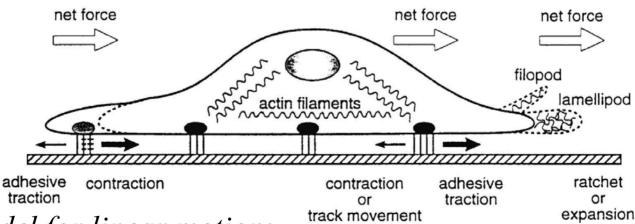
Random Walks and Diffusion

APC 514
December 5, 2002
Cox&Shvartsman

Cell motility over adhesive substrates: a periodic phenomenon

Forces in Cell Migration

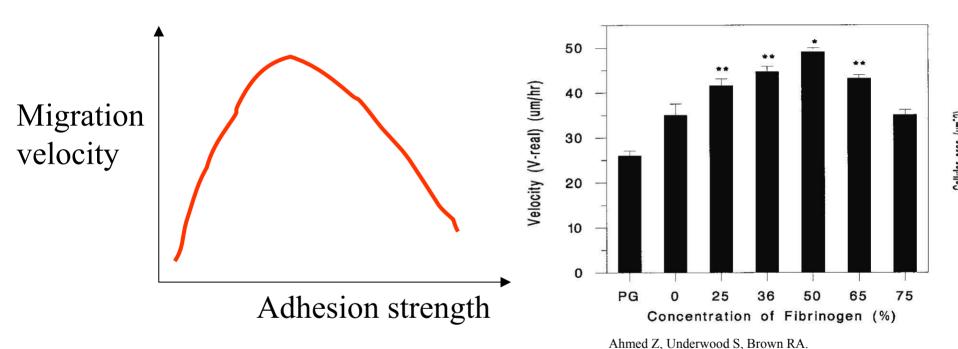
DetachmentTranslocationProtrusionactin filament
contractionactin filament
contractionactin filament
contractionactin filament
polymerization
and structural
organization



Simple model for linear motion:

DIMILLA PA, BARBEE K, LAUFFENBURGER DA
MATHEMATICAL-MODEL FOR THE EFFECTS OF ADHESION AND
MECHANICS ON CELL-MIGRATION SPEED BIOPHYS J 60 (1): 15-37 JUL 1991

Models and measurements



Low concentrations of fibrinogen increase cell migration speed

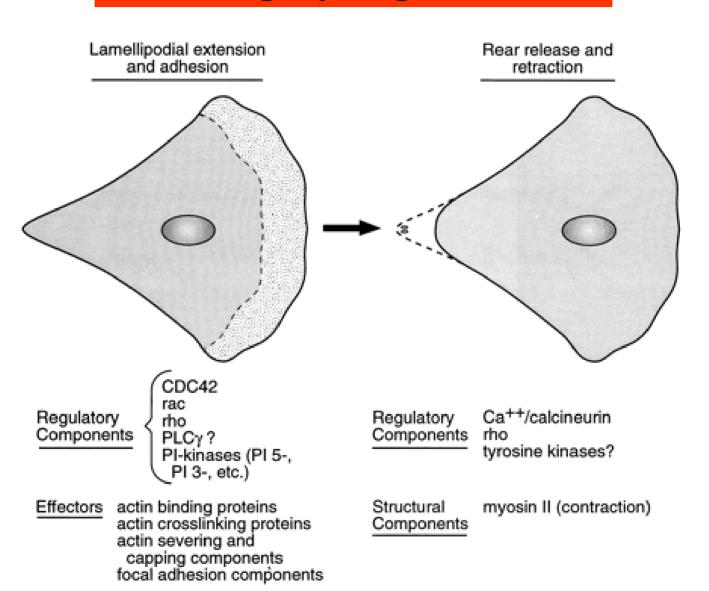
on fibronectin/fibrinogen composite cables.

Cell Motil Cytoskeleton. 2000 May;46(1):6-16.

