b) Typical constraints for scheduling problems.
Units can only perform one task at a given time, and total
shared resource constraints must be respected.

Figure 1.4: Elements of scheduling problems. Like MPC, scheduling optimizes decisions over a �nite prediction
horizon and can be implemented in closed-loop.

1.1.3 Closed-Loop Scheduling

Scheduling problems generally concern the allocation of resources to complete a given set of tasks. As illustrated in

Figure 1.4, the key decisions of unit/task assignments are inherently discrete in nature, and in making those choices,

constraints on shared resource consumption must be respected. Determining even a single optimal schedule can be

computationally challenging, but recent advances in problem formulation and optimization methods are deceasing

the required e�ort.

Unfortunately, determining a single schedule is generally not su�cient for practical use. Due to the �nite-horizon

nature of scheduling problems, schedule quality often deteriorates in later time points, for example exhausting

inventory that would be useful for future production. In addition, due to unit breakdowns, modi�ed orders, etc.,

a schedule can quickly become suboptimal simply because the underlying parameters have changed. Therefore,

scheduling applications can bene�t from the same closed-loop implementation used in MPC, in which schedules are

reoptimized online at each timestep. By applying the economic MPC theory developed in the previous chapter, we

can provide certain nominal closed-loop guarantees to avoid the possible pitfalls of naive closed-loop optimization.

We also address the case of integrated scheduling and control, in which each unit and task is de�ned by an underlying

dynamic model. This problem can also be cast as an instance of economic MPC, although the resulting optimization

problem is challenging and may require suitable approximation or decomposition.

1.1.4 Central Energy Plant Optimization

As a speci�c application of of closed-loop scheduling, we consider the optimization of central energy plants. In

campuses or large commercial buildings, building heating and cooling is performed most e�ciently by producing hot

and chilled water in a centralized facility using large, high-e�ciency equipment. Because of their large size, these

plants are often subject to the electricity pricing structures discussed at the beginning of this chapter. In addition, due

the presence of multiple parallel units and variable unit e�ciency, even determining the optimal con�guration to
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Figure 1.5: Representative diagram of central energy plant. Heat recovery chillers increase overall e�ciency when
there is coincident demand for chilled and hot water.

meet a given total load is nontrivial. Thus, we present a mixed-integer linear programming (MILP) formulation that

is suitable for real-time optimization of central energy facilities.

Figure 1.5 shows a simple diagram of major central plant equipment. These units consume electricity or natural gas

(purchased from utility markets) to produce hot and chilled water that is eventually delivered to the load. Distributions

of key problem parameters are shown in Figure 1.6. We note from these plots that there is signi�cant overlap between

heating and cooling demand, which means the use of heat-recovery chillers (HRCs) can lead to signi�cant e�ciency

improvements, as these units produce hot and chilled water simultaneously. In addition, electricity price and cooling

demand are correlated, which means meeting demand just in time leads to signi�cant electricity charges. Thus,

large systems often employ water storage tanks so that resources can be produced ahead of time when electricity

is cheap and then consumed later without needing to run equipment. This additional layer of �exibility can lead

to signi�cant improvements in both utility cost and energy e�ciency, but it also signi�cantly complicates optimal

operation. Therefore, the application of the optimization strategies developed in this chapter can lead to signi�cant

improvement over manual or heuristic scheduling.

1.1.5 Large-Scale HVAC Optimization

Although central energy plants are a signi�cant opportunity for cost optimization as just discussed, focusing only on

the central plant leaves excludes additional source of energy storage. The most signi�cant part of the central plant’s

heating or cooling demands are generally used by the building’s heating, ventilation, and air-conditioning (HVAC)

systems. For comfort purposes, the focus of temperature control is for the air temperature, but the temperatures of the

solid building components �uctuate as well. Because buildings are bound by the laws of physics, these temperature

changes do not happen instantaneously, and these dynamics can be exploited as a source of additional storage (and
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Figure 1.6: Distribution of key problem parameters. From one year of sample data provided by Johnson Controls.

thus cost savings). We refer to this e�ect as “passive TES,” with the water storage tanks in central plants denoted as

“active TES.”

As shown in Table 1.1, both active and passive TES operate by the same principle. At night (or whenever electricity

is cheap), equipment is run to produce extra cooling that is stored. Under active TES, the produced chilled water is

simply held in a storage tank, while under passive TES, the storage occurs by leaching heat from the building solid

components, thus lowering its tamperature. In the daytime (when electricity is expensive), this stored energy is then

used to provide cooling without needing to run any equipment. For active TES, the water is simply withdrawn from

the tank, while in passive TES, the lower temperature of the building mass causes it to naturally absorb heat from the

air. Thus, by exploiting both active and passive TES simultaneously, energy storage capacity is signi�cantly increased.

To this end, we extend the central plant optimization model from the previous section to optimize building

temperature trajectories as well. With this change, a portion of the heating and cooling demand is now a decision

variable, determined implicitly by the temperature trajectory of the buildings. Assuming building models capture

the relevant dynamics of thermal mass temperature change, use of passive TES is implicit, and the optimizer

naturally decides to pre-heat and pre-cool as necessary to reduce operating costs. Because there can be a signi�cant

independently varying (but interacting) building temperatures, we also present decomposition strategies so that

realistically sized systems can be optimized online and in real time. These ideas thus further increase the scope of

mixed-integer economic MPC and capture an additional source of cost or energy savings.
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Table 1.1: Pictograms of TES strategies. Active TES stores energy in �uids, while passive TES stores energy in
building mass.

Nighttime Daytime

Active TES

Passive TES

1.2 Mathematical Notation

Throughout this thesis, we make use of the following notation. The set of real numbers is denoted by R and the

set of integers by I. Subscripts on these sets denote domain restrictions (e.g., R≥0 for nonnegative reals or I[a,b] for

integers between a and b). To index discrete times, we use the t ∈ T with T := I≥0. The standard inner product

between two vectors a and b is denoted aTb. The Euclidean norm of a vector x is denoted as |x| with |x|Q :=
√
xTQx

for positive-semide�nite matrix Q. We use ‖x‖ to denote a generalized norm of x, which can be any function

‖ · ‖ : Rn → R≥0. In particular, all norms and seminorms are generalized norms (a seminorm ‖ · ‖ satis�es scalability

‖αx‖ = |α| ‖x‖ for any scalar α, as well as the triangle inequality ‖x+ y‖ ≤ ‖x‖ + ‖y‖, but not necessarily

positive-de�niteness, which means it is possible that ‖x‖ = 0 for x 6= 0). The set Bε(x) denotes the n-ball centered

at x, i.e., Bε(x) := {y ∈ Rn : |y − x| ≤ ε}; when the argument x is omitted, it is understood that x = 0. Sequences

are denoted using boldface symbols, e.g., x := (x(0), x(1), . . . ), with xi:j giving the subsequence (x(i), . . . , x(j)).

They may be �nite or in�nite. The norm of a sequence is de�ned as ‖x‖ := supk≥0 ‖x(k)‖ (for �nite sequences,

substituting max is equivalent). For a function f( · ), its sublevel sets are denoted levγ f( · ) := {x : f(x) ≤ γ}. For

two sets A and B, A⊕B := {a+ b : a ∈ A, b ∈ B} is their Minkowski sum. A function α : [0, a]→ R≥0 with a > 0

is said to be class K if it is zero at zero, continuous, and strictly increasing; it is class K∞ if in addition its domain

is all of R≥0 and it is unbounded. A function β : R× T→ R≥0 is said to be class KL if for each t ∈ T, the partial

β( · , t) is class K∞ and for any s ∈ R≥0, limt→∞ β(s, t) = 0. See Kellett (2014) for mathematical properties of K

and KL functions, which are used throughout.
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Chapter 2

Mixed-Integer Model Predictive Control

If you don’t know where you’re going, you probably won’t
get [asymptotic stability].

— Yogi Berra

2.1 Introduction

As computer hardware becomes faster and mixed-integer optimization techniques become more advanced, it becomes

increasingly possible to solve mathematical programming problems in real time. Advanced control strategies such

as model predictive control (MPC) leverage this possibility by optimizing a mathematical model to predict future

behavior of the system of interest. By performing these calculations in real time, it is possible to react quickly to

changing internal or external conditions. In this chapter, we provide a mathematical formulation for and prove

theorems about state-space MPC in which decision variables can be both continuous and discrete. Notation is stated

in Section 1.2 and is generally standard. The only nonstandard notation is that | · | is used for the Euclidean norm

on Rn, while ‖ · ‖ is used to denote any generalized norm, which includes all seminorms and point-to-set distance

functions ‖x‖X := infx′∈X |x− x′| for a set X ⊆ Rn.

2.1.1 State-Space Dynamic Systems

As a mathematical framework for process optimization and control, we consider dynamic systems in state-space

form. In this formalism, the system is described at each instant by a state vector x ∈ Rn. This vector holds all of the

information about past history of the system (insofar as it can a�ect future behavior). The state of the system can be

altered by inputs u ∈ Rm, which are chosen by a controller in order to achieve certain objectives. The system may

also be a�ected by disturbances w ∈ Rl. These values are essentially inputs to the system that come from external

sources and thus cannot be chosen by the controller. The convention is that the nominal system behavior is de�ned



11

by w ≡ 0. It is often the case that the states and inputs are restricted to lie in sets X ⊆ Rn and U ⊆ Rm respectively.

Typically, X is assumed to be closed, and U is assumed to be compact. In general, the constraints u ∈ U must always

be satis�ed (e.g., due to physical limitations of the actuators), while the constraints x ∈ X are desirable but could be

potentially violated due to the e�ect of the disturbance w. In the case of shared state and input constraints, we use

the set Z ⊆ X× U.

Continuous-Time Systems

In continuous time, the system evolves according to the ODE model

dx

dt
= F (x, u, w, t). (2.1)

Here, F : Rn × Rm × Rl × R≥0 → Rn is the system model. From this form, we see that knowledge of the current x

and the future values of u and w are su�cient to predict the future trajectory of the system state. Note that in this

case, t ∈ R≥0 is a continuous variable, and x( · ), u( · ), and w( · ) are all functions of t.

For implementation purposes, it is common to assume that the input is a piecewise-constant function (a “zero-order

hold”) or a piecewise-linear function (a “�rst order hold”) of time with a �xed sample time ∆. In a zero-order hold,

u(t) is constant on each interval [k∆, (k + 1)∆), while for a �rst-order hold, the input changes linearly on each

interval. It is also possible to apply orthogonal collocation methods (Villadsen and Michelsen, 1978) which use a

�xed-order polynomial for u(t) within each sampling interval. All three cases allow the time-varying function u( · )

to be described in terms of a �nite number of parameters.

Discrete-Time Systems

Due to the mathematical subtleties associated with ODE systems, it is common to instead use a discrete-time

representation of the system. In the discrete-time setting, the functions of (continuous) time become sequences

x := (x(t), x(t+ 1), . . . ), with similar de�nitions for u and w. In discrete time, the system evolution is given by

x(t+ 1) = f(x(t), u(t), w(t), t). (2.2)

We will often use the shorthand notation x+ = f(x, u, w, t). Under nominal conditions, we will omit the disturbance

w (i.e., x+ = f(x, u, t)) for brevity. Note that for a constant sample time and a speci�ed hold, the continuous-time

system (2.1) can be exactly transformed to a discrete-time system of the form (2.2). That is, the corresponding

discrete-time states x(t) will agree with the continuous-time states x(k∆) for nonnegative integers k.

In many cases, it is not possible to measure all the values of the state x. In such cases, it is common to de�ne a

vector of outputs y ∈ Rp given by

y = h(x, u, t) + v,
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in which v is a speci�c type of disturbance commonly referred to as measurement noise. It is assumed that these

quantities can be measured directly, and under certain conditions, measurements of y along with knowledge of u are

su�cient to determine the state x. Note that throughout this chapter (and indeed throughout the majority of this

thesis), we will work directly with the state vector x, rather than the outputs y.

A common class of discrete-time system is the linear system, in which the model f( · ) is of the form

f(x, u, t) = A(t)x+B(t)u+ c(t), (2.3)

in which A(t), B(t), and c(t) are time-varying matrices and vectors of the appropriate size. In the time-invariant

case, the parameters no longer depend on time. As written, (2.3) is technically an a�ne function rather than a linear

function, and so it is common to shift the system so that f(0, 0, t) = 0 (i.e., so that c(t) ≡ 0). Two generalizations of

this form are piecewise a�ne (PWA) systems (Camacho et al., 2010) and mixed-logical dynamical (MLD) systems

(Bemporad and Morari, 1999). In the form of (2.2), PWA systems are de�ned by

x+ = Aix+Biu+ ci, (x, u) ∈ Zi (2.4)

with (Zi)Ii=1 a partitioning of feasible (x, u) space and (Ai, Bi, ci)
I
i=1 the corresponding a�ne models for state

evolution. Such models can be used to give linear approximations of nonlinear systems with multiple equilibria. Note

that if each Zi is polyhedral, then the entire system can be described in terms of linear relationships. MLD systems

are de�ned similarly by

x+ = Ax+B1u1 +B2u2 (2.5)

in which u = (u1, u2) is explicitly partitioned into continuous-valued and discrete-valued subvectors. Note that

the MLD formulation includes additional “auxiliary” states as needed to enforce logical propositions that de�ne the

feasible set Z. A �nal class of system is the switched system (Heidarinejad et al., 2013), which is of the form

f(x, u, t) = fu1(x, u2, t), u1 ∈ {0, 1, . . . , S}.

In this form, the discrete input u1 chooses from among a �nite set of system models fi( · ), while the remaining

continuous inputs u2 function as usual.

Hybrid Systems

Within the control literature, it is common to refer to any system with discrete-valued actuators as a “hybrid system”

(Baotić et al., 2006; Bemporad and Morari, 1999; Camacho et al., 2010; Di Cairano et al., 2014; Karer et al., 2008; Lazar

et al., 2006; Pregelj and Gerkšič, 2010; Rivotti and Pistikopoulos, 2015). Whether these types of systems are called

“hybrid” is perhaps a matter of personal preference, but for clarity we refer to these as mixed-integer dynamical

systems and reserve the term “hybrid” for a more general class of systems.
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A true hybrid system is essentially the combination of discrete and continuous time, typically de�ned as follows

(Branicky et al., 1998; Goebel et al., 2012): 
dx

dt
= f(x, u) x ∈ C

x+ = g(x, u) x ∈ D.
(2.6)

Here, f( · ) is called the “�ow map”, C the “�ow set”, g( · ) the “jump map”, and D the “jump set.” As long as x ∈ C ,

the system �ows in continuous time according to the �ow map, while when x ∈ D, the system instantaneously

“jumps” according to the jump map. As before, x contains the system states and u contains the system inputs. More

details about this formalism can be found in Goebel et al. (2009, 2012).

2.1.2 Model Predictive Control

Thus far, we have discussed mathematical formalism for modeling dynamical systems, but we have not discussed

how the inputs u are chosen. For small systems it is common to choose a heuristic control law. For example, the

classic PI control law de�nes a speci�c output variable yi := hi(x) and chooses (discrete-time) components ui(t) of

the input according to

ui(t) = usp(t) +K

((
y

sp
i (t)− hi(x(t)

)
+

∆

τ

t−1∑
t′=0

(
y

sp
i (t′)− hi(x(t′))

))
,

in which ysp and usp de�ne the desired setpoint, while K and τ are tuning parameters. Such controllers tend to

perform well when there are only one or two inputs, or when the system dynamics are fairly simple. However, if

there are signi�cant interactions among the various states and inputs, if there are not an equal number of inputs and

outputs, or if there are di�cult constraints that must be satis�ed, these techniques are often insu�cient.

To address the limitations of classical control techniques, a common advanced control method is model predictive

control (García et al., 1989; Mayne et al., 2000; Rawlings et al., 2017b). Industrial use of model predictive control (MPC)

has grown signi�cantly since its original development (Qin and Badgwell, 2003), and its range of application has been

steadily increasing. To make control decisions, MPC takes advantage of the fact that if the process model f( · ) is

known (or can be approximated), then it is possible to predict the e�ect that a given sequence u of inputs will have on

the future state trajectory u. The goal of the control system is transcribed into a mathematical cost function, e.g.,

`(x, u, t) = |x− xsp(t)|2 + |u− usp(t)| ,

so that minimizing this cost function will correspond to achievement of control objectives such as x(t)→ xsp(t) and

u(t)→ usp(t).
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Figure 2.1: Illustration of closed-loop MPC. Thick dark lines indicate closed-loop trajectory, while thin light lines
show past open-loop predictions. Shaded boxes show current prediction horizon, with thick dashed lines showing
incumbent solution.

To choose inputs, the MPC controller solves a �nite-horizon optimal control problem of the form

min
x,u

N−1∑
k=0

`(x(k), u(k), t+ k) Stage Cost (2.7a)
+ Vf (x(N), t+N) Terminal Cost (2.7b)

s.t. x(k + 1) = f(x(k), u(k), t+ k), k ∈ I[0,N) System Model (2.7c)
(x(k), u(k)) ∈ Z(t+ k) Path Constraints (2.7d)
x(0) = x Initial Condition (2.7e)
x(N) ∈ Xf (t+N) Terminal Constraint (2.7f)

The various components will be discussed later in this section. This optimization problem �nds a predicted sequence

of states x and u with N + 1 and N elements respectively. In certain optimal control formulations, these sequences

would be followed completely to their termination. However, due to disturbances, model mismatch, changes in

setpoints, etc., a solution that is optimal at one timestep may become suboptimal or even infeasible from system’s

new state. MPC accounts for these e�ects by sending only the �rst input u(0) to the system and solving problem (2.7)

again at the next timestep. Thus, the path that the system follows (the “closed-loop” trajectory) does not necessarily

match the optimal predictions (the “open-loop” trajectories), even when the model f( · ) is completely accurate and

there are no disturbances. We illustrate this process in Figure 2.1. In this example, the system encounters a large

disturbance during the transition from x(1) to x(2), which leads to large revision in the predicted trajectory. At all

other timesteps, revisions are much smaller.

Due to the horizon being shifted at each time point, MPC strategies are often referred to as “rolling-horizon” or

“moving-horizon” implementations. The key feature is that the horizon always stays the same length, and thus at

each timestep, the previous time point is removed from the beginning of the horizon, and a single extra time point

is added to the end. Note that this is in contrast to “shrinking-horizon” strategies, common for batch applications,
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in which no new time point is added. Due to the principle of optimality, the optimal open-loop solution does not

change when the horizon shrinks. By contrast, when the horizon rolls, the extra time point is an additional source of

�exibility, and thus the optimizer may revise the solution, even under nominal operation.

Historically, MPC has been developed for and limited to setpoint tracking using continuous-valued inputs (García

et al., 1989). Although constraints could be considered, they were (and sometimes still are) limited to linear or convex

constraints. One of the main goals of this chapter is to show that the (implicit or explicit) assumption of continuous-

valued inputs is unnecessary, and standard MPC formulations and theorems are compatible with discrete-valued

actuators. This extension allows additional, often higher-level, discrete decisions (e.g., yes or no, on or o�, how many)

to be optimized within the same rolling horizon framework. A fairly recent extension of economic MPC allows the

objective function to be a tangible measure of process pro�tability rather than am abstract measure of distance from

the setpoint (Amrit et al., 2011). We hold o� on discussing this and other developments until the next chapter, and

instead focus on tracking-oriented MPC here. Note that we are not considering the full class of hybrid systems as

discussed in Section 2.1.1, but rather focusing on discrete-time systems in which some of the inputs (or states) are

constrained to be discrete-valued. However, as we will see in the examples (and throughout the rest of this thesis), a

wide variety of systems can be described using this class of system. In analogy with “mixed-integer” optimization

(Belotti et al., 2013), we refer to this case as mixed-integer model predictive control, or MIMPC.

2.2 Tracking Model Predictive Control

In this section, we formulate and present stability properties of tracking-oriented MPC in which the goal is to bring

the state of the system to the origin and keep it there. For full generality, we allow the system model, constraints, and

objective function to be time-varying. As will be discussed later, this formulation also allows tracking an arbitrary

steady state, periodic cycle, or general feasible trajectory. We start by providing a mathematical de�nition of the

stabilization goal, and then we present an MPC formulation to achieve said goal.

2.2.1 Stability

Consider a autonomous discrete-time, time-varying system of the form

x(t+ 1) = f(x(t), t)

with the function f( · ) de�ned on sets X(t) for each t ∈ T. We take the following standard de�nitions:

Definition 2.1 (Positive invariance): Sets X(t) are said to be positive invariant under the system x+ = f(x, t) if

f(x, t) ∈ X(t+ 1) for all x ∈ X(t) and t ∈ T.
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Definition 2.2 (Asymptotic stability): The system x+ = f(x, t) is asymptotically stable on X(t) with respect to the

generalized norm ‖ · ‖ if the sets X(t) are positive invariant and there exists a KL function β( · ) such that the system

satis�es

‖x(t+ k)‖ ≤ β(‖x(t)‖ , k)

for any t ∈ T and x ∈ X(t).

Definition 2.3 (Lyapunov function): A function V : X× T→ R≥0 is said to be a Lyapunov function for system

x+ = f(x, t) and generalized norm ‖ · ‖ on X(t) if the sets X(t) are positive invariant and there exist K∞ functions

α1( · ), α2( · ) and α3( · ) that satisfy

α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖) (2.8)
V (f(x, t), t+ 1) ≤ V (x, t)− α3(‖x‖) (2.9)

for all x ∈ X(t) and t ∈ T.

Note that in both de�nitions, we allow for the possibility that the norm ‖ · ‖ is a generalized norm. This gen-

eralization allows for the possibility that ‖x‖ = 0 for some x 6= 0. For example, point-to-set distance ‖x‖X :=

minx′∈X |x− x′|, which assigns ‖x‖X = 0 for all x ∈ X .

The concepts of asymptotic stability and Lyapunov functions are related by the following theorem:

Theorem 2.4 (Lyapunov stability theorem): Suppose the sets X(t) are positive invariant for the system x+ = f(x, t)

and that a function V ( · ) is a Lyapunov function for f( · ). Then, the system is asymptotically stable.

Proof. For notational convenience, let fk(x, t) be composition of f( · ) with itself k times, i.e.,

f 1(x, t) = f(x, t), f 2(x, t) = f(f(x, t), t+ 1), f 3(x, t) = f(f(f(x, t), t+ 1, t+ 2)),

etc. Because the sets X(t) are positive invariant, we have fk(x, t) ∈ X(t+ k) for all k ∈ I≥0. From (2.8), we have

that ‖x‖ ≥ α−1
2 (V (x, t)). Substituting into (2.9) gives the condition

V (f(x, t), t+ 1) ≤ V (x, t)− α3(α
−1
2 (V (x, t))) := σ1(V (x, t))

for function σ1(s) := s− α3(α
−1
2 (s)). Now, σ1( · ) is zero at zero and continuous, but it is not necessarily increasing.

To provide an increasing bound, we �rst de�ne

σ2(s) := max
s′∈[0,s]

σ1(s
′) ≥ σ1(s).

This function is nondecreasing (obvious) and continuous (because it is the maximum of a continuous set-valued map).

For an increasing function, we de�ne

σ3(s) :=
1
2 (s+ σ2(s)) ≥ σ2(s) ≥ σ1(s),
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which is a K∞ function. Note also that σ3(s) < s for all positive s. Thus, substituting this bound into (2.2.1) and

composing k times, we have

V (fk(x, t), t+ k) ≤ σk3 (V (x, t)),

in which σk3 ( · ) is the k-times composition of σ3( · ). Applying (2.8), we have∥∥fk(x, t)
∥∥ ≤ β(‖x‖ , k), β(s, t) := α−1

1
(
σk3 (α2(s))

)
in which β( · ) is class KL due to the properties of K∞ functions. Thus, the system is asymptotically stable.

The usefulness of Theorem 2.4 is that it provides an indirect route to prove asymptotic stability: rather than

examine the global properties fk( · ) directly, we can instead search for a Lyapunov function. In the following section,

we will de�ne an optimization problem whose optimal value function is a Lyapunov function, thus proving asymptotic

stablity for the system.

Remark 2.5: As will become apparent in the following sections, the most di�cult part of constructing a Lyapunov

function is typically the upper bound V (x, t) ≤ α2(‖x‖). However, the decrease condition (2.9) alone is su�cient to

prove the convergence result ‖x(t+ k)‖ → 0 as k → 0: the sequence V (fk(x, t), t+k) is bounded and nondecreasing

and thus has a limit (monotone convergence theorem). Therefore, for any ε > 0, there exists K ≥ 0 such that

V (fk(x, t), t+ k)− V (fk+1(x, t), t+ k + 1) ≤ ε

for all k ≥ K Thus, applying (2.9) and choosing ε′ = α−1
3 (ε), we have ‖x(t+ k)‖ ≤ ε′ for all k ≥ K , and the

limit follows. Although convergence may be su�cient for some applications, it lacks certain desirable properties of

asymptotic stability. For example, asymptotic stability implies the classical Lyapunov stability property that for each

ε > 0, there exists δ > 0 such that if ‖x(t)‖ ≤ δ then ‖x(t′)‖ ≤ ε for all t′ ≥ t.

2.2.2 Optimal Control Problem

To provide su�cient generality, we consider the case of time-varying discrete-time state-space systems that evolve

according to

x(t+ 1) = f(x(t), u(t), t), (2.10)

for states x ∈ X(t) and inputs u ∈ U(t). Choose combined constraints Z(t) ⊆ X(t)× U(t). Let

X :=
⋃
t∈T

X(t), U :=
⋃
t∈T

U(t), Z :=
⋃
t∈T

Z(t)

denote the composite sets. For each t ∈ T, we choose a terminal set Xf (t) ⊆ X(t), whose required properties will

be discussed later. For a �nite input sequence u := (u(0), u(1), . . . , u(N − 1)), let φ(k, x,u, t) denote the forward
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solution to (2.10) starting from state x at time t, i.e., giving x(t + k) = φ(k, x,u, t). For a given N ∈ T, we then

de�ne the following three sets:

ZN (t) := {(x,u) : (φ(k, x,u, t), u(k)) ∈ Z(t+ k) for all k ∈ I[0,N), φ(N, x,u, t) ∈ Xf (t+N)}
XN (t) := {x ∈ X : there exists u ∈ UN such that (x,u) ∈ ZN (t)}
UN (x, t) := {u ∈ UN : (x, u) ∈ ZN (t)}

As an objective function, we de�ne

VN (x,u, t) :=

N−1∑
k=0

`(x(k), u(k), t+ k) + Vf (x(N), t+N),

in which x(k) := φ(k, x,u, t) for k ∈ I[0,N ]. Here, `( · ) is referred to as the “stage cost,” and Vf ( · ) is the “terminal

cost.”

At each discrete timestep t, the controller solves the optimal MPC problem

min
u

VN (x,u, t) such that u ∈ UN (x, t) (2.11)

given the current state of the system x ∈ X(t). We denote the optimal value function as V ∗N (x, t) and the optimal

solution set as U∗N (x, t). To use as the current input, the optimizer selects any u ∈ κN (x, t) := {u(0) : u ∈ U∗(x, t)},

i.e., the �rst input of any optimal sequence. Thus, the closed-loop evolution of the system is given by

x(t+ 1) ∈ {f(x, u, t) : u ∈ κN (x, t)}.

Note that this is a di�erence inclusion due to the fact that there may be multiple optimal solutions to (2.11). For

convenience, we assume that a selection rule is applied to choose a single unique input u = κN (x, t), which gives a

standard di�erence equation

x(t+ 1) = f(x, κN (x, t), t). (2.12)

Any possible selection rule can be chosen provided that the same choice is made for equal values of x. The goal of the

controller is to provide asymptotic stability for this system. Note that the optimal control law κN ( · ) may not be

continuous, and so stability theory should be able to address this case.

2.2.3 Assumptions

To prove closed-loop properties of the system, we take the following standard assumptions (see, e.g., Rawlings et al.

(2017b)).

Assumption 2.6 (Basic function properties): The function f( · ) is continuous. The functions `( · ) and Vf ( · ) are

lower semi-continuous.
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Assumption 2.7 (Basic set properties): For each t ∈ T, the sets X(t), Xf (t), and Z(t) are closed, and the set U(t) is

compact. The composite set U is bounded.

Assumption 2.8 (Cost bounds): There exists a K∞ function α( · ) such that `(x, u, t) ≥ α(‖x‖) for all x ∈ Z(t) and

Vf (x, t) ≥ 0 for all x ∈ Xf (t), both for each t ∈ T.

Assumption 2.9 (Terminal control law): For each t ∈ T and x ∈ Xf (t), the set

κf (x, t) =
{
u ∈ U(t) : f(x, u, t) ∈ Xf (t+ 1), Vf (f(x, u, t), t+ 1) ≤ Vf (x, t)− `(x, u, t)

}
is nonempty.

Assumption 2.10 (Uniform weak controllability): There exists a K∞ function α2( · ) satisfying V ∗N (x, t) ≤ α2(‖x‖)

for all x ∈ XN (t) and t ∈ T.

Assumptions 2.6 and 2.7 ensure the existence of optimal solutions to (2.11). They imply that the objective function

VN (x,u, t) is lower-semicontinuous in x and u and that the feasible set UN (x, t) is compact. Assumptions 2.8 and 2.9

are used to derive bounds on closed-loop cost and to ensure recursive feasibility. The �nal Assumption 2.10 is

somewhat more technical than the previous assumptions. This bound ensures that the optimal cost function decays

to zero as ‖x‖ approaches zero. It can be shown that Assumption 2.10 holds in a variety of other circumstances as

described in the following proposition (adapted from Rawlings et al. (2017b, Proposition 2.38)).

Proposition 2.11 (Conditions for uniform weak controllability): Suppose the functions f( · ), `( · ), and Vf ( · ) are

uniformly locally bounded for all t ∈ T, i.e., on any compact set Z ⊂ X× U, the set

{
(f(x, u, t), `(x, u, t), Vf (x, t)) : (x, u) ∈ Z, t ∈ T

}
is bounded. Suppose further that ‖ · ‖ is the standard Euclidean norm | · |. Then, Assumption 2.10 is satis�ed if any of the

following conditions holds:

(a) Assumptions 2.8 and 2.9 hold, Vf (x, t) is uniformly continuous at the origin, and there exists ε > 0 such that

Bε ∩ XN (t) ⊆ Xf (t) for each t ∈ T.

(b) For t ∈ T, the optimal value function V 0
N (x, t) is uniformly continuous at x = 0.

(c) The functions f( · ) and `( · ) are uniformly continuous at the origin (x, u) = (0, 0) for all t ∈ T, and the system is

stabilizable with small inputs, i.e., there exists a K∞ function γ( · ) such that for all t ∈ T and x ∈ XN (t), there

exists u ∈ UN (x, t) with |u| ≤ γ(|x|).

(d) There exist ε > 0 and a K∞ function α( · ) such that V ∗N (x, t) ≤ α(|x|) for all t ∈ T and x ∈ Bε ∩ XN (t)

Proof. See Section 2.6.3.



20

Remark 2.12: Although the general MPC problem is formulated in terms of any generalized norm ‖ · ‖, it can be

di�cult to verify Assumption 2.10 in certain exotic cases, for example a point-to-set distance ‖ · ‖X when the set X is

nonconvex. As discussed in Proposition 2.11, when ‖ · ‖ is the Euclidean norm | · | (or any other true norm, due to

the equivalence of norms on Rn), Assumption 2.10 boils down to a statement about the behavior of V ∗N ( · ) at the

origin, which is relatively easy to investigate. In certain other “nice” cases, it may also be possible to apply the ideas

of Proposition 2.11. For example, if the goal is to bring the system near the origin, one could choose ‖ · ‖Bε so that

there is no penalty for being within ε of the origin. If the terminal set is chosen so that Bδ ⊆ Xf (t) for δ > ε, then

the arguments of Proposition 2.11 (a) and (d) can be used to show Assumption 2.10.

2.2.4 Asymptotic Stability

The main result of this section is the following theorem, which provides asymptotic stability for tracking MPC.

Theorem 2.13 (Asymptotic stability of tracking MPC): Suppose Assumptions 2.6 to 2.10 are satis�ed. Then, the closed-loop

system (2.12) is asymptotically stable starting from any x ∈ XN (t) for any t ∈ T.

Proof. We show that the optimal cost function V ∗N ( · ) is a Lyapunov function for the closed-loop system. First,

we note that from Assumption 2.6, the objective function VN (x,u, t) is lower semi-continuous in x and u, as

φ(k, x,u, t) is continuous, and thus VN ( · ) is the sum of lower semi-continuous functions. Next, because each

U(t) is compact and each Xf (t) closed by Assumption 2.7, the set UN (x, t) is compact for each x and t. Thus,

problem (2.11) is the optimization of a lower semi-continuous function over a compact set, which means an optimal

solution exists for every x ∈ XN (t) and t ∈ T, and so V ∗(x, t) is well-de�ned. Next by Assumption 2.8, we have

VN (x,u, t) ≥ `(x, u(0), t) ≥ α1(‖x‖), and thus V ∗(x, t) ≥ α1(‖x‖). The upper bound V ∗(x, t) ≤ α2(‖x‖) comes

directly from Assumption 2.10. Therefore, V ∗( · ) satis�es (2.8), and it remains to show (2.9).

For the decrease condition, let u be the optimal solution to (2.11) for x at time t, and let u be its �rst element.

Let x+ := f(x, u, t) and let xf := φ(N, x,u, t) be the terminal value of x. By Assumption 2.9, there exists an

input uf ∈ U(t + N) such that x+
f := f(xf , uf , t + N) ∈ Xf (t + N + 1). Now, consider the input sequence

u+ := (u(1), u(2), . . . , u(N − 1), uf ) constructed by concatenating the �nal N − 1 elements of u and uf . This new

input sequence satis�es u+ ∈ U(x+, t+ 1). In addition, we have

VN (x+,u+, t+ 1) = V ∗N (x, t)− `(x, u, t)− Vf (xf , t+N) + `(xf , uf , t+N) + Vf (x+
f , t+N + 1)

≤ V ∗N (x, t)− `(x, u, t)

because the sum of the �nal three terms is nonpositive by Assumption 2.9. Since this cost bound holds for a feasible

solution, we know that the optimal solution must satisfy it as well, and so

V ∗N (x+, t+ 1) ≤ V ∗N (x, t)− `(x, u, t) ≤ V ∗N (x, t)− α1(‖x‖)
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Xf (t)

Xf (t+ 1)

Xf (t+N)

XN (t)

xr(t)

xr(t+ 1)

xr(t+N)

κf ( · , t)

κf ( · , t+ 1)

x(t)

(a) Sets in original space. Reference trajectory xr(t) is
time-varying, and terminal control law κf ( · , t) stabilizes
neighborhoods of xr(t)

Xf (t) Xf (t+ 1)

Xf (t+N)

XN (t)

0

x(t)

(b) Sets in transformed deviation-variable space. Terminal
regions Xf (t) are now all neighborhoods of the origin.

Figure 2.2: Illustration of time-varying change of variables. By shifting the origin by −xr(t) at each time t, tracking
the reference trajectory is transformed into tracking the origin.

by Assumption 2.8. Since α1( · ) is class K∞, (2.9) is satis�ed as well. Therefore, V ∗N ( · ) is a Lyapunov function, and

by Theorem 2.4 the closed-loop system is asymptotically stable.

Remark 2.14: As formulated, Theorem 2.13 proves asymptotic stability to the origin. However, because the system

is allowed to be time-varying, it also applies to stability of any feasible reference trajectory (xr(t), ur(t)) ∈ Z(t)

that satis�es f(xr(t), ur(t), t) = xr(t+ 1) and xr(t) ∈ Xf (t). For this formulation, Assumption 2.8 requires that

`(x, u, t) ≥ α1(‖x− xr(t)‖); by applying a time-varying change of variables, the desired trajectory is shifted to the

origin, and Theorem 2.13 can be applied. Figure 2.2 illustrates this change of variables.

2.2.5 Suboptimal MPC

As formulated, closed-loop MPC requires the controller to �nd an optimal solution to (2.11) at each timestep. While

achievable for certain classes of systems and cost functions (e.g., linear systems with convex costs), it is generally very

di�cult to quickly �nd optimal solutions (and prove the optimality thereof) for nonconvex problems. In particular,

because of the equality constraints imposed by the system model (2.7c), any nonlinear f( · ) leads to a nonconvex

optimization problem. Although solvers such as IPOPT (Wächter and Biegler, 2006) can e�ciently �nd local solutions

to nonlinear programming problems, such solutions are not su�cient for Theorem 2.13.
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To avoid these shortcomings, we propose a modi�cation of the MPC formulation so that only suboptimal solutions

are necessary. Various formulations for suboptimal MPC have been proposed in the literature. For example, in Lazar

and Heemels (2009) and Picasso et al. (2012), the suboptimal problem is formulated as �nding a solution within some

absolute tolerance of the true optimal solution. While branch-and-bound-based global optimization methods can

provide a conservative estimate of suboptimality (Belotti et al., 2013), it is in general di�cult to predict how long it

will take to �nd a solution within that tolerance. Thus, because these methods essentially require knowledge of the

optimal objective function value (or at least a quality estimate of it), they do not address the fundamental limitation

of optimal MPC. Instead, we follow the developments of Pannocchia et al. (2011) and Allan et al. (2017) which employ

the use of a warm-start sequence and express suboptimality with respect to the cost of that solution (which is known),

rather than with respect to the true optimal solution.

To formulate the suboptimal problem, we extend the state of the system to z := (x,u), in which u is the predicted

future sequence of inputs. We then de�ne the set of successor warm starts

ζ(x,u, t) :=
{

(u(1), . . . , u(N − 1), uf ) : uf ∈ κf (φ(N, x,u, t), t+N)
}
,

in which (u(1), . . . , u(N − 1)) = u1:N−1 (i.e., the �nal N − 1 values of u), and uf is any element of the terminal

control law for the (predicted) terminal value of x. Note that this warm-start is precisely the sequence u+ used in the

proof of Theorem 2.13.

Because we are examining stability in terms of the extended state z, we require the following conditions on the

generalized norm ‖z‖ as in the following assumption:

Assumption 2.15 (Norm compatibility): The generalized norm ‖z‖ of the extended state can be expressed as

‖z‖ = ‖x‖x + ‖u‖u

for generalized norms ‖ · ‖x and ‖ · ‖u de�ned on X and U respectively. The sublevel sets of ‖ · ‖x are compact in X.

There exists a K∞ function α( · ) such that the cost function `( · ) satis�es

`(x, u, t) ≥ α(‖x‖x + ‖u‖u)

for all (x, u) ∈ Z(t) and t ∈ T.

The goal of this suboptimal MPC formulation is that the warm starts are chosen so that they can stabilize the system

despite not necessarily being optimal. That is, the system is asymptotically stable even if it follows u inde�nitely

(with appropriate extension by applying ζ( · )). While this property eliminates the need for any online optimization

whatsoever, it creates the possibility for the system is already at the origin but decides to leave due to a poorly chosen

warm start. For example, if the system x+ = x+ u were allowed to follow the warm start u = (1, 1,−1,−1) starting
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from x = 0, then asymptotic stability would not hold. To avoid such cases, we require u to be in the following

restricted set:

ǓN (x, t) := {u ∈ UN (x, t) : VN (x,u, t) ≤ γ(‖x‖x) if ‖x‖x ≤ ε}, (2.13)

with composite set ŽN (t) := XN (t)× Ǔ(x, t). This set requires that, if x is near the origin, then warm start u must

keep the system nearby. We assume the properties of ǓN (x, t) are as follows:

Assumption 2.16: In the de�nition of ǓN (x, t), the constant ε is strictly positive, and the function γ( · ) is class K∞.

The set ǓN (x, t) is nonempty for all x ∈ XN (t) and t ∈ T.

Thus, Assumption 2.16 ensures that warm starts are su�ciently small when ‖x‖x is small. However, as with

Assumption 2.10, Assumption 2.16 can be di�cult to verify. Thus, we use the following proposition to provide a more

readily veri�able condition:

Proposition 2.17: Suppose Assumptions 2.8, 2.9 and 2.15 hold. Suppose in addition that Xf (t) ⊆ {x ∈ XN (t) : ‖x‖x ≤

ε}. Then, Assumption 2.16 is satis�ed for any K∞ function γ( · ) such that Vf (x, t) ≤ γ(|x|) for all x ∈ Xf (t) and

t ∈ T.

Proof. We apply Corollary 2.23 in Section 2.6 to show that, for each x ∈ Xf (t), we can construct u ∈ UN (x, t) by

repeated application of κf ( · ), and further that VN (x,u, t) ≤ Vf (x, t). Thus, choosing any γ( · ) larger than Vf ( · ),

we have γ(‖x‖x) ≥ Vf (x, t) ≥ VN (x,u, t) whenever ‖x‖x ≤ ε as required. Therefore, we conclude that ǓN (x, t) is

nonempty, and Assumption 2.16 holds as well.

With this technical restriction in place, we can now describe the “optimization” procedure for suboptimal MPC.

At each timestep, given the value of z := (x,u), the optimizer chooses any element ǔ ∈ Ǔ∗N (x,u, t) with

Ǔ∗N (x,u, t) :=
{
ǔ ∈ ǓN (x, t) : VN (x, ǔ, t) ≤ VN (x,u, t),

ζ(x, ǔ, t) ∈ ǓN (x+, t+ 1), x+ = φ(1, x, ǔ, t)
}
.

