

Space Clamped Hodgkin/Huxley Model	
$C\frac{dV}{dt} = I - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - g_{L}(V - V_{L})$	
ui	$\overline{g}_{Na} = 120 mmho / cm^2$
dm and a gran	$\overline{g}_K = 36mmho/cm^2$
$\frac{dt}{dt} = \alpha_m(V)(1-m) - \beta_m(V)$	$g_L = 0.3 mmho / cm^2$
dh	$V_{Na} = 50mV$
$\frac{dn}{dt} = \alpha_h(V)(1-h) - \beta_h(V)(1-h)$	$h) V_K = -77 mV$
dn	$V_L = -54.4mV$
$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)(1-n)$	$(n) C = 1\mu F / cm^2$
ai	$I:\mu A/cm^2$
	V: mV
$\alpha_m(V) = \frac{0.1(V+40)}{1 - \exp[-(V+40)/10]}$	$\beta_m(V) = 4 \exp[-(V+65)/18]$
$\alpha_h(V) = 0.07 \exp[-(V + 65)/20]$	$\beta_h(V) = \frac{1}{1 + \exp[-(V + 35)/10]}$
$\alpha_n(V) = \frac{0.01(V+55)}{1 - \exp[-(V+55)/10]}$	$\beta_n(V) = 0.125 \exp[-(V+65)/80]$

$$I = C \frac{\partial V}{\partial t} + \overline{g}_{Na} m^3 h(V - V_K) + \overline{g}_K n^4 (V - V_K) + g_L (V - V_L)$$

$$I = \frac{a}{2R} \frac{\partial^2 V}{\partial x^2} \qquad a = \text{radius (cm)}$$

$$R = \text{specific intracellular resistivity (k\Omega cm)}$$

$$\theta = \text{propagating velocity (cm/msec)}$$
assume $V(x, t) = V(x - \theta t)$

$$\frac{\partial^2 V}{\partial x^2} = \frac{1}{\theta^2} \frac{\partial^2 V}{\partial t^2}$$

$$\frac{a}{2R\theta^2} \frac{d^2 V}{dt^2} = C \frac{dV}{dt} + \overline{g}_{Na} m^3 h(V - V_K) + \overline{g}_K n^4 (V - V_K) + g_L (V - V_L)$$
guess θ , numerically integrate