Simple model for linear motion:

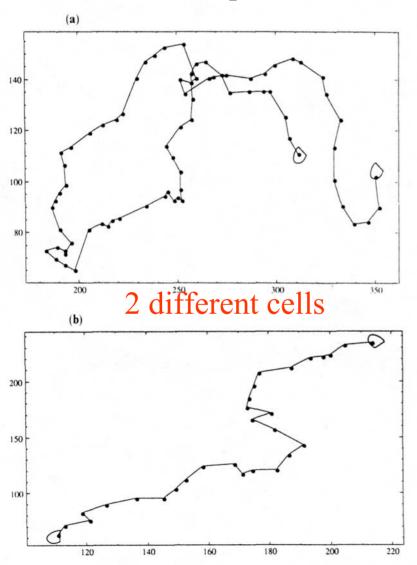
DIMILLA PA, BARBEE K, LAUFFENBURGER DA
MATHEMATICAL-MODEL FOR THE EFFECTS OF ADHESION AND
MECHANICS ON CELL-MIGRATION SPEED BIOPHYS J 60 (1): 15-37 JUL 1991

Each step of the process is highly regulated

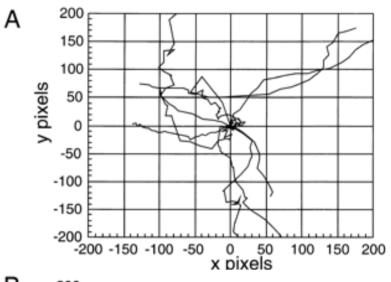


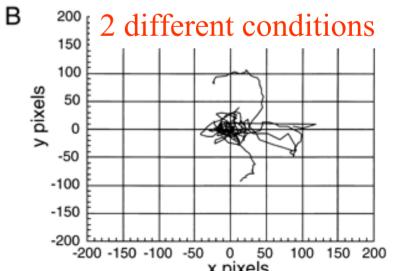
Cell paths are random

Neutrophils



Epithelial cells





Language for trajectories: random walk theory

- Probability primer
- Position jump process

Exact solution – Binomial distribution

- Mean and variance
- Random variables

Distribution function

• Observations of Berg and Brown

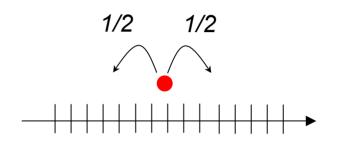
Exponentially distributed random variable

Position Jump Process (1)

N steps, net displacement - $m:-N \le m \le N$ (N odd/even $\Rightarrow m$ odd/even)

$$P_{N}(m) = \frac{N!}{(\frac{N+m}{2})!(\frac{N-m}{2})!} \left(\frac{1}{2}\right)^{N}$$

$$< m >= 0 < (m - < m >)^2 >= N$$



diffusive behavior

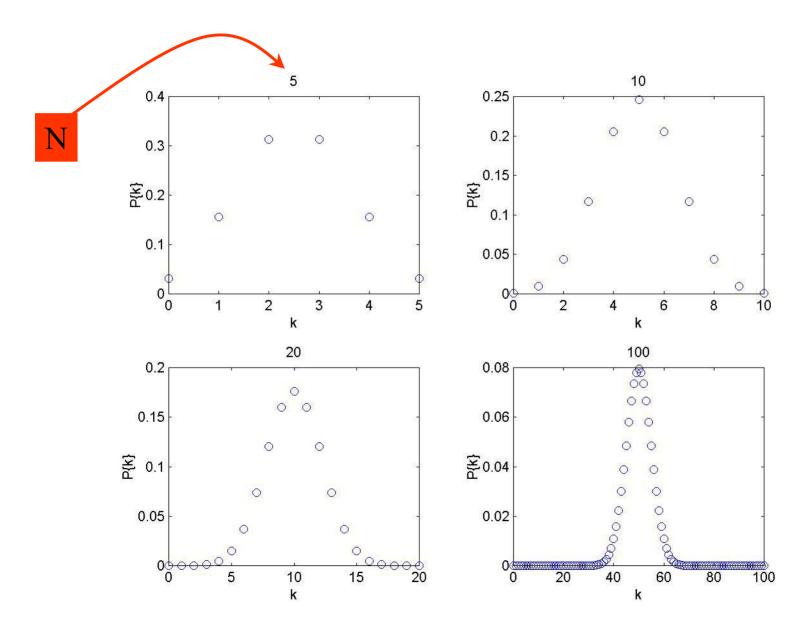
Approximate solution:
$$P_N(m) \approx \sqrt{\frac{2}{\pi N}} e^{-\frac{m^2}{2N}}$$

use
$$\log(n!) \approx (n+1/2)\log n - n + 1/2\log \pi + O(n^{-1})$$
 &

$$\log\left(1\pm\frac{m}{N}\right) \approx \pm\frac{m}{N} - \frac{m^2}{2N^2} + O(\frac{m^2}{N^2})$$