(2.14)

In addition to the technical restriction that the successor warm start satis�es (2.13), we have the additional requirement

that the cost of the chosen ǔ must be no larger than that of the initial u. If desired, optimization can be performed to

improve on u, but no optimization is required, as the bound holds trivially for ǔ = u ∈ ǓN (x, t).

With the sequence ǔ chosen, the �rst element is used as the current input, and then ζ( · ) is used to construct a

feasible warm start to use at the next timestep. Letting κ̌N (x,u, t) denote the �rst element of any ǔ ∈ Ǔ∗N (x,u, t),

the closed-loop evolution of the extended state z is

z+ :=

(
x+

u+

)
=

(
f(x, κ̌(x,u, t), t)

ζ(x, ǔ, t)

)
, ǔ ∈ Ǔ∗N (x,u, t). (2.15)

As in the case of optimal MPC, we assume that an arbitrary selection rule is applied so that (2.15) is a standard

di�erence equation rather than an inclusion. We then have the following theorem:
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Theorem 2.18 (Asymptotic stability of suboptimal tracking MPC): Suppose Assumptions 2.6 to 2.9, 2.15 and 2.16 are

satis�ed. Then, the closed-loop system (2.15) is asymptotically stable starting from any z ∈ ŽN (t) at time t ∈ T.

Proof. We show that VN (z, t) := VN (x,u, t) is a Lyapunov function for (2.15). First, by assumption Assumption 2.16,

ǓN (x, t) is nonempty for every x ∈ XN (t). Thus, positive invariance of ŽN (t) follows immediately from (2.14).

For the Lyapunov function bounds (2.8), we recall the de�nition of ‖z‖ according to assumption Assumption 2.15.

For a lower bound, we note that

VN (z, t) ≥
N−1∑
k=0

`(x(k), u(k), t+ k)

≥
N−1∑
k=0

α(‖x(k)‖x + ‖u(k)‖u)

≥ α(2 ‖x‖x) +

N−1∑
k=0

α(2 ‖u(k)‖u)

≥ α(2 ‖x‖x) + α(2 ‖u‖u)

≥ 2α(2 ‖x‖x + 2 ‖u‖u)

≥ α1(‖z‖), α1(s) := 2α(2s).

For the upper bound, we have from Assumption 2.16 and the de�nition of ǓN (x, t), we have VN (z, t) ≤ γ(‖x‖x) ≤

γ(‖z‖) for ‖x‖x ≤ ε. By Assumptions 2.7 and 2.15, we have that sublevel sets of ‖z‖ are compact, and thus using

Corollary 2.29, we can extend this local bound to a global K∞ bound α2( · ) with VN (z, t) ≤ α2(‖z‖) on ŽN (t).

For the decrease condition, we proceed along a similar line to note that α1(‖u‖u) ≤ α1(‖z‖) ≤ VN (z, t) ≤

γ(‖x‖x) whenever ‖x‖x ≤ ε. By Assumption 2.7, we also have that ǓN (x, t) is compact, and thus ‖u‖u ≤ M for

some constant M > 0. Thus, de�ning µ1(s) := α−1
1 (M min(1, γ(s)/γ(ε))), we have that ‖u‖u ≤ µ1(‖x‖x) for all

z ∈ ŽN (t). Therefore,

‖z‖ = ‖x‖x + ‖u‖u ≤ ‖x‖x + µ1(‖x‖x) ≤ µ2(‖x‖x), µ2(s) := s+ µ1(s),

with µ2( · ) a K∞ function. Thus, ‖x‖x ≥ µ−1
2 (‖z‖).

Now, using the same cost decrease argument from Theorem 2.13, we have that

VN (z+, t+ 1)− VN (z, t) ≤ −`(x, u∗(0), t) ≤ −α(‖x‖x)

by applying the lower bound from Assumption 2.8. Substituting the relationship from the previous paragraph, we

have

VN (z+, t+ 1)− VN (z, t) ≤ α3(‖z‖), α3(s) := α(µ−1
1 (s)).

Therefore, VN ( · ) is a Lyapunov function for (2.15), and asymptotic stability follows from Theorem 2.4.
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The bene�t of Theorem 2.18 over Theorem 2.13 is that the optimization requirements of the suboptimal MPC are

signi�cantly less than for optimal. Indeed, the requirements of (2.14) is so mild that optimization is only required

in two instances: (a) to �nd an initial warm-start sequence u for the initial value of x at time t = 0; and, (b) to �nd

a low-cost solution near the origin when the restriction of ǓN (x, t) is active. For solvers such as Gurobi (Gurobi

Optimization, LLC, 2018) and BARON (Sahinidis, 2018) that can terminate early and provide an incumbent solution,

the entire solution time could be used for optimization, and the best available solution from the solver can be used as

ǔ. By contrast, for local NLP solvers like IPOPT (Wächter and Biegler, 2006), the suboptimal framework ensures that

the locally optimal solutions can still be used as long as they beat the warm start.

Remark 2.19: As a generalization of Allan et al. (2017), we have allowed ‖z‖ = ‖x‖x + ‖u‖u to be a generalized

norm. Aside from the restriction on ‖ · ‖x in Assumption 2.15, there is a signi�cant amount of �exiliby a�orded by

these choices. A standard choice would be to choose both generalized norms as the Euclidean norm, which would

imply both x→ 0 and u→ 0 as t→ 0. However, this choice would impose the additional restriction that the system

is stabilizable with small controls (see Proposition 2.11(c)), in particular implying that any discrete actuators are

�xed in some neighborhood of the origin. To avoid this property, we can choose instead for ‖ · ‖u to be the trivial

seminorm ‖u‖u ≡ 0. Thus, we would have x→ 0 as desired, but u could continue to take any value at the origin.

This choice could be used to impose soft constraints on x or u that are asymptotically satis�ed. Another common

case is to reformulate the problem in terms of the increment ∆u via the augmented system

z+ =

(
x+

u+

)
=

(
f(x, u+ ∆u, t)

u+ ∆u

)
:= f(z,∆u, t)

and penalize only ∆u rather than u directly. Theorem 2.18 can be applied to this system by choosing ‖( · )‖x as

a seminorm ‖z‖x = |x| and ‖∆u‖u = |∆u|. This choice would give x → 0 and ∆u → 0 asymptotically but not

necessarily that u → 0. Finally, we note that ‖ · ‖x and/or ‖ · ‖u can be taken as point-to-set distances using any

compact sets X and U .

2.3 Discrete Actuators

In the previous section, we made no explicit mention of any actuators being discrete. The reader may be wondering

when explicit treatment of discrete will make an appearance. However, the MPC problem as formulated in the

previous section (both optimal and suboptimal) is already compatible with discrete valued actuators. In this section,

we review some previous methods from the literature for considering discrete actuators, and then we explain how

they are accounted for in our formulation.
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2.3.1 Literature Review

As mentioned in Section 2.1.1, it is common in the literature to consider any system with discrete-valued inputs or

states as “hybrid.” However, most of the analysis is carried out in discrete time, and thus, the system is not truly hybrid

in the sense of Goebel et al. (2012). Regardless of the chosen vocabulary, stability results have previously appeared

for various special classes of systems that consider discrete actuators. For piecewise a�ne (PWA) systems, Baotić

et al. (2006) establishes asymptotic stability for an in�nite-horizon problem using a Lyapunov function. Although the

actuator space for PWA systems does not explicitly include discreteness restrictions, their e�ect can be included by

adding a separate subdomain for each possible combination of discrete inputs and using a continuous actuator to

select from the pieces. For example, the system x+ = x+ u for u ∈ {0, 1} is modeled as

x+ =

{
x u ∈ [0, 0.5],

x+ 1 u ∈ (0.5, 1].

Of course, this approach su�ers the curse of dimensionality when multiple discrete actuators are present. To treat

discrete variables directly, the mixed-logical-dynamical (MLD) formulation can be used, for which convergence to the

origin was demonstrated under positive-de�niteness of the objective function. It can be shown that the class of PWA

and MLD systems are identical (Camacho et al., 2010), i.e., that an instance of one can be converted to an instance of

the other. For nonlinear switched systems, Di Cairano et al. (2014) propose embedding a Lyapunov equation directly

into the problem formulation, thereby requiring cost decrease as a hard constraint.

For systems in which the actuators are quantized, i.e., �nely discretized with a sensible relaxation for intermediate

values, discreteness can be regarded as a small disturbance of a continuous-actuator system. In this vein, Quevedo

et al. (2004) proposes a rounding procedure for a linear system with a quantized actuator that provides bounds away

from the optimal continuous solution. Similar results show asymptotic stability for stable systems and practical

stability (i.e., ultimate boundedness) for unstable systems (Aguilera and Quevedo, 2013; Kobayshi et al., 2014; Picasso

et al., 2003). For continuous-time problems, Sager et al. (2009) and Sager et al. (2010) proposes a convexi�cation and

iterative rounding-based re�nement procedure to address discrete actuators, although the application to discrete-time

systems is limited. Finally, Thomas (2012) proposes a direct optimization strategies for �nite U by enumerating and

computing the cost of feasible input sequences (with some reduction techniques to avoid having to check all possible

combinations). However, with the increasing capabilities of mixed-integer optimization techniques, it is increasingly

possible to optimize discrete variables directly, and thus we which to derive a general theory.

2.3.2 Compatibility of Discrete Actuators

Due to the computational di�culties associated with mixed-integer optimization, much of the early MPC literature

considered exclusively the case of continuous-valued actuators (García et al., 1989; Mayne et al., 2000; Rawlings and



27

Mayne, 2009). This restriction leads to assumptions suited to continuous actuators, e.g., from Mayne et al. (2000),

”[U]sually, U is a convex, compact subset of Rm, and X a convex, closed subset of Rn, each set containing the origin

in its interior.” Unfortunately, the inclusion of any discrete-valued components in u is incompatible with these

requirements, most notably the fact that the setpoint must be on the interior of U. Indeed, this very assumption

is pervasive throughout early MPC literature (Chmielewski and Manousiouthakis, 1996; Keerthi and Gilbert, 1988;

Rawlings and Muske, 1993; Scokaert and Rawlings, 1996; Sznaier and Damborg, 1987) to ensure local stabilizability of

the setpoint. However, as MPC allows direct handling of process constraints, it is natural to desire that the system

operate not just close to but precisely at one or more constraints.

As �rst recognized in (Rao and Rawlings, 1999), active constraints at the setpoint can be addressed by de�ning a

terminal control law that moves in the null space of active constraints, thus not requiring use of saturated actuators.

As a result, the assumption of the setpoint being on the interior of X or U is no longer necessary. The inclusion of

discrete actuators is essentially a logical extension of this idea: it is perfectly acceptable to have active constraints

throughout the feasible space, and discrete actuators are simply constraints that are always active. This idea leads to

the development of the following result:

Theorem 2.20 (Folk theorem): Any result that holds for standard MPC holds also for MPC with discrete actuators.

(Rawlings and Risbeck, 2017)

While referring to this result as a theorem is somewhat tongue-in-cheek, it holds for all of the results in this and

the following chapter. We give a justi�cation for the folk theorem in Figure 2.3. Historically, U was required to have

the geometry of (a), so that both u1 and u2 could be used for local stabilization. These requirements were later relaxed

to (b), in which u2 saturates, but u1 is still available. Allowing discrete-valued actuators then results in the geometry

of (c), which is locally not much di�erent from the previous case. Thus, provided that restrictive assumptions on U

are not made, modern MPC results are agnostic to whether U is convex, disconnected, discrete, etc. Consider, for

example Assumption 2.7 from this chapter, which requires only that, “the set U(t) is compact.” We are therefore

free to include discreteness restrictions in the set U, and the system can still be rendered asymptotically stable by

MPC. Note, however, that this result does not mean that every system can be controlled with discrete actuators.

Theorem 2.13 states that MPC is stabilizing on the set XN (t), i.e., the set of states where the MPC problem is feasible.

If too many discreteness restrictions are imposed on the problem, then the geometry of XN (t), perhaps consisting of

disconected, isolated, or otherwise nonconvex regions. Thus, it is important to recognize that there may be inherent

limitations in what can be achieved with discrete actuators, and before applying tracking MPC, it is important to

decide whether setpoint stabilization is a worthwhile goal.

Remark 2.21: Throughout this discussion, we have made reference to only the actuators, i.e., inputs u, being discrete.

This may raise the question of whether it is possible to consider discreteness restrictions on system states. The short
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Figure 2.3: Illustration of discrete actuators as permanently active consraints. Figures show the geometry of U for
continuous actuators with no active constraints at the setpoint (a), continuous actuators with constraints active at the
setpoint (b), and mixed-integer actuators (c). The setpoint is indicated by a circular marker.

answer is yes; discreteness restrictions can be embedded in X just as they can be in U. In fact, in some instances, these

restrictions can make certain mathematical developments easier. For example, if the set X is �nite, then the rather

technical Assumption 2.10 is satis�ed automatically, as all points are isolated, and thus V ∗( · ) is trivially continuous.

However, we focus more directly on discrete-valued inputs for two main reasons. First, when establishing

closed-loop properties, we are generally concerned with limiting behavior of x, which has a natural connection to

vanishingly small quantities. In the case of discreteness restrictions in X, certain statements become vacuous, and

other considerations (e.g., small disturbances a�ecting the system) become meaningless. Second, it is almost always

possible to render states implicitly discrete by appropriate discreteness restrictions on u. For example, to consider

the system x+ = x+ u with the constraints X = I (i.e., x is constrained to be integer-valued) and U = [−1, 1], one

can instead swap the discreteness restrictions to U, giving U = {−1, 0, 1} and X = R. With a terminal constraint

Xf ⊆ I, the feasible space XN contains only discrete-valued x (and of course is positive invariant). Thus, considering

only discrete actuators is su�cient for our purposes, but it is not a hard requirement.

2.4 Illustrative Examples

In this section, we present two examples to demonstrate some of the behavior of mixed-integer tracking MPC. We

will see, in some cases, the optimizer take unexpected control action in order to achieve its goals, which illustrates the

bene�ts that can be achieved via optimizing discrete actuators directly, rather than using heuristics or decompositions.
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2.4.1 Feasible Sets

As a �rst example, we consider a two-state system and compare the feasible sets XN when there are discrete variables

and when there are not. The system consists of two coupled zones that must be cooled by two chillers, each of which

can be either on or o� and are subject to minimum capacities when on. The system model is linear as follows:(
x+

1
x+

2

)
=

(
0.9197 0.0549
0.1098 0.8428

)(
x1
x2

)
+

(
−0.4793 −0.0287
−0.0287 −0.9186

)(
u1
u2

)
,

in which x1 and x2 are the zone temperatures, and u1 and u2 are the cooling sent to each zone, the sum of which is

bounded by the minimum and maximum capacities of active chillers. The system is in deviation variables, and the

goal is to stabilize the origin. When the minimum capacity is nonzero, the input set U becomes disconnected.

To examine the feasible sets, we note that in this case A is invertible, and thus we have the relationship

XN = A−1 (XN−1 ⊕ (−BU)) .

Because U is a union of (convex) polyhedral sets, we can use their extreme point representations together with

this update formula, proceeding backwards from Xf . For illustration purposes, we choose Xf as a polyhedral

approximation of the set {x ∈ R2 : xTPx ≤ 0.1} with P satisfying the Lyapunov equation P = ATPA+ I . Because

A is stable, we could choose an arbitrarily large terminal region, but we choose this small region for the purpose of

visualization.

Figure 2.4 shows the input and feasible sets for this system for varying minimum capacities. For case of zero

minimum capacity (�rst row), U is convex, and so convexity of Xf leads to convexity of each XN . By contrast, when

there are nonzero minimum capacities (which requires discrete variables for optimization), the set U is nonconvex

and disconnected, which leads to similar properties for XN . In the second row, the minimum capacity is 90% of the

maximum capacity, and thus there is still some degree of continuous actuation. Therefore, the feasible sets are smaller,

but not signi�cantly so. In the bottom row, the minimum capacity is exactly equal to the maximum capacity, and

so total cooling is quantized. For this case, we see even narrower feasible sets for small N , but as N increases, the

feasible region loses most of its gaps. However, we note that in all cases, the setsXN are nested (i.e, XN−1 ⊆ XN ), and

as the horizon increases, the di�erence between the continuous and discrete cases becomes smaller. Thus, when the

nonzero minimum capacities are added, short horizons may no longer be adequate near the origin, but for su�ciently

long horizons, the feasible sets are almost as large as in the zero-minimum-capacity case.

2.4.2 Switched System

As the next example, we consider a simple linear switched system. The system model is

x+ = A(u1)

(
x1
x2

)
+B(u1)

(
u2
u3

)
,
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Figure 2.4: Feasible sets for two-state example with varying discreteness restrictions. Sets U are shown in the �rst
column, with isolated points indicated by × markers. Sets XN for varying N are shown in the second column.
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Figure 2.5: Unforced dynamics for switched system example. When switching from u1 = 0 to u1 = 1, the direction
of rotation changes, as does the stretching along each axis.

Table 2.1: Values of matrices for switched system example.

i A(i) B(1)

0
(

0.9799 −0.0616
0.2463 0.9799

) (
0.0248 −0.0008
0.0031 0.0248

)
1

(
0.9799 0.2463
−0.0616 0.9799

) (
0.0248 0.0031
−0.0008 0.0248

)

with u1 ∈ {0, 1} to choose between to possible sets of linear dynamics. Figure 2.5 shows the (unforced) evolution of x

for u1 = 0 and u1 = 1. The remaining inputs (u1, u2) ∈ [−1, 1]2 are provided for to give additional degrees of freedom,

although the gain is small (see values in Table 2.1). The system states are restricted to the box (x1, x2) ∈ [−2.5, 2.5]2.

Choosing a feasible setpoint xsp(t), usp(t), the stage cost is taken as

`(x, u, t) = |x− xsp(t)|2Q + |u− usp(t)|2R

with Q = I and R = diag(0, 1, 1) so that the discrete actuator is not penalized, but the two continuous actuators

are. We note that, following Remark 2.19, this cost function ensures that x→ 0 and u2, u3 → 0 as t→∞, but not

necessarily that u1 → 0. For a terminal control law, we note that the matrices A(0) and A(1) are both stable, and thus

a feasible (though highly suboptimal) control law is u = (1, 0, 0) with terminal cost Vf (x, t) = |x− xsp(t)|2P with P

satisfying the Lyapunov equation A(1)TPA(1) +Q = P . As a terminal regions Xf (t), we can take any sublevel set

of Vf ( · ) that �ts within X(t), although in this example, the terminal constraint is not binding for a suitably large Xf

and horizon N .

To start, we consider a steady-state setpoint xsp(t) ≡ 0, usp(t) ≡ 0. Note that at x = 0, the value of u1 does not

matter. For three initial conditions, we simulate closed-loop MPC. Note that because the optimization is di�cult to
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Figure 2.6: Closed-loop trajectory for switched system with xsp(t) ≡ 0. Red segments indicate u1 = 0, while green
segments indicate u1 = 1.

solve to optimality, we make use of suboptimal MPC and give the solver a time limit of 10 s per step, and we only

optimize every tenth time point. A plot of closed-loop behavior is shown in Figure 2.6 These trajectories illustrate the

fact that the system can approach the origin along the line x1 = −x2 by switching back and forth from u1 = 0 to

u1 = 1. Thus, the optimal trajectory is to choose one value of u1 to get to the critical line as quickly as possible and

then cycle between the two. However, u1 does not necessarily switch every period, even close to the origin. Indeed,

when the constraints on x and u are inactive, the problem is scale-invariant (that is, the optimal switching sequence

for an initial condition x is the same as for initial condition ρx for scalar ρ). Thus, the optimal solution illustrates

fractal behavior near the origin, and switching continues inde�nitely as the system approaches the origin. Thus, even

though the discrete actuator is asymptotically constant, there is still signi�cant bene�t optimizing it directly.

To illustrate the time-varying capabilities of MIMPC, we use a time-varying setpoint equal to the non-decaying

orbit of the system under A(1). Note that we wish to stabilize the system in phase with the setpoint, and that the

setpoint is not periodic (the trajectory is homeomorphic to irrational rotation). As before, since A(1) is stable, so we

use Vf (x, t) = |x− xsp(t)|2P and κf (x, t) = {usp(t)} once more. Xf (t) can still be taken as sublevel sets of Vf ( · )

except that they must be shrunk due to the setpoint being closer to the state constraints. We illustrate one possible

choice for Xf (t) in Figure 2.7. Starting from an initial condition x(0) = (−2, 0), which is well away from the setpoint

xsp(0) = (2, 0), closed-loop MPC is simulated using the same strategy as before. The resulting closed-loop trajectory

is shown in Figure 2.8. From this trajectory, we see that MPC does stabilize the time-varying trajectory. Interestingly,

rather than try to move directly toward the setpoint, the optimal solution is actually to wait for the setpoint to move
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Figure 2.7: Time-varying terminal sets for switched system example. Shaded regions show Xf (t), points show xsp(t),
while dashed lines show evolution of Xf (0) under the terminal control law κf ( · ). Note that the terminal regions can
be taken larger than shown.

towards the initial condition. The optimizer exploits this capability by using the discrete actuator to remain near the

left edge of X, after which it meets up with and follows xsp(t). After 100 steps, |x− xsp| is on the order of 0.004; were

the system forced to use u1 = 1 constantly, it would require nearly 500 steps to achieve the same level of convergence.

Therefore, direct optimization of the discrete actuator u1 leads to signi�cantly improved performance even though it

is asymptotically constant.

Note that for simulation, this problem is formulated using CasADi (Andersson et al., 2018) via MPCTools (Risbeck

and Rawlings, 2018a). Optimizations are performed using Gurobi (Gurobi Optimization, LLC, 2018).

2.4.3 Nonlinear Batch Production

In this example, we consider an example of nonlinear batch production �rst presented in Rawlings and Risbeck (2015).

The goal of the system is to deliver a liquid product with concentration limits on a speci�c component. To produce

this product, two parallel batch reactors are operated. In each time interval, the batch reactors can be used or not

used, and if they are used, the total volume and component concentration can vary between (nonzero) minimum and

maximum levels. The output of each batch reactor is sent into a large mixing tank, and then a �xed amount of product

is removed; while the individual batches do not obey the concentration limits, the �nal product withdrawn from the

tank must satisfy constraints. The system is diagrammed in Figure 2.9. Note that the problem is time-invariant, so we

omit time indices throughout. We wish to apply mixed-integer tracking MPC to this system.
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Figure 2.8: Closed-loop trajectory for switched system with time-varying xsp(t). Gray curve in the timeseries plots
show setpoint.
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Figure 2.9: Diagram of nonlinear batch production example. Discrete actuators decide whether or not to operate
each reactor, and continuous actuators choose batch sizes and concentrations.
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To model this system, we track the tank concentration via its total volume vT and the mass mT of speci�c

component. Similar variables vi and mi are used for reactor batches, with additional discrete variables zi ∈ {0, 1} to

determine utilization (all for i ∈ {1, 2}). The system model is as follows:

v+
T = vT + v1 + v2 − vd

m+
T = (mT +m1 +m2)

(
1− vd

vT + v1 + v2

)

Note that vd is a �xed parameter that represents the volume withdrawn from the tank at the end of each period.. The

system states x := (vT,mT) are required to satisfy

vmin
T ≤ vT ≤ vmax

T , ρmin
T vT ≤ mT ≤ ρmax

T vT,

which enforces both volume and concentration limits for the tank. Similarly, the system inputsu := (z1, v1,m1, z2, v2,m2)

must satisfy

zi ∈ {0, 1}, vmin
i zi ≤ vi ≤ vmax

i zi, ρmin
i vi ≤ mi ≤ ρmax

i vi (2.16)

for i ∈ {1, 2}. Here, vmin
i and vmax

i give the minimum and maximum batch sizes, while ρmin
i and ρmax

2 are the minimum

and maximum concentrations that can be achieved by each reactor. Note that the second constraint is needed so that

volume satis�es vi = 0 when the reactor is o� (zi = 0) and vmin
i ≤ vi ≤ vmax

i when the reactor is on (vi = 1).

Assume that the desired steady state

xss := (vss
T ,m

ss
T ), uss := (zss

1 , v
ss
1 ,m

ss
1 , z

ss
2 , v

ss
2 ,m

ss
2 )

is given. As a tracking cost, we take the standard quadratic `(x, u) = |x− xss|2Q + |u− uss|2R with Q = diag(1, 1)

and R = diag(0, 0.25, 0.5, 0, 0.25, 0.5). Numerical values of constraints are shown in Figure 2.10.

As suggested in Rawlings and Risbeck (2015), we choose a terminal control law by linearizing the model and

determining a local linear quadratic regulator (LQR) near the steady-state operating point. Although the system has

six inputs, only two are available at steady state: the discrete inputs z1 and z2 are �xed, v1 is at its lower bound, and

m2 is at its upper bound (which depends on v2). Thus, we follow the suggestion of Rao and Rawlings (1999) and use

only the reduced system of unsaturated inputs: take m1 and v2 as free inputs, assume m2 = ρmax
2 v2 to stay in the null

space of the active constraint, and �x all other inputs to their steady-state values, giving a reduced linear system with

two states and two inputs. This procedure yields a linear control law u = κf (x) := K(x− xss) + uss. A candidate

terminal set is then

Xf = {x ∈ X | κf (x) ∈ U, f(x, κf (x)) ∈ X}

We show Xf and the active constraints along each boundary segment in Figure 2.11. After verifying that Xf is

invariant under κf ( · ) (as illustrated in Figure 2.11), the terminal set Xf is de�ned.
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Table 2.2: Relaxation and restoration methods for suboptimal solution. All methods use horizon N = 10.

Method Relaxation and Restoration Steps
Warm-Start Use warm-start without any further optimization.
All On Fix all binary variables to 1.
Sum Error Relax binary variables to continuous; then, use a sum-up rounding procedure

(Sager et al., 2010) to �x binary variables and re-optimize continuous variables.
Round Relax binary variables to continuous; then, round vi ∈ (0, vmin

i ) to 0 or vmin
i and

adjust mi appropriately

To illustrate Theorems 2.13 and 2.18, we simulate the closed-loop evolution of the system under both optimal

and suboptimal MPC. For optimal MPC, each MINLP problem is solved to optimality using BARON (Sahinidis, 2018).

For suboptimal MPC, we start from a feasible (but highly suboptimal solution) u also obtained from BARON. The

“optimization” step of choosing ǔ ∈ Ǔ∗N (x,u) is then as follows:

• Solve a continuous relaxation of the control problem using a local NLP solver

• Restore feasibility by adjusting the solution, in particular ensuring the zi are binary

• If this rounded solution is better, use it; otherwise, use the warm-start

The successor warm-start u+ is then obtained by applying the the linear terminal control law κf ( · ). For the relaxation

and restoration steps, multiple methods are employed as summarized in Table 2.2. Closed-loop solutions for optimal

and suboptimal MPC are shown in Figure 2.12. From this example, we see that optimal MPC proceeds directly to the

setpoint, while suboptimal MPC takes a roundabout path but eventually stabilizes.

To compare optimal MPC to the other suboptimal methods, we show a phase portrait of closed-loop evolution in

Figure 2.13. As expected, the system is stable regardless of which suboptimal strategy is used, although the closed-loop

trajectories can be quite di�erent. For example, while the optimal controller proceeds directly to the setpoint, the

Warm-Start and Sum Error methods take longer transients before �nally converging; by contrast, the Round method

is quite close to optimal, indicating that rounding is a suitable heuristic method for this particular system. Thus, while

any suboptimal algorithm (satisfying (2.14)) will stabilize the system, performing some form of direct optimization

often yields better performance.

2.5 Summary

In this chapter, we have presented a mathematical formulation for time-varying tracking MPC. Under generalized but

otherwise standard assumptions, we have shown that optimal and suboptimal MPC are both stabilizing on the feasible

set XN (t). In this formulation, discreteness restrictions on u do not need to be explicitly handled, and thus these
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Figure 2.12: Closed-loop trajectories for the batch scheduling example using optimal and suboptimal MPC. Shaded
regions show feasible space, while dashed lines show the setpoint. Note that the suboptimal trajectory is for the Sum
Error method.
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results are a natural extension of modern MPC theory. Through examples, we have also illustrated the bene�ts of

allowing discrete inputs to be optimized directly, rather than trying to apply heuristic methods. Via liberal application

of suboptimal MPC, we need not �nd globally optimal solutions to any MPC problem, and thus computational

requirements are readily satis�able using standard hardware.

Extensions of the ideas in this chapter to other settings are presented in Chapter 3. Speci�c applications of these

ideas are shown in the remaining chapters. For additional developments for tracking MPC with discrete actuators,

see Rawlings and Risbeck (2017) and Allan et al. (2017).

2.6 Appendix: Lemmas and Proofs

2.6.1 Cost to Go

Lemma 2.22 (Cost to go bound): Suppose Assumption 2.9 is satis�ed. Then, for any t, T ∈ T and x ∈ Xf (t), there exists

a sequence u := (u(t), u(t+ 1), . . . , u(t+ T − 1)) ∈ UT (x, t) such that VT (x,u, t) ≤ Vf (x, t).

Proof. We prove by induction. For the base case T = 0, we have VT (x,u, t) = Vf (x, t), and so the bound holds

trivially. Now suppose the bound holds for T ∈ T; we show that it also holds for T + 1. Choose any u ∈ κf (x, t)

and de�ne x+ := f(x, u, t). We have x+ ∈ Xf (t+ 1), and thus by the inductive hypothesis, there exists a sequence

u+ ∈ UT (x+, t+ 1) satisfying

VT (x+,u+, t+ 1) ≤ Vf (x+, t+ 1).

Now, let u be the sequence formed by prepending u to u+. We have u ∈ UT+1(x, t), and

VT+1(x,u, t) = `(x, u, t) + VT (x+,u+, t)

≤ `(x, u, t) + Vf (x+, t+ 1)

≤ Vf (x, t)

in which we have applied the cost decrease condition from Assumption 2.9. Thus, the inductive hypothesis holds for

T + 1, and the lemma is proved.

Corollary 2.23 (Optimal cost bound): Suppose Assumption 2.9 is satis�ed. For all t, T ∈ T and x ∈ Xf (t), the optimal

cost V ∗( · ) satis�es V ∗(x, t) ≤ Vf (x, t).

Proof. From Lemma 2.22, there exists a feasible sequence u ∈ UT (x, t) whose cost is less than Vf (x, t); thus, the

optimal cost is less than Vf (x, t).



40

2.6.2 K Functions and Continuity

The following de�nitions and theorems are adapted from Rawlings and Risbeck (2015).

Definition 2.24 (Property Pδ): A system with testable condition C : X → R≥0 with C(0) = 0 is said to have

property Pδ if for every ε > 0 there exists δ(ε) > 0 such that C(x) ≤ ε for every x ∈ X satisfying |x| ≤ δ(ε).

Definition 2.25 (Property PK): A system with testable condition C : X → R≥0 with C(0) = 0 said to have property

PK if there exists �nite b > 0 and K-function γ( · ) de�ned on [0, b], such that C(x) ≤ γ(|x|) for every x ∈ X

satisfying |x| ≤ b.

Proposition 2.26 (Equivalence of Pδ and PK): A system has property Pδ if and only if it has property PK.

Proof. We show �rst that property PK implies property Pδ . Suppose PK holds and let ε > 0 be arbitrary. De�ne

δ(ε) :=

{
γ−1(ε) ε ≤ γ(b),

b else,

which means γ(δ(ε)) = min(ε, γ(b)). Now, suppose |x| ≤ δ(ε). By Property PK, we have

C(x) ≤ γ(|x|) ≤ γ(δ(ε)) ≤ min(ε, γ(b)) ≤ ε,

which implies Property Pδ .

We now show that property Pδ implies property PK. Without loss of generality, we assume that the function

δ(ε) is strictly increasing. As proof, suppose property Pδ holds for some δ̂(ε) which is possibly not increasing. Let

δ̄(ε) := min(δ̂(ε), 1). We note that property Pδ holds also for δ̄(ε) because δ̄(ε) ≤ δ̂(ε). Next, let

δ(ε) := (1− e−ε) sup
s∈(0,ε]

δ̄(s),

which is well-de�ned because δ( · ) is bounded. Furthermore, δ(ε) is increasing, as the �rst term is strictly increasing

and the second is nondecreasing. To show that Pδ holds for δ(ε), choose ε1 > 0 arbitrarily. We claim there exists

ε0 ∈ (0, ε1] such that δ̄(ε0) ≥ δ(ε1). Suppose not; then, for each s ∈ (0, ε1], it holds that

δ̄(s) < δ(ε1) < sup
s∈(0,ε1]

δ̄(s),

which is a contradiction because the strict upper bound δ(s) upper bound strictly less than the supremum. With this

value, for all x ∈ X , we have

|x| ≤ δ(ε1) =⇒ |x| ≤ δ̄(ε0) =⇒ C(x) ≤ ε0 =⇒ C(x) ≤ ε1

which means Pδ holds for δ(ε).

Now, de�ne the doubly-in�nite sequence ak = ek for integers k and let bk := δ(ak−1). Note the shift in the

de�nition of bk so that bk < δ(ak). De�ne

β(s) := bk + (bk+1 − bk)
s− ak

ak+1 − ak
, s ∈ [ak, ak+1], k = 0,±1,±2, . . . ,
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ε

δ

δ̂(ε)
δ̄(ε)

sups∈(0,ε] δ̄(ε)

δ(ε)
β(ε)

δ̂(ε) Positive

δ̄(ε) Bounded

sups∈(0,ε] δ̄(ε) Nondecreasing

δ(ε) Increasing
β(ε) Continuous

Figure 2.14: Construction of β( · ) as used in the proof of Proposition 2.26. The listing on the right shows the
additional property gained by each successive function.

with β(0) := 0. The function β( · ) is piecewise-linear, and thus continuous; in addition, because bk is a strictly

increasing sequence, β( · ) is also increasing. Therefore, β( · ) is a K function de�ned on [0,∞), and furthermore,

β(ε) < δ(ε) for all ε > 0.

Finally, choose any b such that 0 < b < lims→∞ β(s) ≤ 1, and let γ(s) := β−1(s) for s ∈ [0, b]. Now, suppose

|x| ≤ b and let ε = γ(|x|). Thus, because

|x| ≤ γ−1(ε) = β(ε) ≤ δ(ε),

we have by property Pδ that C(x) ≤ ε = γ(|x|), Therefore, property PK holds for bound γ( · ). Note that an example

of the various functions constructed in this proof is shown in Figure 2.14

Corollary 2.27 (K-function continuity): A function f : X ⊆ Rn → Rm is continuous at x ∈ X if an only if there

exists a scalar b > 0 and K function γ( · ) such that

|f(x)− f(y)| ≤ γ(|x− y|)

for all y ∈ X such that |x− y| ≤ b.

Proof. Without loss of generality, assume x = 0. De�neC(y) := |f(x)− f(y)| and apply Proposition 2.26 to standard

ε/δ continuity.

Proposition 2.28 (Global K-function overbound.): Let X ⊆ Rn be closed and suppose that a function V : X → Rm

is continuous at x0 ∈ X and locally bounded on X (i.e., bounded on every compact subset of X). Then, there exists a

K∞-function α( · ) such that |V (x)− V (x0)| ≤ α(|x− x0|) for all x ∈ X .

Proof. First, by Corollary 2.27, we know that there exists a K-function γ( · ) and a constant b0 > 0 such that

|V (x)− V (x0)| ≤ γ(|x− x0|) whenever |x− x0| ≤ b0 Starting from b0, choose any strictly increasing and un-
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s

α(s)

β1γ(s)/γ(b0)

β3 + (β2 − β3)
s−b2
b3−b2

β1

b0

β2

b1

β3

b2

β4

b3

β5

b4

β0

Figure 2.15: Construction of global K function overbound α( · ). On [0, b0], α(s) is constructed by rescaling γ(s). For
larger values of s, α(s) interpolates the points (bk, βk+1)

bounded sequence (bk)∞k=0. For each k ∈ I≥1, de�ne the set Bk := {x ∈ X : |x− x0| ≤ bk}. We note that each Bk is

a compact subset of X and further that X =
⋃∞
k=0 Bk . Next, de�ne a sequence (βk)∞k=0 as

βk := sup
x∈Bk

|V (x)− V (x0)|+ k

which is well-de�ned by compactness of the Bk and strictly increasing due to the extra +k term. Finally, de�ne

α(s) :=


β1

γ(b0)
γ(s) s ∈ [0, b0)

βk+1 + (βk+2 − βk+1)
s− bk

bk+1 − bk
s ∈ [bk, bk+1) ∀k ∈ I≥0

We illustrate this construction in Figure 2.15. Clearly, α(0) = 0 and α is continuous and increasing. Furthermore,

because we have shifted the βk as before, we see that |V (x)− V (x0)| ≤ α(|x− x0|).

Corollary 2.29 (Global K-function overbound, time-varying case.): Let X ⊆ Rn be closed and suppose that V :

X × T→ Rm is uniformly continuous at x0 ∈ X and uniformly locally bounded on X (i.e., bounded on every compact

subset of X). Then, there exists a K-function α( · ) such that |V (x, t)− V (x0, t)| ≤ α(|x− x0|) for all x ∈ X and

t ∈ T.

Proof. By applying Proposition 2.26 to uniform continuity, a uniform localK-function bound on V ( · ) can be obtained.

The corollary then follows from the the logic of Proposition 2.28 using

βk := sup
t∈T

sup
x∈Bk

|V (x, t)− V (x0, t)|+ k,

which is well-de�ned by the uniform locally boundedness property.
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2.6.3 Proof of Proposition 2.11

Proof. We will show that statements (a), (b), and (c) of Proposition 2.11 all imply (d), which itself implies Assump-

tion 2.10.

(a) By Corollary 2.23, we have that V ∗N (x, t) ≤ Vf (x, t) for all x ∈ Xf (t). From continuity and Proposition 2.28,

there exists a K∞ function α( · ) such that Vf (x, t) ≤ α(|x|) on Xf (t). Thus, condition (d) is implied.

(b) From uniform continuity of V ∗N ( · ), we know that for each ε > 0, there exists δ > 0 such that |x| ≤ δ implies

V ∗N (x, i) ≤ ε for all t ∈ T, recalling that V ∗N ( · ) is nonnegative and zero at the origin. By Corollary 2.27 in

Section 2.6, this is equivalent to the existence of a K function γ( · ) de�ned on [0, b], for some b > 0, such that

V ∗N (x, i) ≤ γ(|x|) for all x ∈ X , with X := {x ∈ Rn : |x| ≤ b} a neighborhood of the origin. Thus, condition

(d) is also implied.

(c) The uniform continuity of f( · ) and `( · ) implies the existence of K∞ function bounds of the form

|f(x, u, t)| ≤ αfx(|x|) + αfu(|u|)
`(x, u, t) ≤ α`x(|x|) + α`u(|u|)

for all (x, u) ∈ Z(t) and t ∈ T. Note that these bounds are global via application of Corollary 2.29.

Let x ∈ XN (t) be arbitrary, and let u ∈ UN (x, t) satisfy |u| ≤ γ(|x|) as per the hypothesis. De�ne x as the

corresponding sequence of states. For the initial time point, we have

|x(1)| = f(x(0), u(0), t) ≤ αfx(|x(0)|) + αfu(|u(0)|)

Proceeding recursively, we have

|x(k + 1)| ≤ αfx(|x(k)|) + αfu(|u(k)|)
≤ αfx (αfx(|x(k − 1)|) + αfu(|u(k − 1)|)) + αfu(|u(k)|)
≤ αfx (2 |x(k − 1)|) + αfx (2 |u(k − 1)|) + αfu(|u(k)|)

≤ αfx(2k |x(0)|) +

k∑
j=0

αfu(2k−j |u(j)|)

in which we have used the fact that for any K∞ function α( · ), it holds that α(s1 + s2) ≤ α(2s1) + α(2s2).

Recalling that |u(k)| ≤ |u| ≤ γ(|x(0)|), we have

|x(k)| ≤ ρk(|x(0)|), ρk(s) := αfx(2k−1s) +

k−1∑
j=0

αfu(2k−1−jγ(s))

for k ≥ 1. Note also that each ρk( · ) is a K∞ function, as it is a �nite sum and composition of K∞ functions.
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For the stage cost, we have

`(x(k), u(k), t+ k) ≤ α`x (ρk(|x(0)|)) + α`u(|u(k)|)
≤ α`x (ρk(|x(0)|)) + α`u(γ(|x(0)|))

Similarly, for the terminal cost, we have

Vf (x(N), i+N) ≤ α2(|x(N)|)
≤ α2 (ρN (|x(0)|))

Applying these bounds to the objective function, we have

VN (x,u, t) ≤ α(|x(0)|), α(s) :=

N−1∑
k=0

(α`x(ρk(s)) + α`u(γ(s))) + α2 (ρN (s))

Because u is feasible, the optimal value of VN ( · ) also satis�es this bound. Taking any ε > 0, we have

V ∗N (x, t) ≤ α(|x|) for all t ∈ T and x ∈ Bε ∩ XN (t), which implies condition (d).

(d) By Proposition 2.26, we use the bound V ∗(x, t) ≤ α(|x|) (which is valid for |x| ≤ ε to conclude that V ∗( · ) is

uniformly continuous at zero. In addition, because VN ( · ) is uniformly locally bounded, V ∗N ( · ) is also uniformly

locally bounded. Therefore, by Corollary 2.29, we can construct a global K overbound that is valid for t ∈ T

and XN (t), and Assumption 2.10 holds.
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Chapter 3

Extensions of MIMPC

How many people ruin themselves by laying out money on
[setpoints] of frivolous utility?

