From Microscopic Parameters
to Macroscopic Balances

(Expression for the Chemotactic Flux)
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Macroscopic Flux (2)

T,=[A +A'T" persistence time

u= Tﬂvz random motility coefficient ‘ Jo=—u al +Vn-T vn@
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V.=T WA =A%) chemotactic velocity

in phenomenological models
Three contributions to flux: Ju =—y3{+g,‘

1. random motility

2. chemotaxis (right- and left- moving cells reverse differently)
3. chemokinesis (gradient in cell velocity)

To couple to external concentration field, combine
with the experimentally determined dependencies of wand T,

Flux in a 1D Gradient (1)

Motivated by Berg & Brown 1972 Experiments

* runs & tumbles
* tumble duration is zero gradient

« use velocity jump process in 1D

. . . random
* motion in a gradient motility
chemotaxis
T =k +4)" receptor-mediated mechanism:

. N, — # of occuppied receptors
AT =p(1-y)/2

Py is the tumbling probability run

y : "directional persistence" time

dN,(C)
dt

probability of reversing after tumbling

Flux in a 1D Gradient (2)
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Flux in a 1D Gradient (3)

Simple Ligand/receptor Equilibrium

N, Nue N, NK,
8 K,+c de (K, +c)
2 dN,
H= ri [COSh(O’V? d £ )]_1 chemotactic
po( - l//) X ac coefficient, )
V.= vtanh(av% dN, f/
dx dc

small u= v N V 4o an %
gradients: po(1-w) ¢ dc| ox

If the model is correct: macroscopic flux can be estimated from
data on binding and microscopic parameters for cell migration

Flux in a 1D Gradient (4): Analysis
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1. Random motility coefficient increases with temporal gradient

2. Random motility coefficient is a decreasing function of
spatial gradient: at large gradients all cells swim in one direction

3. Chemotactic velocity has a limiting value: the population can
not move faster than the maximal cell speed

Cell density +
diffusing signal




“Chemotactic Wave Paradox”

Observation
aggregation to the source of chemical wave
ulse of cAMP is nearly symmetric
P oo ot s oo [CAMP] c(kx+vt)
Simple-model: «—

symmetric chemotactic velocity
no net directed motion
Wave

Worse: cells stay longer in the negative gradient region
source

Prediction: cells move away from the wave source

X
What is the problem?

Experiment: Cells move only in the wave front and not in — (a)
the back => chemotactic response can not be determined z X
by the concentration gradient alone

chemotactic
sensitivity

Model: Soll, Wessels, Sylwester, 1993

Translocation phase:
Rapid & persistent translocation;
suppressed lateral pseudopods formation;
elongate shape

Peak of the wave:
suppression of pseudopod
formation and cellular translocation;
freeze in cell morphology

10 cAMP~"

230 sec

Back of the wave:
increased frequency of random
| pseudopod formation; loss of
clongate cell morphology; little
net translocation

Decision phase:

high frequency of random
pseudopod formation; nonpolar

cell morphology; no net translocation

10 cAMP 10 cAMP

Chemotaxis-driven Linear Instability (1)

Keller & Segel, 1971: cells migrate in a self-imposed
field of chemoattractant
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Linearized equations: Solution:
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Linear instability of uniform state: A >0




Keller-Segel (2)

. N\ A+ug®  —ang> |(4) (0
or every wavenumber g : f A+Dl+k B =lo
— q

g, + first unstable
Nontrivial solutions (4 # 0, B # 0) when det(M) # 0 Agq) wavenumber

Ay satisty (A+ uq® )(A+ Dg* +k)-7g>f =0

Condition for instability : (Dq> +k) < zif Interpretation :
) 1)small i, D, k,i
) D(7i) i )
Using the B.C.: H—5— +k|<f 2) large L
L 3)large 2,7, f

This is just linear analysis ...

Keller-Segel (3)

« Instability is promoted by

low random motility & chemoattractant degradation
high chemotactic sensitivity, secretion rate, cell density

« Problems

no saturating effect: }g{_} n(x,1) = 0(x)
instability does not appear to involve linear mechanism
mechanism is more complicated

References:
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cAMP Network: Cartoon

01 1 o
X Au +—f(u,v) - "fast" & diffusing
ot £
v P :
e =g(u,v) - "slow" & localized
v f(u,v)=0
. A p=const
Variables: 2(u,v)=0
V - fraction of receptors in the active state u
U - extracellular cAMP Fix v. = u has 3 steady states

Other examples: Ca induced calcium release
Growth factor-induced growth factor release

JL Martiel, A. Goldbeter, “A model based on receptor desensitization for cAMP signaling in
Dictyostelium cells”, Biophys.J. , 52, 807, 1987




Reaction, Diffusion, Chemotaxis

Cell density % =V (pVn — x(v)nVu) G

Diffusing i Alp(n) fi(u,v) = (6(n) + 8) f2(u)] + Vu
messenger | 7 = M 134, ¥ 2inj)
(cAMP) 5

I stat o —g(u)v + galu)(1 —v).
cell state

.erl!
x(v) = xo N g’ m> 1.

