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Abstract—A great deal of literature examines economic dis-
patch from the perspective of a grid operator, assuming full
knowledge of generating unit costs and constraints, network
topology, line capacities, etc. But others without access to the
complete, data-intensive model may also wish to predict unit
dispatch under various scenarios. This paper develops a Bayesian
approach to predicting future economic dispatch, which relies
only on historical dispatch observations, as well as general
assumptions of operating costs. The approach uses a Markov-
chain Monte Carlo method to create an ensemble of network-
free models, which capture fundamental properties of economic
dispatch (like merit order and marginal generator behavior)
under particular “regimes” of grid operation (a particular range
of load, set of congested lines, set of committed units, etc.). It
then uses Bayesian averaging over many of these simple models
to create an ensemble model, which approximates economic
dispatch under general operating conditions. A case study using
data from New York is used to verify the ensemble model.

I. INTRODUCTION

The annals of power systems engineering contain many
methods for grid operators to solve economic dispatch, using
a variety of techniques, under a wide range of conditions (see
[1] and [2] as two reviews on the subject). These economic
dispatch formulations become arbitrarily complex, requiring
large amounts of data—operating costs, power generation
limits, ramping limits, transmission line constraints, spinning
reserve constraints, etc. To researchers interested in predicting
unit dispatch under various scenarios, but who have limited
access to proprietary knowledge, these data requirements are
a barrier. One example of a project facing this challenge is
PNNL’s Grid Project Impact Quantification Tool (GridPIQ).
GridPIQ is a transparent, modular, and publicly available
web-based screening tool that estimates the varied impacts
of a growing range of specific smart grid technologies and
project types, including coordinated electric vehicle charging,
demand response, solar photovoltaic (PV) generation, and
energy storage (ES) [3] [4]. A crucial step in the GridPIQ
model is estimating the power outputs of known generating
units in a region. But GridPIQ’s transparency precludes the use
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of proprietary information, and a lightweight web calculator
cannot run a power flow study.

Statistical modeling is a computationally inexpensive way
to predict unit dispatch using only publicly available data.
GridPIQ currently uses the EPA’s AVoided Emissions and
geneRation Tool (AVERT) [5], for instance, which estimates
unit dispatch via statistical models of freely-available data
from the Air Markets Database [6]. But statistical models are
only valid so long as their underlying assumptions still apply.
If a grid project is too large in scale, diverging from historical
conditions by too great a degree, there is a risk that AVERTS
predictions would no longer apply.

Approaches to dispatch prediction therefore fall on a spec-
trum of possibilities. On one side, “physical” models of the
grid extend our knowledge of system dynamics into never-
before-observed scenarios, for which historical data does not
exist. Grid components obey well-understood rules, and power
flow studies can predict grid dynamics (including dispatch)
under many operating conditions. On the other side, statistical
models can predict system dynamics from historical observa-
tions, even when knowledge of the system’s inner workings
are too limited for a physical model.

This paper lies somewhere in the middle. Our objective is
to predict fossil fuel generator dispatch (i) under operating
conditions not observed within a historical data set of interest,
and (ii) without access to the computational power or the
knowledge of network topology, dispatch costs, etc. needed
for a power flow study. We rely only on historical observations
of generator dispatch, assumptions about distributions of unit
operating costs, and total load on fossil fuel generators in the
system. With a lightweight model like this that is flexible
enough to capture future energy scenarios, we can offer a
scratch pad for stakeholders to explore important what-if
scenarios and steer future research.

A. Notation

We consider a system with n generating units, with labels
ien]={1,2,...,n}. Foreachtime t € [T] ={1,2,...,T}
in a known dataset X of historical dispatch, d; denotes the
total system demand, and p;; denotes the true power output of
each unit. The shorthand notation p, represents the vector in
R™ whose elements are the unit power outputs py;. The goal
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is to predict the unknown unit dispatch py for some future
times t' € {T+1,T+2,...,T+T'}, assuming demands d;
are known. For each unit ¢ € [n] and time ¢ € [T' 4 T”], these
predictions are denoted by py;, or by p; to represent the vector
of predicted dispatch for all units.

II. MODEL

Our dispatch model is an ensemble of N “single-node
models,” described in Section II-A. Individually, the single-
node models are very simple, neglecting the effects that trans-
mission constraints and unit commitment have on economic
dispatch. But they are complex enough to reproduce merit
order, the behavior of marginal units, and limits to unit power
outputs. A single-node model can predict unit dispatch under
a particular “operating regime” of the grid—a particular range
of load, a particular set of congested lines, a particular group
of committed units, etc.—but cannot predict dispatch under
general operating conditions.