— Adam Smith
The Theory of Moral Sentiments

3.1 Introduction

In the previous chapter, a problem formulation for mixed-integer MPC has been presented, and nominal stability

properties are shown. While these developments form a solid basis for theory and application of MIMPC, they are

not su�cient for the systems we would like to consider as major applications. Thus, in this chapter, we wish to

develop extensions of nominal tracking MIMPC to cover a much wider class of systems. To this end, we present

two main extensions: �rst, we consider the inherent robustness of MIMPC to small system disturbances to show

that certain stability properties sill hold; second, we discuss performance a stability theorems to cover cases where

MPC is not tracking a �xed setpoint or trajectory but rather directly optimizing a more tangible cost function. These

developments are then used throughout the remainder of this thesis.

3.2 Inherent Robustness of MIMPC

The stability theory in the previous chapter was developed assuming nominal operation; that is, the system model

f( · ) is exact and the system evolves exactly as x+ = f(x, u, t). However, this assumption is unlikely to be satis�ed

in real systems, for example due to unmodeled disturbances and the intrinsic fact that the model f( · ) does not

exactly describe the system. Therefore, it is desirable to ensure that nominal system properties do not catastrophically

deteriorate when small disturbances are present.
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Within the literature, there are two main classes of techniques to address disturbances at the design phase (Mayne,

2016). In robust MPC, the system is designed to maintain constraint satisfaction subject to a set of disturbances that is

�xed a priori (Mayne et al., 2005), e.g, using min/max approaches (Lazar et al., 2008) or tube-based methods (Falugi

and Mayne, 2011). Alternatively, in stochastic MPC, cost and constraint satisfaction are considered in a probabilistic

sense based on distributional knowledge of disturbances (Mesbah, 2016). In general, the goal is to optimize over

feedback policies so that the system can hedge against and respond to disturbances as they are realized (Goulart et al.,

2006). For more information about these methods, see Rawlings et al. (2017b, Chapter 3). Although robust-by-design

approaches are valuable when disturbances are prevalent, we instead focus on demonstrating that nominal MPC is

inherently robust, i.e., robust to small disturbances without any modi�cation to the nominal controller.

For inherent robustness, Grimm et al. (2004) demonstrates instances where tight state or terminal constraints

can lead to destabilization from arbitrarily small disturbances. When there are no state constraints, robustness

can be shown via particular choice of the terminal region and control law (Yu et al., 2014). It can also be shown

that robustness for optimal MPC follows from uniform continuity of the optimal cost function (Grimm et al., 2007).

However, the converse is not true, and robustness can follow despite a discontinuous optimal cost and/or control law

(Allan et al., 2017). Inherent robustness has also been shown for various formulations of suboptimal MPC (Allan et al.,

2017; Lazar et al., 2008; Pannocchia et al., 2011). In Allan et al. (2016), it was also shown that these results extend to

systems with discrete actuators. We will follow these developments with suitable extensions to consider generalized

norms rather than true norms.

3.2.1 Robustness Formulation

For simplicity, we consider the class of additive state disturbances. Thus, the (autonomous) system evolves as

x+ = f(x, t) + w (3.1)

for the disturbance variable w. Under suboptimal MPC as de�ned in Section 2.2.5, we analyze stability using the

extended state z := (x,u) in which u is the incumbent warm-start sequence of inputs. By analogy with (2.15), we

de�ne the disturbed closed-loop evolution of x as

z+ :=

(
x+

u+

)
=

(
f(x, κ̌(x,u, t), t) + w

ζ(x, ǔ, t)

)
, ǔ ∈ Ǔ∗N (x,u, t), w ∈W. (3.2)

for the disturbance taking values in W. Recall that

ζ(x,u, t) :=
{

(u(1), . . . , u(N − 1), uf ) : uf ∈ κf (φ(N, x,u, t), t+N)
}
,

ǓN (x, t) := {u ∈ UN (x, t) : VN (x,u, t) ≤ γ(‖x‖x) if ‖x‖x ≤ ε},
Ǔ∗N (x,u, t) :=

{
ǔ ∈ ǓN (x, t) : VN (x, ǔ, t) ≤ VN (x,u, t),

ζ(x, ǔ, t) ∈ ǓN (x+, t+ 1), x+ = φ(1, x, ǔ, t)
}
,



47

as de�ned in the previous chapter.

As a de�nition of robustness, we consider input-to-state stability (ISS) of the extended state (Jiang and Wang,

2001). As general de�nitions, we take the following, which are time-varying extensions of the de�nitions in Allan

et al. (2017). Note that in these de�nitions, we allow a generalized norm ‖ · ‖ on x, but we require a true norm (in this

case, the Euclidean norm | · |) on the disturbance sequence w. Thus, we can choose to exclude components of x from

this stability requirement, but the system must be robust to all components of w.

Definition 3.1 (Robust positive invariance): Sets X (t) are said to be robustly positive invariant under the disturbed

system x+ = f(x, t) + w if there exists ω > 0 such that, if |w| ≤ ω, then f(x, t) + w ∈ X (t+ 1) for all x ∈ X (t)

and t ∈ T.

Definition 3.2 (Robust asymptotic stability): The disturbed system x+ = f(x, t) + w is said to be robustly asymp-

totically stable for the generalized norm ‖ · ‖ on X (t) if the sets X (t) are robustly positive invariant and there exist

ω > 0, a KL function β( · ), and a K∞ function σ( · ) such that, for all t ∈ T,

‖x(t+ k)‖ ≤ β(‖x(t)‖ , k) + σ(|w0:k−1|)

with and k ∈ I≥0 for all trajectories starting from x(t) ∈ X (t) subject to disturbance sequences w with |w| ≤ ω.

Analogous to the undisturbed case, we prove that the system is robustly asymptotically stable indirectly by means

of a modi�ed Lyapunov equation as follows:

Definition 3.3 (ISS Lyapunov function): A function V : X × T→ R≥0 is said to be an ISS Lyapunov function for

the disturbed system x+ = f(x, t) + w and generalized norm ‖ · ‖ on X (t) if the sets X (t) are robustly positive

invariant and there exist ω > 0, K∞ functions α1( · ), α2( · ), and α3( · ) as well as K function σ( · ) such that

α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖) (3.3)
V (f(x, t) + w, t+ 1) ≤ V (x, t)− α3(‖x‖) + σ(|w|) (3.4)

for all x ∈ X (t), w satisfying |w| ≤ ω, and t ∈ T.

Theorem 3.4 (ISS Lyapunov stability theorem): Suppose the sets X (t) are robustly positive invariant for the disturbed

system x+ = f(x, t) + w and that a function V ( · ) is an ISS Lyapunov function for f( · ). Then, the system is robustly

asymptotically stable.

Proof. A proof of the time-invariant case can be found in Allan et al. (2017). The time-varying case follows by the

same logic, as the bounds αi( · ) and σ( · ) are time-invariant.
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3.2.2 Robustness of Suboptimal MPC

To prove robustness for suboptimal MPC, we use slightly more restrictive assumptions than in Chapter 2. These

assumptions ensure favorable continuity properties for the system model and cost functions. Note, however, that as

in Allan et al. (2017), these assumptions do not necessarily imply that the resulting optimal control law or optimal

cost function are continuous.

Assumption 3.5 (Basic function properties): The functions f( · ), `( · ), and Vf ( · ) are uniformly continuous in t and

x on T and X(t).

Assumption 3.6 (Basic set properties): For each t ∈ T, X(t) = Rn and U(t) is compact. The set Z(t) = X(t)× U(t).

The composite set U is bounded.

Assumption 3.7 (Norm and cost bounds): The generalized norm of the extended state ‖z‖ can be expressed as

‖z‖ = ‖x‖x + ‖u‖u for generalized norms ‖ · ‖x and ‖ · ‖u. The sublevel sets of ‖ · ‖x are compact. There exists a

K∞ function α( · ) such that `(x, u, t) ≥ α1(‖x‖x + ‖u‖u) for all x ∈ Z(t) and t ∈ T. The function γ( · ) is K∞, and

the terminal cost satis�es 0 ≤ Vf (x, t) ≤ γ(‖x‖x) for all x ∈ Xf (t) and t ∈ T.

Assumption 3.8 (Terminal control law): For each t ∈ T and x ∈ Xf (t), the set

κf (x, t) =
{
u ∈ U(t) : f(x, u, t) ∈ Xf (t+ 1), Vf (f(x, u, t), t+ 1) ≤ Vf (x, t)− `(x, u, t)

}
is nonempty. For t ∈ T, the terminal sets satisfy Xf (t) = levτ Vf ( · , t) for some τ > 0.

In comparison to Section 2.2.3, the assumptions here are stronger. We highlight the main di�erences as follows:

• The model and cost functions must be uniformly continuous in x rather than just continuous or lower semi-

continuous.

• The set X(t) is required to be the entire space Rn.

• No shared state/input constraints are allowed.

• The terminal cost Vf ( · ) must be overbounded by the K∞ function γ( · ).

• The terminal regions Xf (t) are required to be nontrivial in that they contain a neighborhood of the origin and

are de�ned as a sublevel set of Vf ( · ).

In particular, the less general assumptions about the constraint sets is to cope with the fact that nonzero disturbances

w could force the system to violate given constraints.

The main result of this section is the following stability theorem:
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Theorem 3.9 (Robust asymptotic stability of suboptimal tracking MPC): Suppose Assumptions 3.5 to 3.8 are satis�ed.

Then, the closed-loop system (3.2) is robustly asymptotically stable on ŽN (t).

Proof. The proof here is based on Allan et al. (2017), although notation has been changed. The proof consists of two

main parts: we �rst demonstrate that ZN (t) is robustly positive invariant, and we then show that the cost function

VN ( · ) is an ISS Lyapunov function.

For robust positive invariance, we start by noting that because φ( · ) is the �nite composition of f( · ), and both

f( · ) and Vf ( · ) are uniformly continuous in x, we can apply Proposition 2.26 to �nd a constant ω1 > 0 and a K∞
function αf ( · ) such that

|Vf (φ(N, x1, t,u), t+N)− Vf (φ(N, x2,u, t), t+N)| ≤ αf (|x1 − x2|),

for any |x1 − x2| ≤ ω1. Now, suppose the system is currently at z := (x,u). Let z+ := (x+,u+) denote the (disturbed)

successor state of (3.2), and let x̂+ = x+−w, i.e., the nominal evolution of the state x. Let xf := φ(N−1, x+, t+1,u+),

x+
f := φ(N, x+, t+ 1,u+), and x̂+

f := φ(N, x̂+, t+ 1,u+). We thus have∣∣∣Vf (x+
f , t+N + 1)− Vf (x̂+

f , t+N + 1)
∣∣∣ ≤ αf (∣∣x+ − x̂+

∣∣) = αf (|w|).

Since Vf ( · ) is a scalar, we can infer that

Vf (x+
f , t+N + 1) ≤ Vf (x̂+

f , t+N + 1) + αf (|w|). (3.5)

By Assumptions 3.7 and 3.8, we also have

Vf (x̂+
f , t+N + 1)− Vf (xf , t+N) ≤ −`(xf , uf , t+N) ≤ −α1(‖xf‖x + ‖uf‖u),

in which u+
f is the �nal element of u+. Now, we claim that there exists a constant τ+ ∈ (0, τ) such that Vf (x̂+

f , t+

N + 1) ≤ τ+:

• Suppose Vf (xf , t+N) ≥ τ/2. From Assumption 3.7, we have ‖xf‖x ≥ α−1
2 (τ/2). Therefore, Vf (x̂+

f , t+N +

1)− Vf (xf , t+N) ≤ −α1(α
−1
2 (τ/2)). Thus, Vf (x̂+

f , t+N + 1) ≤ τ − α1(α
−1
2 (τ/2)).

• Alternatively, suppose Vf (xf , t + N) < τ/2. From the cost decrease condition in Assumption 3.8, we have

immediately that Vf (x̂+
f , t+N + 1) ≤ τ/2.

Therefore, taking τ+ = min(τ/2, τ −α1(α
−1
2 (τ/2))), the statement holds. Combining this bound with (3.5), we have

that

Vf (x+
f , t+N + 1) ≤ τ+ + αf (|w|).

Thus, if we restrict |w| ≤ ω2 := α−1
f (τ − τ+), we have that Vf (x+

f , t + N + 1) ≤ τ , and so x+
f ∈ Xf (t + N + 1).

Therefore, u+ ∈ ǓN (x+, t+ 1), and z+ ∈ ŽN (t+ 1). We conclude that for |w| ≤ ω := min(ω1, ω2), we have that

ŽN (t) is robustly positive invariant.
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For the Lyapunov function, we note �rst that the stronger assumptions imply Theorem 2.18 from the previous

chapter. Therefore, we immediately have the existence ofK∞ functions α1( · ), α2( · ), and α3( · ) such that α1(‖z‖) ≤

VN (z, t) ≤ α2(‖z‖) and

VN (ẑ+, t+ 1) ≤ VN (z, t)− α1(‖x‖),

for ẑ+ := (x̂+,u+) giving the nominal evolution of the system. We then appeal to the fact that VN ( · ) is uniformly

continuous in x and t (by composition of f( · ), `( · ), and Vf ( · ), all of which are uniformly continuous). Therefore,

by application of Proposition 2.26, we have a constant ω3 > 0 and a K∞ function αV ( · ) such that∣∣VN (x+,u+, t+ 1)− VN (x̂+,u+, t+ 1)
∣∣ ≤ σV (

∣∣x+ − x̂+
∣∣) = σV (|w|).

As before, we can remove the absolute value to �nd

VN (x+,u+, t+ 1) ≤ VN (x̂+,u+, t+ 1) + σV (|w|).

Combining this relationship with the nominal cost decrease, we have

VN (z+, t+ 1) ≤ VN (z, t)− α3(‖z‖) + σV (|w|)

as the necessary decrease condition. Therefore, VN ( · ) is an ISS Lyapunov function, and by Theorem 3.4, the system

is robustly asymptotically stable.

The proof is based on the fact that when the warm start adds the additional terminal input, the predicted trajectory

moves into the interior of Xf (t). Thus, when the disturbance w a�ects the system, the resulting xf may not be in

Xf (t); however, when the additional control input is applied, the successor state x+
f is in Xf (t). We illustrate a

time-invariant case in Figure 3.1. For w = 0, the system would move to x̂+ ∈ XN−1. Because of the disturbance, the

system instead moves to x+, but for su�ciently small w, it is guaranteed that x+ ∈ XN . Therefore, although the

perturbed value of xf /∈ Xf when the additional control input added by ζ( · ), the successor state x+
f does reach Xf .

Thus, ŽN is robustly invariant.

The main consequence of Theorem 3.9 is essentially that a tracking MPC controller that is nominally stable cannot

be destabilized by arbitrarily small disturbances. This property is important because even the most accurate model

is not going to exactly match the true system (e.g., due to �nite numerical precision of the optimizer). A potential

downside of the formulation of robustness as (local) ISS is that robust stability only holds for disturbance sequences

w satisfying |w| ≤ ω for some constant ω > 0. One can of course construct systems where this ω is very small, for

example by creating a model f( · ) that is nearly discontinuous. In such cases, very small (but not arbitrarily small)

w could push the system out of XN (t), and thus at the next timestep, the MPC problem is infeasible. In speci�c

applications where more explicit guarantees are necessary, robustness by design (e.g., by applying robust or stochastic
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Figure 3.1: Illustration of the proof of Theorem 3.9. The system is time-invariant.

MPC techniques) may be necessary. However, experience has shown that in most practical cases, ω can be made

quite large with the system still remaining relatively close to the setpoint. Thus, the inherent robustness of tracking

MIMPC is often su�cient.

3.2.3 Remarks

Remark 3.10: In Assumption 3.6, is was assumed that the sets X(t) are all of Rn. This restriction ensures that the

MPC problem could not be rendered infeasible by a disturbance pushing x out of X(t) by an arbitrarily small amount.

For cases where the sets X(t) represent true physical limitations of the system, the assumption can be relaxed, as no

physical disturbance could lead to violation of this constraint. For example, if a state represents the mass of water

in a tank, then that state is intrinsically constrained to be nonnegative; thus, no realization of w could cause x < 0.

As long as one assumes that the disturbances w cannot cause the system to leave X(t), then the preceding results

still hold. However, it is common to employ state constraints to enforce bounds that are desirable but can clearly

be violated by the system. Fortunately, these considerations can be included in the optimization problem via soft

constraints. If the slack variables on these constraints are subject to su�ciently large penalties, then the optimizer will

typically not choose to violate them if possible. If a disturbance happens to cause these constraints to be violated, then

the optimizer will try to choose u such that the violation is reduced and ultimately removed. Indeed, by augmenting

the state to include these constraint violations, clever choice of ‖ · ‖x can ensure that the slacks are asymptotically

zero in the nominal case and bounded when there are disturbances.
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Remark 3.11: As formulated in this section, robustness is with respect to additive state disturbances that leads to

x+ 6= f(x, u, t) as predicted. However, this formulation still assumes that the optimizer gets to know the true value

of the state x at every timestep. A more realistic treatment considers the possibility that the value of x known to

the controller is not exactly the true system value of x, for example due to measurement noise or state estimation

error. However, it can be shown Roset et al. (2008) that if a system is inherently robust to state disturbances, then it

is also robust to measurement disturbances. The proof essentially proceeds by reformulating the problem in terms

of the measured state, so that the measurement error has a similar e�ect to the state disturbance; by bounding the

measurement error, robust stability of the measured state implies robust stability of the true system state. Indeed, this

is the approach taken in Allan et al. (2017) to show robustness to both types of disturbances.

3.3 Economic MPC

Thus far in this work, we have assumed that each MIMPC problem optimizes an objective function that has been

designed speci�cally to stabilize a given setpoint. In particular, the cost functions are nonnegative a, have global

minima at ‖x‖ = 0, and on average are increasing with increasing ‖x‖. Such restrictions provide favorable stability

properties, but they require that a feasible setpoint is provided.

Assuming setpoints are generated by an oracle in accordance with higher-level objectives, then stabilizing said

setpoint will likely achieve the desired goals. However, many systems do not have the bene�t of such a wise oracle.

For example, systems that are inherently unsteady (e.g., sequential batch production environments) may not be able

satisfy constraints by remaining at a static setpoint. In addition, if disturbances are highly time-varying, then costs

could potentially be reduced by reacting asymmetrically to “good” and “bad” disturbances. However, as with standard

tracking control, it is often nontrivial to decide what sequence of inputs best achieves a given goal, and thus systems

can still bene�t signi�cantly by being able to optimize online. Therefore, we wish to extend tracking MIMPC to

apply to cases where the cost function, rather than the setpoint, has been provided. Because such objective functions

typically re�ect some measure of economic performance, we refer to this case as “economic MPC.”

3.3.1 Literature Review

Economic MPC was �rst discussed in Amrit et al. (2011) as an extension of tracking MPC. Although the controller’s

cost function does not satisfy positive de�niteness or other properties, performance bounds and asymptotic stability

to a given steady-state operating point have been established for time-invariant systems (Angeli et al., 2012; Diehl

et al., 2011; Ellis et al., 2014). Under suitable conditions, it can also be shown that these properties hold without

terminal constraints in the limit of a long prediction horizon (Grüne and Stieler, 2014; Müller and Grüne, 2015). If

it is undesirable to choose a particular steady state a-priori, Müller et al. (2013) presents a method that allows the
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optimizer to choose its own steady state to use as a terminal constraint. When certain dissipativity conditions do not

hold, stability can be analyzed in a multiobjective framework (Gri�th et al., 2017; Zavala, 2015), in which stability is

enforced by including decrease of a tracking-MPC-like cost function as an explicit optimization constraint. Strategies

have also been developed to apply robust and stochastic MPC techniques to economic MPC in order to achieve better

average performance in the case of disturbances (Bayer et al., 2014, 2016).

For systems optimally operated in a periodic cycle, the previous steady-state results can generally be extended in

a straightforward manner. By converting to deviation variables (Huang et al., 2011), stability of the periodic cycle is

equivalent to stability of the origin in the shifted system. Various dissipativity conditions can be formulated in terms

of deviation from the invariant set of a given periodic solution (Zanon et al., 2013, 2017b), once again demonstrating

stability. In these works, the underlying system is still considered to be time-invariant. Truly time-varying systems

have been considered under the more restrictive assumptions of a linear storage function and the existence of global

Lipschitz constants for the model and stage cost (Zanon et al., 2013). It can also be shown that certain dissipativity

conditions imply local linear equivalence of tracking and economic MPC (Zanon et al., 2017a), which confers the

stability of tracking MPC without losing the tangible objective function of economic MPC. Finally, necessity of certain

dissipativity conditions for stability is demonstrated in Muller et al. (2015). None of these works explicitly consider

the inclusion of mixed-integer actuators, although as discussed in the previous chapter, it is likely that they are

compatible with such input sets. However, because of the di�culty of global optimization for nonconvex problems

(especially when discrete variables are present), we wish to extend some of these properties to cover suboptimal

economic MPC.

3.3.2 Problem Formulation

For the results in this section, we follow Risbeck and Rawlings (2018b), with some extensions to consider suboptimal

economic MPC. We consider once again the case of time-varying state-space systems evolving according to

x+ = f(x, u, t)

de�ned for (x, u) ∈ Z(t) ⊆ X(t) × U(t), and t ∈ T. We again let X :=
⋃
t∈T X(t) and U :=

⋃
t∈T U(t), and also

choose terminal sets Xf (t). We then recall the following de�nitions from Chapter 2:

ZN (t) := {(x,u) : (φ(k, x,u, t), u(k)) ∈ Z(t+ k) for all k ∈ I[0,N), φ(N, x,u, t) ∈ Xf (t+N)}
XN (t) := {x ∈ X : there exists u ∈ UN such that (x,u) ∈ ZN (t)}
UN (x, t) := {u ∈ UN : (x, u) ∈ ZN (t)},

which are de�ned for a chosen horizon N ∈ I≥0. However, we do not assume that the system has been shifted in any

way, and we attach no special signi�cance to the point x = 0.
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As a cost function, we also take

VN (x,u, t) :=

N−1∑
k=0

`(x(k), u(k), t) + Vf (x(N), t+N),

with x(k) := φ(k, x,u, t), k ∈ I[0,N ]. The stage cost `( · ) and terminal cost Vf ( · ) serve a similar purpose as in

tracking MPC, but as we will see, their required properties are much less restrictive.

To avoid the need to solve any optimization problems to optimality, we once again consider a suboptimal

formulation with extended state z := (x,u) ∈ ZN (t). The “optimization” problem is thus to choose any sequence ǔ

in Ǔ∗N (z, t) with

Ǔ∗(x,u, t) :=
{
u ∈ UN (x, t) : VN (x, ǔ, t) ≤ VN (x,u, t)

}
. (3.6)

We do not require the technical condition that was used for tracking MPC. Note that the corresponding optimal

economic MPC problem

u∗ = arg min
u

VN (x,u, t) such that u ∈ UN (x, t)

is included within Ǔ∗(x,u, t).

With this procedure, the closed-loop evolution is

z+ :=

(
x+

u+

)
=

(
f(x, κ̌(x,u, t), t)

ζ(x, ǔ, t)

)
, ǔ ∈ Ǔ∗N (x,u, t)

based on the warm-start update

ζ(x,u, t) :=
{

(u(1), . . . , u(N − 1), uf ) : uf ∈ κf (φ(N, x,u, t), t+N)
}
, (3.7)

by applying an action from the terminal control law κf ( · ). Although both updates are, strictly speaking, a di�erential

inclusion, we assume some selection rule is applied and note that the results hold regardless of the selection rule.

3.3.3 Asymptotic Performance

In this section, we consider the construction of the terminal ingredients Xf (t), Vf ( · ), and κf ( · ) such that the

closed-loop system is nominally recursively feasible and satis�es certain bounds on closed-loop cost. As a basis for

measuring cost, we assume that we are given an in�nite time-varying (but �xed) reference trajectory (xr,ur). This

trajectory could be a �xed steady state, a periodic orbit, or a general time-varying path generated by arbitrary means.

We then take the following mild assumptions:

Assumption 3.12: For each t ∈ T, the set X(t) is closed, and the set U(t) is compact. The composite set U is bounded.

The reference trajectory satis�es (xr(t), ur(t)) ∈ Z(t), xr(t) ∈ Xf (t), and xr(t+ 1) = f(xr(t), ur(t), t).
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Assumption 3.13: For each t ∈ T, the terminal control set

κf (x, t) =
{
u ∈ U(t) : f(x, u, t) ∈ Xf (t+ 1),

Vf (f(x, u, t), t+ 1) + `(x, u, t) ≤ Vf (x, t) + `(xr(t), ur(t), t)
}

is nonempty, and Vf (xr(t), ur(t), t) = 0.

Assumption 3.14: The cost functions `( · ) and Vf ( · ) are bounded below on Z(t) and Xf (t) respectively, with the

bounds holding uniformly for t ∈ T.

Based on these assumptions, we have the following result as a generalization of Amrit et al. (2011).

Theorem 3.15 (Asymptotic performance of economic MPC): Suppose Assumptions 3.12 to 3.14 are satis�ed. Then,

starting from any z(t) ∈ ZN (t), the sets ZN (t) are positive invariant and for any T ∈ I≥0,

lim sup
T→∞

1
T

t+T−1∑
k=t

(
`(x(k), u(k), k)− `(xr(k), ur(k), k)

)
≤ 0 (3.8)

under closed-loop evolution (3.7).

Proof. From the properties of the terminal control law in Assumption 3.13, we have immediately that UN (x, t) is

invariant under the update ζ( · ). Thus, u+ = ζ(x, ǔ, t) ∈ UN (x+, t+ 1) for x+ = φ(1, x, ǔ, t), and therefore ZN (t)

is positive invariant.

For the performance bound, we �rst de�ne the shifted optimal cost function

V̄N (x,u, t) := VN (x,u, t)− VN (xr(t),ur(t), t)

in which ur(t) := ur,t:(t+N−1) is the length-N subsequence of ur starting at time t. Now, given the chosen optimal

sequence ǔ, let u be its �rst element, and let xf := φ(N, x, ǔ, t). From the update function ζ( · ), we have immediately

that

V̄N (z+, t+ 1) = V̄N (x, ǔ, t)− `(x, u, t)− Vf (xf , t+N)

+ `(xf , uf , t+N) + Vf (x+
f , t+N + 1)

+ `(xr(t), ur(t), t) + `(xr(t+N), ur(t+N), t+N),

in which uf ∈ κf (xf , t + N) is the terminal control input, and x+
f := f(xf , uf , t + N). From the cost decrease

condition in Assumption 3.13, we know that the sum of four of those terms is nonnegative, and thus we have

V̄N (z+, t+ 1) ≤ V̄N (x, ǔ, t)− `(x, u, t) + `(xr(t), ur(t), t)

≤ V̄N (z, t) + `(x, u, t) + `(xr(t), ur(t), t)

noting that the cost of (x, ǔ) is less than that of (x,u).
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Now, the previous cost bound applies for any t′ ≥ t. Thus, we rearrange and sum the bound for T timesteps to

�nd

V̄N (z(t), t)− V̄N (z(t+ T ), t+ T ) ≥
t+T−1∑
k=t

(
`(x(t), u(t), t)− `(xr(t), ur(t), t)

)
.

By Assumption 3.14, we know that the second term on the right-hand side is bounded below. Therefore, there exists

some constant c ∈ R such that

V̄N (z(t), t)− V̄N (z(t+ T ), t+ T ) ≤ c.

Applying that bound and dividing by T , we have

1
T

t+T−1∑
k=t

(
`(x(t), u(t), t)− `(xr(t), ur(t), t)

)
≤ c

T
,

and taking the lim sup of both sides immediately gives the desired cost bound.

Theorem 3.15 essentially states that, after an initial transient, the average closed-loop cost of the controlled

trajectory will be no worse than the cost of the reference trajectory. If the reference was chosen poorly, then there is

a signi�cant opportunity for improvement, and the optimizer will do so provided that the horizon is su�ciently long.

On the other hand, if the reference trajectory provides a near-optimal closed-loop cost, then the optimizer will not

deviate signi�cantly. Note also the extremely mild assumption on the stage cost `( · ); by requiring only boundedness,

we can choose almost any function, which means the optimizer can directly consider a tangible measure of economic

performance.

Another point of note that we have not assumed any continuity properties for f( · ), `( · ), or Vf ( · ). Indeed,

Theorem 3.15 holds regardless of these properties. However, although the suboptimal strategy does not explicitly

require any optimization (aside from �nding the initial input sequence u), system performance is likely to bene�t

from direct optimization. Thus one would likely use continuous functions so that standard optimization techniques

can be applied.

Finally, we note that it can be di�cult to synthesize nontrivial terminal sets Xf (t) such that Assumption 3.13 is

satis�ed. If the system model f( · ) and the stage costs `( · ) are quadratic, then it may be possible to obtain suitable

Vf ( · ) and Xf (t) by applying the theory of linear systems. However, for nonlinear or other exotic cases, we note that

choosing Xf (t) := {xr(t)} trivially satis�es the assumption with Vf (x, t) ≡ 0 and κf (x, t) ≡ {ur(t)}. This choice

requires that the system terminate exactly on (and in phase with) the reference trajectory, and it is of course trivial to

synthesize. Unfortunately, using an exact terminal equality constraint often leads to much smaller sets XN (t) (i.e., a

much smaller feasible region), but this e�ect can be partially mitigated by using a longer horizon and not necessarily

solving problems to optimality. Thus, this terminal constraint can be applied to a wide variety of systems, which

ensures a baseline level of pro�tability for the nominal closed-loop system.
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3.3.4 Asymptotic Stability

While the result of the previous section demonstrates that the closed-loop cost of x(t), u(t) is asymptotically no worse

than that of the reference trajectory xr(t), ur(t), in certain cases, it may be desirable to know that the system will

actually converge to the reference trajectory. Thus, we describe conditions under which economic MPC asymptotically

stabilizes the reference trajectory. For simplicity of exposition for this result, we will consider only optimal MPC.

Thus, the system evolves according to

x+ = f(x, κN (x, t), t), κN (x, t) = u∗(0), u∗ = arg min
u

VN (x,u, t) subject to u ∈ UN (x, t). (3.9)

Note however that the results of this section hold also for suboptimal MPC, as long as the same tedious technical

conditions from Section 2.2.5 are applied to avoid pathological behavior caused by a poor warm start. To ensure that

the optimal cost V ∗N ( · ) is well-de�ned, we take the following assumption:

Assumption 3.16: The function f( · ) is continuous. The functions `( · ) and Vf ( · ) are lower semi-continuous.

To start, we begin by describing the notion of dissipativity, extended from (Angeli et al., 2012, De�nition 4.1) to

the time-varying case. We can of course recover the time-invariant de�nitions as a special case us a steady-state

reference trajectory (xr(t), ur(t)) = (xs, us), in which case the storage function need not be time-varying.

Definition 3.17 (Dissipativity; time-varying): The system x+ = f(x, u, t) is dissipative with respect to a reference

trajectory xr and supply rate s(x, u, t) : X × U × T → R if there exists a storage function λ(x, t) : X × T → R

satisfying λ(xr(t), t) = 0 and

λ(f(x, u, t), t+ 1)− λ(x, t) ≤ s(x(t), u(t), t)

for all (x, u) ∈ Z(t) and t ∈ T.

The system is strictly dissipative if, in addition, there exists a K∞ function α( · ) such that

λ(f(x, u, t), t+ 1)− λ(x, t) ≤ s(x, u, t)− α (|x− xr(t)|)

for all all (x, u) ∈ Z(t) and t ∈ T.

Assumption 3.18 (Strict Dissipativity): The system is strictly dissipative with supply rate s(x, u, t) = `(x, u, t)−

`(xr(t), ur(t), t).

Using the storage function, we de�ne a “rotated” optimal cost function as follows

Ṽ 0
N (x, t) = V 0

N (x, t) + λ(x, t)− VN (xr(t),ur(t), t), (3.10)

which is modi�ed by the storage function λ( · ) and also shifted by the cost of the reference trajectory (so that

Ṽ ( · ) ≡ 0 along the reference trajectory). Similar to Assumption 2.10 from Chapter 2, we make the following

assumption about Ṽ ( · ).
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Assumption 3.19 (Continuity of rotated optimal cost): The rotated optimal value function Ṽ 0
N (x, t) is uniformly

continuous at (xr(t), t) for t ∈ T.

Following the logic of Proposition 2.11, this assumption implies the existence of a K∞ function γ( · ) such that

Ṽ 0
N (x, t) ≤ γ(|x− xr(t)|)

for all x ∈ XN (t) and t ∈ T. We then have the following theorem:

Theorem 3.20 (Asymptotic stability of economic MPC): Suppose Assumptions 3.12, 3.13, 3.16, 3.18 and 3.19 are satis�ed.

Then the closed-loop system (3.9) is asymptotically stable, i.e., there exists a KL function β( · ) such that for any initial

time t ∈ T, x ∈ XN (t), and k ∈ I≥0,

|x(t+ k)− xr(t+ k)| ≤ β (|x− xr(t)| , k)

along closed-loop solutions.

Proof. The proof proceeds by showing that a suitably rotated version of the optimization problem satis�es the

assumptions of Theorem 2.13 and then showing that the rotated optimization problem is equivalent to the nominal

optimization problem.

To start, de�ne the following rotated cost functions:

˜̀(x, u, t) := `(x, u, t)− `(xr(t), ur(t), t) + λ(x, t)− λ(f(x, u, t), t+ 1)

Ṽf (x, t) := Vf (x, t)− Vf (xr(t), t) + λ(x, t)

We have immediately from Assumption 3.16 that the rotated cost functions satisfy Assumption 2.6. For the terminal

cost, we have from Assumption 3.13 that

Ṽf (x+, t) + ˜̀(x, u, t) = Vf (x+, t) + `(x, u, t) + λ(x, t)− `(xr(t), ur(t), t)− Vf (xr(t+ 1), t+ 1)

≤ Vf (x, t) + `(xr(t), ur(t), t) + λ(x, t)− `(xr(t), ur(t), t)− Vf (xr(t+ 1), t+ 1)

= Ṽf (x, t) + Vf (xr(t), t)− Vf (xr(t+ 1), t+ 1)

= Ṽf (x, t)

which gives Assumption 2.9. The rotated cost function is then

ṼN (x,u, t) :=

N−1∑
k=0

˜̀(x(k), u(k), t+ k) + Ṽf (x(N), t+N)

with the analogous rotated optimization

min
u
ṼN (x,u, t) subject to u ∈ UN (x, t). (3.11)

Let κ̃( · ) denote the corresponding optimal �rst input.
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By Assumption 3.18, we have that for all x ∈ XN (t) and t ∈ T,

˜̀(x, u, t) ≥ α (|x− xr(t)|) .

Therefore, ˜̀( · ) and Ṽf ( · ) satisfy Assumption 2.8. As discussed above, Assumption 3.19 implies Assumption 2.10,

and Assumption 3.12 corresponds to Assumption 2.7. We conclude that the rotated system satis�es Theorem 2.13,

and so the rotated system is asymptotically stable. Note that the original theorem is for stability to the origin, but we

immediately recover stabilization of xr using deviation variables x̄ := x− xr(t), and ū := u− ur(t).

To complete the proof, we show that the rotated optimization (3.11) is equivalent to nominal optimiation, i.e., that

κ̃N ( · ) ≡ κN ( · ). Substituting the de�nitions of ˜̀( · ) and Ṽf ( · ) into ṼN ( · ) gives

ṼN (x,u, t) = VN (x,u, t) + λ(x, t)− VN (xr(t),ur(t), t).

Thus, for any x and t, the two objective functions Ṽ ( · ) and V ( · ) di�er by additive constant, which means their

optima occur for the same values of u. Finally, since κ̃N ( · ) is equivalent to κN ( · ), and since κ̃N ( · ) stabilizes the

reference trajectory, we conclude that κN ( · ) also stabilizes the reference trajectory.

Based on Theorem 3.20, one can show that economic MPC stabilizes the reference trajectory by �nding a valid

storage function λ( · ) for the chosen cost function. Various approaches exist for �nding storage functions, e.g.,

appealing to strong duality of the steady-state optimization problem (Diehl et al., 2011), or by solving semide�nite

programming problems (Zanon et al., 2017a). Note that any cost function can be made dissipative simply by adding a

large enough penalty on |x− xr(t)|, although at that point, the behavior is similar to tracking MPC. For more complex

systems, especially with discrete actuators, �nding a suitable λ( · ) may not be possible, and thus the asymptotic

performance result of Theorem 3.15 is likely to be of greater utility.

Remark 3.21: It can be shown (Risbeck and Rawlings, 2018b) that under the assumption of (non-strict) dissipativity

and lower-boundedness of λ( · ), that the performance bound of (3.8) can be strengthened to

lim
T→∞

1
T

t+T−1∑
k=t

(
`(x(k), u(k), k)− `(xr(k), ur(k), k)

)
= 0.

That is, the cost will asymptotically equal the cost of the reference trajectory. It is also easy to show that the so-called

“available storage function” (Muller et al., 2015)

S(x, t) := inf
T≥N

u∈UT (x,t)

VT (x,u, t)− VT (xr(t),ur, t)

is �nite on XN (t), then λ(x, t) = −S(x, t) is a valid storage function for the system. This function provides a

potential avenue for investigating possible dissipativity by extending the horizon and seeing if the optimal cost is
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bounded. Note unfortunately that the available storage function will almost never provide strict dissipativity, as for

any x ∈ XN (t), there exists u ∈ U(t) such that

S(x, t) = `(x, u, t)− `(xr(t), ur(t), t) + S(f(x, u, t), t+ 1)

which means the dissipation inequality in De�nition 3.17 is tight, and there is no slack for α(|x− xr(t)|).

3.4 Peak Charges

In the formulation of economic MPC, it was assumed that the objective function can be written as a stagewise sum of

costs `( · ). Allowing the cost function to be time-varying can account for time-varying economic conditions that are

becoming increasing prevalent in electricity markets (Albadi and El-Saadany, 2007), but this framework does not

directly admit so-called “peak demand” charges that are assessed based on the maximum rate of electricity purchase

(Berg and Savvides, 1983). These cost structures lead to an objective function that is written as the maximum value of

some performance measure over some �nite time period. These cost structures are common for industrial electricity

customers and have been applied at times to residential customers (Taylor and Schwarz, 1990).

Due to the complex nature of this combination of cost functions, optimization techniques like economic MPC are

a natural tool for decision making. These conditions can be optimized in real time to achieve lower closed-loop costs,

for example by using energy storage techniques to reshape demand. Indeed, speci�c applications involving peak

costs have been proposed in the literature (e.g., Cole et al. (2012); Jones and Peet (2017); Kumar et al. (2018); Ma et al.

(2012a); Risbeck et al. (2017)), but there is generally no theoretical development to inform the closed-loop behavior of

these methods. As pointed out in Scokaert and Rawlings (1999), naive inclusion of such max-over-time penalties can

lead to pathological closed-loop behavior due to violation of the principle of optimality. To help shape the closed-loop

response, previous peak values can be retained as part of the state so that the optimizer does not “forget” the peak so

far. This modi�cation restores the principle of optimality, thus allowing dynamic-programming-like techniques to be

applied to �nd open-loop solutions Jones and Peet (2017). However, little attention has been devoted to the closed-loop

properties of these price structures. Thus, we wish to develop a formulation of peak charges that is consistent with

the economic MPC theory from the previous section.

3.4.1 Cost Structure

We consider peak charges that are assessed based on the maximum value of some scalar function over a given time

window. We assume that the time windows are sequential and non-overlapping, but we do not require that they are

uniform in length. This choice allows the treatment of, e.g., monthly demand charges, in which sequential windows
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could be 31, 30, 29, or 28 days in duration. At the end of each window, the peak charge is assessed, and then the peak

value resets for the next window.

To provide an explicit formulation, let T (t) ⊂ T be the set of time points in the peak charge window that contains

time t ∈ T. We then let τ(t) := 1 + max T (t) be the time point at which the peak charge is accessed. We denote

as h( · ) : X× U× T→ R≥0 the performance measure used to calculate the peak value. The economic cost is then

calculated by p( · ) : R≥0 → R. Thus, over a given time window T , the system cost is given by∑
t∈T

`(x(t), u(t), t) + p

(
max
t∈T

h(x(t), u(t), t)

)
, (3.12)

which is the sum of a standard stage cost `( · ) with the additional peak cost p( · ).

Due to the inclusion of the max term, the cost structure of (3.12) is not consistent with the economic MPC

formulation from Section 3.3. Thus, we require a reformulation to apply economic MPC theory. As will be demonstrated

in the next section, we can replace the explicit max over T with a recursive calculation that proceeds one time point

at a time, thus �tting in to our economic MPC framework.

3.4.2 Augmented System Reformulate

We begin by de�ning the set

Tw := {0} ∪ {τ(t) : t ∈ T}

of time points where the peak charge is assessed. We then de�ne the binary coe�cient

σ(t) :=

{
1 if t ∈ Tw,
0 otherwise.

This parameter avoids the need for piecewise function de�nitions. To calculate maxt∈T h( · ), we augment the system

with an additional state variable y subject to dynamics

y+ = max((1− σ(t))y, h(x, u, t)).

Within a given window T , we have σ(t) = 0, and thus this function gives y+ = max(y, h(x, u, t)), calculating the

new peak as the maximum of the previous peak and the current value of h( · ). At the end of the window, we have

σ(t) = 1, and thus y+ = h(x, u, t) is reset to be the current value of h( · ) that starts the new peak charge window.

