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The goal of this postface is to point out and comment upon recent MPC papers
and issues pertaining to topics covered in the first printing of the monograph by
Rawlings and Mayne (2009). We have tried to group the recent MPC literature by the
relevant chapter in that reference. This compilation is selective and not intended
to be a comprehensive summary of the current MPC research literature, but we
welcome hearing about other papers that the reader feels should be included here.1

Chapter 1. Getting Started with Model Predictive Control

Offset-free control. In Section 1.5.2, Disturbances and Zero Offset, conditions
are given that ensure zero offset in chosen control variables in the presence of
plant/model mismatch under any choices of stabilizing regulator and stable esti-
mator. In particular, choosing the number of integrating disturbances equal to the
number of measurements, nd = p, achieves zero offset independently of estimator
and regulator tuning. A recent contribution by Maeder, Borrelli, and Morari (2009)
tackles the issue of achieving offset free performance when choosing nd < p. As
pointed out by Pannocchia and Rawlings (2003), however, choosing nd < p also
means that the gain of the estimator depends on the regulator tuning. Therefore,
to maintain offset free performance, the estimator tuning must be changed if the
regulator tuning is changed. Maeder et al. (2009) give design procedures for choos-
ing estimator and regulator parameters simultaneously to achieve zero offset in
this situation.

Chapter 2. Model Predictive Control — Regulation

MPC stability results with the KL definition of asymptotic stability. Since Lya-
punov’s foundational work, asymptotic stability traditionally has been defined with
two fundamental conditions: (i) local stability and (ii) attractivity. Control and sys-
tems texts using this classical definition include Khalil (2002, p. 112) and Vidyasagar
(1993, p. 141). The classical definition was used mainly in stating and proving the
stability theorems appearing in the Appendix B corresponding to the first printing
of the text. Recently, however, a stronger definition of asymptotic stability, which
we refer to here as the “KL” definition, has started to become popular. These two
definitions are compared and contrasted in a later section of this postface (see Ap-
pendix B – Stability Theory). We used the KL definition of asymptotic stability to

1rawlings@engr.wisc.edu, d.mayne@imperial.ac.uk
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define state estimator stability in Chapter 4 (see Definition 4.6, for example). We
outline here how to extend the main MPC stability results of Chapter 2 to apply
under this stronger definition of asymptotic stability.2

In many MPC applications using nonlinear models, it is straightforward to obtain
an upper bound on the MPC value function on a small set Xf containing the origin
in its interior. For example, this bound can be established when the linearization of
the system is stabilizable at the origin. But it may be difficult to extend this upper
bound to cover the entire stabilizable set XN . But we require this upper bound to
apply standard Lyapunov stability theory to the MPC controller. Therefore, we next
wish to extend the upper bounding K∞ function α2(·) from the local set Xf to all
of XN , including the case when XN is unbounded. Given the local upper bounding
K∞ function on Xf , the necessary and sufficient condition for function V(·) to have
an upper boundingK∞ function on all ofXN is that V(·) is locally bounded onXN ,
i.e., V(·) is bounded on every compact subset of XN . See Appendix B of this note
for a statement and proof of this result. So we first establish that V0

N(·) is locally
bounded on XN .

Proposition 1 (MPC value function is locally bounded). Suppose Assumptions 2.2
and 2.3 hold. Then V0

N(·) is locally bounded on XN .

Proof. Let X be an arbitrary compact subset of XN . The function VN : Rn ×RNm →
R≥0 is defined and continuous and therefore has an upper bound on the compact
set X × UN . Since UN(x) ⊂ UN for all x ∈ XN , V0

N : XN → R≥0 has the same upper
bound on X. Since X is arbitrary, we have established that V0

N(·) is locally bounded
on XN . �

We next extend Proposition 2.18 by removing the assumption that XN is com-
pact.