In order to predict unit dispatch under more general cir-
cumstances, we create an ensemble of single-node models
using Bayesian Model Averaging, detailed in Section II-B.
The ensemble model is an average of N single-node mod-
els, weighted by the posterior probability of each single-
node model, where posterior probabilities are found using the
Markov-chain Monte Carlo procedure outlined in Section II-C.
By averaging over many single-node models, the ensemble
model averages over unit dispatch predictions in many differ-
ent operating regimes, weighted by the posterior probabilities
of each respective model. Finally, in Section II-D, we present
an algorithm to efficiently solve many instances of the specific
economic dispatch problem required by the single-node model.

A. Single-Node Model

The fundamental building block of our analysis is the
single-node model. The idea behind single-node models is
familiar from introductory power systems texts [7]. It assumes
a centrally-dispatched grid without line constraints, so that
when there is a total demand d, the economic dispatch p}(d)
of each unit ¢ € [n] is given by a convex quadratic program:

minimize

aipi (d) + bip(d)?
nimi ; (d) (d)

i 1
subject to  d = pr (d) )
i=1

Pt < pi(d) < pi", Vi € [n]

Here a; and b; > 0 are effective linear and quadratic cost
coefficients for each unit, and p?““ < p;"®* are operating limits
of each unit.

Of course, the single-node model is a highly idealized
picture for power systems operation; there are many other
factors (like transmission constraints) that influence real-world
economic dispatch. It is rare that idealized economic dispatch
p; (d;) will equal true dispatch py; for given ¢, 4, no matter how
well the single-node model parameters a,b, p™™, p™a* are
chosen. To characterize this inevitable error, it is desirable that

the single-node model predict a probability distribution for unit
dispatch, rather than yielding the single optimal vector p*(d;).
This analysis uses independent normal distributions for single-
node model predictions p;;, with means p}(d;) and variances
o2, where o; is a parameter which varies by generating unit
but is constant in time. Thus, for each unit ¢ € [n] and time
t € [T + T'], the single-node model yields a probability
distribution with the following density function to predict unit
dispatch:

Fonlp) = — g 0D |~ 55 0} () — Pus)?| @
2707 207

Hence the expected value of fg,(py;) is the idealized economic

dispatch p}(d;), computed by solving (1).

The choice of independent distributions for each unit may
initially seem counterintuitive, as real-world generating units
are certainly not operated independently. But the goal is
to capture the interdependence of unit dispatch within the
solution to (1), by an optimal choice of model parameters
a,b, p™in, pMmax_ Independent distributions prevent a “lazy”
model fit from summarizing covariances rather than fully
exploring parameter space.

Furthermore, the use of normal distributions (rather than
more complex, multi-model distributions) reinforces the role
of a single-node model in the later ensemble model. The
single-node model does not attempt to capture grid dynamics
under every circumstance. Rather, it aims to model dispatch
under a certain regime of operation—a certain range of load,
a certain set of congested lines, a certain group of committed
units, etc. It is the role of the ensemble model, rather than the
single-node model, to account for all of the possible modes.
But the normal distribution does allow the single-node model
to be honest about its uncertainty. Because error scale varies
by unit, the model can simultaneously make tightly-bounded
predictions for units with a clear history of load following, and
weaker predictions for units whose dispatch is less correlated
with system demand.

The following definition summarizes the single-node model
and its associated terminology:

Definition IL1. Let § = (a,b,p™™, p™**, o) be a vector of
parameters for n generating units, with linear and quadratic
cost vectors a and b > 0, operating limits 0 < proin < pmax,
and error scales o > 0. We say that 6 is a single-node model.
We also say that, given some total demand Z?Zl p’imi“ <d; <
S, pi® at time ¢, the model 6 makes a dispatch prediction
pr; for each unit ¢ € [n], a normal distribution whose density
function fg, (Py) is given by (2).

With the proper choice of parameters, a simple, single-
node model can capture many important aspects of dispatch
behavior, including replicating merit order and identifying
marginal generating units, under a certain regime of operation.
But, to make the model robust under many different regimes of
operation, we must combine insights from many single-node
models—using an ensemble model.