De�ning the augmented state as z := (x, y), we thus have the following dynamics for the augmented system:

z+ =

(
x+

y+

)
:= F (z, u, t) =

(
f(x, u, t)

max((1− σ(t))y, h(x, u, t))

)
. (3.13)

Similarly, the augmented cost function becomes

L(z, u, t) := `(x, u, t) + σ(t)p(y), (3.14)
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which is the standard stage cost `(x, u, t) for times t /∈ Tw but includes the additional peak charge. With these

augmentations, the standard cost function
∑
t∈T `(z(t), u(t), t) is equivalent to (3.12).

Remark 3.22: For simplicity, we have considered only a single nonoverlapping peak. Because h( · ) is allowed to

be time-varying, the formulation allows for certain time points to be excluded from the calculation. For example,

an electricity demand charge may only be calculated over designated “peak” hours when the grid is congested. To

account for such cases, one can simply set h( · , · , t) = 0 for time points t that are not subject to the peak. However,

some systems may be subject to multiple peak charges assessed on di�erent timescales, for example a monthly and a

seasonal peak. Because these windows overlap, the above formulation is not directly applicable. Fortunately, these

cases can be handled by adding an additional extra state y′, y′′, etc., for each separate peak. To avoid notational

clutter we proceed under the assumption of only a single window for each time point, but the methods can be applied

to these multi-window cases.

3.4.3 Terminal Set, Control Law, and Cost

With the peak charge now incorporated in a standard state-space formulation of economic MPC, standard techniques

can be followed. In particular, a reference trajectory (xr,ur) can be generated via optimization, and suitable terminal

sets Xf (t) can be chosen. However, because the terminal cost decrease condition required by Assumption 3.13 now

must consider the new cost augmentation, it is now even more di�cult to synthesize the necessary X(t) and Vf ( · ).

As remarked in the previous section, the simple choice of Xf (t) := {xr(t)}with κf (x, t) := {ur(t)} and Vf (x, t) ≡ 0

does in fact satisfy Assumption 3.13. This choice leads to a constraint in the optimization problem that is equivalent

to

max

(
y, max
k∈I[0:N)

h(x(k), u(k), t+ k)

)
= yr(t+N).

In particular, this relationship implies that

h(x(k), u(k), t+ k) ≤ yr(t+N), k ∈ I[0:N),

i.e., that yr(t+N) is a hard upper bound on h( · ). Thus, the feasible set XN (t) is potentially signi�cantly reduced

compared to an equivalent system without a peak charge.
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To avoid such reduction in the feasible space, we propose a more �exible terminal cost and constraint that is

as easy to synthesize as the simple terminal constraint Xf (t) := {xr(t)}. The terminal ingredients are chosen as

follows:

Xf (t) := {z = (x, y) | x = xr(t)}, (3.15a)
κf (z, t) := {ur(t)}, (3.15b)
Vf (z, t) := p (max(y, y̌r(t)))− p(ŷr(t)). (3.15c)

In particular the parameters in the de�nition of Vf ( · ) are the remaining reference peak y̌r(t) de�ned as

y̌r(t) := (1− σ(t)) max
k∈T (t),k≥t

h(xr(k), ur(k), k), (3.16)

and the reference peak ŷr(t) of the current window given by

ŷr(t) := max
k∈T (t−1)

h(xr(k), ur(k), k). (3.17)

We point out the time shift in (3.17) so that ŷr(t) = yr(t) gives the value of the peak that has just ended when t ∈ Tw .

Intuitively, the terminal ingredients in (3.15) still require that the original states x terminate exactly on xr(t),

but now the augmented state y is allowed to take any value. To prevent the optimizer from running up a large peak,

the terminal value of y is assessed a cost of p( · ), but critically the argument of p( · ) includes the remaining peak

of the reference trajectory in the current window. This extra term accounts for the fact that the system may still

follow xr(t) for the remainder of the current window and thus incur its remaining peak; therefore, the optimizer is

not rewarded for choosing a temporarily smaller peak. Note that the subtraction of p(ŷr(t)) is simply to enforce that

Vf (zr(t), t) = 0, as required by Assumption 3.13. For the chosen ingredients, we have the following proposition:

Proposition 3.23: Suppose Assumption 3.12 holds. Then, the terminal set, control law, and cost de�ned in (3.15) satis�es

Assumption 3.13.

Proof. We note �rst that for a given terminal control law κf ( · ) under which Xf (t) is invariant, the sum

V
κf
∞ (x, t) =

∞∑
k=t

(`(x(k), κf (x(k), k), k)− `(xr(k), ur(k), k)) , (3.18)

if �nite, is a valid terminal cost, as the decrease of Assumption 3.13 is satis�ed as an equality. The proof proceeds by

establishing that Vf ( · ) as de�ned in (3.15) is precisely of the form of (3.18).

Recognizing that we are working with the extended state, we de�ne the shifted cost functions

L̄(z, u, t) := L(z, u, t)− L(zr(t), ur(t), t),
¯̀(x, u, t) := `(x, u, t)− `(xr(t), ur(t), t)
p̄(y, t) := p(y)− p(yr(t)).
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Next, we split (3.18) into two pieces as follows:

V
κf
∞ (z, t) =

∑
k∈T (t),
k≥t

L̄(z(k), κf (z(k), k), k) +

∞∑
k=τ(t)

L̄(z(k), κf (z(k), k), k).

For the �rst sum, we have∑
k∈T (t),
k≥t

L̄(z(k), κf (z(k), k), k) =
∑

k∈T (t),
k≥t

(
¯̀(xr(k), ur(k), k) + σ(k)p̄(y(k), k)

)
= σ(t)p̄(y(t), t),

because σ(k) = 0 for all k in the summation range except possibly for the �rst point t. For the second sum, we note

that z(k) ∈ Xf (k), and therefore

∞∑
k=τ(t)

L̄(z(k), κf (z(k), k), k) =

∞∑
k=τ(t)

(
¯̀(xr(k), ur(k), k) + σ(k)p̄(y(k), k)

)
=

∞∑
k=τ(t)

σ(k)p̄(y(k), k) = p̄(y(τ(t)), τ(t))

Note that the last line follows because for k = τ(t), we have from (3.13) that

y(k + 1) = h(x, u, k) = h(xr(k), ur(k), k) = yr(k + 1).

Therefore, y(k) = yr(k) for k > τ(t), and there is only the single nonzero term. Thus, we have

V
κf
∞ (z, t) = σ(t)p̄(y(t), t) + p̄(y(τ(t)), τ(t))

and we are nearly done.

To complete the proof, we examine y(τ(t)). If t ∈ Tw , then σ(t) = 1 and y(τ(t)) = yr(τ(t)) because a new

window has just begun. Thus,

V
κf
∞ (z, t) = p̄(y(t), t) + p̄(yr(τ(t)), τ(t)) = p̄(y(t), t) = p(y(t))− p(yr(t)) = Vf (z, t)

because y̌r(t) = 0 and ŷr(t) = yr(t). Alternatively, if t /∈ Tw , then by composition of (3.13), we have that

y(τ(t)) = max

(
y(t), max

k∈{t,...,τ(t)−1}
h(x(k), u(k), k)

)
= max

(
y(t), max

k∈T (t),k≥t
h(xr(k), ur(k), k)

)
= max(y(t), y̌r(t)).

Therefore,

V
κf
∞ = p̄ (max(y(t), y̌r(t)), τ(t)) = p (max(y(t), y̌r(t)))− p(yr(τ(t))) = Vf (z, t)
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Figure 3.2: Illustration of Vf ( · ) and other paramters for the peak charge terminal cost. Colored bars show the value
of Vf ( · ) for the time point to the right.

because yr(τ(t)) = ŷr(t). Therefore, in either case, Vf (z, t) = V
κf
∞ (z, t), and so Vf ( · ) is a valid terminal cost

satisfying Assumption 3.13 as desired.

While we have demonstrated that (3.15) de�nes a valid terminal region and control law, the structure of the

terminal may still be unclear. We provide an illustration of Vf ( · ) in Figure 3.2. In this example, successive windows

are 8, 5, and 7 time points in duration. For each time point, the cost function is increasing above ŷr(t), as any

exceedance of the nominal peak will eventually have to pay a higher peak cost. Below ŷr(t), the terminal cost

decreases until it reaches y̌r(t). This section re�ects the fact that the peak of the reference trajectory has already

passed and the system is below that value. Therefore, there is the possibility that the realized peak charge is below

the reference value. However, below y̌r(t), Vf ( · ) is once again constant, because if the system decides to follow the

reference trajectory for the remainder of the current window, then it will eventually experience a peak of y̌r(t). Thus,

the optimizer should not be incentivized for coming in below this value, because the peak could potentially increase.

Finally, we note that in the �nal period of each window, y̌r(t) = 0, and so Vf ( · ) decreases all the way down to zero,

as the system’s terminal peak is exactly the level for which the peak charge is assessed. Thus, the terminal cost in

(3.15) appropriately penalizes and rewards the system based on what remains in the current window.

Remark 3.24: While the augmented formulation presented here �ts within the framework of economic MPC, it

is not particularly useful for optimization. Assuming, for example that h(x, u, t) = u, the equality constraint

y+ = max(y, u) is nonconvex and nonsmooth. However, if p( · ) is convex and nondecreasing, the original penalty

term

p

(
max
t∈T

u(t)

)
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is in fact a convex function of the u(t) variables. Thus, to actually implement this peak charge strategy in an

optimization problem, one should de�ne a single variable Y for each window rather than each time point, and include

the constraints

Y ≥ y, Y ≥ y̌r, Y ≥ h(x(t), u(t), t) for t ∈ T

in which y is the current peak so far, and y̌r is the remaining reference peak in the current window T . Including

the term ρ(Y ) is equivalent to assessing the terminal cost for that window, as the optimizer will choose the smallest

value of Y . The same strategy can also be applied for the charges p( · ) in the middle of the horizon, simply omitting

the constraint Y ≥ y̌r . Thus, if the system model f( · ) is linear and the functions `( · ) and h( · ) are all convex, then

this peak charge strategy can be implemented without destroying the convexity of the MPC optimization problem.

3.5 Illustrative Examples

3.5.1 Building Cooling

As a �rst example, we consider a small building cooling system. This system is essentially an extreme simpli�cation

of the application that will be discussed in Chapters 5 and 6. The system consists of a single building that is uniform

in temperature and receives heat from the ambient. The goal is to maintain comfortable temperature levels, which is

accomplished by running two small chiller units. Each chiller can be on or o�, and if it is on, it must operate between

speci�ed (nonzero) minimum and maximum capacities. The objective function is to minimize the cost of electricity

consumed in the chillers subject to strongly time-varying electricity prices. Thus, the system can save money by

pre-cooling the building when electricity is cheap, which reduces future cooling requirements.

The system model is the discretization of the continuous-time model

m
dT

dt
= −k(T − Tamb) + qamb − q.

Symbols are as follows:

• T : building temperature (state)

• Tamb: ambient outside temperature (time-varying parameter)

• qamb: direct heating by the ambient (time-varying parameter)

• q: cooling by chillers (input)

• m: building mass (constant parameter)

• k: building heat transfer coe�cient (constant parameter)
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Figure 3.3: Diagram of simple building cooling system.

Using a constant sample time ∆, piecewise-constant holds on inputs, and piecewise-linear holds on time-varying

parameters, a time-varying a�ne model of the form f(x, u, t) = Ax+Bu+ c(t) is obtained for the evolution of T .

The system is illustrated in Figure 3.3

With Nchiller available chillers that can be either on or o�, we add an additional discrete input variable v to choose

how many chillers to activate. For each active chiller, its cooling duty must be within the range [qmin, qmax], with

qmin > 0. Thus, we have the following input constraints for u := (q, v) ∈ U:

qminv ≤ q ≤ qmaxv

v ∈ {0, 1, . . . , Nchiller}.

Note that q gives the total cooling provided by all chillers.

As a cost function, we consider minimization of electricity costs. Assuming a time-varying piecewise-constant

price pro�le ρ(t), the electricity cost for each period is given by ρ(t)q. In addition, we would like to enforce comfort

constraints on the state T :

Tmin(t) ≤ T (t) ≤ Tmax(t).

However, to avoid infeasibility if the initial temperature happens to violate these bounds, we implement these bounds

as soft constraints in the cost function. Thus, the economic cost function is

`econ(x, u, t) = ρ(t)q + σmax(0, T − Tmax(t)) + σmax(0, Tmin(t)− T ).

Numerical values of parameters are shown in Figure 3.4. The penalty coe�cient σ = 1000 is chosen to be large

relative to ρ(t) so that temperature bound violations are avoided whenever possible.

To �nd a reference trajectory (xr,ur), we solve an optimal control problem with the initial condition x(0) free,

but with the added constraint x(0) = x(T ) for a given period T . This gives a 24 h periodic cycle for (xr,ur). We can
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Figure 3.4: Values of time-varying parameters for the cooling example. All parameters are 24 hour periodic.

then track this sequence using tracking MPC, or optimize directly using economic MPC. For tracking MPC, we use

the objective function

`track(x, u, t) = |x− xr(t)|2 + 10 |u− ur(t)|2 + σmax(0, T − Tmax(t)) + σmax(0, Tmin(t)− T ).

That is, we use a standard quadratic tracking penalty, but we also include the cost penalty for violation of comfort

bounds. The quadratic penalty on u is larger, as the economic cost is most closely associated with u.

For a terminal control law, we note that the system is open-loop stable, and so κf (x, t) = {ur(t)} does locally

stabilize the system. However, determining a valid terminal cost is complicated by the presence of the soft penalties,

in particular because Tr(t) = Tmin(t) and Tr(t) = Tmax(t) in some places. Thus, as a worst-case bound, we use the

terminal cost

Vf (x, t) =
1

1−A2 |x− xr(t)|
2

+
σ

1−A |x− xr(t)| ,

in which A ≈ 0.9 is the time-invariant (scalar) state transition matrix. Here, the �rst term calculates the cost to go for

the quadratic x penalty in `track( · ), and the second term is an upper bound on the cost to go for the soft temperature

penalty. We note that under the terminal control law, x+ = Ax (in deviation variables x− xr(t)). Thus, de�ning

xmin(t) and xmax(t) as the deviation-variable values of Tmin(t) and Tmax(t), we have

Vf (x, t)− `(x, u, t)− Vf (x+, t+ 1) =
1

1−A2 (x2 − (Ax)2) +
σ

1−A (|x| − |Ax|)

− x2 − σmax(0, x− xmax(t))− σmax(0, xmin(t)− x)

= σ |x| − σmax(0, x− xmax(t))− σmax(0, xmin(t)− x)

≥ 0
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Figure 3.5: Closed-loop solutions to the simpli�ed cooling problem under nominal conditions. Values in legend show
closed-loop economic costs.

since the reference trajectory satis�es the soft constraints, and thus xmax(t) ≥ 0 and xmin(t) ≤ 0. Of course, using

such a linear penalty as the terminal cost essentially ensures that x will terminate exactly on xr(t) whenever feasible,

but the terminal cost is valid nonetheless. Since this bound is globally valid, we can take an arbitrarily large set for

Xf (t).

To examine the nominal properties of tracking and economic MPC, we simulate the system under nominal

conditions. In tracking MPC, we use the reference trajectory as a setpoint, while in economic MPC, we only use

it as a terminal constraint. Figure 3.5 shows the closed-loop solution starting from a temperature higher than the

reference. We notice that tracking MPC tries to balance deviation from the reference trajectory between x and u, and

thus does not cool as aggressively as it should to achieve low cost. By contrast, economic MPC does not care about

the reference value of u and thus pre-cools the building to take advantage of the lower electricity prices. This choice

leads to roughly 5% cost improvement for economic MPC over tracking.

In real systems, it is unlikely that building models or forecasts of ambient conditions are accurate. Thus, we test the

system under closed-loop tracking and economic MPC subject to disturbances. Note that both controllers experience

the same disturbance sequences for corresponding initial conditions. Closed-loop trajectories are shown in Figure 3.6.

Both controllers do experience soft temperature violations, but they are minimized when possible. Although there is

not theory to tell us that the system should remain near the setpoint under economic MPC, performance is nevertheless

satisfactory. To further evaluate each method, we show closed-loop economic costs and temperature deviations are

shown in Table 3.1. From these values, we see that economic MPC now out-performs tracking MPC by 8% cost on

average with roughly the same violation in soft temperature bounds. The di�erence is primarily because economic

MPC is able to exploit “favorable” disturbances that reduce the necessary cooling; by contrast, tracking MPC tries to
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Figure 3.6: Closed-loop trajectories for the cooling example subject to disturabnces |w| ≤ 0.25.

Table 3.1: Closed-loop costs and temperature deviations for the cooling example subject to disturbances. Each cell
gives electricity cost with total soft temperature bound violation in parentheses.

Starting T Tracking MPC Economic MPC
−1.5 133 (1.18) 128 (0.99)
−1 148 (2.05) 146 (2.06)
−0.5 113 (0.63) 97 (0.87)

0 124 (0.17) 112 (0.38)
0.5 126 (1.50) 123 (1.92)
1 136 (0.83) 119 (1.30)

1.5 140 (0.60) 123 (0.87)

Average 131 ± 11
(0.99 ± 0.58)

121 ± 14
(1.20 ± 0.56)

maintain the nominal level of cooling so as to minimize deviation from ur . Therefore, economic MPC performs better

even when subjected to disturbances.

Finally, to verify the bound from De�nition 3.2, we start the system on the reference trajectory and simulate

closed-loop evolution under optimal tracking MPC subject to disturbances |w| ≤ ω for varying values of ω. Figure 3.7

shows the distribution of x(t)− xr(t) for these trials. From this �gure, we see that the maximum deviation tends to

increase as the size of the disturbance increases. This result is consistent with De�nition 3.2 and Theorem 3.9, which

prove that |x(t)| ≤ σ(ω) for some K function σ( · ). Note that there is no such guarantee for economic MPC, but

results are generally consistent.

For simulation, the problem is formulated using CasADi (Andersson et al., 2018) via MPCTools (Risbeck and

Rawlings, 2018a). Optimizations are performed using Gurobi (Gurobi Optimization, LLC, 2018).
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Figure 3.7: Violin plots of setpoint deviation for the simpli�ed building cooling system. Bars show minimum and
maximum values, while curves show a kernel density estimate from T = 240 simulation timesteps.

3.5.2 Energy Storage Optimization

We conclude with an energy storage optimization example from Risbeck and Rawlings (2018b). As in the previous

example, the premise of this system is to minimize the electricity costs of running chillers to produce chilled water.

The electricity pricing structure consists of time-varying use charges as before, but in addition, there is a peak charge

assessed at the end of every month. In this case, we assume that the demand for chilled water is a known time-varying

parameter, but the system has a large chilled water storage tank so as to temporally decouple the operation of chillers

and the delivery of chilled water. This setup is essentially a simpli�cation of the central energy plant optimization

problem that is the focus of Chapter 5.

For the system model, the current level of the storage tank is given in the state x ∈ [0, 500]. The inputs are how

much electricity to purchase, and how much chilled water to withdraw from the storage tank, which are subject to

bounds u ∈ [0, 500]× [−500, 500]. We assume that units have been nondimensionalized so that amounts of electricity

and chilled water can be compared directly. With a timestep ∆, the system model and constraints are

x+ = x− u2∆, u1 + u2 ≥ δ(t).

We model the tank as a simple integrator so as to maximize the cost shifting that can occur. In a real system, the

storage level would slowly decay as the chilled water heats up, which reduces the horizon needed to ensure optimal

use of the storage tank. Over a given month consisting of time points t ∈ T , the cost function is∑
t∈T

ρ(t)u1(t)∆ + ρpeak max
t∈T

u1(t).

Applying the strategy from Section 3.4, we augment the model with an extra state y that evolves as y+ = max(y, u1)

within each month to keep track of peak electricity purchase. The system is diagrammed in Figure 3.8, and the values

of parameters ρ(t) and δ(t) are shown in Figure 3.9. Note that these values are (rescaled) from real price and demand

data provided by Johnson Controls.
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To verify the closed-loop performance of the augmented peak charge system, we simulate the system under

economic MPC and other heuristic closed-loop optimization strategies as follows:

• Scaled: the peak cost ρpeak is scaled by N/T where N is the current prediction horizon, and T is the length of

the current month.

• Naive: identical to Scaled except that the previous peak is not retained in each optimization (thus invalidating

the principle of optimality).

• Increasing: the peak cost ρpeak is scaled by (t+N)/T , thereby linearly increasing the weight throughout each

month.

• Periodic: the optimal 5-month periodic cycle is calculated and used as a reference trajectory for economic MPC.

• Greedy: a 5-month solution is generated using a greedy strategy that optimizes each week in sequential,

nonoverlapping optimization problems; the solution is then used as a reference trajectory for economic MPC.

Of these methods, the �rst three are heuristic strategies that do not use terminal constraints and provide no closed-

loop guarantees, while the last two apply the economic MPC methods of Sections 3.3 and 3.4. Thus, the asymptotic

performance of the Periodic and Greedy strategies is bounded by their corresponding reference trajectories, while

anything could happen for the Scaled, Naive, and Increasing strategies. Each method uses a prediction horizon of one

week with a 1 h timestep, and the storage tank begins empty in each case.

Closed-loop costs for each method are given in Table 3.2. All costs are given as percentages relative to the optimal

solution, as obtained by solving a single large problem (with a horizon of 10 months to avoid any end e�ects). From

this table, we see that the Naive and Scaled heuristics do not perform well, while the Increasing heuristic performs

adequately despite not having any theoretical properties. By contrast, both economic MPC methods perform well.

Illustrating Theorem 3.15, the Greedy strategy does asymptotically beat its reference trajectory, as the week-long

horizon is su�cient to �ll in the suboptimal gaps created by the greedy optimization strategy used to generate the

trajectory. Meanwhile, the Periodic strategy actually achieves the optimal cost of the system. We note that the

periodic reference actually beats the optimal trajectory in the month of May because it starts with a partially �lled

storage tank (due to the initial condition being optimized). Indeed, were the simulation extended, the cost of the

Periodic strategy would slowly decay to the value of the periodic reference. Based on these values, we conjecture that

the periodic reference is the long-term optimal solution, assuming 5-month periodicity of the system parameters.

To examine why each method performs as it does, we plot the daily peak use of electricity in Figure 3.10. The Naive

strategy displays obvious bad behavior, as its daily peak use is non-monotonic. Because of the cost structure, once a

peak has been reached, there is no incentive to stay below that value, and thus these values should be nondecreasing.

However, because the Naive strategy does not remember its past peak, it continues to believe that it can “reset” the
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Table 3.2: Cost performance for the energy storage optimization problem. Note that gray rows indicate reference
trajectories used as terminal constraints for economic MPC strategies.

Method May June July August September Total
Naive +48.63 +12.45 +27.00 +28.52 +1.10 +22.00
Scaled +20.37 +9.76 +13.32 +20.29 −0.24 +12.21

Increasing +0.29 +0.94 +0.11 +0.33 +0.18 +0.34
Greedy −0.15 +0.77 +0.14 +0.23 +0.33 +0.27

Greedy Ref. +0.65 +2.42 +0.29 +1.05 +0.08 +0.82
Periodic +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

Periodic Ref. −0.66 +0.00 +0.00 +0.00 +0.00 −0.09

peak and balance costs based on only future time periods. For both the Scaled and Naive strategies, we also notice

very large spikes at the end of each month. Due to the demand charge weighting of these methods, in the �nal day of

each month, the demand charge is signi�cantly undervalued in the objective function. Thus the optimizer believes

that it can purchase a very large amount of electricity in the current month, incurring only a very small peak costs,

and then use those stored reserves to signi�cantly reduce purchase (and thus peak charge) in the following month.

Of course, as the subsequent month continues, these cost savings are not realized, and the end result is a higher than

necessary demand charge.

Of the heuristic methods, the Increasing strategy performed best, primarily due to avoidance of the pathological

behavior at the end of each month that is experienced by the other heuristic strategies. We see that the increasing

weighting does lead to a stable peak throughout each month, but also means that said peak is chosen primarily based

on demand at the beginning of the month. In cases like June when the average demand at the beginning of the month

is very di�erent from the end of the month, the peak is not properly chosen, and the system misses out on being

able to exploit di�erences in time-varying prices. The two economic MPC strategies show similar behavior of �at

peaks, as they use the parameter y̌r to forecast a reasonable value for for the remaining peak. Thus, they tend to

better trade o� use and demand charges throughout the month. Of course, the Periodic strategy’s reference trajectory

is generated using a very long prediction horizon, and thus it performs best as expected. In realistic systems, the

optimization models are much more complex, and forecasts of price and demand are not as accurate, which means

such long horizons are neither tractable nor informative. Thus, the Periodic strategy represents a best-case scenario.

By contrast, the Greedy reference trajectory is generated only one week in advance of the closed-loop system, and

thus it is a readily attainable trajectory with near-optimal performance. Thus, although the ideal scenario may not be

realistic, the economic MPC strategies from this section do lead to improved closed-loop performance and can be

applied in real systems.
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Figure 3.10: Evolution of monthly peak electricity use for energy storage optimization problem.

3.6 Summary

In this chapter, we have presented two main extensions of tracking mixed-integer MPC. First, we have derived

conditions under which tracking MPC is inherently robust to small state disturbances. Although the assumptions are

slightly more restrictive than in the previous chapter, the main result essentially states that time-varying suboptimal

tracking MPC with softened state constraints cannot be destabilized by arbitrarily small disturbances.

Second, we have discussed and proved asymptotic performance and stability theorems for economic MPC, in

which the objective function is a tangible measure of system performance (such as economic pro�t), rather than a

�ctitious distance-from-setpoint measure as in tracking MPC. Under very mild assumptions, an arbitrary feasible

reference trajectory can be used as a terminal constraint for economic MPC, and the system’s asymptotic closed-loop

performance will be no worse than that of the reference trajectory. We have also extended dissipativity-based stability

theory to the time-varying setting. In addition, we have also presented an extended-state formulation to address peak

charges within standard economic MPC. This reformulation is accompanied by a terminal set and cost function that

avoids shrinking the feasible region for the system.

Finally, we have demonstrated robustness properties of tracking MPC and performance of economic MPC by

means of two example systems, which are simpli�ed versions of the problems addressed in detail in Chapter 6 and

Chapter 5. These examples illustrate the bene�ts that can be achieved by applying MPC, and the extensions developed

in this chapter serve to broaden the applicability of closed-loop online optimization techniques.

For a more extensive robustness result and an example of a robust system with a discontinuous optimal cost,

see Allan et al. (2017). For more information about economic MPC and peak charges, including an example storage

function, see Risbeck and Rawlings (2018b).
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Chapter 4

Closed-Loop Scheduling

If once you start down the dark path, forever will it dominate
your destiny. Consume [inventory] it will.

— Yoda
Star Wars: Episode V – The Empire Strikes Back

4.1 Introduction

In general, the problem of “scheduling” refers to the allocation of limited resources in order to complete a set of tasks.

For example, in a chemical plant, the scheduling problem could be deciding which reactors to use to produce various

products and when to produce them. Inherent in this problem class are many discrete decisions, such as unit/task

assignments and whether to start a task at a given discrete time. As a result, �nding optimal solutions to scheduling

problems can be computationally demanding, although solution times are steadily decreasing as optimization methods

improve.

Within the literature, there has been a signi�cant amount of attention paid to the application of optimization

methods for production scheduling (Harjunkoski et al., 2014; Méndez et al., 2006). Speci�c problems vary signi�cantly,

but scheduling applications and optimization models can generally be categorized based on the representation of time,

the nature of material �ow within the process, and the types of decisions made by the optimizer (Maravelias, 2012).

Two classical formulations for production scheduling are the state-task network (STN), which was originally proposed

by Kondili et al. (1993), as well as the slightly more general resource-task network, originally presented in Pantelides

(1994). In the STN formulation, products and intermediate materials are treated abstractly as “states” that are produced

and consumed by carrying out speci�c “tasks” in one or more units. The RTN formulation takes this approach a

step further by unifying the states and units of the STN into a single category of “resources” that are produced and

consumed over the course of �nite-duration tasks. Both the STN and RTN are discrete-time formulations, and they
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tend to perform at least as well as continuous-time counterparts (Méndez et al., 2006). Solution performance can also

be improved through reformulations or model augmentations (Velez and Maravelias, 2013).

For our part, we wish to leverage the theoretical developments of Chapters 2 and 3 with respect to discrete-valued

inputs in order to move optimization-based scheduling methods online using rolling-horizon strategies similar to

MPC. This idea has already been applied to inventory control (Yi and Reklaitis, 2015) and supply chain management

(Subramanian et al., 2014), and thus general production scheduling is a natural next venue. We start with some

literature review of the scheduling aspects relevant to this work. We next illustrate how the closed-loop scheduling

problem can be formulated as a state-space model via the classical problem of batch scheduling. Subsequent sections

examine speci�c problems in more detail in addition to addressing the more general problem of integrated and

scheduling and control.

4.1.1 Rescheduling and Closed-Loop Scheduling

For the most part, optimization formulations for scheduling problems are primarily concerned with the generation

of a single schedule over a �nite window of time. While e�cient solution of this problem class is an important

ingredient, a single schedule alone is insu�cient for real use. Obviously, when the end of the current schedule is

reached, it is necessary to generate a new schedule. In addition, when processes are subject to changes in internal

characteristics (e.g., upsets and unit breakdowns) or external conditions (e.g., material costs and product demands), a

schedule that was optimal at the beginning of the period may quickly become suboptimal or infeasible. Finally, due to

the �nite-horizon nature of most scheduling problems, open-loop optimal schedules illustrate the so-called “turnpike

e�ect” (McKenzie, 1976) by which schedules deviate from the long-term optimal behavior. A possible manifestation

is the optimizer becoming unnecessarily aggressive at the end of the horizon (e.g., by completely depleting stored

inventory) by not considering potential ill e�ects that will realize later on. Because of these e�ects, inherent in

every scheduling application is the process of “rescheduling,” or determining a new schedule given updated system

conditions.

To address need for rescheduling, two main classes of categories are reactive rescheduling and stochastic or robust

scheduling (Li and Ierapetritou, 2008). In reactive rescheduling, new schedules are created by making a small set of

modi�cations to the existing schedule in order to restore feasibility and/or optimality (Vin and Ierapetritou, 2000).

These techniques are not applied at every step, but rather only after some speci�c triggering event has been realized

(Mendez and Cerdá, 2004; Touretzky et al., 2017). Thus, the average optimization burden is low (as the incumbent

schedule typically need not be revised), but when speci�c disturbances are realized, a modi�ed or completely new

schedule must be determined. The downside to these approaches is that they do not address the turnpike e�ect

of schedules unless rescheduling is performed at regular intervals regardless of whether the system is operating
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nominally. By contrast, the robust scheduling methods attempt to address potential disturbances before they realize

by computing a-priori a schedule that is resilient to any realizations from a given uncertainty set (Sand et al., 2000;

Shi and You, 2016). Such techniques can be computationally demanding, as they require the application of robust

optimization techniques (Li and Floudas, 2014), but the extra e�ort can be bene�cial when uncertainty is high. Less

costly alternatives include the addition of nonzero safety stocks to hedge against disturbances without requiring full

robust optimization (Eppen and Martin, 1988; You and Grossmann, 2008).

In contrast to these techniques, the idea of closed-loop scheduling is that a new optimal schedule should be

computed at every time point regardless whether any disturbance has been observed. Schedules are thus implemented

in a closed-loop fashion as employed by MPC. Of course, application of closed-loop scheduling requires that the

optimization problems be tractable for online solution. One strategy to reduce the online computational burden

is to solve the nominal scheduling problem as a parametric optimization problem, with the parameters being the

relevant external in�uences (Kopanos and Pistikopoulos, 2014). Thus, the new optimal schedule can be obtained at

each timestep via relatively quick evaluation of the parametric solution. However, problem sizes are limited in this

case. It is demonstrated in Gupta and Maravelias (2016) and Gupta et al. (2016) that such closed-loop scheduling

strategies generally lead to improved quality of the implemented schedule, compared to only rescheduling infrequently.

Performance also tends to improve with faster rescheduling and longer horizons, although the dependence is non-

monotonic. However, without careful attention to the closed-loop properties of the scheduling system, paradoxical or

pathological closed-loop behavior can result Gupta and Maravelias (2016). It was �rst pointed out in Subramanian

et al. (2012) that production scheduling problems can be put into state-space form as presented in Chapter 2. Thus,

we would like to leverage this idea and apply insights from economic MPC theory to prevent such behavior.

4.1.2 Example: Batch Production

As a �rst example of closed-loop scheduling, we consider a simple model of pro�t maximization for batch production.

We assume there are a set of tasks i ∈ I, units j ∈ J, and materials k ∈ K, and further that each task/unit combination

has �xed durations τik and batch sizes β+
ijk , β−ijk (for material production and consumption respectively). Assuming

total pro�t is given by sales revenue based on prices πk less the sum of inventory costs ηk and batch costs αij , one

possible formulation is as follows:

min
∑
t∈T

∑
i∈I

∑
j∈J

αijWijt +
∑
k∈K

(ηkSkt − πkVkt)

 , (4.1a)

s.t. Sk(t+1) = Skt +
∑
i∈I

∑
j∈J

(
β+
ijWij(t−τij) − β−ijWijt

)
− Vkt, k ∈ K, t ∈ T, (4.1b)

∑
i∈I

t∑
t′=t−τij+1

Wijt′ ≤ 1, j ∈ J, t ∈ T. (4.1c)
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Figure 4.1: Diagram of inventory dynamics for simple batch scheduling model. Inventory costs are assessed based on
the values Skt.

Here, the variables Skt ∈ [0,∞) are the inventory level at the beginning of time period t, Vkt ∈ [V min
kt , V max

kt ] are the

sale amounts of resources k (subject to lower and upper bounds), and Wijt ∈ {0, 1} decide whether to start tasks in

particular units. Note that we assume that at the beginning of each time period, production from completed batches

is added before demand and consumption from incipient batches are subtracted as illustrated in Figure 4.1.

Because we wish to apply the techniques of Chapter 3 to this system, we have to determine a state-space model.

On a �rst glance, the material inventories Skt appear to be states, while the Vkt and Wijt are inputs, with (4.1b)

giving the dynamic model, and (4.1c) de�ning input constraints. Unfortunately, the constraint (4.1c) is not of the form

u(t) ∈ U(t), but rather something more akin to (u(t− τij + 1), . . . , u(t)) ∈ U due to the constraints being enforced

across time points. However, viewing (4.1c) as a modi�ed rate-of-change constraint, we note that we can apply

the standard technique (Rawlings et al., 2017b, Exercise 1.25) of augmenting the state to remember past inputs. In

particular, we add new state variables Xijnt ∈ {0, 1} such that Xijnt = Wij(t−n) for n ∈ {1, . . . , τij}. This so-called

“lifting” of past inputs (Subramanian et al., 2012) allows the constraints and model to be expressed in state-space form.

In particular, (4.1c) is rewritten as

Wijt ≤ 1−
∑
i∈I

τij−1∑
n=1

Xijnt, j ∈ Js, t ∈ T, (4.2)

and the dynamic model (4.1b) as

Sk(t+1) = Skt +
∑
i∈I

∑
j∈J

(
β+
ijXijτijt − β−ijWijt

)
− Vkt, k ∈ K, t ∈ T. (4.3)

The evolution of the lifted inputs is then

Xijn(t+1) =

{
Wijt, n = 1,
Xij(n−1)t, otherwise.

(4.4)

Thus, for state vector x(t) = (Skt, . . . , Xijnt, . . . ) and input vector u(t) = (Wijt, . . . , Vkt, . . . ), the system model

f( · ) is given by (4.3) and (4.4), with state/input constraints Z(t) from (4.2) and stage cost

`(x, u, t) =
∑
i∈I

∑
j∈J

αijWijt +
∑
k∈K

(ηkSkt − πkVkt) .
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In this form, we can consider application of the economic MPC strategies from Section 3.3. As mentioned in

Subramanian et al. (2012) same strategy can be applied to general STN and RTN formulations to include features such

as variable batchsizes, shared resource constraints, etc., that are common in scheduling models.

Of particular interest throughout this chapter is the application of terminal constraints to closed-loop scheduling

problems. The simplest form of terminal constraints is to choose a reference trajectory (xr(t), ur(t)) and use the

singleton sets Xf (t) := {xr(t)}. Based on the state-space formulation of (4.1), the requirement that x(T ) = xr(T )

becomes

SkT = SrkT , k ∈ K,

Wijt′ = W r
ijt′ , i ∈ I, j ∈ J, t ∈ {T − τij , . . . , T − 1},

in which Srkt and W r
ijt give the values of those states in reference trajectory. Although these constraints are fairly

restrictive (as they essentially �x the value of u(t) in the �nal τij time points), they ensure nominal recursive feasibility

and the asymptotic performance bound of Theorem 3.15.

4.1.3 Integration of Scheduling and Control

Within most scheduling formulations, it is assumed that tasks can be represented a a �nite-duration event, during

which resource consumption is known. For example, in the RTN formulation, a changeover from Product A to Product

B is modeled as a task that consumes a �ctitious “Reactor in Product A State” resource at the beginning and then

produces a corresponding “Reactor in Product B State” resource at the end. These abstractions are su�cient for

bookkeeping, but they ignore the fact that the tasks actually represent the dynamic evolution of a unit and they are

often implemented by a control layer. Because of the �exibility a�orded by MPC, there is now increasing interest in

integration of optimization-based scheduling and control. Traditionally, these layers have been considered separate

for both historical and practical reasons (Harjunkoski et al., 2009). However, when the two systems are considered

together, additional degrees of freedom in the control layer can lead to more e�cient transitions, while the inclusion

of unit dynamic models can prevent infeasibilities due to invalid operational assumptions.

Within the literature, various optimization strategies have been proposed to address combined scheduling and

control. In Flores-Tlacuahuac and Grossmann (2006), a slot-based continuous-time formulation of the integrated

scheduling and dynamic control problem was presented assuming a cyclic production schedule. By using collocation

to approximate unit dynamic trajectories, the overall problem becomes a large mixed-integer nonlinear programming

(MINLP) problem. A similar formulation using a discrete-time scheduling representation was presented in Nie et al.

(2015). The addition of an additional planning layer on top was also presented in Gutiérrez-Limón et al. (2014). In all

cases, direct solution of the integrated MINLP was challenging, and so the authors proposed various optimization
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and decomposition strategies. To alleviate some of the computational burden, Du et al. (2015) propose replacing

the full-order nonlinear dynamic equipment model with low-order linear approximations. The key insight here is

that the equipment models are for the closed-loop behavior of the control system so that the decision variables are

setpoints sent to the regulation layer, rather than the dynamic inputs themselves. However, while this simpli�cation

does lead to faster solution times, it also removes a potential source of additional �exibility. Other strategies and

problem formulations can be found in Harjunkoski et al. (2009) and Engell and Harjunkoski (2012).

As in the scheduling-only case, most formulations are consider only the determination of open-loop solutions and

do not discuss closed-loop implementations. Some exceptions are Zhuge and Ierapetritou (2012), which advocates

re-optimization when deviation from the nominal trajectory becomes su�ciently large and presents some initial

(though incomplete) theoretical closed-loop properties, and Chu and You (2012), which proposes replacing the full

dynamic models by a set of candidate closed-loop trajectories (along with some other optimization strategies) to

enable su�ciently fast solution. Addressing uncertainty in these problems remains a challenge, and is generally

treated with similar classes of methods as in the scheduling-only problem (Dias and Ierapetritou, 2016). For our part,

we would like to facilitate a closed-loop implementation of the combined problem, as will be presented in Sections 4.3

and 4.5.

4.2 Case Study: Batch Production

4.2.1 System Description

We begin with a simple batch production in the form of (4.1). The system consists of two units, Reactors 1 and 2,

which perform the “Produce A” and “Produce B” tasks respectively. Dropping the j index (since it is identical to i), we

have sets I = {1, 2}, K = {A,B}. A simple diagram with parameter values is shown in Figure 4.2. Note that the

negative value of πA indicates that the system has to pay a cost to dispose of A. Following (4.1), we have states and

inputs

x :=


X11
X21
X22
SA
SB

 , u :=


W1
W2
VA
VB

 ,

with a linear model and cost functions

f(x, u) = Ax+Bu, A :=


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 1 0
0 0

√
2 0 1

 , B :=


1 0 0 0
0 1 0 0
0 0 0 0
0 −

√
2 −1 0

0 0 0 −1


`(x, u) = qx+ ru, q :=

(
0 0 0 1 1

)
, r :=

(
10 10 100 −100

)
Thus, we can solve each optimization as an MILP.
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Inventory ηA = 1
Sale πA = −100

Material B
Inventory ηB = 1

Sale πB = 100

Reactor 1
Batchsize: β+

1A = 1
Cost α1 = 10
Time τ1 = 1

Reactor 2
Batchsize β+

2B = β−
2A =

√
2

Cost α2 = 10
Time τ2 = 2

Figure 4.2: Diagram of simple batch production example. Values of β+
ik and β−ik are zero unless speci�ed.
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Figure 4.3: Closed-loop schedule for simple batch example using horizon N = 8 without terminal constraints. After
t = 4, the system remains idle inde�nitely.