Proposition 2 (Extension of upper bound toXN ). Suppose that Assumptions 2.2, 2.3,
2.12, and 2.13 hold and that Xf contains the origin in its interior. If there exists a
K∞ function α(·) such that V0

N(x) ≤ α(|x|) for all x ∈ Xf , then there exists another
K∞ function β(·) such that V0

N(x) ≤ β(|x|) for all x ∈ XN .

Proof. From the definition of XN and Assumptions 2.12 and 2.13, we have that
Xf ⊆ XN . From Proposition 2.11, we have that the set XN is closed, and this
proposition therefore follows directly from Proposition 11 in Appendix B of this
note. �

Remark 3. The extension of Proposition 2.18 to unbounded XN also removes the
need to assume XN is bounded in Proposition 2.19.

Finally, we can establish Theorem 2.22 under the stronger “KL” definition of
asymptotic stability.

Theorem 4 (Asymptotic stability with unbounded region of attraction). Suppose
XN ⊂ Rn and Xf ⊂ XN are positive invariant for the system x+ = f(x), that
Xf ⊂ XN is closed and contains the origin in its interior, and that there exist a
function V : Rn → R≥0 and twoK∞ functions α1(·) and α2(·) such that

V(x) ≥ α1(|x|) ∀x ∈ XN (1)

V(x) ≤ α2(|x|) ∀x ∈ Xf (2)

V(f(x))− V(x) ≤ −α1(|x|) ∀x ∈ XN (3)

2The authors would like to thank Andy Teel of UCSB for helpful discussion of these issues.
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Text Postface Summary of change

Proposition 2.18 Proposition 2 Removes boundedness of XN
Proposition 2.19 Remark 3 Removes boundedness of XN
Theorem 2.22 Theorem 4 Asymptotic stability with stronger KL definition
Definition B.6 Definition 9 Classical to KL definition of asymptotic stability
Theorem B.11 Theorem 12 Lyapunov function and KL definition
Definition B.9 (e) Definition 13 Asymptotic stability with KL definition (constrained)
Theorem B.13 Theorem 14 Lyapunov function and KL definition (constrained)

Table 1: Extensions of MPC stability results in Chapter 2 and Appendix B.

Then the origin is asymptotically stable under Definition 9 with a region of attraction
XN for the system x+ = f(x).

Proof. Proposition 2 extends the local upper bound in (2) to all of XN and Theo-
rem 14 then gives asymptotic stability under Definition 13. Both Theorem 14 and
Definition 13 appear in Appendix B of this note. �

A summary of these extensions to the results of Chapter 2 and Appendix B is
provided in Table 1.

Positive invariance under control law κN(·). Proposition 2.11 correctly states
that the set XN is positive invariant for the closed-loop system x+ = f(x, κN(x)).
The proof follows from (2.11), and is stated in the text as:

That XN is positive invariant for x+ = f(x, κN(x)) follows from (2.11),
which shows that κN(·) steers every x ∈ XN into XN−1 ⊆ XN .

But notice that this same argument establishes that XN−1 is also positive invariant
for the closed-loop system, a fact that does not seem to have been noticed previ-
ously. Since XN−1 ⊆ XN , this statement is a tighter characterization of the positive
invariance property. This tighter characterization is sometimes useful when estab-
lishing robust stability for systems with discontinuous V0

N(·), such as Example 2.8.
Among the feasibility sets, Xj , j = 0,1, . . . ,N, the set XN is the largest positive
invariant set and XN−1 is the smallest positive invariant set for x+ = f(x, κN(x));
none of the other feasibility sets, Xj , j = 0,1, . . . ,N − 2, are necessarily positive
invariant for x+ = f(x, κN(x)) for all systems satisfying the given assumptions. A
modified Proposition 2.11 reads as follows.

Proposition 2.11’ (Existence of solutions to DP recursion). Suppose Assumptions
2.2 and 2.3 hold. Then

(a) For all j ∈ I≥0, the cost function Vj(·) is continuous in Zj , and, for each x ∈ Xj ,
the control constraint set Uj(x) is compact and a solution u0(x) ∈ Uj(x) to Pj(x)
exists.