B. Ensemble Model

Ensemble models are popular in statistics and machine
learning to hedge against selecting the wrong model to de-
scribe a dataset. If the size of a training set is small compared
to the space of possible models, then a candidate model’s
predictive accuracy is insufficient to determine whether that
model is correct. For instance, several different models might
make similar predictions for the training set but vary greatly
in later predictions. To overcome this problem, ensemble
models combine the predictions from many models, rather than
relying on a single model [8]. We use an ensemble of single-
node models to accommodate the absence of information
that a more complex grid model would require. Without this
contextual data, it is impossible to choose which single-node
model is best at any given time. Instead, we hedge out bets,
combining the predictions of many single-node models instead
of trying to select the optimal model.

This analysis uses Bayesian Model Averaging (BMA) to
create an ensemble of single-node models. BMA is a simple
and intuitive ensemble method. It generates an ensemble
prediction by averaging over the predictions of individual
models, weighted by their posterior probabilities [9].

The posterior probability density fpost(6 | X) of a single-
node model 6 given the historical dataset X is calculated using
Bayes’ rule:

flik(X ‘ e)fprior(a)

prSt(9 | X) fprior(X) (3)
Here fprior(0) and fprior(X) are the density functions of our
prior beliefs for the model and historical data, and f; (X | 6)
is the likelihood of 6, i.e., the probability of observing the
dataset X if # were the correct model. Because the single-
node model predictions are independent across units and time,
the likelihood function is simply the product of the probability
densities that the model € assigns to each dispatch observation
Dti in X:

T n
fin(X [6) = [T 11 fonpei | 6) )

t=114i=1

The single-node prior f(6) captures our existing knowledge
of generating unit parameters, including the distributions of
linear and quadratic costs that might be present in a real power
system, and constraints like pmi“ < p™® and b > 0. Finally,
the dataset prior fpior(X) does not depend on the particular
model # in question, so it may be treated as a normalization
constant which we need not evaluate. Together, equations (1)
through (4) define a posterior density fpost(6 | X) over the
space of single-node models, indicating our confidence in each
single-node model (given our prior belief fpuior(f) and the
dataset X).

BMA uses these posterior probabilities to average over
model predictions, thereby generating an ensemble prediction.
Recall that a single-node model’s dispatch prediction p,; for
a given unit and time is normally distributed, with the density
function fg, (Py; | 0) written in (2). Integrating over the space

© of possible single-node models (i.e., marginalizing out 6)
yields the BMA ensemble prediction:
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BMA hedges against the risk of using the wrong single-
node model to make dispatch predictions by taking a weighted
average of single-node models, within the integral in (5). But
considering many models comes with a cost, as computing a
single-node model prediction fy,(ps; | €) requires solving the
quadratic program in (1). This hidden optimization problem
makes the integral painful to evaluate. Instead, we approxi-
mate foma(Pri | X), estimating the integral numerically with
Markov-chain Monte Carlo sampling.

C. Markov Chain Monte Carlo Sampling

Rather than analytically integrating (5), we rely on Monte
Carlo methods to approximate BMA ensemble predictions.
Using basic Monte Carlo integration, we draw N >> 1 samples
of 0 distributed according to fpost (6 | X), and approximate
the model average by

_ 1 Y
Foma(Bri | X) % Foma(Pri | X) = 5 > fon(Bri | 0s)  (6)
s=1

where 6 are the single-model samples s = 1,2,..., N. This
average is straightforward to compute. As a linear combination
of independent normal distributions, fima (P | X) is itself a
normal distribution, whose mean and variance are computed
by averaging the means and variances of the single-node model
samples 0.

The remaining challenge is to generate these random sam-
ples 6. Using equations (1) through (4), it is easy to evaluate
the posterior probability density fpost(6 | X) of a particular
single-node model, up to the unknown normalization constant
fprior(X). Therefore, we can use Markov-chain Monte Carlo
(MCMC) methods to generate random samples 6, which are
distributed according to fpost(f | X). A detailed exposition on
MCMC methods is beyond the scope of this paper, but plenty
of material exists on the subject, including [10]. The particular
MCMC method we used is the adaptive Metropolis-Hastings
algorithm [11].

D. Efficiently Solving Economic Dispatch

Generating many MCMC samples in a timely manner
requires an efficient way to evaluate p*(d) for many total de-
mands d. Because each evaluation of p*(d) involves solving a
quadratic program, this task is not trivial. This section outlines
an active set algorithm that solves for many d simultaneously.