4.2.2 Nominal Closed-Loop Behavior

To start, we simulate a nominal closed-loop scheduling strategy with a horizon of N = 8. The system starts with

2 units of inventory for material A, and the optimal schedule is found at each timestep. The obtained closed-loop

schedule is shown in Figure 4.3. We note that there are no missing tasks in this �gure. The system is in fact idle

after the three shown batches, and asymptotically the system loses money by paying inventory costs for material A

without producing (or generating any revenue from) material B. We note also that this pathological behavior is not

due to the horizon being too small. Increasing the horizon to N = 32, we obtain the closed-loop solution shown

in Figure 4.4. Although the system does run longer than with the shorter horizon, the ending behavior is the same,

and the system asymptotically loses money. Paradoxically, if we use a shorter horizon of N = 5, then we obtain the

non-idle closed-loop behavior in Figure 4.5.
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Figure 4.4: Closed-loop schedule for simple batch example using horizon N = 32 without terminal constraints. After
t = 25, the system remains idle inde�nitely.
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Figure 4.5: Closed-loop schedule for simple batch example using horizon N = 5 without terminal constraints. Unlike
the two previous cases, the system does not become idle.
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To examine why this behavior occurs for the system, we look at the open-loop predictions for each optimization.

Figure 4.6 shows the evolution of the optimal schedule at each timestep. We see that the pathological behavior begins

at time t = 24 due to the presence of an idle period at the beginning of the horizon. Because the optimal input takes

no action in the �rst period, the state of the system is unchanged. Therefore, when the horizon is shifted forward

and the optimization is repeated, exactly the same optimal solution is obtained. Thus, in the closed-loop solution,

production is inde�nitely postponed. Now, why does this occur with horizons of 8 and 32 but not 5? Assuming

the system’s initial inventory of A is below
√

2− 1, the system requires at least 5 timesteps to produce and sell a

complete batch of B: two steps to produce 2 units of A, two more steps to run a batch of B, and a �nal step to sell

the resulting product. Of course, each additional batch of B requires two additional time points. Therefore, if the

horizon is an even number larger than 5, then there is an “extra” time period in which no additional batch of B can

be processed. Since the system would have to pay inventory on any produced in this period, the optimizer does not

run a batch of A in this period either, and thus the system is completely idle. The optimal location for this idle time

period is wherever the inventory of A is lowest (as the value of `( · ) during the idle period is minimized). If the initial

inventory of A is very low, then the idle period is placed at the beginning in the open-loop optimal schedule, and the

system never recovers. This observation leads to the following conjecture:

Conjecture 4.1: For the batch production system in Figure 4.2, if the scheduling horizon is an even number, then for any

initial inventory levels, the system is asymptotically idle under nominal closed-loop operation.

To justify this conjecture, we note that, for all t ∈ T the inventory levels satisfy

SAt = SA0 +mt − pt
√

2, mt :=

t−1∑
t′=0

W1t′ , pt :=

t−1∑
t′=0

W2t′ , (4.5)

in which mt and pt are integers. Thus, when the system is non-idle, the inventory levels SAt are unique (suppose

SAt1 = SAt2 for t1 6= t2 with at least one batch between t1 and t2; we have (mt1 −mt2)− (pt1 − pt2)
√

2, and at most

one coe�cient is zero; thus, we �nd either that a nonzero integer equals zero or that
√

2 is a rational number, both of

which are contradictions). Therefore, for any �nite prediction horizon N , it is only a matter of time before the initial

inventory levels happen to be lowest. For even horizons, this property leads to idleness.

However, it is possible that once the horizon is su�ciently long, there are some inventory levels for which it is

optimal to pay the penalty to dispose of some small amount of A. Based on the chosen cost coe�cients, if a given

amount of A cannot be used within 100 timesteps, then it is cheaper to just dispose of it. So, for horizons larger

than 100, it is possible that the optimizer invokes this option, thus invalidating the relationship (4.5) for SAt and

potentially avoiding idleness.
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Figure 4.6: Closed-loop evolution of optimal solutions for the simple batch example with horizon N = 32. Shaded
boxes show current optimal open-loop schedule.
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Figure 4.7: Closed-loop schedule for simple batch example with horizon N = 8 using the optimal N = 24 periodic
cycle as a terminal constraint. In the �rst few periods, the system has to dispose of small amounts of A to match the
phase of the terminal constraint.

4.2.3 Economic MPC Strategies

Although it is possible to avoid pathological closed-loop behavior for this example by using an odd-numbered horizon,

we would instead like to exclude such behavior a-priori by applying the economic MPC techniques discussed in

Section 3.3. To start, we begin by adding a terminal constraint to the system using a periodic reference trajectory.

Because the system is time-invariant, there is no natural period to consider. However, by checking various periods,

we �nd that the N = 24 periodic solution achieves high cost. From Theorem 3.15, we know that the asymptotic

performance of the system can be no worse than that of the reference trajectory. Thus, the system cannot become idle.

Using this solution as an exact terminal constraint, we obtain the closed-loop trajectory in Figure 4.7 with open-loop

Gantt charts shown in Figure 4.8. We see from this �gure that the plant does not become idle, and in fact it converges

to the periodic reference trajectory within a few timesteps.

While the periodic terminal constraint does avoid pathological closed-loop behavior, the resulting closed-loop

solution is somewhat undesirable due to the fact that the system has to dispose of small amounts of material A, both

at the beginning to reach the terminal region, and throughout operation to achieve true periodicity. Fortunately,

we note that there is no requirement that the reference trajectory is periodic, and thus we can consider generation

of non-periodic terminal constraints. For this strategy, we construct a reference trajectory via application of the

following heuristic control law:

• Start a batch of A if there is less than
√

2 inventory of A (Less than
√

2− 1 if a batch of B was just started)
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Figure 4.8: Closed-loop evolution of optimal solutions for the simple batch example with horizon N = 8 using a
periodic reference trajectory as a terminal constraint. Shaded boxes show current optimal open-loop schedule, while
light boxes show periodic reference.
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Figure 4.9: Closed-loop schedule for simple batch example using horizon N = 8 using heuristically-generated
reference trajectory. The system does not dispose of any A.

• Start a batch of B if Reactor 2 is idle and there is at least
√

2 inventory of A

• Do not dispose of any A

• Sell all B

Applying this heuristic controller starting from the system’s initial state, we generate a completely time-varying

reference trajectory that can be used as a terminal constraint. With this reference, we use economic MPC to obtain

the closed-loop schedule in Figure 4.9. With this terminal constraint, the system no longer needs to dispose of any A.

Although we have solved the issue of disposal of A, the exact terminal constraint does not provide very much

�exibility to the system. Indeed, as observed in Figure 4.8, the system attaches to the reference trajectory within

the �rst prediction horizon, and then no further changes are made to the closed-loop system. To provide additional

�exibility, we wish to use a terminal constraint that provides a nontrivial range for the inventory levels SA and SB .

As mentioned in Chapter 3, using any feasible terminal control law κf ( · ), a valid terminal cost is

V
κf
∞ (x, t) :=

∞∑
k=t

(
`(x(k), κf (x(k)))− `(xr(k), ur(k))

)
, x+ = f(x, κf (x)),

assuming that the sum converges. Using the heuristic control law from above as κf ( · ), the above function is a

valid terminal cost. However, because of the logical conditions in the heuristic rule, the resulting Vf ( · ) is highly

discontinuous and thus it is not possible to embed within an optimization problem. Instead, we consider a terminal

control law designed to out-perform anN = 2 periodic solution. The di�culty in this system is that if SA is penalized

too much in the terminal cost, then the optimizer will dispose of A early in the horizon, which leads to suboptimal
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performance. Thus, we add a bu�er inventory to the reference trajectory to establish a (suboptimal) baseline cost that

the optimizer can then beat. We take

xr(0) :=


1
0
1√
2

0

 , ur(0) :=


1
1
0
0

 , κf (x, 0) :=


1
1
0
SB

 ,

Xf (0) := {x ∈ X : X11 = 1, X21 = 0, X22 = 1, SA ∈ [
√

2− 1,
√

2]}, Vf (x, 0) := −99SB

and

xr(1) :=


1
1
0
1
0

 , ur(1) :=


1
0

2−
√

2
0

 , κf (x, 0) :=


1
0

2−
√

2
SB

 ,

Xf (1) := {x ∈ X : X11 = 1, X21 = 1, X22 = 0, SA ∈ [0, 1]}, Vf (x, 1) := −99SB

as terminal ingredients. These choices require the discrete states Xint to terminate exactly on the reference trajectory,

but the inventories Skt are more �exible.

To verify that the proposed terminal sets and constraints are valid, we have for x ∈ Xf (0),

Vf (x+, 1) + `(x, u, 0)− `(xr(0), ur(0), 0) = 0 + (SA −
√

2) + SB − 100SB
≤ (
√

2−
√

2)− 99SB = −99SB = Vf (x, 0)

by noting that SA ≤
√

2 from the terminal constraint. Similarly, for x ∈ Xf (1), we �nd

Vf (x+, 0) + `(x, u, 1)− `(xr(1), ur(1), 1) = 0 + (SA − 1) + SB − 100SB
≤ (1− 1)− 99SB = −99SB = Vf (x, 0)

using the bound SA ≤ 1. Thus, these choices satisfy Assumption 3.13 and are valid. Simulating with these terminal

ingredients, we obtain the closed-loop solution shown in Figure 4.10. Although the asymptotic bound is di�erent, we

obtain the same solution as using the heuristic trajectory (shown in Figure 4.9).



90

A

B

0

1

2

In
ve

nt
or

y

0 10 20 30 40
Time

0

1

Sa
le

s

Figure 4.10: Closed-loop schedule for simple batch example using horizon N = 8 using the �exible terminal region
and terminal cost. The solution is identical Figure 4.9.

4.2.4 Transient and Asymptotic Cost

To conclude this example, we examine the closed-loop costs of the various strategies. Without terminal constraints,

there are no theoretical guarantees on transient or asymptotic cost. When terminal constraints are used, we have the

transient cost bound

1
T

t+T−1∑
k=t

(
`(x(k), u(k))− `(xr(k), ur(k))

)
≤ V ∗N (x(t))− V ∗N (x(t+ T ))

T

obtained from the proof of Theorem 3.15. Since both terms on the right-hand side are bounded, taking T →∞ gives

the asymptotic bound of Theorem 3.15.

For each of the six closed-loop cases discussed so far, Table 4.1 closed-loop pro�t (i.e., negative closed-loop cost)

for T = 240, along with transient and asymptotic bounds. From this table, we see that the three best-performing

strategies are the N = 5 Nominal, N = 8 Heuristic, and N = 8 Terminal Cost. With N = 5 Nominal, we �nd a

packed closed-loop schedule that does not dispose of any A, which is likely the globally optimal solution; however,

we have no theory to know a-priori that this behavior should be achieved. For the N = 8 heuristic strategy, the

closed-loop system follows the reference exactly and achieves the same closed-loop cost, although the constraint is

very tight and would likely lead to suboptimal performance in the presence of disturbancess. The more �exible N = 8

Terminal Cost achieves the the same closed-loop schedule, but the bounds are not very tight due to the suboptimal

reference trajectory. The N = 8 Periodic strategy leads to slightly lower closed-loop and asymptotic pro�t (due to

the sale of small amounts of A. Finally, the N = 8 and N = 32 Nominal strategies have no theoretical bounds and
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Table 4.1: Transient pro�t and bounds for simple batch production example. Pro�ts are averaged over T = 240 steps
of simulation.

Formulation Transient
Pro�t

Transient
Bound

Asymptotic
Bound

N = 8 Nominal 0.88 −∞ −∞
N = 32 Nominal 5.87 −∞ −∞
N = 5 Nominal 57.61 −∞ −∞
N = 8 Periodic 57.40 57.40 57.85
N = 8 Heuristic 57.61 57.61 57.93

N = 8 Terminal Cost 57.61 25.02 25.21

Plant
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3D
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V +
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B ≥ νB

V −
C ≥ νC

Sales

Figure 4.11: Diagram of combined scheduling and control system representation. Each unit evolves dynamically
while producing and/or consuming resources that can then be sold for pro�t.

become asymptotically idle as already discussed. We thus conclude that the application of economic MPC strategies

provides valuable closed-loop performance guarantees that exclude pathological behavior a-priori.

4.3 Continuous Production with Underlying Dynamics

We consider now the case of units undergoing continuous operation with transitions between operating points. The

relevant sets are now operating regions i ∈ I with units j ∈ J and resources k ∈ K. Governing the transitions

between units are underlying dynamic state-space models for each unit.

4.3.1 Combined Model

In the combined formulation, operating modes are essentially prede�ned tasks for each unit, during which speci�c

sets of resources are produced and consumed by the unit. Resources can additionally purchased from the market

or sold as products to meet demand νkt. Unit production and consumption are determined based on the dynamic

evolution of each unit. Inventory levels are bounded (with a bound of zero for resources that cannot be stored) and are

accounted for by a material balance. Demand backlog can also be considered to prevent infeasibility when demand

cannot be met. This representation is illustrated in Figure 4.11.
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Figure 4.12: Diagram of scheduling and dynamic time discretization. Red circles are (shared) endpoints at scheduling
times t ∈ T̄. Green circles are interior dynamic time points s ∈ S̄ \ {0, S}. Subscripts on all symbols are st (with j
omitted for clarity).

4.3.2 Dynamic Layer

In general, the underlying dynamics of each unit could evolve on a faster timescale than the higher-level scheduling

layer. Thus, we de�ne two di�erent timescales as follows: intervals t ∈ T := {0, 1, . . . , T − 1} (with time points

T̄ := T∪{T}) for scheduling decisions, and within each t ∈ T, the �ner discretization s ∈ S := {0, . . . , S−1} (with

points S̄ := S ∪ {S}). We assume that the dynamic s grid gives a �ne enough discretization so that any intra-sample

dynamics can be safely neglected. The dynamics of unit j ∈ J follow a time-invariant discrete-time model of the

form x+ = fj(x, u), which evolves on the s timescale. Thus, we require states xjst for all scheduling intervals t ∈ T

and dynamic points s ∈ S̄, with evolution given by

xj(s+1)t = fj(xjst, ujst), s ∈ S, t ∈ T, (4.6)
xj0(t+1) = xjSt, t ∈ T. (4.7)

Dynamic constraints of the form (xjst, ujst) ∈ Zj are enforced via

ej(xjst, ujst) ≤ 0 j ∈ J, t ∈ T, s ∈ S, (4.8)

using suitably chosen functions ej( · ). The time grids and dynamic evolution are illustrated in Figure 4.12.

To consider the production of di�erent products, we model each unit as being able to operate in one or more

operating modes i ∈ I. Each of these modes is associated with a region Xij in state space. To determine the current

operating mode, we use indicator variables Wijt ∈ {0, 1}. For the unit to be in a given mode during a scheduling

interval t, we require

Wijt = 1 =⇒ xist ∈ Xij , s ∈ S̄,

i.e., that the system is in the requisite set throughout the entire interval. When the unit is in transition (or otherwise

not in any particular mode), we use the special mode 0 ∈ I. De�ning functions gij( · ) to describe the sets Xij , one

possible formulation is

gij(Xjst) ≤ (1−Wijt)Ωij , i ∈ I \ {0}, j ∈ J, s ∈ S̄, t ∈ T, (4.9)
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using suitably large Ωij . Activation of mode 0 is then enforced by∑
i∈I

Wijt = 1, j ∈ J, t ∈ T. (4.10)

Since the system could be in mode 0 anywhere in the state space, no speci�c constraints in the form of (4.9) are

required.

Under this representation, the transition from mode i to i′ is accomplished by choosing the underlying inputs

ujst to move the dynamic states xjst from Xij to Xi′j . The sets Xij could represent a single steady-state operating

point Xij = {xss
ij}, but in general, they can be arbitrarily large. Note that if there is a local regulatory control system

on the unit that cannot be removed, then the dynamic models fj( · ) represent the controlled trajectory ot the unit,

while the inputs u are the setpoints sent to the regulatory control layer.

4.3.3 Scheduling Layer

At the higher scheduling layer, the decisions are generally about resource balances; unit operating modes are then

chosen with respect to the resources that are produced and consumed in each. For �ow of resources into and out of

the system, we use variables V +
kt (for purchase) and V −kt (for sales). Inventory levels are tracked on the dynamic s

timescale as follows:

Lk(s+1)t = Lkst + F+
kst − F−kst k ∈ K, s ∈ S, t ∈ T, (4.11)

Lk0(t+1) = LkSt + V +
kt − V −kt k ∈ K, t ∈ T. (4.12)

The variables F+
kst and F−kst give the total resource production and consumption across all resources, which are

related to the underlying system states by

F+
kst =

∑
j∈J

Wijth
+
ijk(xjst, ujst) k ∈ K, s ∈ S, t ∈ T, (4.13)

F−kst =
∑
j∈J

Wijth
−
ijk(xjst, ujst) k ∈ K, s ∈ S, t ∈ T. (4.14)

Sales must at least meet prespeci�ed demand νkt, while purchase must fall within established bounds. To ensure

feasibility when demand is excessively high, we allow backlogging via Hkt. We thus have the following constraints

for sales and backlog:

V −kt +Hkt ≥ νkt, k ∈ K, t ∈ T, (4.15)
Bk(t+1) = Bkt +Hkt, k ∈ K, t ∈ T. (4.16)

By heavily penalizing backlog Bkt, the optimizer will try to meet demand whenever possible.
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4.3.4 Objective Function

The optimization objective is to maximize pro�t. Costs are assumed to come from the scheduling layer (resource

purchase, inventory costs, and backlog penalties), while revenue is generated via resource sales. Thus, the objective

function is

min
∑
k∈K

∑
t∈T

(
η+
ktV

+
kt − η−ktV −kt

)
+
∑
t∈T̄

(αkLkt + βkBkt)

 . (4.17)

Other terms could be added provided that they are summed over t ∈ T as in the economic MPC formulation from

Section 3.3. This generality would allow cost or earliness minimization, but it does not allow straightforward treatment

of makespan minimization.

4.3.5 State-Space Representation

The overall integrated model is given by constraints (4.6) to (4.16) with objective function (4.17). Although the

underlying unit models are already in state-space form, we require a state-space formulation of the overall problem on

the scheduling t timescale. To this end, we classify all decision variables as either states, inputs, or auxiliary variables

used to aid in the problem formulation. For these purposes, we assume that auxiliary variables are uniquely speci�ed

based on the �xed values of states and inputs.

Based on these requirements, the overall system state is given by the values of the following variables for a given

t ∈ T̄:

• The underlying dynamic states xj0t at the beginning of the time interval (i.e., for s = 0)

• The inventory levels Lj0t (again for s = 0)

• The current backlog level Bkt

System inputs are the following:

• The underlying dynamic inputs ujst for all dynamic intervals s ∈ S

• The production variables Wijt

• The purchase and sales decisions V +
kt and V −kt

• The backlog increment Hkt

Auxiliary variables are thus the remaining variables as follows:

• The dynamic states xjst for intermediate dynamic time points s ∈ S̄ \ {0} (i.e., s 6= 0), which are de�ned by

(4.6)
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• The intermediate inventory levels Lkst (again for s 6= 0), which are de�ned by (4.11)

• The production and consumption levels P+
kst and P−kst (for all s ∈ S), de�ned by (4.13) and (4.14)

With these de�nitions, the evolution of overall states is given by equations (4.7), (4.12) and (4.16), while input and state

constraints are given by (4.8) to (4.10) and (4.15). With this representation, closed-loop properties can be investigated,

e.g., by placing terminal costs and constraints on the appropriate X variables to provide recursive feasibility.

4.4 Dynamic-Aware Scheduling Model

While it is possible formulate a combined optimization problem for scheduling decisions and unit dynamic regulation,

it is not necessarily possible to solve that formulation within a reasonable amount of time. Particularly due to the

presence of so-called “big-M” constraints in (4.10), the formulation may not be very tight, and even �nding feasible

solutions may be a challenge. Thus, we wish to de�ne a scheduling approximation that considers some of the �exibility

of the underlying dynamic system without requiring the full dynamic models. The goal is to formulate a model in

such a way that any feasible solution can be translated into a feasible dynamic trajectory for the system to follow.

To be speci�c, let (X,U) represent the states and inputs of the scheduling approximation, and let (x, u) be the

states of the full integrated model. For each time point, we require that any feasible X and U can be mapped to a

feasible x and u such that the respective stage costs satisfy

`(x, u, t) ≤ L(X,U, T )

in which L( · ) is the stage cost of the scheduling model. By generating a reference trajectory (Xr, Ur) for the

scheduling model and using terminal constraints as in Section 3.3, we can use the above inequality and the performance

bound from Theorem 3.15, the closed-loop x and u that is generated satis�es

lim
T→∞

1
T

t+T−1∑
k=t

(
`(x(k), u(k), k)− L(Xr(k), Ur(k), k)

)
.

That is, we generate a feasible trajectory for the composite system that is at least as good as the cost predicted by the

scheduling system reference trajectory. This trajectory can then be followed in the nominal case, or tracked using

tracking MPC on a per-unit basis when disturbances are present. Therefore, we have a bound on the performance of

the composite system without having to solve any instances of the combined problem.

In the following subsections, we describe how the standard scheduling model from Section 4.3 can be augmented

to generate feasible dynamic trajectories as desired. The dynamic-aware scheduling formulation remains an MILP,

and thus it is not signi�cantly more computationally challenging than the standard scheduling model.
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4.4.1 Basic Transition Structure

To start, we describe the basic structure for unit transitions. We assume that each feasible transition from region i

to i′ has an associated set m ∈Mii′j of possible transition trajectories, each with �xed transition time τii′jm. We

assume for brevity that τii′jm ≥ 1, although the constraints for τii′jm = 0 are straightforward. These transitions are

associated with trajectories (x∆
ii′jmst, u

∆
ii′jmst) in the unit’s dynamic models. To initiate a transition, the optimizer

uses the discrete variable Yii′jt ∈ {0, 1}, with the system’s trajectory obtained via convex combination of trajectories

in Mii′j using weights Uii′jmt ∈ [0, 1]. This idea is similar to a model from Chu and You (2012), except that the

optimizer is allowed to take a convex combination of candidates rather than choosing just one. This choice leads to

constraints of the form ∑
m∈Mii′j

Uii′jmt = Yii′jt, i, i′ ∈ I, j ∈ J, t ∈ T. (4.18)

As in the batch scheduling problem, we must lift these variables to have a state-space representation. We use Zii′jmnt

to track the evolution of these variables, with n ∈ Nii′jm := {1, . . . , τii′jm}. For convenience, we split this update

into two separate pieces as follows:

Z ′ii′jmnt :=

{
Zii′jmnt + Uii′jmt if n = τii′jm

Zii′jmnt else
i, i′ ∈ Ij , j ∈ J,m ∈Mii′j , n ∈ Nii′jm, t ∈ T, (4.19)

Zii′jmn(t+1) :=

{
0 if n = τii′jm

Z ′ii′jm(n+1)t else
i, i′ ∈ Ij , j ∈ J,m ∈Mii′j , n ∈ Nii′jm, t ∈ T. (4.20)

Here, the auxiliary variable Z ′ii′jmnt gives the values of the multipliers considering any incipient transition at the

current time t. After transitions are complete, we use the variable Xijt ∈ [0, 1], given by

X ′ijt = Xijt −
∑
i′∈I

Yii′jt, i ∈ I, j ∈ J, t ∈ T, (4.21)

Xij(t+1) = X ′ijt +
∑
i′∈I

∑
m∈Mii′j

Z ′i′ijm1t, i ∈ I, j ∈ J, t ∈ T. (4.22)

Thus, X ′ijt gets decremented when the system transitions away from that region, and it is incremented when

transitions to that region are completed. Finally, we require

Wijt ≤ X ′ijt, i ∈ I, j ∈ J, t ∈ T. (4.23)

This relationship allows the optimizer to select a given operating mode only if the unit has fully completed any

transition to that operating mode.
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Figure 4.13: Diagram of unit transitions and adjustments. Original production regions are shown as shaded rectangles,
approximate regions are shown in dark lines (the segment between the two points in the sets Pij). Transitions
move from one production segment in another (possibly over multiple periods), while adjustments move within a
production region in one period.

4.4.2 Operating Points

In the general formulation, the operating regions Xij were allowed to be arbitrary sets in state space. To reduce this

computational burden, we assume the operating regions are de�ned by the convex combination points indexed by

p ∈ Pij , each with associated weights Gijpt. In the unit’s state space, each of these points represents a steady-state

operating pair (xss
ijp, u

ss
ijp). These values evolve by

G′ijpt = Gijpt −
∑
i′∈I

∑
m∈Mii′j

γ−ii′jmpUii′jmt, i ∈ I, j ∈ J, p ∈ Pij , t ∈ T, (4.24)

Gijp(t+1) = G′ijpt +
∑
i′∈I

∑
m∈Mi′ij

γ+
i′ijmpZ

′
i′ijm1t, i ∈ I, j ∈ J, p ∈ Pij , t ∈ T. (4.25)

Here, the parameters γ−ii′jmt and γ+
ii′jmt de�ne the points from which a given transition leaves Xij and enters Xi′j

for a given transition (i, i′,m). To ensure that the optimizer selects transitions that leave from the correct operating

point, we have the constraint ∑
p∈Pij

G′ijpt = X ′ijt, i ∈ I, j ∈ J, t ∈ T, (4.26)

as well as the bounds Gijpt ∈ [0, 1].

Transitions within a given operating region are modeled exactly as in the previous section, noting that for this

case i = i′. We refer to these changes transitions within an operation region as “adjustements” to di�erentiate

between true transitions between operating modes. It is assumed that every adjustment included in the set Miij can

be made without leaving the original operating region Xij . An example of transitions and adjustments is shown in

Figure 4.13.
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4.4.3 Resource Balance

Because of the dynamic character of the system, we still keep track of resources on the faster s timescale. Thus,

constraints (4.11) and (4.12) are exactly as before. However, the instantaneous production and consumption rates

(constraints (4.13) and (4.14)) must be modi�ed. Recalling that the operating points p ∈ Pij are associated with steady

states (xss
ijp, u

ss
ijp), and transitions m ∈Mii′j following trajectories (x∆

ii′jmst, u
∆
ii′jmst), we can de�ne parameters to

give resource production/consumption rates as follows:

φ±ijkp := h±ijk(xss
ijp, u

ss
ijp), i ∈ I, j ∈ J, k ∈ K, p ∈ Pij ,

ζ±ii′jkmns := h±0jk(x∆
ii′jmst, u

∆
ii′jmst), i, i′ ∈ I, j ∈ J, k ∈ K,m ∈Mii′j , s ∈ S, n = τii′j − t.

These values give the production/consumption rates during stead-state operation and during transition. Here, the

superscript ± indicates that parameters are de�ned for both production + and consumption −. With these parameters,

we then have

F±kst =
∑
j∈J

∑
i∈I

Wijt

 ∑
p∈Pij

φ±ijkpG
′
ijpt

+
∑
i,i′∈I

∑
m∈Mii′j

∑
n∈Nii′jm

ζ±ii′jkmnsZ
′
ii′jmnt

 ,

k ∈ K, s ∈ S, t ∈ T. (4.27)

Note that the nonlinearity between Wijt and G′ijpt can be linearized, as Wijt is discrete. Finally, the sales and backlog

are as in (4.15) and (4.16)

4.4.4 Discussion

As mentioned in the introduction, the goal of this model is to be able to map any solution onto a feasible trajectory

for the underlying unit dynamic states. For the simple case of choosing singleton Mii′j and Pij , the mapping is

immediately clear: during a transition, the system follows the single trajectory x∆
ii′jst; otherwise, the system is at

steady state xss
ij . We illustrate these cases in Figure 4.14. When multiple trajectories and/or operating points are added,

the optimizer is allowed to interpolate between them. Assuming the underlying dynamic models fj( · ) and output

functions h±ijk( · ) are a�ne and the feasible sets Zj are convex, the interpolation procedure generates a feasible

dynamic trajectory. In particular, we have

xjst =
∑
i∈I

∑
p∈Pij

Gijptx
ss
ijp +

∑
i,i′∈I

∑
m∈Mii′j

Z ′ii′jmntx
∆
ii′jms(τii′j−n),

with the corresponding expression for ujst. However, if the underlying dynamics are nonlinear, then the interpolated

trajectories are not necessarily feasible. It may be possible to �nd a nearby feasible trajectory by solving a small

optimization problem, but this property is not guaranteed. If it is absolutely necessary to generate a feasible
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dynamic trajectory, then the variables Gijpt and Zii′jmnt can be changed from continuous to discrete; that way, the

interpolation formula will have only a single nonzero term which corresponds to a point on a known feasible dynamic

trajectory. Of course, with this increase in the number of discrete variables, it may not be tractable to include many

di�erent transitions Mii′j or operating points Pij . However, the original combined model is likely to be completely

intractable as well.

The main value of the dynamic-aware scheduling model is that the underlying dynamic models need not be

included in full, and the problem can be solved as an MILP. At �rst glance, this formulation appears to add a large

number of variables due to the presence of the Zii′jmnt variables. However, because these are de�ned by trivial

equality constraints in (4.19) and (4.20), these variables can be immediately removed via presolve. Thus, in each

scheduling time point, we have I(I + 1)J nontrivial discrete variables and I(IM + P )J continuous variables. By

contrast, the full integrated model requires IJ discrete indicator variables as well as IJS state and input vectors. For

even modest state and input dimensions, these are roughly the same total number of variables, but the scheduling

formulation is much tighter by avoiding the indicator variable constraints for xjst ∈ Xij . When S is very large, the

scheduling approximation can be signi�cantly easier to solve compared to the combined formulation. In addition, if

S is too large to e�ciently solve the scheduling approximation, we can apply the conservative resampling procedure

described in Section 4.7 to reduce the required number of s points, albeit at the cost of shrinking the feasible region.
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Figure 4.15: Diagram of multi-product reactor system. Reactors are identical and can make any product. All reactors
share a common cooling source, which imposes a constraint on total instantaneous cooling.

4.5 Case Study: Multi-Product Reactor

To close this section, we consider a multi-product reactor adapted from Flores-Tlacuahuac and Grossmann (2006) and

Du et al. (2015). We consider one or more identical reactors operating in parallel. Each reactor can make a slate of

products; when a reactor changes products, there is a transition time during which nothing is produced. Reactor

output is sent to holding tanks from which it is eventually sold, with di�erent products having di�erent sale prices.

Product A is worth $200/unit, decreasing linearly to product D, which is worth $50/unit. Backlogs are penalized 100

times sale prices each period. Each product has a minimum daily demand that must be met or added to backlog

(which accrues a cost penalty), which means the reactors must cycle between all products, rather than producing only

the most pro�table product. When there are multiple reactors, they all share a common cooling system. Based on

available cooling capacity, certain combinations of products cannot be produced simultaneously. Thus, the optimizer

must account for this limitation when choosing product sequences. A system with three reactors is illustrated in

Figure 4.15. We wish to apply the closed-loop scheduling techniques discussed in this chapter and compare them to

more traditional scheduling techniques.

4.5.1 Single-Reactor Nominal Case

We begin by simulating nominal operation of a single-reactor system. Because there is only a single reactor, the

shared cooling constraint is never binding, and the reactor can freely make any product at any time. To start, we

determine the optimal periodic solution for varying periods. With orders due every 24 h, it is natural to look for

solutions whose periods are a multiple of 24 h. Given the demand and transition times, there is no feasible 24 h

periodic solution, but optimal solutions for longer periods are shown in Figure 4.16. No solutions experience backlog.

As seen in the �gure, the longer horizons generally make more pro�t due to having fewer transitions over a given
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period. Note also that for periods larger than 48, not all products have the same number of production runs in the

horizon. Thus, periodic solutions that produce each product only once (as in Flores-Tlacuahuac and Grossmann (2006)

and Du et al. (2015)) may not be optimal.

Using these periodic reference trajectories, we simulate the nominal closed-loop system for 30 days using various

reference trajectories, rescheduling frequencies, and horizons. The system begins with enough inventory for half

of a daily order. Closed-loop costs are shown in Table 4.2. In the �rst row, we approximate a standard scheduling

strategy by rescheduling only every 12 h without using any terminal constraint. With the shorter horizons, this

strategy leads to high levels of backlog and thus lower closed-loop pro�t. The �rst week of the closed-loop schedule

for the N = 48 case is shown in Figure 4.17a. We see here that the system is consistently late delivering orders of

product D due to its lack of foresight. To simulate a naive closed-loop scheduling solution, we repeat the simulation

but now rescheduling every hour. For the shorter horizons, this faster rescheduling leads to better performance, but

paradoxically, the N = 72 simulation is actually worse.

The remaining simulations all employ periodic reference trajectories, which are used as an exact terminal

constraint and thus provide an asymptotic bound on closed-loop cost by Theorem 3.15. Note that because the system

parameters are 24 h periodic, there are two equivalent T = 48 periodic solutions that di�er only by phase (with three

for T = 72). For comparison, we simulate using all of the equivalent reference trajectories to determine how sensitive

the initial transient is to the phase of the reference trajectory. As observed in this table, not all of the economic

MPC strategies meet their cost bounds over the simulation period. The T = 48(b) and T = 72(b) cases do exceed

their cost bounds, which indicates that the phase of these reference trajectories is favorable for the system’s initial

condition. The remaining controllers apparently struggle to reach the reference trajectory within the initial days of

the simulation, leading to a large number of transitions and temporarily high transient cost. We show the closed-loop

schedule for N = 24 with the T = 48(b) reference trajectory in Figure 4.17b. However, Theorem 3.15 states that the

average cost will eventually recover. To verify, we recalculate closed-loop costs, except that we exclude the �rst 6

days of simulation. These values are shown in Table 4.3. We see now that after the initial transient, all simulations

at least meet their pro�t bound, with the longer N = 72 horizon able to beat the T = 48 reference trajectory. By

contrast, the strategies without terminal constraints generally do not recover after the initial transient, and thus

their poor performance continues inde�nitely. Thus, the inclusion of terminal constraints leads to better closed-loop

performance, although transient cost can be sensitive to the chosen reference trajectory.

4.5.2 Multiple-Reactor Nominal Case

To increase the di�culty of the problem, we repeat the previous simulations now using a system of three reactors

in parallel. Minimum product demand is increased to compensate for the increased production capacity. When a
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Figure 4.16: Periodic solutions for one-reactor system. Horizons and average pro�t are shown in each �gure. In sales
plot, circular markers show actual sale amount, while �at markers indicate minimum demand.
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(a) N = 48 solution without any terminal constraints. Rescheduling occurs every 12 h.
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(b) N = 24 solution with T = 48(b) periodic terminal constraint. Rescheduling occurs every hour.

Figure 4.17: Example closed-loop trajectories for the single-reactor problem.
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Table 4.2: Closed-loop costs for nominal one-reactor case over 30 day simulations. Values are normalized to the
T = 48 periodic reference trajectory.

Reference
Trajectory

Reference
Cost

Rescheduling
Period

Horizon
N = 24 N = 48 N = 72

None N/A 12 h −364.94% −22.37% −4.08%
None N/A 1 h −39.55% +0.14% −10.15%

T = 48(a) +0.00% 1 h +0.67% +0.74% +3.11%
T = 48(b) +0.00% 1 h −1.28% −1.00% +2.13%
T = 72(a) +3.04% 1 h +0.06% +1.30% +1.30%
T = 72(b) +3.04% 1 h +3.71% +3.92% +3.92%
T = 72(c) +3.04% 1 h +0.48% +1.99% +2.32%

Table 4.3: Closed-loop costs for nominal one-reactor case over 30 day simulations, excluding the �rst 6 days of
startup. Values are normalized to the T = 48 periodic reference trajectory.

Reference
Trajectory

Reference
Cost

Rescheduling
Period

Horizon
N = 24 N = 48 N = 72

None N/A 12 h −431.54% −24.67% −3.15%
None N/A 1 h −42.02% +1.06% −10.72%

T = 48(a) +0.00% 1 h −0.00% −0.00% +1.68%
T = 48(b) +0.00% 1 h −0.00% −0.00% +1.74%
T = 72(a) +3.04% 1 h +3.04% +3.04% +3.04%
T = 72(b) +3.04% 1 h +3.04% +3.04% +3.04%
T = 72(c) +3.04% 1 h +3.04% +3.04% +3.04%

reactor is operating at the steady-state operating point for product A, 4 units of cooling are required, with 3 units for

B, 2 units for C, and 1 unit for D. The overall cooling system can provide only 9 units of cooling at any given time.

Thus, for each reactor producing Product A, another reactor must be producing either C or D. As before, we begin by

determining optimal periodic solutions; two such solutions are shown in Figure 4.18. We note that in the case of the

T = 120 solution, the optimal solution actually contains a small amount of backlog. This behavior could of course be

removed by increasing the backlog penalty, but it also indicates that looser order deadlines could lead to much higher

pro�t.

As before, we simulate a variety of reference trajectories, rescheduling frequencies, and horizons. The system

once again starts with a half day’s order in inventory, and simulations last 30 days. Closed-loop costs are shown in

Table 4.4. From these values, we see qualitatively similar behavior to the single-reactor case, although the greater

�exibility of having three reactors leads to better performance for the simulations without terminal constraints. In

this case, the initial condition appears to be favorable to the system, as all economic MPC strategies out-perform

their theoretical bounds, with longer horizons performing slightly better. We note in particular that the N = 24 case

with T = 96 terminal constraint out-performs the N = 72 case without any terminal constraint. Both solutions

are shown in Figure 4.19. Despite the short horizon of the N = 24, the terminal constraint essentially allows the
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Figure 4.18: Periodic solutions for the three-reactor system.
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Table 4.4: Closed-loop costs for nominal three-reactor case over 30 days of simulation. Values are normalized to the
T = 48 periodic reference trajectory.

Reference
Trajectory

Reference
Cost

Rescheduling
Period

Horizon
N = 24 N = 48 N = 72

None N/A 12 h −16.76% +1.34% +0.46%
None N/A 1 h −4.11% −0.05% +1.17%

T = 48(a) +0.00% 1 h +1.67% +1.74% +2.29%
T = 48(b) +0.00% 1 h +1.18% +1.45% +2.11%
T = 96(a) +1.80% 1 h +3.36% +3.38% +3.38%
T = 96(b) +1.80% 1 h +2.89% +2.89% +2.91%
T = 96(c) +1.80% 1 h +3.38% +3.42% +3.42%
T = 96(d) +1.80% 1 h +2.87% +2.88% +2.97%

optimizer to plan ahead and avoid unnecessary transitions. Thus, terminal constraints provide a means to reduce

online computational load, as they generally reduce the necessary horizon to achieve good performance.

4.5.3 Single-Reactor With Yield Disturbances

While the nominal performance properties are useful, real systems are subject to disturbances that can invalidate

nominal properties. Thus, we wish to examine whether the economic MPC strategy of including a terminal constraint

is still advantageous when the reference trajectory is not necessarily feasible due to disturbances. To investigate, we

simulate the system in closed loop subject to ±15% random disturbances in product yield. At each timestep, after

�nding the optimal schedule, the yield disturbance is added by updating product inventory (either increasing or

decreasing). Note that if the reactor output was immediately being sold, any negative yield disturbance leads to a

backlog rather than negative value of inventory. We simulate N = 48 horizons for 10 days, both with and without a

T = 48 periodic reference trajectory. For simplicity, we consider only a single reactor.

Figure 4.20 shows the distribution of closed-loop pro�t and backlog costs across 250 simulations with and without

terminal constraints. In particular, we note that mean pro�t is 3.9% higher and mean backlog costs are 0.5% lower

(both values normalized to the nominal T = 48 periodic pro�t) when the terminal constraint is included compared

to when it is not. Note that on a relative basis, the terminal constraints reduce backlog by roughly 75%, although

both values are small (approximately 0.5% of total cost). Thus, despite the lack of theoretical properties, the terminal

constraint still appears to be bene�cial, as it essentially anchors the optimizer to a quality trajectory that is feasible on

average. We note that for feasibility purposes, the terminal constraints have been softened using a large linear penalty

function; thus, if the optimizer can reach the reference trajectory (i.e., x ∈ XN (t) in the language of Chapter 3), then

it will do so, and if not, the optimizer will �nd a nearby solution. It is possible that a run of bad disturbances could

push the system far from the reference trajectory, which could lead to poor performance when the optimizer struggles

to simultaneously lower backlog while also producing the extra product needed to meet the reference trajectory. In
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(a) N = 72 solution without any terminal constraints.
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(b) N = 24 solution with T = 96(c) periodic terminal constraint.

Figure 4.19: Example closed-loop trajectories for the three-reactor problem. Both use hourly rescheduling.
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Figure 4.20: Kernel density estimate for pro�t and backlog costs for 250 trials of the yield disturbance simulation.
Values are normalized to the pro�t of the T = 48 periodic reference trajectory.

such cases, a practical solution is to temporarily switch or remove the terminal constraint until the system recovers.

However, for this system, such behavior was not observed. We conclude that inclusion of the terminal constraint is

still generally helpful in the presence of disturbances, and thus is still useful despite the lack of theoretical properties.

4.5.4 Underlying Unit Dynamics

As a �nal example, we consider the addition of underlying unit dynamics. Each reactor has two state-space outputs:

temperature T , and production P . These outputs are a�ected by inputs cooling �ow Fc and throughput F , which are

constrained to Fc ∈ [0, 1], and F ∈ [−0.1, 1.1]. Note that Fc corresponds to use of the cooling resource, which shares

a total constraint across all three reactors. The system model is linear with �ve states. Step responses are shown in

Figure 4.21. There is an operating region associated with each product A, B, C, and D, and the sets Xij are de�ned in

terms of temperature as illustrated in Figure 4.22.