(b) If X0 := Xf is control invariant for x+ = f(x,u), u ∈ U, then, for each j ∈ I≥0,
the set Xj is also control invariant, Xj ⊇ Xj−1, 0 ∈ Xj , and Xj is closed.

(c) In addition, the sets Xj and Xj−1 are positive invariant for x+ = f(x, κj(x)) for
all j ∈ I≥1.
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Unreachable setpoints, strong duality, and dissipativity. Unreachable setpoints
are discussed in Section 2.9.3. It is known that the optimal MPC value function in
this case is not decreasing and is therefore not a Lyapunov function for the closed-
loop system. A recent paper by Diehl, Amrit, and Rawlings (2011) has shown that
a modified MPC cost function, termed rotated cost, is a Lyapunov function for the
unreachable setpoint case and other more general cost functions required for op-
timizing process economics. A strong duality condition is shown to be a sufficient
condition for asymptotic stability of economic MPC with nonlinear models.

This result is further generalized in the recent paper Angeli, Amrit, and Rawl-
ings (2012). Here a dissipation inequality is shown to be sufficient for asymptotic
stability of economic MPC with nonlinear models. This paper also shows that MPC
is better than optimal periodic control for systems that are not optimally operated
at steady state.

Unbounded input constraint sets. Assumption 2.3 includes the restriction that
the input constraint set U is compact (bounded and closed). This basic assumption
is used to ensure existence of the solution to the optimal control problem through-
out Chapter 2. If one is interested in an MPC theory that handles an unbounded
input constraint set U, then one can proceed as follows. First modify Assumption
2.3 by removing the boundedness assumption on U.

Assumption 5 (Properties of constraint sets – unbounded case). The sets X, Xf ,
and U are closed, Xf ⊆ X; each set contains the origin.

Then, to ensure existence of the solution to the optimal control problem, con-
sider the cost assumption on page 154 in the section on nonpositive definite stage
costs, slightly restated here.

Assumption 6 (Stage cost lower bound). Consider the following two lower bounds
for the stage cost.

(a)

`(y,u) ≥ α1(
∣∣(y,u)∣∣) for all y ∈ Rp, u ∈ Rm

Vf (x) ≤ α2(|x|) for all x ∈ Xf

in which α1(·) is aK∞ function.

(b)

`(y,u) ≥ c1
∣∣(y,u)∣∣a for all y ∈ Rp, u ∈ Rm

Vf (x) ≤ c2 |x|a for all x ∈ Xf

in which c1, c2, a > 0.

Finally, assume that the system is input/output-to-state stable (IOSS). This prop-
erty is given in Definition 2.40 (or Definition B.42). We can then state an MPC sta-
bility theorem that applies to the case of unbounded constraint sets.

Theorem 7 (MPC stability – unbounded constraint sets).

(a) Suppose that Assumptions 2.2, 5, 2.12, 2.13, and 6(a) hold and that the system
x+ = f(x,u),y = h(x) is IOSS. Then the origin is asymptotically stable (under
Definition 9) with a region of attraction XN for the system x+ = f(x, κN(x)).
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(b) Suppose that Assumptions 2.2, 5, 2.12, 2.13, and 6(b) hold and that the system
x+ = f(x,u),y = h(x) is IOSS. Then the origin is exponentially stable with a region
of attraction XN for the system x+ = f(x, κN(x)).

In particular, setting up the MPC theory with these assumptions subsumes the
LQR problem as a special case.

Example 1: The case of the linear quadratic regulator

Consider the linear, time invariant model x+ = Ax + Bu,y = Cx with quadratic
penalties `(y,u) = (1/2)(y ′Qy + u′Ru) for both the finite and infinite horizon
cases. What do the assumptions of Theorem 7(b) imply in this case? Compare these
assumptions to the standard LQR assumptions listed in Exercise 1.20 (b).