S. Chandrasekhar, Rev. Mod. Phys. 15, 1, 1-89, 1943

Binomial distribution



Position Jump Process (2)

$$p(x,t) > 0$$
 for all t

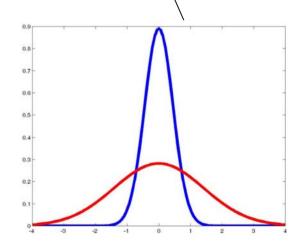
step size:
$$l$$
 frequency of jumps: λ
Continuous space and time:
$$p(x,t)dx = P_N(m)\frac{dx}{2l} = \frac{1}{\sqrt{2\pi\lambda l^2 t}}e^{-x^2/2\lambda l^2 t}dx$$

$$D = \lambda l^2/2 \rightarrow p(x,t) = \frac{1}{\sqrt{2\pi D t}}e^{-x^2/4D t}$$

$$D \equiv \lambda l^2 / 2 \rightarrow p(x,t) = \frac{1}{\sqrt{2\pi Dt}} e^{-x^2/4Dt}$$

$$\frac{\partial p}{\partial t} = \frac{\partial}{\partial x} (D \frac{\partial p}{\partial x}) \text{ with } p(x, t = 0) = \delta(x)$$

Rewrite:
$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial x}J \leftarrow \text{flux } J \equiv -D\frac{\partial p}{\partial x}$$

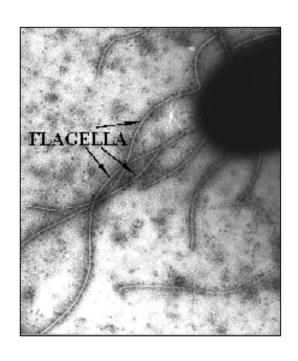


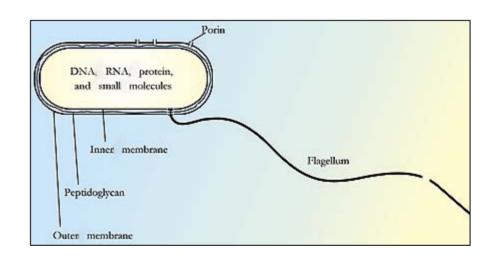
Approximation for large times

$$\langle x^2 \rangle = 2Dt$$

earlier times: correlations in motion -> cell migration is like that

Model Organism: E.Coli



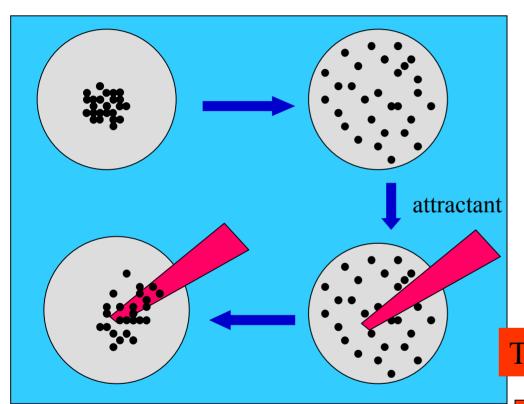


Size: 1 µm

Swims by rotating ~ 6 flagella

Speeds: up to $10 \mu m/s$

Bacteria can be attracted/repelled by chemicals



Mechanism?

"Chemoreceptors in bacteria."

Adler, 1969 "Science" – READ!

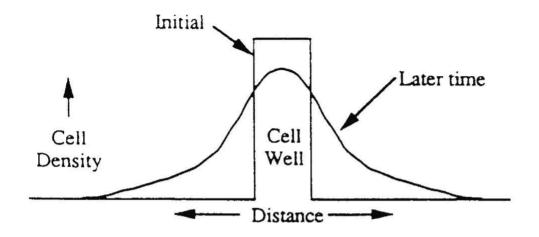
This is sensing, not metabolism

Based on genetic approach!!!
No molecules yet

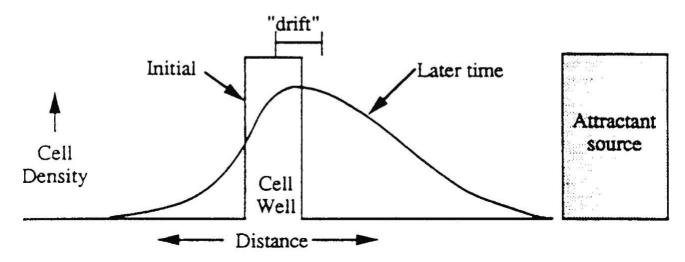
Macroscopic phenomenon:

flux of bacteria = F(gradient of chemicals)