We compare the full integrated model and the approximate dynamic-aware model by trying to �nd the optimal

T = 48 h periodic solution for both. For the approximate model, we start by de�ning the catalog of operating points

and transitions for each operating region. As operating points, we take the steady-states with T at the central values

and the production rate F at 1 (nominal production) and 1.1 (extra production), which gives two elements in Pij

(indicated with markers in Figure 4.22). Note that these values back o� slightly from the bounds so that adjustments

between the operating points can be completed in �nite time. Thus, the approximate model will slightly underestimate

the the production capacity of each reactor. The transitions are then taken between the corresponding points of each

Xk . Note that, due to the time constants of the reactor dynamics, transitions to and from the steady-states take one to

two periods longer than the corresponding transitions between (nonsteady) points in the operating regions. These

extra moves are required to zero out the low-amplitude transient dynamics near the nominal operating temperatures.
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Figure 4.23: Solution to the approximate dynamic-aware model for the three-reactor system with dynamics. The
unnecessarily long transition times of the approximate model are apparent.

Thus, the integrated model may be able to �nd faster solutions, as reactors are not required to reach an exact steady

state before starting production.

We begin by solving the approximate model to obtain a feasible product transition schedule. We use this solution

as a guess for the binary Wijt variables in the integrated solution. The optimizer is then given time to �nd a better

solution. We present the two solutions in Figures 4.23 and 4.24 respectively. From these �gures, we see that the

unnecessarily long transition times in the approximate model are the main source of suboptimality. Using the initial

guess from the approximate model immediately leads to a solution to the full solution that is 1% better; after 10,000 s

of optimization time, the �nal full-model solution is 3% better than than the approximate solution. However, even

this �nal trajectory has some obvious suboptimalities, and the true optimal solution is likely a few percent better.

To conclude this example, we compare the solution times for the approximate model and the full model with and

without the feasible initial guess. Solution progress is shown in Figure 4.25. From this �gure, we see quite clearly that

the approximate model is signi�cantly easier to solve than the full model. The solver obtains a quality suboptimal

solution to the approximate model within 10 s, and the optimal solution is found after 150 s. When the full model is

given feasible values of Wijt (obtained from the approximate solution) as an initial guess, the optimizer immediately

�nds a slightly better solution (due to the full model’s slightly larger operating region). Unfortunately, solution

progress is slow after that point, not �nding a better solution until about 500 s. By contrast, when the full model is

not given a feasible guess, lower bound progress is largely una�ected, but unfortunately the optimizer is unable to
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Figure 4.24: Solution to the full integrated model for the three-reactor system with dynamics. Some obvious
suboptimalities can be observed, in particular the short run of product C in Reactor 3 that could be swapped to
Reactor 2.

�nd a feasible solution after 10,000 s. This result indicates that either specialized techniques need to be developed to

solve the combined formulation, or some form of approximation needs to be applied.

4.6 Summary

In this chapter, we have presented a state-space formulation for closed-loop scheduling problems that can be used

with economic MPC. Following Subramanian et al. (2012), we demonstrate that simple batch scheduling models can

be put in state-space form by augmenting the state with a history of past task assignment variables. Through a simple

example system, we have also demonstrated that naive rescheduling can lead to pathological closed-loop behavior,

in this case a completely idle plant. However, by using a reference trajectory and a terminal cost/constraint, the

theoretical results from Chapter 3 (which are compatible with the discrete decision variables prevalent in scheduling

problems) provide nominal closed-loop performance bounds that prevent such behavior a-priori. We then present a

state-space formulation for combined scheduling and control of units undergoing continuous production. This model

is also compatible with economic MPC but can be challenging to solve. Thus, we have also presented a dynamic-aware

scheduling model that can generate a feasible trajectory for the underlying unit dynamics without having to embed

the full dynamic models. Finally, we have illustrated these methods using a system of parallel multi-product reactors.

By including terminal constraints, closed-loop pro�t is increased relative to formulations without terminal constraints,
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Figure 4.25: Upper and lower bound progress for the two dynamic reactor models. The objective function is to
minimize negative pro�t. Note that, without the initial guess, the full model does not �nd a feasible solution within
10,000 s.

both in the nominal case and when disturbances are present. Thus, by formulating rescheduling problems as MPC,

theoretical closed-loop properties can be derived to avoid unexpected behavior.

For some additional discussion of closed-loop scheduling, see the introduction to Risbeck et al. (2017). For

additional closed-loop scheduling and economic MPC simulation results, see Risbeck et al. (2018a).

4.7 Appendix: Conservative Resampling

In Section 4.4, we proposed a dynamic-aware scheduling model that can generate feasible dynamic trajectories

without including the full unit dynamic models. This formulation generally gets rid of the underlying dynamic s

timescale, which reduces the necessary number of decision variables. However, in the inventory and production

constraints (4.11), (4.12) and (4.27) still require variables and constraints on the s timescale. When the s discretization

is very �ne, the total number of points S can be very large, and thus the large number of variables and constraints

can lead to slow solution times.

To alleviate this burden, we describe a conservative resampling procedure that allows the ζ±ii′jnks parameters to

be rede�ned on a slower timescale in order to ensure satisfaction of the F and L constraints. To start, we de�ne a

new dynamic time grid s ∈ S′ := {0, 1, . . . , S′ − 1} with 0 < S′ ≤ S. The constraints on F and L will be enforced

on this timescale; thus, by choosing S′ < S, the total number of constraints will be reduced, at a cost of a smaller

feasible set. For each s′ ∈ S′, choose a value σs′ ∈ S such that σ0 = 0 and σs′+1 > σs′ . De�ne σS′ := S and let

S̄′ := S′ ∪ {S′} analogous to S̄.
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For notational simplicity, we neglect the contribution of production and consumption for units at a steady-state

operating point. These values are given by φ±ijkpG′ijpt in (4.27). Since they are constant throughout the production

range, they can be resampled without any loss of �delity simply by rescaling based on the e�ective timesteps

σs′+1 − σs′ . Thus, we consider the modi�ed version of (4.27) as follows:

F±kst =
∑
j∈J

∑
i,i′∈I

∑
m∈Mii′j

ζ±ii′jkmnsZ
′
ii′jmnt, k ∈ K, s ∈ S, t ∈ T. (4.28)

Here, the only contributions are due to the transition values ζ±ii′jkmns.

4.7.1 Inventory Constraints

For the constraints on Lskt, de�ne the parameter

λii′jkns :=

s−1∑
s′′=0

(ζ+
ii′jkns − ζ−ii′jkns)

Thus, on the s timescale, we have from (4.11) that

Lkst = Lk0t +
∑
i,i′∈I

∑
j∈J

∑
n∈Nii′j

λii′jkns.

Letting λ∗ii′jkn := λii′jknS , the inventory balance on the t timescale becomes

Lk(t+1) = Lkt +
∑
i,i′∈I

∑
j∈J

∑
n∈N

λ∗ii′jknz
′
ii′jnt + V +

kt − V −kt .

This equation is exact and remains the same regardless of resampling. Thus, the bounds Lkst at the endpoints s = 0

and s = S can be enforced via bounds on Lkt and Lk(t+1). To address the interior points, we make use of the new

timescale as follows. For each s′ ∈ S̄′, choose parameters λmin
ii′jkns′ and λmax

ii′jkns′ such that

λii′jkns ≥ λmin
ii′jkns′ +

s− σs′
σs′+1 − σs′

(λmin
ii′jkn(s′+1) − λmin

ii′jkns′)

λii′jkns ≤ λmax
ii′jkns′ +

s− σs′
σs′+1 − σs′

(λmax
ii′jkn(s′+1) − λmax

ii′jkns′)

for all s satisfying σs′ ≤ s ≤ σs′+1. That is, the λmin
ii′jkns′ and λmax

ii′jkns′ are chosen so that they are piecewise-linear

under- and over-approximators of the original net production rates.

With these values, enforcing the constraints

Lkt +
∑
i,i′∈I

∑
j∈J

∑
n∈N

λmin
ii′jkns′ ≥ 0,

on the resampled s′ ∈ S̄′ timescale ensures that Lkst ≥ 0 for all s ∈ S̄ on the original dynamic timescale. Similar

expressions using λmax
ii′jkns′ ensure satisfaction of upper bounds Lkst ≤ L̄k . We illustrate this procedure in Figure 4.27.

As shown in this example, the initial values of λmin
ii′jkns and λmax

ii′jkns for s′ = 0 can potentially be nonzero to give a

tighter overall approximation.
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Figure 4.26: Illustration of conservative inventory constraints. The top two axes show cumulative net resource
production for individual units, while bottom axes shows total inventory level. Using the conservative bounds,
constraints can be enforced via constraints on the resampled s′ timescale, rather than the true s timescale.



115

s

F−

s′ = 0 s′ = 1 s′ = 2

t t+ 1

Unit 1

Unit 2
Total
Bound

Figure 4.27: Illustration of conservative bound on resource consumption. Solid lines show actual ζ−ii′jkns, while
dashed lines show resampled ζ̂−ii′jkns′ .

4.7.2 Production/Consumption Rate Constraints

For the constraints, on F , we recall that we would like to enforce bounds on F+
kst and F−kst as de�ned in (4.28). To

enforce these constraints, we de�ne parameters

ζ̂+
ii′jkns′ := max

s∈Ŝs′
ζ+
ii′jkns

ζ̂−ii′jkns′ := max
s∈Ŝs′

ζ−ii′jkns

for sets

Ŝs′ := {s ∈ S | σs′ ≤ s < σs′+1}.

Therefore, enforcing the constraint ∑
i,i′∈I

∑
j∈J

∑
n∈Nii′j

ζ̂+
ii′jkns′z

′
ii′jnt ≤ P̄+

k

enforces that F+
kst ≤ F̄+

k for all s ∈ Ŝs′ . Similar expressions are written for F−kst. We illustrate in Figure 4.27. By

enforcing (conservative) bounds on the s′ timescale, original bounds on the s timescale are satis�ed.
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Chapter 5

Central Energy Plant Optimization

For the loser now
Will be later to win
For the [electricity prices] they are a-changin’

— Bob Dylan
The Times They Are A-Changin’

5.1 Introduction

As a speci�c application of the techniques developed in Chapters 2 and 3, we consider the online optimization of

central energy plants for large-scale HVAC systems. To heat or cool campuses or large buildings, it is most e�cient

to produce hot and chilled water in centralized high-capacity equipment, and then pump the water to where heating

and/or cooling is needed. This equipment is often organized into a central plant that contains multiple parallel pieces

of equipment to meet the heating and cooling needs of the building or buildings being served (Powell et al., 2013).

Running the equipment requires electricity, which can be purchased from the utility market or generated on site. At

any given time, the job of the central plant is to meet the primary heating and cooling demands of the system, and it

is of course desirable to do so at the highest possible e�ciency or lowest possible cost.

Due to variable equipment capacities, when demand is below the maximum capacity of the plant, there many

degrees of freedom for meeting current demand. For example, when cooling demand is 10 MW and the central

plant contains two chillers, each with a 10 MW capacity, the demand could be met by having both chillers operate

at 50% capacity or by having one chiller operate at 100% with the other chiller shut o�. However, due to variable

equipment e�ciency, di�erent equipment con�gurations that supply the same total load may have vastly di�erent

utility requirements. In addition, equipment that couples directly with the ambient (e.g., cooling towers) experiences

time-varying e�ciency due to time-varying ambient conditions (Braun, 2007b). Thus the overall plant e�ciency is

determined both by the con�guration of active equipment (which are decision variables) and by current ambient

conditions (which are parameters).
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A signi�cant additional complication is that electricity and other utility prices are not necessarily constant. Large

customers are often assessed time-varying electricity prices, which can be either a �xed schedule or based on real-time

market conditions (Albadi and El-Saadany, 2007). Thus, purchasing 1 MWh of electricity at 12:00 noon may be

signi�cantly more expensive than purchasing the same amount at 12:00 midnight. In addition to time-varying use

charges, the monthly utility bill may contain a peak demand charge, which is calculated from the peak instantaneous

rate of electricity usage over the previous period (Berg and Savvides, 1983). Unfortunately these two charges are

competing: use charges are minimized by purchasing large amounts of electricity at various points throughout the

day when it is cheap, while demand charges are minimized by purchasing a small amount of electricity consistently.

Therefore, the optimal strategy lies somewhere between these two extremes.

Due to the two sources of time-variability, it is advantageous to install some form of thermal energy storage (TES).

Coming in the form of ice or water tanks, TES allows the production of the central plant to be temporally decoupled

from consumption by the buildings (Touretzky and Baldea, 2016). For example, a well-insulated tank allows chilled

water to be produced at night when electricity is cheap and equipment is e�cient, stored until the next afternoon,

and then used to meet the high afternoon demand. This time shifting reduces the need to purchase electricity or

operate equipment when electricity is expensive and/or e�ciency is low, which can signi�cantly reduce the cost of

operating the central plant.

Finally, due to the large overlap between hot and chilled water demand (as was illustrated in Figure 1.6a), overall

plant e�ciency can be improved by employing heat-recovery chillers (HRCs). These units operate similarly to

conventional chillers except that they reject waste heat back into a process stream of hot water, rather than into

a waste stream of cooling water that must be processed in cooling towers. Therefore, HRCs produce hot water

essentially for free, but they can only do so if there is simultaneous demand for both the hot and chilled water streams

(Wenzel et al., 2014).

As a result of all of these factors, operating central plants at the lowest possible cost requires making a very large

number of non-obvious and at times non-intuitive decisions: at each hour throughout the day, an operator must

decide which equipment to activate, what level to operate each piece of active equipment, and how much water

to send to or withdraw from TES. Unfortunately, the most common strategy used in existing central facilities is

for plant managers to schedule these decisions by hand based on heuristic methods or prior intuition. Although

very experienced operators may achieve adequate performance under nominal conditions, e�ciency can su�er

signi�cantly when disturbances occur (e.g., atypical ambient conditions, units taken out of service for maintenance, or

the main operator going on vacation) (Wenzel et al., 2016). To alleviate this human burden, we propose the application

of mixed-integer economic MPC for this problem. Using models for equipment and TES, as well as forecasts for

demand and utility prices, the cost-optimal schedule can be determined for a �xed horizon, and the decisions can be

implemented in closed loop. The end result is more consistent performance and lower cost.
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5.1.1 Problem Statement

Based on the previous discussion, we wish to formulate an optimization problem to make the following decisions:

• Is each chiller, HRC, boiler, or piece of auxiliary equipment active?

• For each active unit, what is its operating point?

• How much energy is being charged or discharged from TES?

These decisions must be made at each time point on a pre-de�ned discrete time grid. Once these decisions have been

made, models for utility consumption of each unit are used to calculate utility requirements, which then determine

operating costs. The goal is to minimize operating costs while respecting the following constraints:

• Heating and cooling demand must be satis�ed.

• Equipment cannot be switched on or o� too rapidly.

• Minimum and maximum capacities for active equipment cannot be violated.

• TES capacity must not be exceeded.

It is assumed that forecasts of reasonable accuracy are available for utility prices and heating/cooling demand. Such

forecasts can be obtained from historical and real-time data (ElBsat and Wenzel, 2016; Zavala et al., 2009). For our

purposes, we do not care how forecasts are obtained but simply that they are available. Of course, these forecasts can

be inaccurate and may be continuously updated; thus, it is necessary that the optimization problem can be solved in

real time, so that a receding horizon implementation can be used.

There are a number of features that make this problem particularly challenging. Among them are as follows:

• The decisions are both discrete (e.g., on/o�) and continuous (e.g., how much) in nature.

• Units have nonzero minimum capacities and e�ciencies that vary with load, which give rise to nonlinear,

nonconvex equipment models.

• The cost function includes both short-term time-varying prices and long-term peak demand charges.

• TES capacity is potentially very large, so long prediction horizons are necessary for most e�ective use.

Because of these di�culties, many strategies in the literature either propose near-optimal heuristics, focus on smaller-

scale instances, or decompose the problem. In order to achieve the best possible performance, we strive to not make

any of these compromises and instead focus on a formulation of the complete problem that is tractable for realistically

sized central plants.
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5.1.2 Literature Review

Due to the presence of both discrete and continuous decision variables, a natural tool is mixed-integer programming

(MIP). A special subclass of MIP is mixed-integer linear programming (MILP), in which the objective function and

constraints are all linear functions of the decision variables. Although MILP can be very challenging, many large

instances can be solved using state-of-the-art solvers such as Gurobi (Gurobi Optimization, LLC, 2018) and SCIP

(Achterberg, 2009). MILP optimization models have been employed for various applications in building e�ciency and

sustainability including selection of optimal energy source across renewable and non-renewable options (Ashouri

et al., 2013), using life-cycle analysis to optimize building retro�ts (Gustafsson, 1998), and scheduling appliance usage

across households in a microgrid (Zhang et al., 2013). More general mixed-integer nonlinear programming (MINLP)

allows the inclusion of nonlinear constraints. General MINLP remains challenging, although progress is being made

(Belotti et al., 2013), and solvers like BARON (Sahinidis, 2018) can solve some moderately sized instances to optimality.

MINLP formulations can consider equpiment models or energy balances in more detail, (Candanedo et al., 2013;

Dagdougui et al., 2012; Hajiah and Krarti, 2012; Ma et al., 2012b; Touretzky and Baldea, 2016; Trifkovic et al., 2014).

However, such models are generally limited to small systems with few pieces of equipment and/or few degrees of

freedom.

Because of challenges associated with large-scale MIP problems, many decomposition strategies have been

proposed for central energy plant optimization. A common architecture is to delegate discrete equipment selection to

a small subproblem, either via heuristics (Braun, 2007a,b; Braun and Diderrich, 1990) or solving a small MIP problem

for single-period equipment selection (Ali et al., 2013; Ardakani et al., 2008; Geem, 2011; Lee et al., 2011; Lu et al.,

2004). These subproblems can then be used to construct an aggregate representation of plant performance without

reference to individual equipment on/o� states (Powell et al., 2013; Wenzel et al., 2014), which allows longer-horizon

TES optimization to be formulated using all continuous variables. Depending on the model used for TES, it may

be necessary to include a discrete variable to choose whether the TES is charging or discharging, e.g., if the model

is asymmetric. Similarly to the previous strategies, methods such as dynamic programming (Henze et al., 2008) or

backward reach set computation (Behl et al., 2012) can be used to predetermine these variables, which also serves

to reduce or remove discrete decision variables from further optimization. However, because these decompositions

generally lead to temporal decoupling of on/o� variables, explicit constraints on rapid equipment switching cannot

be included. While aggregate rate-of-change penalties could discourage rapid switching, it is nevertheless possible

that units are switched on and o� repeatedly in response to small system load variations. In addition, although some

formulations address simultaneous heating and cooling (Wenzel et al., 2014), most formulations consider only chilled

water production and sometimes only a single chiller.
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Figure 5.1: Abstract representation of central energy plant optimization model.

To address the limitations of existing strategies, we develop an MILP formulation to address the entire central

energy plant optimization problem without decomposing into subproblems. We demonstrate that this formulation

is tractable for realistically-sized instances, and we develop further extensions to increase �delity and improve

closed-loop performance. Note that in this section, we are only considering operation of the central plant in order to

meet a �xed schedule (or forecast) of demand. Many strategies have been proposed in the literature for small-scale

systems in which the cooling demand is not a parameter but rather a decision variable that couples with a dynamic

model for building temperature. We hold o� on reviewing these works until Chapter 6.

5.2 Problem Formulation

To facilitate a concise problem formulation, we consider an abstract representation of the central plant in terms of

“generators” and “resources”. In this language, a generator is any piece of equipment (main or auxiliary), while a

resource is any material or energy source that �ows into or out of the plant. The central plant operates by purchasing

some set of resources from the utility market, consuming those resources in generators to produce di�erent resources,

and then delivering the produced resources to the load (i.e., buildings), possibly passing through storage along the

way. This abstract representation is diagrammed in Figure 5.1. Note that this model originally appeared in Risbeck

et al. (2015) and was expanded in Risbeck et al. (2017).

Throughout this section, we use boldface upper-case Roman letters for sets (e.g., T), lower-case Roman letters for

subscripts, upper-case Roman letters for decision variables, and Greek letters for parameters.
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5.2.1 Sets

For the abstract problem de�nition, we use the following sets:

• Generator types j ∈ J

• Resources k ∈ K

• Time intervals t ∈ T

Note that the set T := {1, 2, . . . , T} is ordered, and the (constant) length of each time period is denoted by ∆. To

calculate peak charges assessed over multiple (possibly overlapping) windows, we de�ne the following:

• Peak charge windows w ∈W

• Subset of time points Tw ⊆ T included in window w

Finally, for the auxiliary variables used for piecewise-linear generator models, we de�ne the following sets:

• Interpolation regions m ∈M

• Subset of interpolation regions Mj ⊆M for generator j

• Interpolation points n ∈ N

• Subset of interpolation points Njm in region m for generator j

These sets are explained more in depth in Section 5.3.2.

5.2.2 Parameters

In this section, we list all model parameters. Most parameters are real-valued, although parameters restricted to be

integers are noted. Subscripts on all parameters are as in the previous section.

To calculate the cost of a given schedule, it is necessary to know (or have a forecast of) resource prices and

demands. These and other parameters used to de�ne the cost function:

• Forecast φkt of resource demand

• Forecast ρkt of resource prices

• Peak demand charge costs ρmax
kw

• Minimum bound Πmax
kw for peak demand

• Penalty ωk for backlogged demand

• Upper bounds Πk for resource purchase
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Other parameters are used to predict equipment performance or constrain equipment usage:

• Number µj of identical type-j generators (integer-valued)

• Interpolation points ζjknt for generator models

• Equipment on, o� restrictions η+
jt, η

−
jt (integer-valued)

• Decay rate σk for storage tanks

• Minimum on, o� dwell times δ+
j , δ−j for generators (integer-valued)

• Bound Υk for single-period storage charge/discharge

• Storage capacity Σk

These parameters may be updated as equipment characteristics change, but they are generally known values.

5.2.3 Variables

In this section, we list all decision variables in the model. Subscripts correspond to the appropriate sets. Bounds and

integrality restrictions are given for each variable.

Analogous to the parameters, the following variables are used to calculate costs:

• Resource purchase rates Pkt ∈ [0,Πk]

• Peak resource purchase rates Pmax
kw ∈ [Πmax

kw ,∞)

• Total cost Ck ∈ [0,∞) of resource k

• Backlog change Hkt ∈ (−∞, φkt]

• Cumulative backlog level Bkt ∈ [0,∞)

Equipment operation is determined by the following decision variables:

• Number Ujt ∈ {0, . . . , µj} of type-j generators currently on

• Number U+
jt , U

−
jt ∈ {0, . . . , µj} of generators newly switched on, o�

• Net resource consumption Qjkt ∈ (−∞,∞)

• Net storage discharge rate Ykt ∈ [−Υk,Υk]

• Storage level Skt ∈ [0,Σk]

Finally, to model piecewise-linear operating surfaces for generators, the following auxiliary decision variables are

used:
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• Number of generators Vjmt ∈ {0, . . . , µj} operating in interpoltaion region m

• Weight Zjmnt ∈ [0, µj ] of interpolation point n in region m

Note that variables Bkt, Ukt, and Skt represent states of the system, and thus they possess initial values Bk0, Uk0,

and Sk0 that are �xed parameters for the purposes of optimization. All other variables are inputs to the system (or

auxiliary optimization variables) and and thus do not require values for t = 0.

5.2.4 Constraints

The overall objective function is the sum of real utility costs and �ctitious backlog penalties as follows:

min
∑
k∈K

Ck +
∑
k∈K

∑
t∈T

ωktBkt. (5.1)

Note that the penalty coe�cients ωk should be set to large values so that Bkt = 0 whenever feasible. In such cases,

the objective function is simply the real utility costs that would be assessed in the current schedule. Real utility cost

is calculated via

Ck =
∑
t∈T

ρktPkt +
∑
w∈W

ρmax
kw P

max
kw , k ∈ K. (5.2)

This constraint gives the sum of time-varying use charges and peak demand charges, with the peak rates calculated

using

Pmax
kw ≥ Pkt, w ∈W, t ∈ Tw. (5.3)

Recall that Pmax
kw has a lower bound Πmax

kw . As mentioned in Section 3.4, it is desirable to have a good estimate for the

nominal remaining peak to use as this bound; that way, the true peak cost ρmax
kw can then be included in the objective

function. In the absence of such an estimate, one should re-weight the peak charge term in the objective function

based on the current horizon so that it does not dominate and lead to an unsustainably low peak. In either case, the

peak observed so far is included in the bound Πmax
kw to avoid violating the Principle of Optimality.

The main operating constraint of the central plant is that all resource demand must be satis�ed. To ensure that

each optimization problem has a solution, we allow the optimizer to backlog demand (albeit at a heavy penalty).

Mathematically, this constraint is expressed as

∑
j∈J

Qjkt + Ykt + Pkt +Hkt ≥ φkt, k ∈ K, t ∈ T, (5.4)

which requires demand φkt to be met by the sum of current production Qjkt, storage discharge Ykt, direct purchase

Pkt, and backlog Hkt. The inclusion of the bound Hkt ≤ φkt ensures that only external demand (i.e., not internal

demand due to consumption of resources in generators) can be backlogged. For example, to enforce that a su�cient

number of pumps are active, chillers are modeled as consuming an internal “volumetric �ow” resource that is produced
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by pumps. Because there is no external demand for volumetric �ow, the upper bound onHkt ensures that the optimizer

must activate the required number of pumps whenever chillers are active; without the bound, the optimizer could

potentially choose to leave the pumps idle and incur the backlog penalty.

Equipment on/o� switching is determined by the following three constraints:

Ujt = Uj(t−1) + U+
jt − U−jt , j ∈ J, t ∈ T, (5.5)

Ujt ≥ η+
jt +

δ+j −1∑
τ=0

U+
j(t−τ), j ∈ J, t ∈ T, (5.6)

µj − Ujt ≥ η−jt +

δ−j −1∑
τ=0

U−j(t−τ), j ∈ J, t ∈ T. (5.7)

Here, the �rst constraint updates the number of on and o� units due to current switching events, while the second

and third equations enforce lower bounds on the number of on and o� units respectively (note that the expression

µj − Ujt gives the number of type-j generators that are switched o� in period t). The parameters η+
jt and η−jt are

used to account for switching events that take place outside of the current optimization horizon, and they ensure that

dwell times are actually enforced in the closed-loop schedule.

Equipment production rates are calculated according to

Qjkt =
∑
m∈Mj

∑
n∈Njm

ζjkntZjmnt, j ∈ J, k ∈ K, t ∈ T. (5.8)

To ensure that the weights Zjmnt de�ne a valid point on the piecewise-linear operating surface, the following

constraints are enforced:

Ujt =
∑
m∈Mj

Vjmt, j ∈ J, t ∈ T, (5.9)

Vjmt =
∑

n∈Njm

Zjmnt, j ∈ J,m ∈Mj , t ∈ T. (5.10)

The �rst constraint enforces that one interpolation region is selected for each active unit, while the second constraint

ensures that a convex combination of points in region m is selected.

Storage tank dynamics are modeled using the simple �rst-order model

Skt = σkSk(t−1) − Ykt, k ∈ K, t ∈ T. (5.11)

For a perfectly insulated tank, σk = 1. Conceptually, this model is the ∆-discretization of the continuous-time model

dSk/dt = (log(σk)/∆)Sk − (1/∆)Ykt. In the true discretization, there is a coe�cient of (σk − 1)/ log(σk) in front

of Ykt in (5.11). This term can be included for increased accuracy if desired (and it approaches unity as σk → 1).
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Finally, cumulative backlog is modeled as a simple integrator

Bkt = Bk(t−1) +Hkt, k ∈ K, t ∈ T. (5.12)

By tracking and penalizing cumulative backlog, any missed demand in a given period must be met in a later period or

face additional penalty. For example, if the demand for cooling cannot be met, then building temperature will increase

above nominal levels; thus, additional cooling above the nominal demand is necessary in the following period to

restore nominal temperatures. However, depending on the nature of the demand, meeting demand later may not be a

viable option. For example, if there is missed demand for electricity that is used for building lighting, then the lights

will simply shut o�, and there is no need for additional electricity in future periods. In such cases, backlog need not

be tracked, and Hkt ∈ [0, φkt] can be penalized directly in the objective function.

The overall optimization problem consists of constraints (5.2) to (5.12) with objective function (5.1). It is a

mixed-integer linear programming (MILP) problem.

5.2.5 Remarks

Remark 5.1: A key premise of the model is that generators operate at steady state throughout each time period,

and jumps to new steady states happen instantaneously. In reality, there are transient dynamics associated with

changing operating points, especially when a generator is switched on or o�. Fortunately, with a timestep of 1 h,

there is usually su�cient timescale separation for the dynamics of part-load changes, which are on the timescale of

minutes, and thus they can be safely neglected at this resolution. For startup and shutdown dynamics, e�ects are

more pronounced, but their impact is minimized by enforcing dwell times on equipment to prevent switching on and

then immediately o� in the subsequent period.

Should a smaller timestep be utilized, these e�ects could be attenuated via rate-of-change constraints, e.g.,

|Qjkt −Qjk(t−1)| ≤ ξjk + ξ+
jkU

+
jt + ξ−jkU

−
jt , j ∈ J, k ∈ K, t ∈ T.

In this form, ξjk gives the maximum one-period change in Qjkt when the unit is on in both periods, while ξ+
jt and ξ−jt

allow this bound to be tightened or loosened when the generator has just been switched on or o�.

Remark 5.2: As written, the optimization problem is not in state-space form due to the constraints (5.6) and (5.7)

that consider variables across time points. However, as discussed in Chapter 4, the model can be transcribed into

state-space form by “lifting” the necessary input variables (that is, augmenting the state to include a �nite history of

past values). Following Section 3.4, the state is also augmented to include the past history for peak demand charges.

After making this change, the variables are categorized as in Table 5.1. Recall that auxiliary variables are used to

aid in the formulation of the optimization problem and are uniquely de�ned by some function (expressed as model
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Table 5.1: State-space variable types for central plant optimization model.

Category Variables

States Ujt, Skt, Bkt, past history of U+
jt and U−jt , previous peak purchase Pmax

kw

Inputs Qjkt, Ykt, Pkt, Hkt, U+
jt , U

−
jt

Auxiliary Variables Ck , Pmax
kw , Vjmt, Zjmnt

constraints) of the states and inputs. Note also the slightly di�erent time indexing used in this section: states are

indexed t ∈ {0, 1, . . . , T}, while inputs and auxiliary variables are indexed as t ∈ {1, 2, . . . , T}, which gives evolution

equations of the form xt = f(xt−1, ut).

Remark 5.3: Due to the inclusion of nonconvex equipment models, it can be di�cult to close the optimality gap

to 0%. However, because these models are approximate and certain parameters are forecasts, �nding a solution

whose objective function is 0.1% better does not necessarily mean that the corresponding schedule will be 0.1%

better upon implementation. Thus, it is not worthwhile to spend a signi�cant amount of time proving optimality for

each instance. In addition, because the optimization is implemented in closed loop, minor imperfections in a given

schedule can potentially be corrected at the next timestep, or they may even become irrelevant due to changes in

forecasts. Therefore, for the purposes of this chapter, we de�ne “solving” a given instance as �nding a solution with

an optimality gap of 1% or less within the given time limit. The typical solution progress is that a quality suboptimal

solution (with a gap of 1% to 5%) is found within the �rst 30 s, followed by improvement over the next minute, after

which the objective function stagnates, and progress is mainly on the solution lower bound (see Figure 5.14 for an

example of this behavior). Fortunately, this pattern is very favorable with the desired performance.

5.3 Eqipment Models

To illustrate the equipment models, we start by showing the energy and material �ow for a chiller/pump/cooling

tower system in Figure 5.2. After collecting heat from the buildings, chilled water returns and enters the chiller. Using

electricity to power a refrigeration cycle, the chiller rejects heat QCH from the chilled water stream, thereby lowering

its temperature from TCHWR to TCHWS. The rejected heat (along with a fraction of the electricity input) is transferred

to cooling water stream, which is then sent to a cooling tower. Inside the cooling tower, the cooling water is contacted

with ambient air, reducing the water temperature from TCWR to TCWS. The overall e�ect is that heat is rejected from

the chilled water stream back to the ambient. Note that chiller performance depends on the temperatures TCHWR and

TCWS of both entering water streams; as a simplifying assumption, these values can be taken as �xed parameters.

The material and energy �ows for HRCs is identical to conventional chillers except that the heat is rejected directly

into a process stream of hot water, rather than into a waste stream of cooling water. Thus, the heat is ultimately



127

Chiller

Cooling Tower

Pump

TCWR

mCW

TCWS

VCW

TWB
mair

TCHWR
VCHW

TCHWS

QCT

QCHWCH

WCT

WP

TWB Ambient wet-bulb temperature

TCWS, TCWR;
mCW, VCW

Cooling water supply, return
temperatures; mass, volume �ows

TCHWS, TCHWR;
VCHW

Chilled water supply, return
temperatures; volume �ow

QCH, QCT
Cooling load for chiller,
cooling tower

WCH, WCT,
WP

Electricity use by chiller,
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Figure 5.2: Mass and energy �ows for a single chiller, pump, and cooling tower. The chiller rejects heat from the
return water supply into a stream of cooling water The cooling tower rejects heat from the cooling water supply back
to the ambient.
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PumpTHWR
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VB Boiler natural gas use

THWS, THWR;
VHW

Hot water supply, return
temperatures; volume �ow

QB Boiler heating load

WP Electricity use by pump

Variables

Figure 5.3: Mass and energy �ows for a single boiler and pump. Natural gas is burned in the chiller to heat the hot
water stream.

transferred to whichever process consumes the hot water. For direct heating, natural gas boilers are used. The

boiler/pump system is diagrammed in Figure 5.3.

For the purposes of cost calculation, the “main” equipment is chillers, HRCs, and boilers. These units meet the

heating and cooling demands placed on the central plant, and they account for the majority of resource use. All other

units are referred to as “auxiliary” equipment, which includes cooling towers as well as pumps for hot and chilled

water. To reduce computational requirements, the auxiliary equipment can be omitted from the formulation; in this

case, the main equipment models should be augmented to include the external resource consumption of auxiliary

equipment. We give the nonlinear functional forms for all equipment models in the following section.



128

Q

T

Qmin Qmax

Tmax

Tmin

(a) Domain and polytopic partition of chiller model
in original (QCH, TCHWS) space.

Q

V

V ∝ Q

Tmin − TCHWR

V ∝ Q

Tmax − TCHWR

Qmin Qmax

(b) Domain and polytopic partition of chiller model in transformed
(QCH, VCHW) space.

Figure 5.4: Domain of chiller model in original and transformed space. The symbolsQ, T , and V refer toQCH, TCHWS,
and VCHW respectively.

5.3.1 Nonlinear Models

Conventional and heat-recovery chillers are modeled using the semi-empirical Gordon-Ng model Lee et al. (2012),

de�ned as follows:

WCH :=

(
QCH + a1TCHWS + a2

(
1− TCHWS

TCWS

))
TCWS

TCHWS − a3QCH
−QCH. (5.13)

The parameters a1, a2, and a3 can be obtained regression using manufacturer or measured data, and they are di�erent

for each type of chiller. For the purposes of optimization, the cooling water supply temperature TCWS is considered a

�xed parameter. Chilled water supply temperature TCHWS can be �xed as well, but it may be advantageous to optimize

it as well. Unfortunately direct inclusion of TCHWS as a variable is not compatible with the resource-balance-based

formulation, as temperature is an intensive variable. However, since we know that chiller cooling load QCH is

proportional to VCHW(TCHWR − TCHWS), we can use the extensive variable VCHW ∝ QCH/(TCHWR − TCHWS) as a

surrogate for TCHWS. Note that TCHWR is taken as a �xed parameter. We illustrate this transformation in Figure 5.4;

the �nal model has two independent variables QCH and VCHW as in Figure 5.4b. In the case of constant TCHWS, the

only independent variable is QCH, and VCHW becomes a dependent variable calculated using the same relationship. In

either case, chillers and HRCs have nonzero minimum capacity that must be satis�ed for each active unit.

For direct heating, natural gas boilers are used. For simplicity, we assume that hot water return and supply

temperatures THWR and THWS are �xed. If THWS can be varied, then VHW can be used as an extensive surrogate

variable as in the case of chillers. For natural gas consumption, we use a simple constant-e�ciency model

QB := ηVB, (5.14)

in which η is the product of the heat of combustion for natural gas and the heat-transfer e�ciency of the boiler. Note

that we use the symbol VB for natural gas �ow because natural gas is typically sold on a volume basis. Minimum
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capacity is set to 20% of maximum capacity. In the case more complicated heating equipment, a correspondingly

more complicated model can be used. Because we focus on cooling, this simple model is su�cient for our purposes.

Heat transfer in cooling towers is modeled using a simpli�ed e�ectiveness formula Jin et al. (2007), while electricity

consumption is calculated using a simple cubic �t Braun and Diderrich (1990). These equations are as follows:

QCT :=
c1(mCW)c3

1 + c2

(
mCW
mair

)c3 (TCWR − TWB) (5.15a)

WCT := κ(mair)
3 (5.15b)

With known TWB and �xedmCW, (5.15a) can be rearranged to solve for the requiredmair, which is then used in (5.15b)

for electricity calculation. Note that TCWR is calculated from the relationship QCT ∝ mCW(TCWR − TCWS). Model

coe�cients c1, c2, c3, and κ are obtained from data.

Finally, pumps are modeled with a black-box empirical model

WP := b1 ln (1 + b2VP) + b3VP + b4, (5.16)

in which VP is either chilled water �ow VCHW or hot water �ow VHW depending on the stream of interest. Regression

coe�cients b1 through b4 are di�erent for each type of pump. As with chillers and boilers, pumps have nonzero

minimum capacity.

5.3.2 Piecewise Linear Formulation

To avoid an MINLP formulation for the optimization problem, we approximate the nonlinear equipment models

from the previous section using piecewise-linear functions. Here, we mention only the information relevant to the

piecewise-linear formulation in (5.8) to (5.10). A more general discussion of piecewise-linear approximation and its

use in MILP can be bound in Section 5.6.

The nonlinear equipment models enforce a relationship among the Qk variables for each piece of equipment

and time point (subscripts j and t are omitted for clarity in this section). In general, the “operating surface” is a

lower-dimensional set of the form

Q := {0} ∪ {(Q1, . . . , QK) : (Q1, . . . , Qk) = f(Qk+1, . . . , QK)}

for each generator. Note that the (typically isolated) point at zero is included for when a generator is o�. We wish to

construct a set Q̃ ≈ Q that can be embedded in the MILP optimization model. Enforcing (Q1, . . . , QK) ∈ Q̃ will

ensure that the various resource production and consumption rates are calculated according to accurate piecewise-liner

approximations of the true nonlinear model. We refer to the set Q̃ as the piecewise-linear operating surface.
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To determine the piecewise-linear operating surface, the �rst step is to identify which resources are independent

variables, and which are dependent variables. For example, the chiller model in (5.13) gives (Qk3 , Qk4) = f(Qk1 , Qk2)

and pump models (5.16) give Qk3 = f(Qk2), both with resources k1 = Chilled Water, k2 = Chilled Water Volume,

k3 = Electricity, and k4 = Cooling Water. Next, a grid is chosen over the independent variables, and the nonlinear

function is evaluated at each lattice point n ∈ N, stored as the parameter ζkn. We set ζkn < 0 if resource k is being

consumed, and ζkn > 0 if resource k is being produced. Finally, the rectangular regions are triangulated to give a

set of subdomains m ∈M, with the lattice-point vertices of each subdomain stored in the set Nm. Accuracy can

be adjusted for each piece of equipment by modifying the triangulations of each rectangular region, or by using a

coarser or �ner grid in the previous step.

Inside the optimization problem, we choose a point on the operating surface by taking a convex combination of

the vertices n for a subdomain, as determined by the auxiliary variables Zmn. To ensure that only vertices n ∈ Nm

for the currently active subdomain are given nonzero weight, the discrete variables Vm are used, with the weights

for each subdomain m summing to the (integer) value Vm according to (5.10). We illustrate the parameter, set, and

variable de�nitions for a one-dimensional case in Figure 5.5. Note that for the one-dimensional case, no triangulation

is required, while for three or more dimensions, each triangulation may have a di�erent number of subdomains (see,

e.g., Figure 5.22b).

To reduce symmetry in the model (which can increase the number of branches necessary to �nd an optimal

solution), we use a symmetry-free formulation in the case of multiple identical generators. Because the model requires

only the sum
∑
j Qjk in (5.4), we formulate the piecewise-linear model so that the variable Qjk calculates total

resource production and consumption by all generators of type j. This property is achieved simply by setting integer

upper bounds on the variables Ujt and Vjmt so that operating points can be selected for each active generator.

5.4 Simulations

In the examples that follow, we use a discrete time grid with a sample time of 1 h. Although there is theoretically 1 h

time available for each optimization, it is desirable to obtain solutions much more quickly to respond to disturbances

or updated forecasts. Thus, to be of practical use, each optimization must be solvable within 10 to 15 min. All MILP

problems are solved using Gurobi 8.0 (Gurobi Optimization, LLC, 2018) on a standard Linux desktop computer.

5.4.1 Basic Model

To start, we solve the optimization problem for a central plant that provides heating and cooling. As illustrated in

Figure 5.6, the central plant consists of four chillers, two HRCs, one boiler, four chilled water pumps, two hot water

pumps, and �ve cooling towers. Equipment models are identical within the same equipment type. The prediction
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Figure 5.5: Example of one-dimensional piecewise-linear function. Sets are Nm, coe�cients are ζmn, and variables
are Qk , Vm, and Zmn. The true nonlinear function is sampled at various points, with (piecewise) linear interpolation
giving approximate values in between, as determined by the nonzero values of zmn. Notice that the indicated point
approximately satis�es the model.
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Figure 5.6: Diagram of combined heating and cooling central plant.