Assumption 2.2 is satisfied for f(x,u) = Ax + Bu for all A ∈ Rn×n, B ∈ Rn×m;
we have X = Rn, and U = Rm. Assumption 6(b) implies that Q > 0 and R > 0.
The system being IOSS implies that (A,C) is detectable (see Exercise 4.5). We can
chooseXf to be the stabilizable subspace of (A, B) and Assumption 2.13 is satisfied.
The set XN contains the system controllability information. The set XN is the
stabilizable subspace of (A, B), and we can satisfy Assumption 6(a) by choosing
Vf (x) = (1/2)x′Πx in which Π is the solution to the steady-state Riccati equation
for the stabilizable modes of (A, B).

In particular, if (A, B) is stabilizable, then Xf = Rn, XN = Rn for all N ∈ I0:∞,
and Vf can be chosen to be Vf (x) = (1/2)x′Πx in which Π is the solution to the
steady-state Riccati equation (1.19). The horizon N can be finite or infinite with
this choice of Vf (·) and the control law is invariant with respect to the horizon
length, κN(x) = Kx in which K is the steady-state linear quadratic regulator gain
given in (1.19). Theorem 7(b) then gives that the origin of the closed-loop system
x+ = f(x, κN(x)) = (A+ BK)x is globally, exponentially stable.

The standard assumptions for the LQR with stage cost l(y,u) = (1/2)(y ′Qy +
u′Ru) are

Q > 0 R > 0 (A,C) detectable (A, B) stabilizable

and we see that this case is subsumed by Theorem 7(b). �

Chapter 6. Distributed Model Predictive Control

The recent paper (Stewart, Venkat, Rawlings, Wright, and Pannocchia, 2010) pro-
vides a compact treatment of many of the issues and results discussed in Chapter
6. Also, for plants with sparsely coupled input constraints, it provides an extension
that achieves centralized optimality on convergence of the controllers’ iterations.

Suboptimal MPC and inherent robustness. The recent paper (Pannocchia, Rawl-
ings, and Wright, 2011) takes the suboptimal MPC formulation in Section 6.1.2,
also discussed in Section 2.8, and establishes its inherent robustness to bounded
process and measurement disturbances. See also the paper by Lazar and Heemels
(2009), which first addressed inherent robustness of suboptimal MPC to process
disturbances by (i) specifying a degree of suboptimality and (ii) using the time-
varying state constraint tightening approach of Limón Marruedo, Álamo, and Ca-
macho (2002) to achieve recursive feasibility under disturbances.

The key assumption in (Pannocchia et al., 2011) is the following.
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Assumption 8. For any x,x′ ∈ XN and u ∈ UN(x), there exists u′ ∈ UN(x′) such
that |u− u′| ≤ σ(|x − x′|) for someK-function σ(·).

This assumption also implies thatV0
N(·) is continuous by applying Theorem C.28

in Rawlings and Mayne (2009). If state constraints are softened and the terminal
stability constrained is removed by choosing a suitably increased terminal penalty,
then this assumption is automatically satisfied. The conclusion of (Pannocchia
et al., 2011) is that suboptimal MPC has the same inherent robustness properties as
optimal MPC.

Nonlinear distributed MPC. A recent paper (Stewart, Wright, and Rawlings, 2011)
proposes a method for handling the nonconvex optimization resulting from non-
linear plant models. The basic difficulty is that taking the convex step of the local
controllers’ optimizations may not decrease the plantwide cost. To overcome this
problem, the following procedure is proposed.