Rather than labeling the active subset of constraints in (1)
directly, it is more intuitive to define partitions of generating
units that the active constraints induce. In particular, the active
subset of constraints p; < p and p; > p™" partition the
units into three sets:

max
K2

Definition IL.2. The maxed set is the set of units X (p) =
{i € [n] | p; = p"®*} that are operating at maximum power.



The idling set is the set of units I(p) = {i € [n] | p; = p"}
which are idling at minimum power. The marginal set consists
of the remaining units M (p) = [n] \ (X(p) U I(p)) whose
power level is not fixed by an active constraint.

When demand increases by a small amount from d to d+dd,
only the units in M = M (p*(d)) are capable of ramping up
to meet the extra demand. This extra demand is, according to
the Karush-Kuhn-Tucker conditions of (1), distributed so that
the marginal costs of all marginal units are equal. From this
property, it can be shown that p*(d + dd) = p*(d) + (6d)r, r
is a vector of ramp rates given by

bt
r; = W Liem @)
JEM "j

assuming dd is sufficiently small that the marginal set does
not change between d and d + dd.

In other words, p*(d) is piecewise-affine, with vertices
corresponding to marginal set changes. If we can identify the
vertices, then we can quickly solve p*(d;) for every demand d;
in an arbitrarily large batch, using linear interpolation between
the vertices.

The vertices can be computed recursively. The “base case”
vertex is clearly v; = p™. Now, assuming knowledge of
some vertex v; = p*(d;) with ¢ > 1, it is possible to
find d¢41,vey1 by finding the first marginal set change that
occurs as demand increases from d;. Two types of marginal
set changes are possible. Either (i) a marginal unit ¢ € M
ramps up to p™®, so the constraint p; < p;*** activates;
or (ii) the marginal units’ marginal cost surpasses marginal
cost a; + b,»p§nin of some idling unit ¢ € I, so the constraint
p; > p™i% is no longer active. This recursive computation is
shown in more detail in Algorithm 1.

III. NYISO CASE STUDY

We tested the ensemble model with a case study of 20 fossil-
fuel-burning generating units under the New York Independent
System Operator (NYISO).

A. Experiment

In order to train the model, we used a dataset containing 240
observations of hourly dispatch, starting on January 1st, 2017.
This data is from the EPA Air Markets Program database [6].

Prior probability distributions were selected as follows.
The linear coefficient prior was normally distributed, with
a mean of 35 $/MW and standard deviation of 10 $/MW.
The quadratic coefficient prior was exponentially distributed,
with a mean of 0.01 $/MW?. These economic priors were
chosen to allow discussion of coefficients on a plausible scale.
However, economic dispatch predictions depend only on the
shape and width of these prior distributions, not on their loca-
tions. Generating limits priors for p™i® / p™a% were uniform
between the minimum / maximum dispatch observations and
the average observation, respectively, for each unit. Finally,
the error scale prior was an inverse gamma distribution, with
a mode of 5 MW and scale of 150. The inverse gamma prior

Algorithm 1 NextVertex
Il'lpllt: a, bypmin7pmax, v 7& pmax
Output: v
Find maxed, idling, and marginal sets
1. X « {i € [n]|v; =p"=}
2 I+ {i€[n]|p; =p"™}

3 M =[n]\(XUI
Ensure the marginal set is nonempty
4: ¢; (*CLiﬁ*biUi, Vi = 1,...,n
5: if M = () then
6 M« {ien\X|c¢ <minj{c;|jen]\X}}
7: end if
Calculate rate at which units ramp up
8 7; < b/ (Z}’GM b;l)  Vie M

9: r; 0, Vi=[n]\ M
Calculate system lambda and its rate of increase
10: A < Z;LGM CiTy
1 Ty = S heny 205 (1))
Calculate load increase until active set changes
12: Ad} < (pPaX — ;) [y, Vi€ M
13: Ad? < (c; —A) /ra, Viel
Place next vertex at first marginal set change
14: Ad + min{min{Ad} }, min{Ad>}}
15: v} = v; +r;Ad, Vi € [n]

forces error scales to be positive, while its steep decay (due
to these mode and scale parameters) prevents the MCMC
algorithm from getting stuck on large error scales (where
posterior probabilities become insensitive to a, b, p™it, p™ax),

We used the adaptive Metropolis-Hastings algorithm from
[11] to generate 10° samples of the posterior distribution
of single-node models. Because the randomly selected initial
sample often falls within a region of low posterior probability,
it is typical to discard a large number of MCMC samples as
a “burn-in,” so as to avoid biasing the samples. We found that
discarding the first 10° samples was sufficient. Furthermore,
it is common to downsample the MCMC chain to reduce
autocorrelation between samples, often by a factor of 100 or
more. We kept every 450th sample, resulting in N = 2000
remaining samples to perform the Monte Carlo integration in
(6). (Keeping more samples for a larger N did not significantly
affect the results.)