Table 5.2: Electricity consumption and cost breakdown by equipment type for heating and cooling example.

Equipment Usage (MWh) Cost (1000$)
Chillers 331.4 (45.61%) 19.51 (42.98%)
HRCs 320.0 (44.04%) 21.11 (46.49%)

Cold Pumps 54.1 (7.45%) 3.42 (7.53%)
Hot Pumps 17.7 (2.43%) 1.16 (2.56%)

Cooling Towers 3.4 (0.46%) 0.19 (0.43%)
Total 726.5 (100.00%) 45.40 (100.00%)

horizon is 5 days (120 h). Utility prices and and heating/cooling demand are taken from real data provided by Johnson

Controls. After 10 s, the optimizer �nds a solution with a 0.98% optimality gap, while after 60 s, the gap is 0.75%. The

optimization is stopped after 5 min with a �nal gap of 0.52%.

The ending solution for the combined heating and cooling problem is shown in Figure 5.7. Due to the large

overlap between heating and cooling demand, the optimal solution is to run the HRCs constantly. The hot storage

tank is then used to modulate consumption to meet demand. Chillers are run at higher levels during the evening

hours when electricity is cheap. However, during peak hours when electricity is more expensive, the chillers are not

completely shut down, as otherwise peak demand charges would be increased by the correspondingly higher chiller

utilization at night. All heating and cooling demand is met on time. Costs are broken down in Table 5.2. From these

values, we see that the most signi�cant components of cost are the main chillers and HRCs. Auxiliary equipment

constitutes roughly 10% of total cost, which is still signi�cant enough to bene�t from optimization.
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Table 5.3: Cost comparison between optimization and heuristic solutions.

Cost Optimal Heuristic Change
Electricity Use Charges 45.40 45.95 +1.21%

Electricity Demand Charges 4.05 8.45 +108.93%
Natural Gas Charges 1.08 11.32 +948.62%

Total Charges 50.53 65.73 +30.08%

To compare the performance of the optimization model compared to existing techniques, we apply a heuristic

strategy for the same problem. Because a complete heuristic is di�cult to develop, we simulate a heursitic schedule

by solving a modi�ed optimization problem with the following additional constraints:

• All chillers and HRCs must run at full capacity between 1am and 7am each morning

• All chillers and HRCs must be completely o� between 2pm and 6pm each afternoon

These rules are meant to represent a reasonable rule of thumb for central plant operation based on the prevailing

electricity price dynamics. All other equipment decisions are made by the optimizer.

The solution obtained via the simulated heuristic is shown in Figure 5.8. Compared to the optimal solution,

we see higher peak electricity usage and more use of the boiler to make up for reduced HRC utilization. Costs for

the two solutions are shown in Table 5.3. From this table, we see that the heuristic solution incurs a signi�cantly

higher demand charge due to running chillers at full capacity. These rules lead to a 30% increase in total costs for

the heuristic solution. Note that since most of the decisions are still made via optimization, this benchmark is an

optimistic estimate of the actual performance were this heuristic implemented in practice; thus, although it seems

reasonable, the chosen heuristic is actually quite poor due to the cost structure of the problem. In a real central plant

at Stanford University, application of a similar (but less detailed) optimization strategy led to as much as 15% to 30%

lower costs compared to manual operators (Blair, 2016; Wenzel et al., 2016). Thus, optimization strategies like the one

proposed in this chapter have a signi�cant potential to reduce utility costs and thus increase overall primary energy

e�ciency of the electricity grid.

5.4.2 Variable Supply Temperature

In this section, we wish to examine the e�ect of allowing chilled water temperature to vary. By lowering the chilled

water supply temperature TCHWS, the same total cooling duty QCH can be supplied using a lower volumetric �ow

VCHW. Thus, electricity consumption in pumps is reduced at the cost of increased electricity consumption in chillers,

and the optimal TCHWS must balance these e�ects. However, as discussed in Section 5.3.1, considering variable TCHWS

in the MILP model requires adding an extra independent variable to the model (and thus numerous extra discrete and

continuous decision variables to the problem). Thus, if there is a constant TCHWS that is nearly optimal throughout the
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Figure 5.8: Simulated heuristic solution for the combined heating and cooling example. All plots are as in Figure 5.7.



136

Load

Chiller 1

Chiller 2

Chiller 3

Chiller 4

1

2

3

4

5

6

Cold
Pumps

1 2 3 4 Cooling
Towers

Cold
Storage

Figure 5.9: Diagram of cooling system for variable TCHWS simulation.

entire operating range of the central plant, then the extra computational burden may not be worth minor electricity

changes.

To answer these questions, we consider the cooling-only central plant shown in Figure 5.9. For various total

cooling loads, we solve a one-period optimization problem to choose the optimal equipment con�guration to meet

that load. The only external resource input is electricity, which means the objective function is to minimize electricity

use. Note that the presence of the storage tank is irrelevant for these subproblems. Due to the piecewise-linear

approximation used for equipment models, material energy balances do not exactly close. Thus, to check whether the

MILP model is su�ciently accurate, we also perform this comparison using the true nonlinear equipment models

with explicit energy balances included.

For variable chilled water supply temperature, we allow TCHWS to vary between 0 °C and 10 °C. This leads to

the piecewise-linear model shown in Figure 5.10. Note that, as discussed in Section 5.3.1, the model is transformed

from (Q,T ) to (Q,V ) space before being used in the MILP formulation. By contrast, the MINLP formulation uses

TCHWS directly as a decision variable. Using this and models for pumps and cooling towers, four sets of optimization

problems are solved:

• MILP model with �xed TCHWS = 8 °C

• MILP model with variable 0 °C ≤ TCHWS ≤ 10 °C

• MINLP model with �xed TCHWS = 8 °C

• MINLP model with variable 0 °C ≤ TCHWS ≤ 10 °C
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Figure 5.10: Piecewise-linear model for chillers with variable TCHWS using �ve grid points along each axis. Maximum
relative error is below 1.5% compared to the nonlinear model.

To provide a fair comparison, electricity consumption rates for the MILP solutions are recalculated by evaluating the

nonlinear models at the chosen setpoints. Thus, the MILP models cannot unfairly bene�t if they slightly underestimate

electricity use.

Remark 5.4: In general, the optimal cost of the constant TCHWS optimization should be no better than that of the

variable TCHWS objective. Indeed, this property holds for the MINLP model, as the variable TCHWS problem is a

relaxation of the constant. However, because of how the piecewise-linear models are constructed in the MILP, the

constant TCHWS operating surface is not necessarily a subset of the variable operating surface. Thus, the constant

TCHWS MILP could possibly obtain a lower objective function, if it has access to slightly cheaper operating points. To

minimize any such e�ects, we choose the constant TCHWS so that it is one of the grid points in the variable TCHWS

model; that is, the operating surface for the constant TCHWS model is exactly the TCHWS = 8 °C slice of the surface

shown in Figure 5.10. Therefore, the variable TCHWS problem is a relaxation of the variable problem. However, because

electricity usage is recalculated using the nonlinear models, it is still possible that the cost of the constant model

could be less than the variable model due to the nonuniform approximation error of the piecewise-linear model.

Figure 5.11 shows electricity consumption as a function of total cooling load for these problems. From these results,

there are two main takeaways. First, there is good agreement between the MILP and corresponding MINLP results.

Above 25 MW total load, the two models are within 1% agreement (comparing variable MILP to variable MINLP

and constant MILP to constant MILP). Below 25 MW, disagreement is as large as 2%, but this impact is minimized



138

0 10 20 30 40 50
0

2

4

6

8

10

El
ec

tri
cL

oa
d

(M
W

)

0 10 20 30 40 50
Cooling Load (MW)

0.96

0.98

1.00

1.02

Re
la

tiv
eC

os
t(

-)

Variable TCHWS MILP
Constant TCHWS MILP
Variable TCHWS MINLP
Constant TCHWS MINLP

Figure 5.11: Optimal electricity use for varying total cooling load as predicted by the MILP and MINLP formulations
for variable and constant TCHWS.

because these operating points consume less electricity and thus constitute a smaller fraction of total cost than higher

cooling loads. Thus, the piecewise-linear models used in the MILP formulation are su�ciently accurate. Second, for

these equipment models, there does not seem to be a signi�cant bene�t to varying TCHWS. Although savings are as

high as 4% for low total cooling loads, the weighted average (using cooling load as weights) savings are 1.2% for the

MILP model. Thus, if the computational burden is signi�cantly higher for the variable TCHWS model, then it may be

worthwhile to spend those extra computational resources elsewhere (e.g., on using a longer prediction horizon).

To further analyze the e�ective accuracy of the piecewise-linear models, we compare the optimal values of TCHWS

as predicted by the MILP and MINLP models. These values, along with the number of active units, are shown in

Figure 5.12. In general there is good agreement, but larger di�erences in optimal TCHWS appear when there are jumps

in the number of active pumps. Due to the slightly di�erent equipment models used in the MILP and MINLP models,

additional pumps are activated at slightly di�erent total loads. Thus, the tradeo� between extra pumping (higher

TCHWS) and extra chilling (lower TCHWS) are di�erent at these points, leading to a larger di�erence in the optimal

value of TCHWS. There is a more signi�cant di�erence in the number of active cooling towers predicted by each model,

but these discrepancies are due to the cooling tower models being nearly linear throughout much of the operating

region, leading to nearly degenerate solutions in the MILP model. By contrast, the two formulations agree exactly on

the number of active chillers at each cooling load, which is the most important decision with respect to total cost.

Thus, the two models are in very good agreement overall, indicating that the MILP model is su�ciently accurate.

Finally, to illustrate the signi�cantly reduced computational burden of the MILP model versus the full MINLP

model, we examine solution statistics for the subproblems. For both constant and variable TCHWS, each MILP instance
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Figure 5.13: Optimality gaps after 10 min solution time for single-period MINLP equipment selection problems using
BARON.

can be solved to optimality within 10 s using Gurobi (Gurobi Optimization, LLC, 2018). By contrast, for the full

nonlinear models, each instance is a nonconvex MINLP for which it can be very di�cult to prove optimality. Thus,

we solve each subproblem using BARON (Sahinidis, 2018) with a time limit of 10 minutes. Figure 5.13 shows the �nal

optimality gaps for each subproblem. We speculate that the true optimality gaps for these solutions are much smaller

(i.e., the incumbent solution is near-optimal but the lower bound is not tight), but it is di�cult to be sure. Indeed,

these results suggest that it is di�cult to su�ciently solve even a single-period MINLP model within the necessary

solution time. Thus, the approximate MILP brings a signi�cant speed advantage compared to the full MINLP model.

5.4.3 Symmetry Removal

To illustrate the e�ectiveness of the symmetry-free model, we solve large optimization problems two di�erent

strategies for identical pieces of equipment:
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• Duplicate the piecewise-linear models for identical equipment and make Ujt and Vjmt binary variables (the

“Symmetric” formulation).

• Use one piecewise-linear model per type of equipment and make Ujt and Vjmt integer-valued as in 5.3.2 (the

“Symmetry-Free” formulation).

We use the cooling-only system shown in Figure 5.9 except that there are eight identical chillers and ten identical

cooling towers. The prediction horizon is 1 week (168 h). Using 22 di�erent weeks of electricity price and cooling

demand data, optimization problems are solved using the two di�erent formulations with a time limit of 1000 s.

Figure 5.14 shows solution progress across these instances. Note that the bounds are normalized so that 0%

corresponds to the best incumbent solution, and values are restricted to [−100%, 100%]. From this �gure, we see that

the symmetry-free formulation brings signi�cant improvement to solution speed. In particular, the symmetry-free

formulation �nds a 1% suboptimal incumbent solution after 20 s; to �nd the same quality of solution, the symmetric

formulation takes almost 400 s. This behavior is because the symmetry-free formulation can process nodes more

quickly, and it also makes more progress per node on average. Thus, the symmetry-free formulation is strictly better

than the symmetric formulation, and is should be used in all problem instances.
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Figure 5.15: Diagram of strati�ed tank model.

5.4.4 TES Model Validation

As the �nal example in this section, we demonstrate the closed-loop performance of the model. As already illustrated,

the piecewise-linear equipment models are su�ciently accurate for cost prediction. However, the simple linear

storage tank model in (5.11) may not provide su�cient accuracy for long-term prediction. To answer this question, we

simulate the storage tank using a more accurate (but nonlinear) strati�ed tank model similar to Ma et al. (2012b). As

diagrammed in Figure 5.15, the tank is modeled as consisting to two hot and cold layers, each assumed to be uniform

in temperature. The tank is well-insulated, but heat exchange (proportional to the temperature di�erence) takes place

between the two layers. With state vector (Vcold, Vhot, Hcold, Hhot), the di�erential equations are as follows:

dVhot

dt
= −v+ + v−,

dVcold

dt
= v+ − v−,

dHhot

dt
= −Hhot

Vhot
v+ + h−v− −K

(
Hhot

Vhot
− Hcold

Vcold

)
,

dHcold

dt
= h+v+ −

Hcold

Vcold
v− +K

(
Hhot

Vhot
− Hcold

Vcold

)
,

in which inputs v+ and v− are the charge and discharge volumetric �ows, and parameters h+ and h− are the

(per-volume) supply and return enthalpies, with heat transfer coe�cient K between the two layers. In chilled water

tanks, the state of interest is the enthalpy of the cold section Hcold, while for hot water tanks, it is Hhot.

As suggested in Risbeck et al. (2017), the nonlinear storage tank model can be linearized at a given operating point

to determine a linear model. However, an alternative strategy that achieve greater global accuracy is to use system

identi�cation to choose the appropriate value of σk . Figure 5.16 shows data obtained from the nonlinear model, along

with forward simulations of the obtained linear model. Even over the full 10-day horizon, the linear model �ts very

well, and thus is su�cient for optimization.



142

−20

0

20

Ch
ar

ge
Ra

te
(M

W
)

0 1 2 3 4 5 6 7 8 9 10
Time (days)

0

50

100

150

200
St

or
ag

e
Le

ve
l(

M
W

h)

Figure 5.16: Linear �t of nonlinear strati�ed tank model. Open circles show data from the nonlinear model, while
solid lines show forward simulations of the linear model starting from each day’s initial condition.

To verify this accuracy in the optimization context, we simulate closed-loop optimization using the nonlinear

tank model as the “true” storage tank. At each timestep, the optimizer is given the initial cold storage level Hcold.

After solving the open-loop optimization, the �rst-period storage discharge rate is injected into the nonlinear model.

Optimization is repeated at the next timestep using the updated value of Hcold, which could be di�erent from the level

predicted by the linear model. For simplicity, the only equipment in the central plant is two conventional chillers.

To avoid nominal revisions to the open-loop solution, we remove the peak demand charge, and we use the optimal

13-day solution as a terminal constraint for the storage tank. This constraint prevents the optimizer from emptying

the storage tank at the end of each closed-loop optimization. Note that this reference trajectory is generated using

the linear storage tank model; thus, if the liner model is not accurate, then the terminal constraint will be poor, and

the optimizer will need to make signi�cant revisions to the open-loop solution. The simulation length is 10 days, and

each optimization has a 3-day horizon.

The closed-loop production trajectory is shown in Figure 5.17. Because there is no peak demand charge, the

optimal solution is to run the chillers near full capacity in the evening when electricity is less expensive. This

strategy is observed, and there is no obvious transient misbehavior. The states of the nonlinear model are shown

in Figure 5.18. While the temperature of the cold section does vary sharply when nearly empty, when full, the

temperature is relatively constant. Thus, it is not necessary to model volume and enthalpy independently in the

optimization model. To verify that the linear storage model is indeed su�ciently accurate, we plot the closed-loop

storage tank trajectory along with the open-loop predictions in Figure 5.19. As observed in this plot, there is only

minor open-loop/closed-loop discrepancy in the storage tank level. In addition, the storage level remains close to the

reference trajectory throughout the simulation. Thus, feedback is su�cient to correct the minor inaccuracy of the

storage tank model without signi�cant open-loop/closed-loop mismatch.
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Figure 5.17: Closed-loop chilled water production and chiller utilization for a nonlinear storage tank.
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Figure 5.19: Predicted storage trajectories for the closed-loop simulation of a nonlinear storage tank. Open circles
show true storage tank trajectory, while transparent lines show predicted trajectories for each open-loop solution.
Reference trajectory used as a terminal constraint is shown in red x markers.

Identi�cation of linear model parameters is formulated using CasADi (Andersson et al., 2018) via MPCTools

(Risbeck and Rawlings, 2018a), with optimization using IPOPT (Wächter and Biegler, 2006). The nonlinear tank model

(with minor modi�cations to avoid singularities at V = 0) is simulated in closed loop using integrators provided in

CasADi.

5.5 Summary

In this section, we have presented an MILP formulation for real-time cost optimization of central energy plants. This

model considers each piece of equipment individually using piecewise-linear models that include nonzero minimum

capacity, and it optimizes chilled and hot water production simultaneously. Using forecasts of time-varying utility

prices and resource demands, the optimization problem determines equipment and storage utilization over a �nite

prediction horizon. With o�-the-shelf MILP solvers, near-optimal solutions (within 1% optimality) can be found

within 1 min for realistically sized problems. Via examples, we have demonstrated improved performance compared

to a simulated heuristic, good agreement with an MINLP formulation using the true nonlinear equipment models,

and high accuracy of predictions made by the linear storage tank model compared to a more detailed nonlinear

simulation. Thus, the proposed optimization formulation meets all of the requirements for real-time optimization of

central energy plants, and it has the potential to reduce costs and improve operational consistency in real facilities.
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Additional computational examples of closed-loop performance, including the e�ect of horizon length, can be

found in Risbeck et al. (2016). More details about symmetry removal and other formulation considerations can be

found in Risbeck et al. (2018b).

5.6 Appendix: Piecewise-Linear Modeling

In this section, we consider the general process of making a piecewise-linear approximation of a given (vector-valued)

function f : X ⊂ Rn → Rm. That is, we wish to determine a function f̃( · ) such that f̃(x) ≈ f(x) for all x ∈ X

with some suitable de�nition of ≈.

Remark 5.5: The concept of approximating f( · ) is related to but conceptually di�erent from relaxing f( · ). When

constructing a relaxation of a function, one seeks a set-valued map F̃ ( · ) such that f(x) ∈ F̃ (x) and |y − f(x)| ≤ ε

for all y ∈ F̃ (x). For example, consider the well-known McCormick relaxation (or “envelope”) for f(x, y) = xy,

given by

F̃ (x, y) = {z ∈ R : max(0, x+ y − 1) ≤ z ≤ min(x, y)}

on (x, y) ∈ [0, 1]2. Such relaxations are used extensively in global mixed-integer nonlinear optimization (Belotti et al.,

2013) and may be useful to preserve feasibility when nonlinear constraints are very tight. However, for the problem

of interest in this chapter, approximations are su�ciently accurate and easier to solve than relaxations. Thus, we

focus on approximations in this section.

5.6.1 Piecewise-Linear Functions

We begin with the following de�nition:

Definition 5.6 (piecewise-linear function): A function f : X ⊆ Rn → Rm is a piecewise linear map if it can be

expressed as

f(x) = fρ(x)(x), ρ(x) := min{p : x ∈ Xp}

for �nite sequences (fp( · ))Pp=1 of a�ne functions and (Xp)Pp=1 of bounded polyhedral sets such that ∪Pp=1Xp = X.

That is, the domain X can be partitioned into P polytopes Xp such that f( · ) is given by the linear (more precisely,

a�ne) expression fp(x) on each polytope. An example of such domain partitioning is shown in Figure 5.20. One

desirable property of piecewise-linear functions is continuity. Because continuity in the interior of each subdomain is

immediate, a piecewise-linear function is continuous if it is continuous on all overlapping regions, i.e., fp(x) = fq(x)

for all p and q such that x ∈ Xp ∩ Xq .
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Figure 5.20: Example triangular partitioning of domain X. Dots indicate extreme points of polyhedral subdomains
Xp.

There are two ways to represent the polyhedral subdomains Xi: halfspace and extreme point. In the halfspace

representation, one chooses matrices Ap and vectors bp such that each Xp := {x ∈ Rn : Apx ≤ bp}. The linear

functions are then given by fp(x) := Cpx + dp for suitably chosen matrices Cp and vectors dp. This formulation

is generally most convenient for evaluating a given piecewise-linear function, but it can be di�cult to de�ne the

function this way. Alternatively, in the extreme point representation, each polytope Xp is associated with its set

of vertices Xp := {x1
p, x

2
p, . . . , x

Tp
p }. Note that a point is a vertex of polytope if it cannot be written as a nontrivial

linear combination of other points in the polytope. (More precisely, a point v is a vertex of polytope P if v ∈ P, and,

for any two points x, y ∈ P and scalar λ ∈ [0, 1] such that v = λx+ (1− λ)y, it holds that λ ∈ {0, 1}, i.e., v = x or

v = y.) We then have x ∈ Xp if there exist a set of nonnegative coe�cients λ1
p, . . . , λTpp such that

x =

Tp∑
t=1

λtpx
t
p and

Tp∑
t=1

λtp = 1.

The individual functions are then given by

fp(x) =

Tp∑
t=1

λtpf(xtp),

i.e., as a convex combination of f( · ) evaluated at the extreme points of Xp. In general, this representation is more

convenient to de�ne, but less convenient to directly evaluate.

5.6.2 Approximation

With a suitable de�nition and representation of piecewise-linear functions, we now wish to choose a strategy for

constructing approximations. For univariate scalar functions (i.e., n = m = 1), there exist algorithms to bound the

number of segments needed to achieve a given accuracy and choose their locations (Frenzen et al., 2010; Phillips,

1968). When the domain is 2D but the function value is still scalar, Rippa (1992) presents a greedy algorithm to

construct a secant approximation by iteratively adding the point of maximum error to the triangulation. For cases

where the polyhedral partition has already been determined, choosing the optimal linear functions can be cast as a
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Figure 5.21: Example triangulations for function f(x, y) = x/(1 + y2). The third triangulation chooses between the
two possible triangulations for each rectangular region, taking the smallest absolute error.

convex optimization problem (Toriello and Vielma, 2012). These methods can be extended to multiple dimensions in

the range (i.e., m > 1) by applying them separately for each output dimension, but for additional dimensions in the

domain (i.e, n > 1), generalization is di�cult.

For the desired use case, we propose a simple three-step approach for constructing piecewise-linear approximations.

First, the domain is split into a rectangular partitioning. Typically, we choose a uniform grid, but for certain functions,

a nonuniform grid is advantageous. Note that, as illustrated in Figure 5.4, the actual variable space may not be

rectangular, but we assume that the domain is rectangular under suitable transformation. Second, the nonlinear

function is evaluated at each of the lattice points. The piecewise-linear approximation will take on these values at the

lattice points. Third, each rectangular subdomain is triangulated using the lattice points as vertices. As illustrated in

Figure 5.21, the triangulation could be the same for each rectangle, or the minimum-error triangulation could be chosen

for each subdomain. In one dimension, this step is unnecessary, as each subdomain is already a one-dimensional

simplex. Figure 5.22 shows triangulations for two and three dimensions. As illustrated in Figure 5.22b, di�erent

triangulations in three or more dimensions may require a di�erent number of subdomains in each rectangular region.

In any case, these triangles become the polyhedral subdomains for the piecewise-linear approximation, and the a�ne

function used on each subdomain is uniquely de�ned by the function values from the previous step.

Although the proposed approximation method does not guarantee optimal piecewise-linear approximation, it

does have some desirable properties. By choosing each subdomain Xp as a simplex (i.e., the convex hull of n + 1

extreme vertices in Rn) and using common vertices for adjacent regions, the approximation is always continuous. In

addition, due to the structure of the MILP model, optimal solutions are more likely to lie on subdomain vertices; thus,

by using a secant approximation, the e�ective accuracy (i.e., as evaluated at optimal operating points) is likely to be

higher compared to tangent or other approximations. The proposed technique is also agnostic to the dimensions of
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(a) All triangulations in
two dimensions. (b) Some triangulations in three dimensions.

Figure 5.22: Example triangulations for rectangular regions. Each row shows a di�erent triangulation.

the domain and range (although the triangulation step is more di�cult in higher dimensions), which means it can be

applied to all possible equipment models. Finally, by using the same domain partitioning for each component of f( · ),

only a single interpolation grid needs to be modeled in the optimization problem.

5.6.3 MILP Formulation

In order to use the piecewise-linear functions in an MILP optimization, it is necessary to add constraints and auxiliary

variables to the formulation. De�ning

F := {(x, y) ∈ Rn × Rm : y = f(x)},

in which f( · ) is the piecewise-linear function, we wish to model the set F using only linear equality and inequality

constraints. As discussed in Vielma et al. (2010), there are a number of ways to formulate this set depending on

dimensionality, con�guration of the subdomains, etc. For brevity, we present two formulations based on the halfspace

and extreme-point representations respectively of a piecewise-linear function.

In the halfspace formulation, we use the fact that each Xp is represented via the linear inequalities Apx ≤ bp

with a�ne functions fp(x) = Cpx+ dp. In Vielma et al. (2010), this formulation is called the “multiple choice” model.

For each polyhedral subdomain, we add auxiliary variables xp ∈ Rn and vp ∈ {0, 1}. The constraints are as follows:

P∑
p=1

vp = 1, (5.17a)
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Apxp ≤ bpvp, p ∈ {1, . . . , P}, (5.17b)

x =

P∑
p=1

xp, (5.17c)

y =

P∑
p=1

(Cpxp + dpvp) . (5.17d)

In (5.17a), the optimizer chooses which subdomain to use by setting exactly one of the vp to one, with all others

zero. The second constraint (5.17b) then enforces Apxp ≤ bp for the active subdomain, while forcing Apxp ≤ 0

for all other inactive regions. Note that it is important that each Xp is bounded so that Apxp ≤ 0 =⇒ xp = 0.

Finally, (5.17c) and (5.17d) calculate the desired x and y variables by summing the individual subdomain values; in

both cases, only one term in the summation will be nonzero. Satisfaction of (5.17) thus ensures that (x, y) ∈ F .

Assuming the triangulation procedure from the previous subsection was followed, each Ap will have exactly n+ 1

rows. Therefore, the halfspace formulation requires nP continuous auxiliary variables, P discrete auxiliary variables,

and (n+ 1)P + n+m+ 1 constraints.

For the extreme-point formulation, x and y are still split into constituent parts for each subdomain, but this

time, they are calculated as convex combinations of the extreme points. As in the halfspace representation, discrete

auxiliary variables vp ∈ {0, 1} are added. Recalling that each subdomain Xp has extreme points {x1
p, . . . , x

Tp
p },

we also add auxiliary variables λtp ∈ [0, 1]. Note that although some extreme points may be present in multiple

subdomains (i.e., xt1
p1

= xt2
p2

for some p1 6= p2), there is a separate copy λtp for each point and subdomain. Note that

there are formulations that avoid these copies, they are not tight and generally lead to worse performance (Vielma

et al., 2010). With these variables, the set F is modeled as

P∑
p=1

vp = 1, (5.18a)

Tp∑
t=1

λtp = vp, p ∈ {1, . . . , P}, (5.18b)

x =

P∑
p=1

Tp∑
t=1

λtpx
t
p, (5.18c)

y =

P∑
p=1

Tp∑
t=1

λtpf(xtp). (5.18d)

As before, (5.18a) chooses which subdomain to activate via vp = 1. However, instead of considering xp directly as a

decision variable in Cartesian coordinates, each xp is calculated in Barycentric coordinates, using the weights λtp as

decision variables to determine xp as a convex combination of extreme points xtp. Equation (5.18b) enforces valid

weights (i.e., summing to 1 for the active subdomain and all zero for inactive subdomains), while (5.18c) and (5.18d)

calculate x and y by summing the individual values. Satisfaction of (5.18) thus also gives (x, y) ∈ F . In Vielma et al.



150

(2010), this formulation is called the “disaggregated convex combination” model. Following the proposed triangulation

procedure, each Tp = n+ 1, and thus this formulation requires P discrete auxiliary variables, (n+ 1)P continuous

auxiliary variables, and P + n+m+ 1 constraints with (n+ 1)P lower bounds λtp ≥ 0.

One potential advantage of the extreme point formulation over the halfspace formulation is that it can be made

agnostic to which variables are independent and dependent. Speci�cally, we use the variable z := (x, y) directly and

replace (5.18c) and (5.18d) with the single

z =

P∑
p=1

Tp∑
t=1

λtpz
t
p,

with ztp := (xtp, f(xtp)). This distinction (or lack thereof) has no impact on solution times, but it potentially allows

the algebraic representation of the model to be more compact. In particular for the central energy plant model, the

generality is nice so that di�erent generators can use di�erent resources as the independent and dependent variables.

By contrast, the halfspace formulation must speci�cally di�erentiate between x and y or else convert the Xp to

some dummy space and add the appropriate extra rows to Cp and dp. Besides this �exibility, there is little di�erence

between the two formulations. Computational simulations from (Vielma et al., 2010) suggest that the halfspace

formulation performs better for a speci�c transportation problem using CPLEX 11. However, performance is likely

to vary for di�erent problem types, especially as MILP solvers continue to improve. Note that both formulations

require O(P ) auxiliary binary variables and constraints. In Vielma and Nemhauser (2009), alternative formulations

are presented that require only O(logP ) auxiliary binary variables and in speci�c cases only O(logP ) constraints.

While these formulations can be e�ective for very large P , simulations of the central plant optimization suggest

that bene�ts are small at best for modest values of P (on the order of 2 to 20). As with the di�erence between the

halfspace and extreme point representations, performance for these methods ie likely to vary between problem and

solve, and thus, evaluation must be on a case-by-case basis.

5.6.4 Multiple Points

In certain cases, it may be desirable to choose multiple points from the same piecewise-linear function. For example,

when a central plant contains multiple identical generators, the optimizer can choose to activate and operate the two

generators independently, and thus the optimizer can pick between zero and two points from the same piecewise-linear

set F . If the individual xi and yi variables are required by the formulation (e.g., for rate-of-change constraints or for

further use in piecewise-linear functions), then the auxiliary variables and constraints must be duplicated for each

separate value of xi and yi. However, in problems where only the sums
∑
i xi and

∑
i yi are needed, there is a trivial

modi�cation to the halfspace and extreme point representations that allows this extension without adding additional

variables or constraints.
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Figure 5.23: Nonuniqueness for mapping from aggregate x and y to individual xi and yi for multiple-point piecewise-
linear formulations.

For the multiple-point extension, let u ∈ {0, . . . , U} be the integer-valued decision variable that chooses how

many points xi = f(yi) to select. Equations (5.17a) and (5.18a) are modi�ed to

P∑
p=1

vp = u,

with the vp ∈ {0, . . . , U} now integer-valued. The remaining constraints for each formulation are unchanged, except

that now the variables x and y refer to the summations of the u values xi and f(xi). After solving the optimization

problem, it may be desirable to determine the individual values of xi and yi for later analysis. Unfortunately,

when multiple points are selected from the same or adjacent regions, this assignment is nonunique as illustrated in

Figure 5.23. Thus, di�erent strategies need to be developed for this mapping depending on the particular application.

Nevertheless, it is always possible to �nd a feasible combination of individual operating points, and thus the signi�cant

computational bene�ts of this formulation come at very little cost.
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Chapter 6

Large-Scale HVAC Optimization

Use the active [TES]. [It] is usually more direct and vigorous
than the passive. . . . This rule does not, of course, mean that
the [optimizer] should entirely discard the passive [TES],
which is frequently convenient and sometimes necessary.

— William Strunk, Jr.
The Elements of Style

6.1 Introduction

In the previous chapter, a math programming model has been developed for the real-time cost optimization of central

energy plants in campuses or large buildings. The main pieces of equipment in these plants are primarily for supplying

chilled and hot water that is consumed in building air handling units (AHUs) to modulate temperature. In the previous

problem formulation, it was assumed that chilled and hot water demand was a �xed parameter, and the central plant

must simply provide this demand. A primary source of cost savings was thus the ability to store energy (in the form

of hot or chilled water tanks), which allows temporal utility price and equipment e�ciency di�erences to be exploited

for cost savings. Assuming some �xed operation of the building HVAC system (e.g., a constant temperature setpoint),

heating and cooling needs are fully speci�ed by ambient conditions and there is nothing left to decide.

However, because buildings are bound by the laws of physics, temperature changes do not happen instantaneously.

Depending on component masses, heat capacities, etc., certain parts of the building heat and cool much more slowly

than others. In particular, solid parts of the building like �oors and walls change temperature on di�erent timescales

than the air within the building, both due to physical properties (brick is more dense than air) and the nature of the

energy transfer (air is cooled convectively by forcing colder air into rooms, while mass is cooled conductively by

being contact with the air). These dynamic di�erences give an additional source of energy storage: by cooling solid

building components, future ambient heat can be absorbed directly by the solid materials, thus providing a passive

source of cooling to the building. For example, pre-cooling a 3-inch concrete �oor by 6 °C can provide a quarter

of cooling requirements for a typical 12 h occupation cycle (Morris et al., 1994). To di�erentiate between the two
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types of storage, we refer to direct thermal energy storage (TES) in �uids as “active TES,” with the use of building

components as “passive TES.” Utilizing both active and passive TES can provide cost savings relative to applying

either technique individually (Henze et al., 2004; Pavlak et al., 2015).

6.1.1 Problem Statement

In order to exploit additional passive storage possibilities, we augment the problem statement from Chapter 5 to also

consider optimization of all aspects of the heating, ventilation, and air conditioning (HVAC) equipment is buildings.

This includes the central plant as discussed before, and in addition the AHUs. Based on the primary heat transfer

medium, we refer to the central plant and its equipment as the “waterside” subsystem, while the building temperature

zones and AHUs are the “airside” subsystem. In particular, the airside optimization must make the following decisions:

• What is the predicted temperature trajectory of each temperature zone?

• How much hot or chilled water is sent to AHUs?

The former implicitly decides passive storage utilization, while the latter determine how much hot or chilled water

must be produced in the central plant. As in the waterside problem, the following constraints must be respected:

• Comfortable conditions must be maintained in occupied temperature zones.

• AHU capacities cannot be violated.

We would like to address large-scale instances, e.g., a tall high-rise building or a campus of multiple individual

buildings. Thus, the problem formulation must be able to address hundreds of zones at a time. Note that all of the

decisions and constraints from the waterside problem still apply and must be considered as well.

6.1.2 Literature Review

Because of its ability to utilize forecasts of ambient and economic conditions, MPC has been proposed for control of

HVAC systems (Mendoza-Serrano and Chmielewski, 2012; Oldewurtel et al., 2012). Indeed, MPC has demonstrated

bene�t over conventional PID or other control strategies (Bengea et al., 2014), although obtaining su�ciently accurate

models can be a challenge (Killian and Kozek, 2016; Sturzenegger et al., 2016). Common methods to obtain dynamic

models include �rst-principles derivations (Kircher and Max Zhang, 2015; Mendoza-Serrano and Chmielewski, 2012)

or applying system identi�cation techniques to operating data (Avci et al., 2013). Although nonlinearities can arise,

e.g., from products of mass �ows and temperatures (Ma et al., 2012b, 2015), linear models like (2.3) are often su�cient

for control purposes (Ma et al., 2012a).

Due to the inherently unsteady nature of storage utilization, economic MPC is a useful tool for optimizing airside

energy use (Ma et al., 2014). These methods use temperature dynamic models to predict optimal building temperature
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trajectories, which implicitly accounts for passive TES. It is important that these strategies ensure occupant comfort,

which can generally be based on temperature and possibly humidity (Fang et al., 1998; Frontczak and Wargocki, 2011),

although more complicated metrics can be used if directly optimizing or constraining comfort (Freire et al., 2008).

Most existing buildings include PI or on/o� controllers to operate AHUs (Afram and Janabi-Shari�, 2014). If retro�t is

not possible, the dynamic limitations imposed by any local actuation or control layer must be included in the dynamic

models (Rawlings et al., 2017a). Systems with more exotic heating and cooling equipment (e.g., radient slabs (Feng

et al., 2015) or phase-change materials (Touretzky and Baldea, 2016)) provide additional opportunities for energy

storage, but they also bring additional control challenges for which MPC is appropriate.

To address large-scale instances, distributed MPC strategies have been proposed, which split the control problem

into multiple interacting subproblems (Cai et al., 2016; Morosan et al., 2010; Scherer et al., 2014). Stochastic program-

ming approaches have been applied to address uncertainty in ambient and occupancy conditions (Ma et al., 2015;

Zavala et al., 2009). However, most existing approaches do not consider the signi�cant complexities of the central

energy plant. Thus, to provide the greatest opportunity for large-scale savings, we wish to propose a formulation

that can account for both passive TES use on the airside and active TES use on the waterside, all while optimizing

equipment utilization in the central plant.

6.2 Problem Formulation

To consider optimization of the airside and waterside subsystems simultaneously, we augment the central plant model

presented in Section 5.2 with additional variables and constraints as follows.

6.2.1 Sets

The airside model requires a single additional set:

• Airside temperature zones i ∈ I

Note that a temperature zone can be used to describe a single room, multiple rooms served by a single AHU, or even

an entire building (albeit at reduced accuracy). The only restriction is that the temperature of a single zone is assumed

to be uniform.

6.2.2 Parameters

The main parameters for the airside problem formulation de�ne the dynamic evolution of temperature zones. These

parameters are as follows

• Temperature interaction coe�cients αii′
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• Resource use coe�cients βii′k

• Temperature disturbance forecast θit

These coe�cients de�ne a linear state-space model in the form (2.3). Note however, that the core dynamic model αii′ ,

βii′k is time-invariant; this restriction is not a limitation of the formulation, but rather a re�ection of the fact that

determining a quality time-varying model for a real building is extremely di�cult.

One of the requirements of the airside optimization is that the temperatures of occupied zones must be within

established limits. To ensure that a feasible solution exists for each model, we soften these constraints with linear

penalties. In addition, AHU capacities limit the amount of chilled or hot water that can be delivered to a zone. These

considerations lead to the following additional parameters:

• Zone temperature bounds Θ+
it , Θ−it

• Temperature voilation penalties ξ+
it , ξ

−
it

• Resource consumption bounds Γikt

In general, ξ+
it and ξ−it are chosen su�ciently large so that temperature bounds are respected whenever feasible.

6.2.3 Variables

For airside optimization, we add the following variables:

• Zone temperatures Tit ∈ (−∞,∞)

• Resource consumption Gikt ∈ [0,Γikt] by zones

• Slack variables T+
it , T

−
it ∈ [0,∞) for temperature bounds

Note of course that only a small subset of resources (chilled and hot water) are consumed in the airside; thus, most of

the Gikt variables are removed from the model by setting the bound Γikt = 0.

6.2.4 Constraints

The main additional constraint added to the formulation is the dynamic model for temperature evolution:

Tit =
∑
i′∈I

αii′Ti′(t−1) +
∑
k∈K

∑
i′∈I

Gi′kt + θit, i ∈ I, t ∈ T. (6.1)

Note that as in the case of Sk0 and Uk0 from the waterside model, the quantities Ti0 represent initial conditions to the

model and are thus parameters in the optimization problem.
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To enforce soft constraints on temperature bounds, we add the following two constraints:

Tit ≥ Θ−it − T−it , i ∈ I, t ∈ T (6.2)
Tit ≤ Θ+

it + T+
it , i ∈ I, t ∈ T. (6.3)

When temperature bounds Θ+
it , Θ−it are satis�ed, the optimizer sets the slack variables T+

it , T−it to zero; when bounds

are violated, the slacks are set to nonzero values to ensure feasibility of (6.2) or (6.3).

In addition to adding the previous constraints to the problem formulation, the main demand satisfaction constraint

(5.4) is modi�ed to include a new consumption term Gikt as follows:∑
j∈J

Qjkt + Ykt + Pkt +Hkt ≥ φkt +
∑
i∈I

Gikt, k ∈ K, t ∈ T. (6.4)

Thus, the central energy facility must meet the demands of the airside system. Note that the parameter φkt is retained

in this constraint to represent resource demand not under direct control of the HVAC system. For example, even in

the summer, buildings require domestic hot water, and thus the central plant must generate hot water regardless

of the fact that temperature zones do not need heating. In this case, φkt > 0 for k = Hot Water. We refer to such

sources as “secondary demand,” with the resource consumption in Gikt as “primary demand.” Note in addition that

the restriction Hkt ≤ φkt is also still included to ensure that Hkt is only used for missed secondary demand. Missed

primary demand is explicitly not allowed, although the slacks T+
it and T−it serve a similar purpose.

For the objective function, we split into a separate waterside term FWS (from (5.1)) and an airside term FAS:

FWS =
∑
k∈K

Ck +
∑
k∈K

∑
t∈T

ωktBkt, (6.5)

FAS =
∑
t∈T

∑
i∈I

(
χ+
itT

+
it + χ−itT

−
it

)
. (6.6)

The overall objective function is thus

min FWS + FAS, (6.7)

which considers the real utility costs Ck of operating the central plant, as well as the soft constraint violations T+
it

and T−it for primary demand, and Bkt for secondary demand.