After all suboptimizers finish an iteration, they exchange steps. Each
suboptimizer forms a candidate step

up+1
i = upi +wiα

p
i υ
p
i ∀i ∈ I1:M (4)

and checks the following inequality, which tests if V(up) is convex-like

V(up+1) ≤
∑
i∈I1:M

wiV(u
p
i +α

p
i υ
p
i , u

p
−i) (5)

in which
∑
i∈I1:M wi = 1 and wi > 0 for all i ∈ I1:M . If condition (5) is

not satisfied, then we find the direction with the worst cost improve-
ment imax = arg maxi{V(upi +α

p
i υ
p
i , u

p
−i)}, and eliminate this direction

by settingwimax to zero and repartitioning the remainingwi so that they
sum to 1. We then reform the candidate step (4) and check condition (5)
again. We repeat until (5) is satisfied. At worst, condition (5) is satisfied
with only one direction.

Notice that the test of inequality (5) does not require a coordinator. Each subsystem
has a copy of the plantwide model and can evaluate the objection function inde-
pendently. Therefore, the set of comparisons can be run on each controller. This
computation represents a small overhead compared to a coordinating optimization.

Appendix B. Stability Theory

Asymptotic stability. For several of the stability theorems appearing in the first
printing’s Appendix B,3 we used the classical definition of global asymptotic sta-
bility (GAS), given in Definition B.6. The following stronger definition of GAS has
recently started to become popular.

Definition 9 (Global asymptotic stability (KL version)). The (closed, positive invari-
ant) setA is globally asymptotically stable (GAS) for x+ = f(x) if there exists aKL
function β(·) such that, for each x ∈ Rn∣∣φ(i;x)∣∣A ≤ β(|x|A , i) ∀i ∈ I≥0 (B.1)

3See the website www.che.wisc.edu/~jbraw/mpc for the Appendices A–C corresponding to the
first printing of the text.
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Notice that this inequality appears as (B.1) in Appendix B.

Teel and Zaccarian (2006) provide further discussion of these definitional issues.
It is also interesting to note that although the KL definitions may have become
popular only recently, Hahn (1967, p. 8) used K and L comparison functions as
early as 1967 to define asymptotic stability.4 For continuous f(·), we show in
Proposition B.8 that these two definitions are equivalent. But we should bear in
mind that for nonlinear models, the function f(·) defining the closed-loop system
evolution under MPC, x+ = f(x, κN(x)), may be discontinuous because the control
law κN(·) may be discontinuous (see Example 2.8 in Chapter 2 for an example).
Also, when using suboptimal MPC, the control law is a point to set map and is not a
continuous function (Rawlings and Mayne, 2009, pp. 156, 417). For discontinuous
f(·), the two definitions are not equivalent. Consider the following example to
make this clear.

Example 2: Difference between asymptotic stability definitions (Teel)

Consider the discontinuous nonlinear scalar example x+ = f(x) with

f(x) =


1
2
x |x| ∈ [0,1]
2x

2− |x| |x| ∈ (1,2)
0 |x| ∈ [2,∞)

The origin is attractive for all x(0) ∈ R, which can be demonstrated as follows.
For |x(0)| ∈ [0,1], |x(k)| ≤ (1/2)k |x(0)|. For |x(0)| ∈ (1,2), |x(1)| ≥ 2 which
implies that |x(2)| = 0; and for |x(0)| ∈ [2,∞), |x(1)| = 0. The origin is Lyapunov
stable, because if δ ≤ 1, then |x(0)| ≤ δ implies |x(k)| ≤ δ for all k. Therefore, the
origin is asymptotically stable according to the classical definition.

But there is no KL function β(·) such that the system meets the bound for all
x(0) ∈ R

|x(k)| ≤ β(|x(0)| , k) ∀k ∈ I≥0

Indeed, for initial conditions |x(0)| slightly less than 2, the trajectory x(k) becomes
arbitrarily large (at k = 1) before converging to the origin. Therefore, the origin is
not asymptotically stable according to the KL definition. �

Remark 10. Note that because of Proposition B.8, the function f(·)must be chosen
to be discontinuous in this example to demonstrate this difference.