B. Results

Fig. 1 shows two typical comparisons between the model
prediction and observed dispatch, in the 120 hours following
the training window. Two categories of units emerge from the
model. Some units, like Unit 6, don’t tend to vary with total
system load. These units are poor candidates for an economic
dispatch model—no feasible single-node model is capable of
reproducing its dynamics. For these units, the model sets
a wide error scale, thereby making weak predictions. Other
units, like Unit 12, show explicit load-following behavior. In
these cases, the economic dispatch model has more predictive
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Fig. 1. The left column shows results for a typical unit whose dispatch is uncorrelated with total demand, while the right column shows results for a typical
unit with explicit load-following behavior. The top row compares true dispatch (black) to model prediction (green) and the model’s 420 and —20 intervals
(blue and orange) as a timeseries, over the 120 hours following the training set. The middle row also compares true dispatch and predicted dispatch during
this period, but as a function of total load rather than time. The bottom row compares true dispatch and predicted dispatch during the 240 hour training period.

power. Then the model sets a tighter error scale, making
stronger predictions.

C. Economic Predictions

Fig. 2 shows the marginal posterior distribution for parame-
ters a, b, pmin, and p™?* corresponding to Unit 12. Generally,
the marginal distributions for cost coefficients were close to
the prior distributions in mean and variance. Unit 12, for
instance, had a linear cost range between 30 $/MW and 37.5
$/MW, compared to the prior distribution with mean 35 MW
and standard deviation 10 $/MW. Readers hoping to use this
analysis for economic espionage will likely be disappointed.

The marginal distributions for NYISO operating costs high-
light the role of prior probabilities in the model. The degree to

which fitted costs can be interpreted as real-world economic
costs depends on the quality of the prior. If little prior infor-
mation is available about operating costs, one could specify
weak priors. The resulting posterior distributions may be far
from real-world operating costs, despite yielding accurate
dispatch predictions. In the other extreme, one could set strong
priors to reflect great prior knowledge of operating costs.
In this case, it would be more reasonable to interpret the
resulting distributions as real (rather than merely functional)
cost coefficients.

Unlike statistical models that look strictly at historical
observation, this analysis can predict how economic dispatch
would respond to changes in the grid. For example, Fig. 3
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Fig. 2. Marginal posterior distributions of parameters for Unit 12. The upper
left shows the linear cost term, the upper right shows the quadratic cost term,
and the bottom two plots show p™™ and p™a*.

Unit 10

225 1

200

175 1

150 1

125 A

100

Predicted Dispatch (MW)

Predicted Dispatch (MW)

0 20 40 60 80 100 120
Hour

Fig. 3. Model predictions for change in dispatch if the linear cost of Unit
10 is increased by 20%. The top plot compares the predicted timeseries for
Unit 10 dispatch without the cost increase (blue), and with the cost increase
(orange). The bottom plot shows how Unit 12 is affected by this change,
ramping up higher than usual to offset some of the load on Unit 10.

depicts how the model anticipates dispatch would be affected
if the linear cost of Unit 10 were increased by 20%. The
timeseries in the top plot matches intuition: with Unit 10
more expensive, it is ramped up less often, shifting the load
to cheaper units like 12, shown in the bottom plot.

IV. CONCLUSION

This analysis studies generating unit dispatch through an
ensemble average of simple physical models. In this paper, we
recognize that the single-node model, despite its simplicity,
captures important aspects of dispatch behavior. We show
that a collection of many single-node models, using a simple
method of averaging, can make meaningful predictions of
generating unit dispatch. Furthermore, because the analysis is
built from physical models rather than a statistical summary
of historical observations, it can still make predictions when
certain aspects of the system are changed.

As exploratory research, a theme of this analysis is simplic-
ity: using a simple (Bayesian averaging) technique to combine
simple (single-node) physical models whose predictions are
simple (Gaussian) distributions. We believe that future work
can improve this model’s performance by increasing its com-
plexity. A more-complex single-node model might capture
the unit commitment process or incorporate ramping limits,
and better ensemble models might use other machine learning
techniques in place of BMA.
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