The combined optimization problem consists of constraints (5.2), (5.3) and (5.5) to (5.12) from the central plant

formulation with modi�ed demand constraint (6.4), as well as additional constraints (6.1) to (6.3), (6.5) and (6.6). The

objective function is (6.7). This problem is also a mixed-integer linear programming (MILP) formulation. We refer to

this formulation as the combined problem.
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6.2.5 Remarks

Remark 6.1: Although the dynamic model in (6.1) treats every zone identically, not every zone needs to represent air

space within the building. Because the comfort bounds Θ+
it and Θ−it as well as consumption limits Γikt can vary by

zone, we can use certain temperature zones to model the slower-timescale evolution of the building mass. Such zones

cannot receive any direct heating or cooling via Gikt, but their temperature trajectory Tit need not satisfy comfort

bounds. Thus, by clever choice of zones and coupling coe�cients, (6.1) can accommodate arbitrarily higher-order

linear models for the temperature of “true” zones.

More generally, the model in (6.1) can be replaced with any arbitrary continuous-variable linear dynamic model

provided that the zone temperatures Tit and resource consumptions Gikt are outputs of the model. For example, Patel

et al. (2016a) suggests including local regulatory controllers in the dynamic temperature model. With this choice,

the model inputs are the signals sent to regulatory controllers, while resource consumption is calculated based on

the dynamics imposed by these controllers. More complicated models possibly including discrete variables could

also be included, although the resulting optimization problem is likely to be di�cult to solve, and the decomposition

strategies developed in this chapter may not be applicable.

Remark 6.2: As written, the combined problem formulation does not consider direct utility consumption by airside

equipment. However, in real systems, AHUs, local building pumps, and other airside units consume electricity to

operate. The justi�cation for neglecting these consumption terms is that they are approximately constant. However,

if the optimizer makes signi�cant use of passive TES, then there may be periods where airside equipment is operated

at higher than usual levels, as well as periods where the equipment is essentially shut o�. If such di�erences are

signi�cant, then they could be approximately accounted for by adding extra terms to the demand balance (6.4). For

example, adding terms
∑
k′∈K πkk′Gikt would allow the modeling of electricity consumption that is proportional to

the amount of chilled water used by the airside system.

6.3 Decomposition Strategies

The main di�culty of the combined formulation is the combination of the discrete variables from the waterside model

with the large number of continuous variables from the airside model. Compared to the waterside-only model, a

similar number of nodes need to be visited to �nd a comparable solution, but due to the signi�cantly larger number

of variables, each node requires more time and memory to process. The end result is that it may not be possible to

even �nd a feasible solution in a reasonable amount of time for large instances. Therefore, we propose decomposition

strategies to separate these two main sources of di�culty.
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6.3.1 Aggregate Central Plant Models

To start, we describe a method for constructing approximate aggregate models for the central energy facility. Although

these models ignore many of the relevant e�ects of discrete variables (e.g., minimum capacities and dwell times), they

provide a reasonable estimate of necessary resource consumption to produce a given amount of chilled or hot water

in waterside equipment. Thus, they allow approximate optimization of the central plant without the major source of

complexity.

The premise of the aggregate models is that is that in any single time period, the optimizer will choose a

con�guration of equipment that is optimal or near-optimal for the current total load. Thus, by �nding the optimal

static equipment allocation for various total production levels, the complexity of piecewise-linear models, auxiliary

equipment, intermediate resources, etc., can be summarized in terms of aggregate production and consumption. In

general, the central plant will consume a small subset of resources purchased from utility markets and deliver another

small subset to the airside. We de�ne these sets as follows:

K− := {k ∈ K : Πk > 0},
K+ := {k ∈ K : φkt > 0 or Γikt > 0 for some t ∈ T or i ∈ I}.

Here, K− are the resources purchased externally, while K+ are the resources consumed by the airside (or used to

meet secondary demand φkt). The goal of the aggregate models is to determine how much of each resource in K−

must be purchased to produce a given amount of resources in K+. The remaining resources in K \ (K− ∪K+) are

completely internal to the central plant and thus are used only to determine auxiliary equipment utilization.

To treat the entire central plant with a single aggregate model, one would need a function mapping from R|K−| →

R|K+|. For the examples we consider here, K− := {Electricity,Gas}, and K+ := {Chilled Water,Hot Water}. Thus,

the required model would be two-dimensional. However, for each major type of equipment (chillers, HRCs, and

boilers), only one resource k ∈ K+ can be independently varied. Therefore, similar to Wenzel et al. (2014), we produce

a separate aggregate model for each major type of equipment. For each group, a representative resource k∗ ∈ K+ is

chosen, and the following subproblem is solved with φk∗ varying from zero to the maximum total capacity of that

type of unit:

min
∑
k∈K

ρkPk (6.8a)

s.t.
∑
j∈J

Qjk + Pk ≥ φk, k ∈ K (6.8b)

Qjk =
∑
m∈Mj

∑
n∈Njm

ζjknZjmn, j ∈ J, k ∈ K (6.8c)

∑
m∈Mj

Vjm = Uj , j ∈ J (6.8d)

∑
n∈Njm

Zjmn = Vjm, j ∈ J,m ∈Mj (6.8e)
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Figure 6.1: Example aggregate system curves. Circular markers are solutions to (6.8), while gray lines are linear �ts
for Ξjkt( · ). Central plant equipment is as shown in Figure 5.6.

Note that other types of major equipment are excluded, but all other auxiliary equipment (i.e., that does not produce

resources in K+) are retained. Using the optimal values of Pk from each solution to (6.8), an aggregate function

Ξjkt : [0, 1] → R|K+∪K−| with the independent variable Z ∈ [0, 1] choosing the load between 0% and 100% for

that type of equipment. Note that the index j refers to the major type of equipment, rather than any particular

piece of equipment. The goal of these aggregate models is that for a given level Z , Ξjkt(Z) ≈ φk for k ∈ K+ and

Ξjkt(Z) ≈ Pk for K ∈ K−; that is, the aggregate function Ξjkt( · ) is an approximation of the optimal operating

points determine from (6.8). We provide an example of an aggregate operating curve in Figure 6.1. Although relative

error is somewhat high for certain resources, we will demonstrate via simulation, that quality solutions can still be

found using these approximations.

To account for possible time variability in equipment e�ciency, we include a time index t on the aggregate models

Ξjkt( · ). For the best accuracy, a di�erent aggregate model could be constructed for each di�erent set of ambient

conditions. However, if a representative sampling can be constructed o�ine, then no instances of (6.8) need be solved

online. It is also possible that di�erent values for utility prices ρk could a�ect optimal con�gurations. However, since

each major piece of equipment consumes only one major resource, the choice of ρk in (6.8) is largely irrelevant. Finally,

because we want to use these models in other optimization problems, it is advantageous to choose the functions
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Ξjkt( · ) to be convex. In particular, if they are linear, then the aggregate models can be used in other LP problems,

which increases applicability. We will use these models for two separate cases as discussed in the following sections.

6.3.2 Hierarchical Decomposition

As alluded to in the introduction, we can improve solution speed by separating the large continuous-variable airside

model from the modestly sized but mixed-integer waterside model. In particular if the airside resource consumption

variablesGikt are �xed, then the resulting optimization problem is equivalent to an instance of the original central plant

problem that can be solved in a reasonable abount of time. To achieve this goal, we use a hierarchical decomposition

that splits the problem into an upper-level centralized subproblem without any discrete variables and a lower level

waterside subproblem without the large airside model.

For the centralized subproblem, we replace the discrete on/o� variables and piecewise-linear generator models

with the aggregate equipment models developed in the previous section. This choice leads to the simpli�ed demand

constraint ∑
j∈J

Ξjkt(Zjt) + Ykt + Pkt +Hkt ≥ φkt, k ∈ K, t ∈ T. (6.9)

Note that the index j ∈ J refers to the major types of equipment, not individual generators. In addition, the set of

resources need only contain K+ ∪K−, as the remaining resources are implicitly accounted for in the aggregate

models. The centralized subproblem thus consists of constraints (5.2), (5.3) and (5.11) to (5.12) from the central plant

model, (6.1) to (6.3), (6.5) and (6.6) from the airside model, and the simpli�ed (6.9). With objective function (6.7), the

centralized subproblem is a linear programming problem, assuming the aggregate models Ξjkt( · ) are linear.

After solving the centralized subproblem to determine near-optimal values for Gikt, the total resource demand

φkt +
∑
i∈IGikt can be calculated as the sum of primary and secondary demands. This value of total demand is

used as the parameter φkt in the original central plant optimization from Chapter 5, which is solved as the waterside

subproblem. Note that the storage tank model is included in both subproblems; it is part of the centralized subproblem

so that active and passive TES are considered simultaneously, while it is included in the waterside subproblem so that

the dynamics can be considered using the higher accuracy of the piecewise-linear equipment models. By combining

the values of Tit and Gikt from the centralized subproblem with the optimal solution to the waterside subproblem, a

feasible solution to the combined problem is obtained, giving an upper bound on the optimal combined objective.

This process is illustrated in Figure 6.2. Note that it is also possible to �nd a lower bound for the combined problem,

which will be discussed as part of the Lagrangian decomposition strategy.
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Determine major equipment types and solve
equipment selection subproblems (6.8) for each

Choose aggregate central
plant representations Ξjkt( · )

Solve Centralized Subproblem

Solve Waterside Subproblem using �xed
Gikt from Centralized Subproblem

Proceed to
next timestep

Update aggregate
representations Ξjkt( · )

as necessary

Online

Figure 6.2: Algorithm for hierarchical decomposition.

6.3.3 Lagrangian Decomposition

While the hierarchical decomposition from the previous section e�ectively decouples the two challenging aspects of

the combined problem, it is predicated on the ability to construct accurate aggregate curves Ξjkt( · ). In addition, in

the centralized subproblem, every single temperature zone has to be included, even zones in completely separate

buildings that do not interact dynamically. To avoid these potential issues, we propose an alternative decomposition

strategy based on Lagrangian relaxation.

As mentioned in the previous case, the only source of coupling in the combined formulation is the demand

constraint (6.4). To start, we slightly reformulate the problem as follows: constraint (6.4) is split into two pieces

∑
j∈J

Qjkt + Ykt + Pkt +Hkt ≥ φkt + Ḡkt, k ∈ K, t ∈ T, (6.10)

Ḡkt =
∑
i∈I

Gikt, k ∈ K, t ∈ T, (6.11)

in which Ḡkt are new variables to represent the total primary demand across all temperature zones. With this

reformulation, the only source of airside/waterside coupling is (6.11). To split the problem, we decompose this

constraint in the Lagrangian sense; that is, we remove the constraint, choose multipliers λkt, and any deviation in the

objective function.
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With the relaxation of (6.11), we end up with two completely separate subproblems: the airside dual subproblem

consisting of constraints (6.1) to (6.3) with objective function

min
∑
t∈T

(∑
i∈I

(
χ+
itT

+
it + χ−itT

−
it +

∑
k∈K

λktGikt

))
, (6.12)

and the waterside dual subproblem with constraints (5.2), (5.3) and (5.5) to (5.12) and (6.10), using the objective

function

∑
k∈K

(
Ck +

∑
t∈T

(
ωkBkt − λktḠkt

))
. (6.13)

It can be shown that for any value of the multipliers λkt, the optimal objective value for the dual subproblems is a

lower bound for the optimal combined objective function. Note that better bounds could potentially be obtained by

copying all of the Gikt variables and decomposing the individual equality constraints, rather than decomposing (6.11)

directly (Guignard and Kim, 1987). However, this technique did not lead to improved performance in the examples

tested.

Using the values ofGikt from the airside dual subproblem, we can �nd a feasible solution to the combined problem

(and thus an upper bound) by solving an instance of the waterside (primal) subproblem just as in the hierarchical

decomposition. It is also possible to update λkt, and the process can be repeated to potentially �nd better lower or

upper bounds. For example, using subgradient methods (Wolsey, 1998), a possible update formula is

λikt := λkt + µ

(∑
i∈I

Gikt − Ḡkt
)
,

with various selection rules available for the stepsize µ. Once a suitable solution has been obtained, the process is

stopped, and the multipliers are shifted for use in the next timestep. We illustrate this process in Figure 6.3.

The main bene�ts of this method over the hierarchical decomposition is that no approximations are necessary,

and this method can theoretically �nd proven optimal solutions to the combined problem. Unfortunately, due to

nonconvexity of the waterside model, there is likely a nonzero duality gap for this problem, which means the gap

between lower and upper bounds never closes. However, as in the central plant optimization, it is su�cient to �nd

solutions with a gap of roughly 1%, which is attainable in a single iteration if a quality guess for λkt is used. Of course,

the downside of this approach is that iteration may be necessary if the multipliers are highly suboptimal, whereas

the hierarchical decomposition does not require iteration. A possible bene�t of this approach is that the airside dual

subproblem can be decomposed on a per-building basis. Because zones in one building do not interact with zones

in another building, the dynamic model coe�cients αii′ and βii′k are block-diagonal, which means the decisions

made in one building are completely independent from others. This property can be very useful if there a very large

number of separate buildings.
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Figure 6.3: Algorithm for Lagrangian decomposition.
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Remark 6.3: The Lagrangian decomposition can be viewed as a price negotiation between the airside and waterside

systems. The multipliers λkt give the (time-varying) price of chilled and hot water to the airside subsystem; in the

airside dual subproblem, the optimizer minimizes its cost, possibly pre-cooling to take advantage temporal di�erences

in chilled water costs. The multipliers also give the revenue received by the waterside subsystem for providing those

resources; thus, in the waterside dual subproblem, the optimizer decides how much of each resource to deliver, in

order to maximize its pro�t. By choosing a price where the airside consumes the same amount as the waterside would

like to produce, a near-optimal solution can be found. If the two sides are far apart, we can directly �nd a feasible

combined solution by forcing the waterside to meet the airside’s current resource demand.

Remark 6.4: Since the combined solution to the airside and waterside dual subproblems provides a lower bound

on the optimal objective of the combined problem, they can be used to estimate a lower bound for the hierarchical

decomposition. Of course, the hierarchical decomposition does not directly use the multipliers λkt, but a reasonable

guess can sometimes be obtained from the dual multipliers on constraint (6.9) in the centralized problem. This bound

is likely to be weaker than the bound obtained from optimizing λkt directly, but it still may be su�cient for online

closed-loop implementation.

6.3.4 Stochastic Demand Charge Optimization

As suggested in Section 3.4, the best way to address peak charges is to include the term in the objective function

without any adjusted weighting, but also to include a lower bound that represents the past peak value and a forecast

for the future remaining peak. While inclusion of the past peak is trivial, it is di�cult to determine a good value

for the future peak without considering the entire peak charge window, which is typically one month or longer. In

addition, even if a reduced problem can be formulated, forecasting price and heating/cooling demand is likely to

su�er signi�cant uncertainty, and thus deterministic optimization is likely to provide poor estimates.

To address these issues, we propose a simple stochastic programming formulation to determine peak charge

targets. Stochastic programming allows for optimization under uncertainty, and the technique has been proposed for

optimizing electricity market participation using batteries (Dowling et al., 2017; Kumar et al., 2018), which contains

many of the same elements as the current problem. To start, the peak charge window is split into multiple stages

s ∈ S. Each stage is given multiple realizations r ∈ Rs of uncertain parameters ρkt and φkt. For each stage and

realization, the following problem formulation is as follows (we omit indices r and s for clarity).

∑
j∈J

Ξjkt(Zjt) + Ykt + Pkt +Hkt ≥ φkt, k ∈ K, t ∈ T, (6.14a)

Skt = σkSk(t−1) − Ykt, k ∈ K, t ∈ T, (6.14b)
Pmax
k ≥ Pkt, k ∈ K, t ∈ T, (6.14c)
Pmax
k ≥ Pmax

k0 , k ∈ K. (6.14d)
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Here, the indices j ∈ J refer to the aggregate equipment groups as discussed in Section 6.3.1, and Ξjt( · ) are the

corresponding aggregate models (with variable Zjt ∈ [0, 1] choosing how much to utilize each group). Note that the

initial conditions Sk0 and Pmax
k0 are inherited from previous stages (or the current plant conditions in the case of the

�rst stage).

Denoting the values Sk0 and Pmax
k0 as the system state x and taking all other variables as inputs u, the subproblem

(6.14) essentially gives a model of the form xs = f(xs−1, us). Using these variables, we can thus construct a scenario

tree of possible parameter realizations and optimize. Speci�cally, this tree structure imposes constraints of the form

xrs = frs(xrrs(s−1), urs), s ∈ S, r ∈ Rs,

in which rrs ∈ Rs−1 gives the ancestor realization from stage s − 1. For the case of a monthly demand charge,

each stage could be a week in length, with three unique sets of parameters for each (e.g., parameters for colder

temperatures, average temperatures, and hot temperatures). These choices give rise to the scenario tree in Figure 6.4,

in which there is 1 realization in Stage 1, 3 realizations in Stage 2, 9 realizations in Stage 3, and 27 realizations in

Stage 4. Note that without loss of generality, we can assume there is only a single realization in the �rst stage, as

multiple �rst-stage realizations can be addressed by solving completely separate problem instances.

With a scenario tree established, the objective function is

min
∑
s∈S

∑
r∈R

(
πrs

∑
t∈Ts

(ρktPkt)rs

)
+
∑
r∈Rs∗

(
πrs∗

∑
k∈K

(ρmax
k Pmax

k )rs∗

)
.

in which πrs is the probability of realization r in stage s, and s∗ is the index of the �nal stage. Thus, the objective

function calculates the average total monthly charges, including use charges throughout all stages, and the monthly

demand charges as determined by the value of Pmax
k in the �nal stage. In the case of linear aggregate equipment

functions Ξijt( · ), the entire problem is a large but manageable linear programming problem. As long as the Ξijt( · )

are convex, a variety of stochastic programming decomposition strategies can be employed (e.g., Rockafellar and Wets

(1991); Shapiro (2011)). After �nding an optimal solution, the values of Pmax
k from each stage can be used as peak

utility targets (e.g., mean or median values across realizations in each stage).

6.4 Simulations

We conclude this chapter with some example simulations of the proposed formulations. All optimizations (both MILP

and LP) are solved using Gurobi (Gurobi Optimization, LLC, 2018). All timesteps are 1 h.
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Figure 6.4: Example scenario tree. Numbers in circles are realizations r. Ancestor realization rrs is the value of r for
the parent arc. The �nal stage is s∗ = 4.
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Figure 6.5: Example combined airside/waterside system. Zones 1 and 3 are air zones, while Zones 2 and 4 are mass
zones. The ambient disturbance parameter θi includes ambient conduction, ambient radiation, and internal heat
generation for each zone.

6.4.1 Combined Example

To start, we consider an instance of the combined airside/waterside problem. The central plant consists of only

cooling equipment (conventional chillers, cooling towers, and pumps). Following the advice of Remark 6.1, we model

the air and solid mass of each temperature region as a separate region. The air zones receive cooling via the Gikt

variables that must o�set direct heat generation via θikt, and conductive interaction with the corresponding mass

zones. Mass zones do not receive any direct cooling, but their temperatures need not satisfy the temperature bounds;

these zones couple conductively with adjacent mass zones as well as the ambient. A diagram of the system is shown

in Figure 6.5.

Solving the combined problem gives the optimal solution shown in Figure 6.6. From this solution, we see that the

temperatures of the air zones (1 and 3) remain at their upper bounds throughout the horizon. Thus, the active TES

capacity is large enough to provide optimal load shifting, and thus passive TES is not utilized. Note that the mass

zones (2 and 4) follow the ambient temperature trajectory more closely, since they are not directly heated or cooled.

To assess the scalability of the combined formulation, we vary the number of zones and repeat the optimization

problem. Problem size and solution information are shown in Table 6.1. From these results, we see that the optimization

problem does become signi�cantly harder as the number of zones is increased. Although the number of integer

variables is constant, the growing number of continuous variables and constraints leads to much slower solution
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Table 6.1: Problem size and solution time information for combined formulation. Sizes reported are after Gurobi
presolve reductions. The “No Building” line is a waterside-only optimization that meets the optimal demand from the
25-zone example.

Size Variables
(×103)

Integers
(×103)

Constraints
(×103)

1% Gap
Time (s)

Final Gap
(after 1000 s)

4 Zones 8.9 2.8 5.7 93.1 0.06%
16 Zones 13.9 2.8 9.7 134.8 0.13%
30 Zones 19.8 2.8 14.4 164.0 0.45%
50 Zones 28.1 2.8 21.1 281.0 0.53%
Waterside 7.2 2.8 4.3 16.9 0.05%

progress. Thus, while these times may be su�ciently fast, for large buildings or campuses with many more zones,

solving the combined problem is likely not a viable option. Therefore, decomposition strategies need to be applied.

6.4.2 Hierarchical vs. Lagrangian Decomposition

To examine the e�ectiveness of the decomposition strategies, we apply the techniques to a large airside system. The

airside system consists of 20 separate buildings, each with 25 air and 25 mass zones, for a total of 1000 temperature

zones. The central plant consists of 5 chillers, 3 HRCs, 2 boilers, 6 chilled water pumps, 5 hot water pumps, and 5

cooling towers. In addition to the primary chilled water demand required by the airside, there is high secondary

demand for hot water and low secondary demand for chilled water. Thus, the central plant must provide chilled and

hot water simultaneously. The horizon is 7 days. Due to the large size of this problem, the optimizer is unable to �nd

a feasible solution to the combined formulation within 2 h, and thus decomposition is necessary.

Both the hierarchical and Lagrangian decomposition strategies are able to �nd a feasible solution to the problem.

Figure 6.7 shows the solution obtained by the hierarchical decomposition; a similar solution is found by the Lagrangian

decomposition. In this �gure, we note that the solution does not make use of passive TES on the airside, as there

there is a high-capacity active TES for chilled water. Problem size information is shown in Table 6.2 and Table 6.3.

We note from the problem sizes that the centralized and airside subproblems are large continuous-variable models,

while the waterside primal and dual problems are moderately sized mixed-integer models. From the performance

table, we note that the two decomposition strategies �nd roughly the same solution, but the duality gap is smaller for

the Lagrangian decomposition. Solution times are roughly the same, although the bulk of the time is spent in the

waterside subproblems, which were both given a time limit of 10 min. Finally, we note that in this case, running an

additional iteration of the Lagrangian decomposition does not lead to an improved solution.

To assess the viability when no active TES is available, we repeat the calculation for a central plant without hot or

chilled water storage tanks. To make up for this e�ective loss of hot water capacity, the system is given two additional

boilers. We show the hierarchical solution in Figure 6.8. The system does make use of passive TES, and the building
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Table 6.2: Subproblem sizes for the hierarchical decomposition strategy applied to the large heating/cooling example.
Values are as reported by Gurobi after presolve reductions. Sizes for the Lagrangian decomposition strategy are
nominally the same, although presolve reductions may be slightly di�erent due to non-identical problem data.

Subproblem Variables
(×103)

Integers
(×103)

Constraints
(×103)

Nonzeros
(×106)

Centralized 252.90 0 168.22 2.05
Airside Dual 250.72 0 166.72 1.96

Waterside Primal 13.57 5.35 8.18 0.05
Waterside Dual 13.73 5.35 8.17 0.05

Table 6.3: Solution time and gap information for the large heating/cooling example. Objective functions are normalized
to the hierarchical decomposition solution. The bottom block gives solution times in minutes.

Hierarchical Lagrangian
(Iteration 1)

Lagrangian
(Iteration 2)

Objective 100.00 99.99 99.99
Duality Gap 1.82 0.43 0.43
Centralized 0.31 − −

Waterside Primal 10.02 10.00 10.00
Waterside Dual 10.02 10.02 10.02

Airside Dual 0.10 0.09 0.09
Total 20.45 20.12 20.12

is pre-cooled slightly overnight. Unfortunately, the Lagrangian decomposition does not work as well for this problem,

�nding a solution that is 10% worse than that of the hierarchical solution. A guess for the dual multipliers is obtained

by solving the LP relaxation of the waterside problem; due to the presence of HRCs, these multipliers can be negative,

leading to overly aggressive pre-cooling for the airside The duality gaps for both strategies are above 10%. Thus,

while the hierarchical decomposition can still �nd quality primal solutions, the resulting optimality gaps are poor

unless better multipliers can be determine.

To assess the impact of active TES on solution quality and optimizer performance, we repeat the previous

calculations for varying chilled water active TES capacities. To avoid the complications of HRCs, the central plant

does not consider hot water production; thus, the waterside equipment consists of 8 chillers, 8 cooling towers, and 6

pumps. The airside system is as in the previous example. Figure 6.9 shows solution information for this simulation.

Note that the Lagrangian decomposition uses only a single iteration for these results. From the top axes, we see

that total cost decreases monotonically as the capacity of active TES increases. In particular, cost is reduced by

more than 20% when the full chilled water storage tank is present compared to not having a storage tank at all. For

the performance of the two decomposition strategies, we see that the Hierarchical decomposition generally �nds

better upper bounds, while the Lagrangian decomposition �nds better lower bounds. For the upper bounds, the two

strategies become closer as the TES capacity is increased (and the Lagrangian actually wins slightly at 100% TES), but

the solutions are always within 1% of each other. For the lower bounds, the Lagrangian decomposition is signi�cantly
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better above roughly 20%. Overall, neither strategy is signi�cantly better than the other. In general, if lower bounds

are unnecessary, then the Hierarchical decomposition may be the better choice, but the Lagrangian decomposition

does provide more �exibility for implementation.

6.5 Summary

In this chapter, we have extended the central plant optimization formulation from Chapter 5 to include optimization

of airside temperature trajectories. By embedding a dynamic model for building temperature dynamics within the

problem formulation, the optimizer can take advantage of passive TES by pre-cooling temperature zones to reduce

cooling requirements later. For small to medium-sized airside systems, the combined problem can be solved directly

to optimally trade o� use of active and passive TES. However, for large airside systems, the combined model cannot

be solved within the given time requirements. Thus, we have presented two strategies to decompose into more
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manageable subproblems. In the �rst strategy, the central plant is �rst optimized using approximate aggregate

equipment models without discrete variables; using that airside demand, the waterside system can be optimized

without including an airside model. In the second strategy, the coupling constraints between the airside and waterside

models are dualized in the Lagrangian sense; using a good guess for dual multipliers, quality solutions can be found by

optimizing the airside and waterside subsystems independently. Finally, we have presented a stochastic programming

formulation for long-term peak demand charge calculation with uncertain forecasts. Solving this problem gives a

target for peak demand that can be used with the ideas of Section 3.4 for closed-loop demand charge optimization.

For additional information about the airside problem formulation, including the building dynamic model, see

Risbeck et al. (2017). For more solution timing statistics, see Risbeck et al. (2018b).
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Chapter 7

Conclusions

Summer’s heat or winter’s cold
The seasons pass; the [horizon] will roll

— Fred Cornell
Carmen Ohio

7.1 Outlook

The world is getting faster. What used to take a day in the library can now be accomplished by a single internet

search. Utility markets move drastically in seconds, due to both the unpredictability of the weather and the caprice of

energy speculators. The price of steel can jump 25% overnight. Conditions change, priorities realign, and assumptions

may no longer hold. Fortunately, as the speed of life is increasing, so too is the speed of computers and optimization

algorithms. Even within the past �ve years, problems that started out intractable are now considered trivial. Thus,

by relying increasingly on automated decision-making, we can now respond optimally and in real time to external

changes or disturbances, however big or small.

The work presented in this document serves to expand the applicability of and builds momentum behind the

increasing use of online optimization. In the HVAC application, we suggest replacing fragile heuristics with resilient

mathematical programming methods. For scheduling problems, we advocate a control-oriented perspective to provide

recursive feasibility and eliminate pathological behavior. Even in something as esoteric as the de�nition of asymptotic

stability, we use a generalized norm rather than a true norm to allow greater �exibility in problem formulation. We

hope that these ideas can spur some additional creativity on the part of the greater research community and lead to

more innovative and e�ective solutions to our ever-growing list of problems. In that vein, we conclude this work by

summarizing the main contributions and providing some suggestions for further investigation.
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7.2 Summary

In Chapter 2, we have presented a formulation of mixed-integer MPC for tracking problems. By avoiding the

historically common assumption of the setpoint lying on the interior of the input set U, the extension of stability

theory to discrete actuators is immediate. To provide full generality, we present both optimal and suboptimal MIMPC

in time-varying formulations. Via examples, we illustrate that suboptimal MPC is adequate for stabilization, although

better performance is usually experienced when optimal solution are found.

In Chapter 3, we extend MIMPC theory to demonstrate inherent robustness to state disturbances and to derive

closed-loop properties for economic MPC. With inherent robustness, we show that stability of suboptimal MPC

cannot be destroyed by arbitrarily small disturbances. By formulating stability in terms of a generalized norm on

the extended state (x,u), we avoid the restriction that u→ 0 as x→ 0, allowing discrete actuators to vary within

arbitrarily small neighborhoods of the origin; of course, this property may or may not be desirable depending on the

particular application, but the �exibility is available. For economic MPC, we extend asymptotic performance and

dissipativity-based stability theorems to cover the time-varying mixed-integer case. We then present an extended-

state formulation and terminal cost to allow peak-charge-style terms in the objective functions. The robustness and

asymptotic performance results are illustrated using simpli�ed energy system optimization examples.

In Chapter 4, we have demonstrated how standard production scheduling problems can be formulated as state-space

control problems. We �rst illustrate, via a simple batch production example, how catastrophic open-loop/closed-loop

mismatch can occur when closed-loop scheduling is implemented without terminal constraints. We then discuss a

state-space formulation for integrated scheduling and control, i.e., when the scheduling units are de�ned by underlying

dynamic models. To allow feasible solutions to be obtained without the need to solve the full integrated problem,

we present a dynamic-aware extended scheduling model that models a subset of the feasible dynamic space while

remaining computationally tractable. Finally, we demonstrate closed-loop properties for scheduling and integrated

problems using the example of multi-product reactors with shared resource constraints.

In Chapter 5, we have developed a general MILP model for real-time cost optimization in central energy facilities.

A key feature of the model is that it determines both discrete on/o� decisions for equipment as well as continuous

operating point selection (subject to nonzero minimum capacities). Using an abstract representation of the plant in

terms of resources and generators, the formulation is �exible and can consider a wide variety of equipment type. To

calculate generator resource consumption, we use piecewise-linear approximations of nonlinear equipment models.

These approximations can be tuned to provide the desired level of accuracy. Additional decision variables such as

supply temperature can be considered by adding extra dimensions to the piecewise-linear model. Using various

example systems, we demonstrate that quality solutions to this model can be found within minutes for realistically
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sized systems. In addition, we illustrate good agreement between the optimal equipment con�gurations predicted

by the piecewise-linear models compared to the true nonlinear models subject to closed energy balances. These

properties indicate that this formulation is suitable for online use and can lead to cost reduction compared to existing

heuristic strategies.

In Chapter 6, we have augmented the central energy facility model to include optimization of building temperature

trajectories. By including dynamic models for building temperature evolution, building cooling loads are now

variables (determined by airside operational decisions) rather than �xed parameters. Utilization of passive storage

techniques like pre-cooling are implicit in the optimization formulation. To address problems with a large number of

zones, we have developed two decompositions to separate the airside and waterside into subproblems: a hierarchical

decomposition that uses an approximate model for the central plant, and a Lagrangian decomposition that dualizes

the airside/waterside coupling constraints. Finally, we present a simple stochastic programming formulation for

month-long peak demand optimization. Through example simulations, we demonstrate the capability of these

techniques.

Overall, we have developed control theory to expand the scope of application of model predictive control to

systems with discrete-valued inputs, and then we have applied these techniques to the speci�c case of building energy

systems. These ideas can serve as the basis for a wide variety of cost-reducing and e�ciency-improving online

optimization strategies, leading to greater operational �exibility and faster response to changing economic or other

external conditions.

7.3 Future Directions

Due to the �nite-horizon nature of a thesis, not all of the issues relevant to the topics of study have been addressed in

this document. Indeed, there are many important questions left to be answered. To this end, we close by providing

some suggestions for future avenues of research. Readers may view this section as the terminal control law of this

thesis: it provides a feasible path forward, but careful optimization may be able to �nd something better.

7.3.1 Mixed-Integer Model Predictive Control

Although we have presented a set of conditions under which continuous-actuator MPC results can be extended to

cover discrete actuators, some practical and theoretical challenges remain. In particular, the solution to MIMPC

optimization problems could bene�t from tailored optimization strategies, the e�ect of changes to the reference

trajectory on tracking MPC could be investigated, and inherent robustness results should be extended to the economic

MPC case.
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While the suboptimal MPC strategy introduced in Chapter 2 has only trivial optimization requirements to provide

closed-loop stability, process performance is likely to improve from better open-loop solutions. Advances in general

mixed-integer optimization techniques are helpful, but it is likely that the speci�c structure of MPC problems allows

the application of more specialized strategies. For example, (approximate) dynamic programming is attractive because

the computational e�ort is linear in the horizon N , but application can be complicated by discontinuities in the

objective function, which are more likely in the discrete-actuator setting. However, even simple tweaks to existing

optimization methods could lead to improvements. For example, the values of discrete inputs early in the horizon are

likely to have greater e�ect on the objective function than later inputs, and thus setting a branching priority for early

times could lead to faster bound improvement. Thus, these and other specialized techniques should be explored to

improve MIMPC solution times.

As presented in Chapter 2, tracking MPC is formulated in terms of stabilizing the origin, which is equivalent to

stabilizing an arbitrary (but �xed) feasible reference trajectory. The chief limitation here is that any changes to the

reference trajectory (i.e., setpoint changes) essentially begin a new transient period. Depending both the frequency of

updates and how much the cost changes with each update, stability may no longer hold. This presents a challenge for

hierarchical implementations of MPC, for example using a top-level economic MPC problem to generate a trajectory

that is tracked by a lower-level tracking MPC problem. Even in the nominal case, economic MPC may decide to revise

its solution at each timestep, and thus the stability theory of Chapter 2 does not apply to the nominal lower-level

system. To overcome this limitation, tracking MPC analysis could be reformulated to explicitly account for changes to

the reference trajectory. This case is slightly di�erent than robust MPC approaches because the reference trajectory

is generated by a known process that can be modi�ed, in contrast to random disturbances which generally cannot be

modi�ed. With suitable modi�cations to constrain reference trajectory changes, nominal asymptotic stability may

still be achievable, which can help guide the development of hierarchical decomposition strategies.

Finally, one of the chief bene�ts of applying economic MPC is that the system optimizes economics dynamically.

In particular, this means the system can respond asymmetrically to disturbances whether they are economically

favorable or unfavorable. Unfortunately, there is little theory to describe the e�ects of these disturbances. While there

has been some work on robust and stochastic economic MPC, it is desirable to obtain a similar inherent robustness

result for economic MPC. The chief di�culty os that discrete actuators coupled with economic optimization often

leads to discontinuous optimal value function. As discussed in Allan et al. (2017), not all discontinuities are detrimental

to robustness, but continuity is generally necessary near the origin. Because the economic MPC reference trajectory

can be essentially anywhere in the state space, it is therefore possible that any discontinuity could end up being in a

bad location. Thus, additional analysis is needed to determine a su�cient set of assumptions under which robust

equivalents of Theorem 3.15 and Theorem 3.20 hold.
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7.3.2 Closed-Loop Scheduling

For the closed-loop scheduling problem, more work is needed to increase the �exibility of the constraints added

by economic MPC as well as to provides methods to control the amount of closed-loop revision to the schedule. In

addition, the bene�ts of integrated scheduling and control need to investigated, along with improvements to the

integrated formulation.

The use of an exact terminal equality constraint provides an asymptotic bound on closed-loop cost as discussed

in Theorem 3.15. However, because the optimizer must terminate exactly on the reference trajectory, the decisions

available to the optimizer, especially towards the end of the horizon, can become severely restricted. In addition, if

disturbances push the system far from the reference trajectory (perhaps knocking it out of phase), the optimization

problem can become infeasible, which requires constraint softening for practical implementation. A better strategy

would be to use a larger terminal region coupled with a terminal cost. Thus, the development of more general terminal

constraints for scheduling systems is a useful avenue for future research e�ort. For example, it might be possible to

analyze a given scheduling formulation directly and determine constraints based on on model parameters like batch

sizes and product demands. Another possibility would be to apply dynamic programming (likely in approximate

form) to determine conservative upper bounds on the cost to go. Finally, in the case of periodic references with

non-fundamental periods (e.g., a 48 h periodic solution for a system whose parameters are 24 h periodic), it could be

helpful to add an option for the optimizer to choose the phase with which it meets the reference trajectory. This

�exibility would help in the face of disturbances or when the system’s initial condition is far from the reference, but

care is needed to ensure that the closed-loop properties from Section 3.3 still hold.

An additional area for exploration would be the extension of rate-of-change penalties within an optimization to

revision penalties between sequential optimization problems. Even in the nominal case, MPC can choose to change

its predicted input trajectory from one timestep to the next. For traditional control applications, these revisions do

not matter, as inputs can be implemented quickly. By contrast, in scheduling problems, the decisions to, e.g., start a

particular batch in a particular unit requires a certain amount of preparation and advanced notice. Therefore, if the

schedule is revised just before a task is started, then there is a hidden cost that is not known to the optimizer. Of

course, if the modi�cation leads to signi�cant cost reduction, then it is worthwhile, but in many cases, these revisions

are due to the optimizer chasing very small improvements to the objective function). A possible solution is to consider

the extended state (x,u) of the system’s current state x and predicted input sequence u and add a penalty to the

optimization problem for choosing u∗ 6= u. An example of such a penalty is |u− u∗|, but a quick investigation

reveals that this term inappropriately penalizes various revisions. For example, delaying a task by one timestep is

penalized the same amount as moving a task forward by multiple timestep, which is two times the penalty of simply

canceling the batch all together. Thus, additional e�ort is needed to determine a penalty δ(u,u∗) that correctly
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penalizes schedule deviations. As long as δ( · ) is positive-de�nite, the closed-loop cost bound from Theorem 3.15 still

holds, and the other results likely generalize as well. Adding these penalties to the online closed-loop scheduling

problem can reduce the so-called “plant nervousness” associated with making constant revisions to the incumbent

schedule.

Finally, for the problem of integrated scheduling and control, costs and bene�ts need to be investigated in greater

detail. In many systems, it is likely that the traditional hierarchy is su�cient based on timescale separation and

lack of signi�cant interaction between units. However, for units in continuous operation, explicit consideration of

the underlying system dynamics may make certain transitions faster, or it could render particular combinations of

transitions infeasible. Thus, for situations with a tangible bene�t from integration, more work is needed to determine

a tractable integrated formulation. In particular, general methods to identify the key transitions and operating

points should be developed so that modeling e�ort can be focused on those speci�c items in order to maximize cost

improvement. Such techniques would, for example, guide the creation of transition and operating point catalogs for

the dynamic-aware scheduling formulation and would prevent unnecessary development and optimization e�ort on

unimportant cases.

7.3.3 Optimization of Building Energy Systems

For the building energy optimization, the key remaining challenges concern practical implementation and additional

extensions. Speci�cally, strategies for obtaining and maintaining models should be developed, and extensions of the

airside and waterside decision space should be considered.

For waterside equipment models, steady-state operating models can be obtained from �ts of historical or manu-

facturer’s data. For units like cooling towers whose operating depends on ambient conditions, the model parameters

can be time-varying as necessary. On a slower timescale, the models can be updated based on recent operating data.

However, updating each chiller’s model individually leads to multiple di�erent units with only slightly di�erent

equipment models. This change creates a nearly-symmetric formulation, which could adversely a�ect solution times.

Thus, when updating equipment models from online operation data, it may be necessary to determine a similarity

threshold below which units are treated as identical. In addition, for units with long startup and shutdown periods, it

may be necessary to extend the formulation to include these transient dynamic e�ects. Constraints on ramp rates

can be added to prevent rapid changes, but if resource consumption characteristics are very di�erent from steady

operation (in particular, if there are spikes in electricity usage that could a�ect peak demand charges), then these

e�ects may need to be modeled explicitly.

For airside temperature dynamic models, linear state-space models can be obtained by applying system identi�ca-

tion techniques. To make the most e�ective use of passive TES, the two-timescale behavior of temperature evolution
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must be captured, which has some rami�cations for how much data needs to be used. As an additional complication,

it may not be possible to control cooling loads directly, and instead air handlers must be sent temperature setpoints.

Therefore, models should be extended so that the inputs are setpoint signals sent to the air handlers, while the outputs

are temperature (to enforce comfort constraints) and resource consumption (to determine necessary heating and

cooling demand). Initial e�orts in this direction are discussed in Patel et al. (2016b), but industrial implementation has

not yet been demonstrated.

Finally, an additional source of cost reduction comes from varying the temperatures of various water and air

streams. For chilled water supply, suitable extensions have been discussed in Chapter 5, and the �ndings were that

chilled water supply temperature variation is not a signi�cant source of cost reduction. Similar techniques could be

applied to the cooling water loop, which would relax the assumption that cooling water supply temperature is a �xed

parameter. However, a signi�cant number of additional nonlinearities would have to be addressed, as the aggregate

stream temperatures would have to be calculated from the individual unit values. This di�culty combined with the

results of chilled water supply temperature optimization indicate it may not be useful to include in the long-horizon

scheduling model. Nevertheless, in a static single-periodic optimization, bene�ts could still be gained from a less

computationally costly procedure. Similar temperature considerations also exist for the discharge air temperature on

the airside. Unfortunately, bene�ts are likely to vary from building to building, as the electricity requirements of

ventilation depend on the particulars of the HVAC system internals. Therefore, additional study is warranted to see if

further cost improvement can be achieved.
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