Random Motility and Chemotaxis

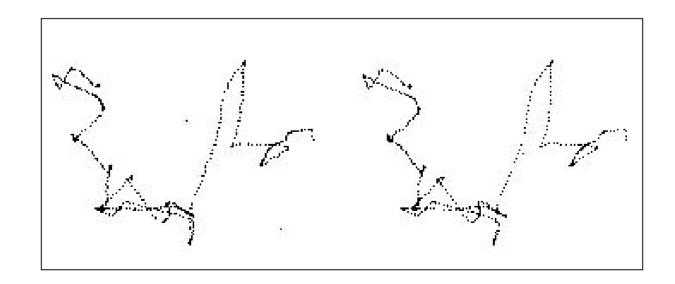


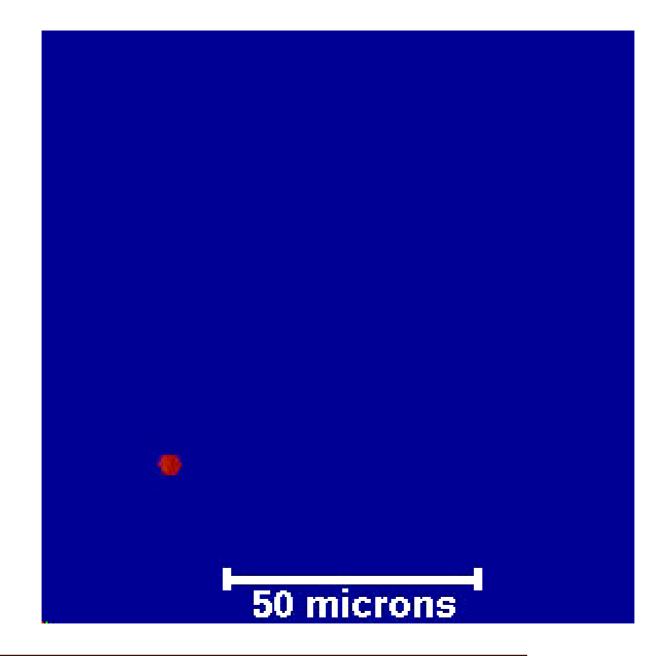
b. Migration in a chemical attractant gradient: Random motility (μ), chemokinesis ($\frac{d\mu}{da}$) and chemotaxis (χ)



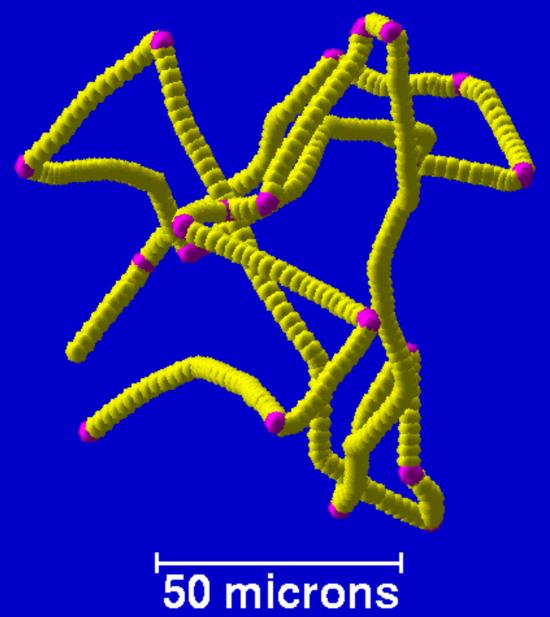
Trajectories

In the absence of chemical gradients, a swimming bacterium executes a three-dimensional random walk consisting of **runs** of swimming in a straight line punctuated by tumbles





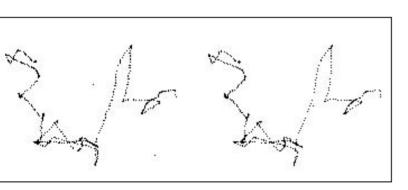
http://curie.che.virginia.edu/cleb/clebmain.html

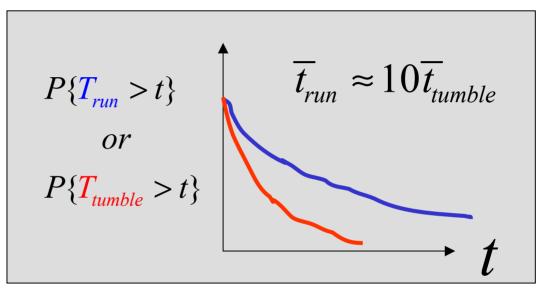


From Trajectories to Microscopic Parameters of Cell Migration

(Velocity Jump Process)