Chemotactic coefficient is a function of internal state of the cell

Reaction, Diffusion, Chemotaxis:
continuum model

ol is terms, and
an explic e, 80 minutes
{Teft) and t= 1§

Simple model captures the phenomenology

Experiments (1)

(cell density)

time




Linear Transport E

+ Nonlinear Chemistry i* :

Castes et al,
PRL, 64, 2953 (1990)

-x

“... a mathematical model of the growing embryo will be described.
This model will be a simplification and an idealization,

and consequently a falsification. It is to be hoped that the

features retained for discussion are those of greatest importance

in the present state of knowledge”

1. Diffusion can have a destabilizing effect
2. Nonlinear chemistry can generate patterns
3. These mechanisms operate in development

AM. Turing, “The Chemical Basis of Morphogenesis”, Phil. Trans. Roy. Soc. B 237 (1952)

Diffusive Instability: The Model

uniform s.s.:
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L.A. Segel and J.L. Jackson, “Dissipative Structure: An ion and an Ecological

Example”, I. theor. Biol., 1972, 37, 545-559

Diffusive Instability: Linear Analysis

Cxn) &f4
Linear dynamics: lv(x’ ) :Z[ ‘]cos(q,x)cxp(ﬂ.,.t)
G, (x,0)) =\B

Stability: 4, <0 Vil |(/1z =a, + D} YA = ay + Dg}) =y, = 0|

uniform perturbations decay when A(q,) q
1. a,+a,<0 !

2. 4,,a,, —a,a,, >0 only diffusion

Can nonuniform perturbations j’i(qr')h 4

grow under these conditions? o .
diffusion + reaction




Diffusive Instability: Conditions

Necessary and sufficient conditions Possible Jacobians:

1. a,+a,<0 } uniform SS is stable [+ -} QOD
. —_—

2. a,,ay, —a,a, >0]  (only chemistry) =

activatorfinhibitor
system

chemistry +

3. a,D,+a,,D, >0 + o+
transport = =

What does this mean?

1. One substance is an "inhibitor" (pick 2) D D
2. The other one is an "activator" (1) 1< =2

3. Range of activator is less than the range of inhibitor @ 14y|

More species and dimensions:
1) Satnoianu RA, Menzinger M, Maini PK. “Turing instabilities in general systems™. J Math Biol. 2000, 41,493
2) De Wit A, “Spatial patterns and spatiotemporal dynamics in chemical systems” Adv. Chem. Phys., (109), 435, 1999

cAMP Network: Cartoon
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Variables: 2(r.p)=0
0 - fraction of receptors in the active state
Y - extracellular cAMP Fix p = v has 3 steady states

Other examples: Ca induced calcium release
Growth factor-induced growth factor release

JL Martiel, A. Goldbeter, “A model based on receptor desensitization for cAMP signaling in
Dictyostelium cells”, Biophys.J. , 52, 807, 1987

Positive Feedback Alone: Bistability

Two stable steady states

degradation

f:p) sl s

production
) PR
—0—0—0—
u — u
u, u2 Uy
du Diffusion + local bistability
o~/ Wp)= P p)= R p)
u
balance of production & degradation } L_
2 ul

a—"=f(u;p)+Da—'f - with diffusion u.
ot ox’

Nonuniform transitions between uniform steady states

AS Mikhailov, “Foundations of Synergetics-I”, Springer, 1994




Bistable Media: Propagating Fronts

du ’u _
E—f(u,p)+Da7 . x=ct

imi ions: u
Look for self-similar solutions: 3 — U

wave propagating to the right

u(x,t)=u(x—ct);E=x—ct t
lim u(r:) =uy; lim u(§) =u, Both the propagation speed (c) and its profile

§o ot are uniquely determined by the properties of the
Change variables: medium : all fronts in a bistable medium have the

. same profile, independently of initial conditions
—cu; = f(u)+ Dug; B B Y

What determines the direction and speed of propagation?
. | 7 s pydu

j (—cu,« =f(u)+Du§§)u§ ==
= [ yag
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AS Mikhailov, “Foundations of Synergetics-I”, Springer, 1994

Bistable Media: Front Speed

Front stationarity (¢ =0) is

determined by kinetics alone:

o(p)

The front is stationarity only

for a single parameter value:

Expressions for speed are available
only for 2 cases:

S ) ==k =u) @ —u)w—u) =

S (@) = kG — )+ (uy —u)H(u~u)] = ¢ =

AS Mikhailov, “Foundations of Synergetics-I”, Springer, 1994