Proposition 11 (Extending local upper bounding function). Suppose the function
V(·) is defined on X, a closed subset of Rn, and that V(x) ≤ α(|x|A) for all x ∈ Xf
where Xf ⊆ X and contains the set A in its interior. A necessary and sufficient
condition for the existence of a K∞ function β(·) satisfying V(x) ≤ β(|x|A) for all
x ∈ X is that V(·) is locally bounded on X, i.e., V(·) is bounded on every compact
subset of X.

Proof.

4The authors would like to thank Mircea Lazar of Eindhoven University for helpful discussion of
this history.
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Sufficiency. We assume that V(·) is locally bounded and construct the function
β(·). BecauseA lies in the interior of Xf , there exists an a > 0 such that |x|A ≤ a
implies x ∈ Xf . For each i ∈ I≥1, let Si = {x | |x|A ≤ ia}. We define a sequence of
numbers (αi) as follows

αi := sup
Si∩X

V(x)+α(a)+ i

Since Si is compact for each i and X is closed, their intersection is a compact subset
of X and the values αi exist for all i ∈ I≥1 because V(·) is bounded on every
compact subset of X. The sequence (αi) is strictly increasing. For each i ∈ I≥1, let
the interpolating function φi(·) be defined by

φi(s) := (s − ia)/a s ∈ [ia, (i+ 1)a]

Note that φi(ia) = 0, φi((i+ 1)a) = 1, and that φ(·) is affine in [ia, (i+ 1)a]. We
can now define the function β(·) as follows

β(s) :=
{
(α2/α(a))α(s) s ∈ [0, a]
αi+1 +φi(s)(αi+2 −αi+1) s ∈ [ia, (i+ 1)a] for all i ∈ I≥1

It can be seen that β(0) = 0, β(s) ≥ α(s) for s ∈ [0, a], that β(·) is continuous,
strictly increasing, and unbounded, and that V(x) ≤ β(|x|A) for all x ∈ X. Hence
we have established the existence of aK∞ function β(·) such that V(x) ≤ β(|x|A)
for all x ∈ X.

Necessity. If we assume that V(·) is not locally bounded, i.e., not bounded on
some compact set C ⊆ X, it follows immediately that there is no (continuous and,
hence, locally bounded) K∞ function β(·) such that such that V(x) ≤ β(x) for all
x ∈ C . �

Note, however, that most of the Lyapunov function theorems appearing in Ap-
pendix B also hold under the stronger KL definition of GAS. As an example, we
provide a modified proof required for establishing Theorem B.11.

Theorem 12 (Lyapunov function and GAS). Suppose V(·) is a Lyapunov function for
x+ = f(x) and set A with α3(·) a K∞ function. Then A is globally asymptotically
stable under Definition 9.

Proof. From (B.4) of Definition B.10, we have that

V(φ(i+ 1;x)) ≤ V(φ(i;x))−α3(
∣∣φ(i;x)∣∣A) ∀x ∈ Rn i ∈ I≥0

Using (B.3) we have that

α3(|x|A) ≥ α3 ◦α−1
2 (V(x)) ∀x ∈ Rn

Combining these we have that

V(φ(i+ 1;x)) ≤ σ1(V(φ(i;x))) ∀x ∈ Rn i ∈ I≥0

in which
σ1(·) := (·)−α3 ◦α−1

2 (·)
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We have that σ1(·) is continuous on R≥0, σ1(0) = 0, and σ1(s) < s for s > 0. But
σ1(·) may not be increasing. We modify σ1 to achieve this property in two steps.
First define

σ2(s) := max
s′∈[0,s]

σ1(s′) s ∈ R≥0

in which the maximum exists for each s ∈ R≥0 because σ1(·) is continuous. By its
definition, σ2(·) is nondecreasing, σ2(0) = 0, and 0 ≤ σ2(s) < s for s > 0, and we
next show that σ2(·) is continuous on R≥0. Assume that σ2(·) is discontinuous at
a point c ∈ R≥0. Because it is a nondecreasing function, there is a positive jump in
the function σ2(·) at c (Bartle and Sherbert, 2000, p. 150). Define 5

a1 := lim
s↗c
σ2(s) a2 := lim

s↘c
σ2(s)