Berg and Brown, 1972



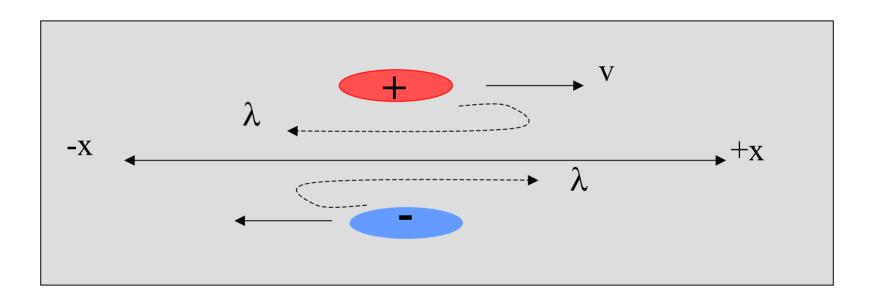


- 1. Runs punctuated by tumbles
- 2. Both runs and tumbles are exponentially distributed
- 3. Runs are longer than tumbles
- 4. Constant velocity

MODEL: instantaneous tumbles (neglect tumble time)

MODEL: instantaneous tumbles (neglect tumble time)

Velocity Jump Process

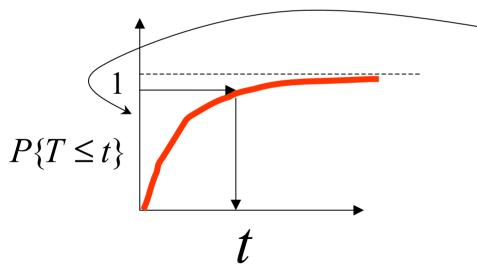


- 1. Continuous space & Continuous time
- 2. At every point: right- and left-moving cells
- 3. Follow a single cell & a population of cells

Velocity Jump Process

$$P\{T \le t\} = 1 - \exp(-\lambda t)$$
$$v = \pm V$$

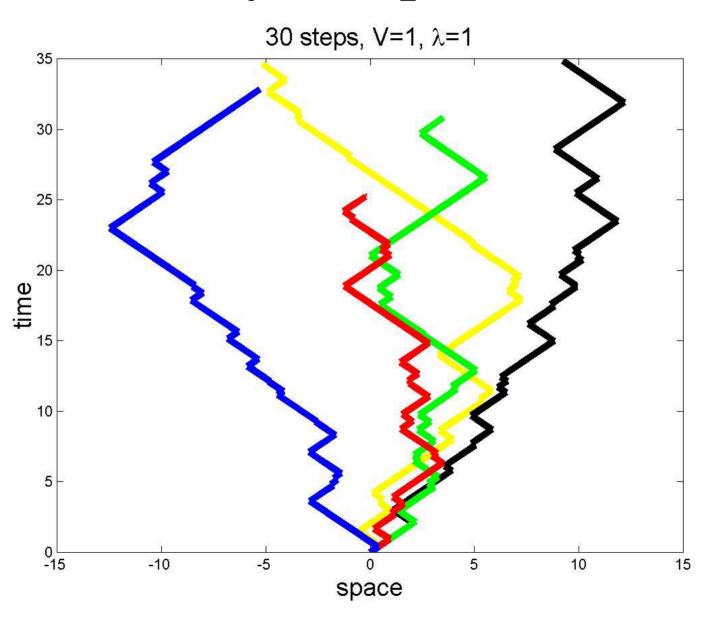
Inversion method



Simulation

```
\lambda = 1; t = [0];
x=[0]; V=1; STEPS=30
for j=1:5
   for i=1:STEPS;
         T=-\log(1-rand(1))/\lambda;
        N=length(t);
         t=[t;t(N)+T];
         x=[x;x(N)+V*T];
        V=-V;
    end; plot(x,t); hold on;
end;
```

Velocity Jump Process



Velocity Jump Process (1)

instantaneous changes in velocity

$$\frac{\partial p^{+}}{\partial t} + v \frac{\partial p^{+}}{\partial x} = -\lambda p^{+} + \lambda p^{-} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial x} = -\lambda p^{-} + \lambda p^{+} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial x} = -\lambda p^{-} + \lambda p^{+} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial x} = -\lambda p^{-} + \lambda p^{+} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t^{2}} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t^{2}} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t^{2}} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t^{2}} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t^{2}} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t^{2}} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v^{2} \frac{\partial^{2} p}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} - v \frac{\partial p^{-}}{\partial t} = v \frac{\partial p^{-}}{\partial t} \\
\frac{\partial p^{-}}{\partial t} -$$

$$\left\langle x(t)^2 \right\rangle \equiv \int_{-\infty}^{\infty} x^2 p(x,t) dx = \frac{v^2}{\lambda} \left\{ t - \frac{1}{2\lambda} (1 - e^{-2\lambda t}) \right\}$$

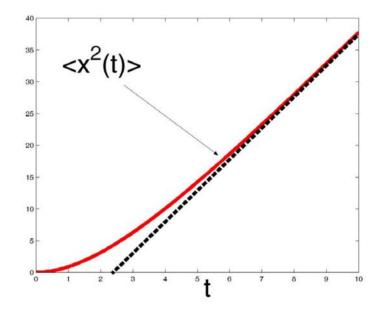
Velocity Jump Process (2)

ballistic and diffusive regimes

$$\left\langle x(t)^{2} \right\rangle = \begin{cases} t \ll 1 : \left\langle x^{2}(t) \right\rangle \sim v^{2} t^{2} \\ t \gg 1 : \left\langle x^{2}(t) \right\rangle \sim \frac{v^{2} t}{\lambda} \end{cases}$$

$$D \equiv \frac{v^2}{2\lambda}$$

 $T \equiv 2\lambda$ – "persistence time" v – velocity



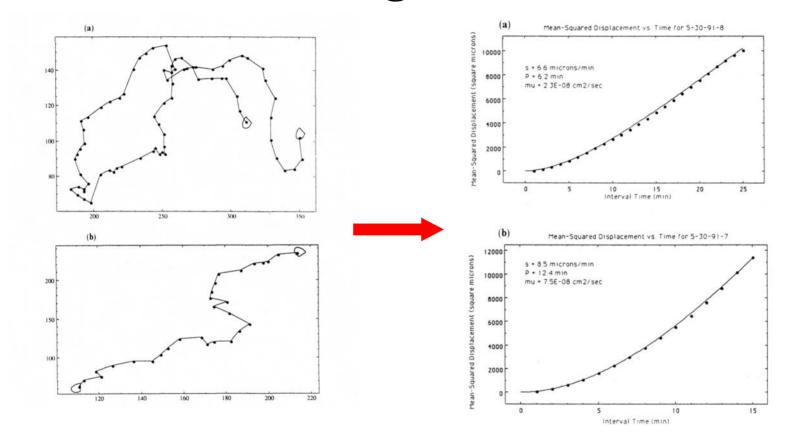
$$j(x,t) = -D \frac{\partial p(x,t)}{\partial x}$$
 only when $\lambda \to \infty$

expression for flux has memory:

$$j(x,t) = e^{-2\lambda t} j(x,0) - v^2 \int_0^t e^{-2\lambda(t-\tau)} \frac{\partial p(x,\tau)}{\partial x} d\tau$$

H.G. Othmer, S.R. Dunbar, W. Alt, J.math.Biol, 26, 263-298, 1987

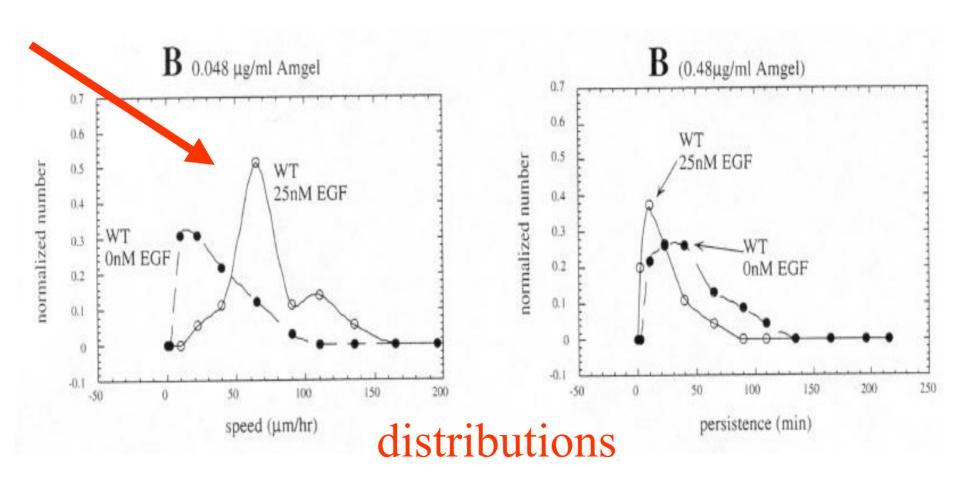
Velocity Jump Process (3) fitting data



- 1. Microscopic parameters can be extracted from data
- 2. Next step: expressions for macroscopic fluxes

BE Farrell et al, Cell Motil Cytoskeleton, 16:279-293, 1990 - example RB Dickinson, RT Tranquillo, AICHE J, 39 (12): 1995, 1993 - estimation algorithms

Example: Growth Factor-Mediated Cell Motility



MF Ware, A Wells, DA Lauffenburger, J.Cell Science, 111, 2423-2432, 1998

Cancer Lett 1997 Oct 14;118(2):173-80

Locomotory phenotypes of human tumor cell lines and T lymphocytes in a three-dimensional collagen lattice.