We have that σ1(c) ≤ a1 < a2 or we violate the limit of σ2 from below. Since
σ1(c) < a2, σ1(s)must achieve value a2 for some s < c or we violate the limit from
above. But σ1(s) = a2 for s < c also violates the limit from below, and we have a
contradiction and σ2(·) is continuous. Finally, define

σ(s) := (1/2)(s + σ2(s)) s ∈ R≥0

and we have that σ(·) is a continuous, strictly increasing, and unbounded function
satisfying σ(0) = 0. Therefore, σ(·) ∈ K∞, σ1(s) < σ(s) < s for s > 0 and
therefore

V(φ(i+ 1;x)) ≤ σ(V(φ(i;x))) ∀x ∈ Rn i ∈ I≥0 (6)

Repeated use of (6) and then (B.3) gives

V(φ(i;x)) ≤ σ i(α2(|x|A)) ∀x ∈ Rn i ∈ I≥0

in which σ i represents the composition of σ with itself i times. Using (B.2) we have
that ∣∣φ(i;x)∣∣A ≤ β(|x|A , i) ∀x ∈ Rn i ∈ I≥0

in which
β(s, i) := α−1

1 (σ
i(α2(s))) ∀s ∈ R≥0 i ∈ I≥0

For all s ≥ 0, the sequence wi := σ i(α2(s)) is nonincreasing with i, bounded below
(by zero), and therefore converges to a, say, as i→∞. Therefore, both wi → a and
σ(wi) → a as i → ∞. Since σ(·) is continuous we also have that σ(wi) → σ(a)
so σ(a) = a, which implies that a = 0, and we have shown that for all s ≥ 0,
α−1

1 (σ i(α2(s)))→ 0 as i→∞. Since α−1
1 (·) also is aK function, we also have that

for all s ≥ 0, α−1
1 (σ i(α2(s))) is nonincreasing with i. We have from the properties

ofK functions that for all i ≥ 0, α−1
1 (σ i(α2(s))) is aK function, and can therefore

conclude that β(·) is aKL function and the proof is complete. �

Constrained case. Definition B.9 lists the various forms of stability for the con-
strained case in which we consider X ⊂ Rn to be positive invariant for x+ = f(x).
In the classical definition, setA is asymptotically stable with region of attraction X
if it is locally stable in X and attractive in X. The KL version of asymptotic stability
for the constrained case is the following.

5The limits from above and below exist because σ2(·) is nondecreasing (Bartle and Sherbert, 2000,
p. 149). If the point c = 0, replace the limit from below by σ2(0).
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Definition 13 (Asymptotic stability (constrained – KL version)). Suppose X ⊂ Rn

is positive invariant for x+ = f(x), that A is closed and positive invariant for
x+ = f(x), and that A lies in the interior of X. The set A is asymptotically stable
with a region of attraction X for x+ = f(x) if there exists aKL function β(·) such
that, for each x ∈ X ∣∣φ(i;x)∣∣A ≤ β(|x|A , i) ∀i ∈ I≥0 (7)

Notice that we simply replace Rn with the set X in Definition 9 to obtain Defini-
tion 13. We then have the following result, analogous to Theorem B.13, connecting
a Lyapunov function to the KL version of asymptotic stability for the constrained
case.

Theorem 14 (Lyapunov function for asymptotic stability (constrained case – KL
version)). Suppose X ⊂ Rn is positive invariant for x+ = f(x), thatA is closed and
positive invariant for x+ = f(x), and that A lies in the interior of X. If there exists
a Lyapunov function in X for the system x+ = f(x) and set A with α3(·) a K∞
function, then A is asymptotically stable for x+ = f(x) with a region of attraction
X under Definition 13.

The proof of this result is similar to that of Theorem 12 with Rn replaced by X.
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