Niggemann B, Maaser K, Lu H, Kroczek R, Zanker KS, Friedl P.

Active cellular locomotion is a feature of such diverse cell types as lymphocytes and cancer cells. The locomotory phenotype of a cell should ultimately reflect the biochemical basis of different migratory strategies. We investigated the locomotory behavior of five epithelial cell lines and one non-epithelial human cell-line as well as human CD4+ T lymphocytes in a three-dimensional collagen type I matrix using time-lapse video microscopy and computer assisted cell-tracking.

Migration velocity was up to 70 times lower in tumor cells (0.1-0.3 microm/min) as compared to T lymphocytes (7-7.5 microm/min), whereas the percentage of spontaneously active cells was up to twice as high in tumor cells (80-90%) in comparison to T lymphocytes (54%). Persistence, i.e. the degree of roaming, varied appreciably between the different cell types.

In conclusion, velocity and persistence may describe distinct migration strategies in different cell types.

More Complex Models

1. Higher dimensions: turning operators, anisotropy, etc

- Dickinson RB.A generalized transport model for biased cell migration in an anisotropic environment.
- J Math Biol. 2000 Feb;40(2):97-135.
- Othmer HG, Dunbar SR, Alt W. Models of dispersal in biological systems. J Math Biol. 1988;26(3):263-98.

2. Finite tumble time

• Schnitzer MJ.Theory of continuum random walks and application to chemotaxis. Phys Rev E, 1993 Oct;48(4):2553-2568.

3. Internal state random walks

• Grunbaum D Advection-diffusion equations for internal state-mediated random walks SIAM J APPL MATH 61 (1): 43-73 JUL 19 2000

From Microscopic Parameters to Macroscopic Balances

(Expression for the Chemotactic Flux)

Macroscopic Flux (1)

$$\frac{\partial n^{+}}{\partial t} + \frac{\partial}{\partial x}(vn^{+}) = \lambda^{-}n^{-} - \lambda^{+}n^{+}$$
$$\frac{\partial n^{-}}{\partial t} - \frac{\partial}{\partial x}(vn^{-}) = \lambda^{+}n^{+} - \lambda^{-}n^{-}$$

total cell density: $n \equiv n^+ + n^$ flux: $j \equiv v(n^+ - n^-)$

steady state:
$$j_{eq} = \frac{-v^2 \frac{\partial n}{\partial x} - nv \frac{\partial v}{\partial x} - vn(\lambda^+ - \lambda^-)}{(\lambda^- + \lambda^+)}$$

Macroscopic Flux (2)

$$T_{p} \equiv [\lambda^{-} + \lambda^{+}]^{-1} \quad \text{persistence time}$$

$$\mu \equiv T_{p}v^{2} \quad \text{random motility coefficient}$$

$$V_{c} \equiv T_{p}v(\lambda^{-} - \lambda^{+}) \quad \text{chemotactic velocity}$$

$$j_{eq} = -\mu \frac{\partial n}{\partial x} + V_{c}n - T_{p}vn \frac{\partial v}{\partial x}$$

$$j_{eq} = -\mu \frac{\partial n}{\partial x} + V_c n - T_p v n \frac{\partial v}{\partial x}$$

in phenomenological models

$$j_{eq} = -\mu \frac{\partial n}{\partial x} + \underline{\alpha} n$$

- 1. random motility
- 2. chemotaxis (right- and left- moving cells reverse differently)
- 3. chemokinesis (gradient in cell velocity)

To couple to external concentration field, combine with the experimentally determined dependencies of μ and T_n

Flux in a 1D Gradient (1)

Motivated by Berg & Brown 1972 Experiments

- runs & tumbles
- tumble duration is zero
- use velocity jump process in 1D
- motion in a gradient

 $|T_p = (\lambda^- + \lambda^+)^{-1}$ $|\lambda^{+/-} = p_{_T}^{+/-} (1 - \psi) / 2$

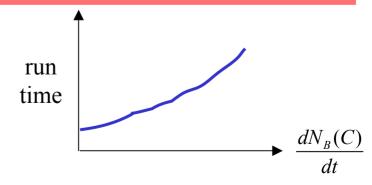
 p_T : is the tumbling probability

 ψ : "directional persistence"

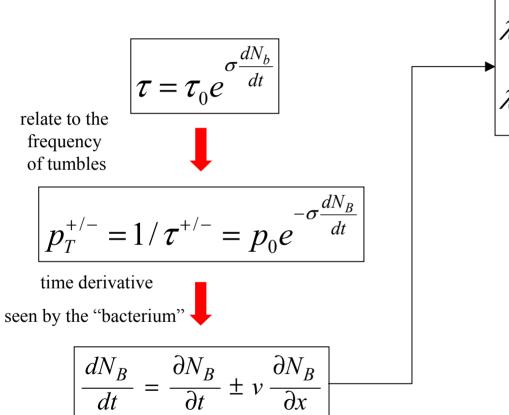
probability of reversing after tumbling

receptor-mediated mechanism:

 N_B – # of occuppied receptors



Flux in a 1D Gradient (2)



$$\lambda^{+} + \lambda^{-} = (1 - \psi) \cosh(\sigma v \frac{\partial N_{b}}{\partial x})$$

$$\lambda^{+} - \lambda^{-} = p_{0}(1 - \psi) \sinh(\sigma v \frac{\partial N_{b}}{\partial x})$$

$$\mu = \frac{v^{2}}{p_{0}(1 - \psi)} \sec h(\sigma v \frac{\partial N_{b}}{\partial x})$$

$$V_{c} = v \tanh(\sigma v \frac{\partial N_{b}}{\partial x})$$

Flux in a 1D Gradient (3)

Simple Ligand/receptor Equilibrium

$$N_{B} = \frac{N_{total}c}{K_{D} + c} \Rightarrow \frac{dN_{B}}{dc} = \frac{N_{T}K_{d}}{(K_{d} + c)^{2}}$$

$$\mu = \frac{v^{2}}{p_{0}(1 - \psi)} \left[\cosh(\sigma v \frac{\partial c}{\partial x} \frac{dN_{B}}{dc}) \right]^{-1}$$

$$V_{c} = v \tanh(\sigma v \frac{\partial c}{\partial x} \frac{dN_{B}}{dc})$$

$$v^{2}$$

$$chemotactic coefficient, \chi$$

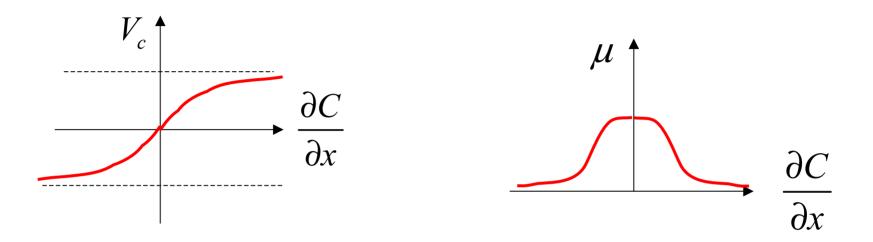
$$V_{c} = v \tanh(\sigma v \frac{\partial c}{\partial x} \frac{dN_{B}}{dc})$$

small gradients:

$$\mu = \frac{v^2}{p_0(1-\psi)}, \qquad V_c = \sigma v^2 \frac{dN_B}{dc} \frac{\partial c}{\partial x}$$

If the model is correct: macroscopic flux can be estimated from data on binding and microscopic parameters for cell migration

Flux in a 1D Gradient (4): Analysis



- 1. Random motility coefficient increases with temporal gradient
- 2. Random motility coefficient is a decreasing function of spatial gradient: at large gradients all cells swim in one direction
- 3. Chemotactic velocity has a limiting value: the population can not move faster than the maximal cell speed

"Chemotactic Wave Paradox"

[cAMP|

Observation

aggregation to the source of chemical wave pulse of cAMP is nearly symmetric

Devreotes & Tomchik, Science 212, 443-6, 1981

Simple-model:

symmetric chemotactic velocity no net directed motion

Worse: cells stay longer in the negative gradient region **Prediction:** cells move away from the wave source

What is the problem?

Experiment: Cells move only in the wave front and not in the back => chemotactic response can not be determined by the concentration gradient alone

$$\chi = \chi(\alpha)$$
chemotactic sensitivity

c(kx+vt)

Wave

source

► X

Model: Soll, Wessels, Sylwester, 1993

