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Chemotaxis-driven Linear Instability (1)
Keller & Segel, 1971: cells migrate in a self-imposed

field of chemoattractant
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K eller-Segel (2)

2

g + - cha?  UhAd .
For every wavenumber q: é ™ 2 %2:8@8
g - f | +Dq +k$85ﬂ gOeﬂ
N g, : first unstable
Nontrivial solutions (At 0,B* O)whendet(M)! O | (q) wavenumber
|, satisfy (I +ng?)(I +Dg? +K)-cig?f =0 \\ .
q
Condition for ingtabilit y : m(Dg? +k) < chf Interpretation :
1) small m D, ki
Using theB.C.: rr@ﬂ +k < cnf 2) large L
e 2 o 3)largec,n, f

Thisisjust linear analysis ...



K eller-Segel (3)

e Instability is promoted by

low random motility & chemoattractant degradation
high chemotactic sensitivity, secretion rate, cell density

e Problems

no saturating effect:  limn(x,t) =d(x)
Instability does not appear to involve linear mechanism
mechanism is more complicated

References:
1. E.F.KélerandL.A. Segel, J. theor. Biol. (26), 399-415, 1970
2. T.Hillen and K. Painter, Adv. Appl. Math. (26), 280-315, 2001



Linear Transport
+ Nonlinear Chemistry

Castets etal,
PRL, 64, 2953 (1990)

‘... amathematical model of the growing embryo will be described.
Thismodel will be a ssimplification and an idealization,

and consequently a falsification. It isto be hoped that the
featuresretained for discussion are those of greatest importance

In the present state of knowledge”

1. Diffusion can have a destabilizing effect
2. Nonlinear chemistry can generate patterns
3. These mechanisms operate in devel opment

A.M. Turing, “The Chemica Basis of Morphogenesis’, Phil. Trans. Roy. Soc. B 237 (1952)



Diffusive I nstability: The M odel

2
Map ™ irecc) T =0
it X2 X o,
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e C,.,C =0
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Linearize around
uniform steady state
c__vC .
it = D1 ﬂXZ +a11C1 '|'a12C2
1c, __ T%C, . .
it = D2 ﬂXz + 6\21C1 + a22C2

uniform s.s.:

Ri(él’CZ) =0, Rz(éyéz) =0

perturbations:

C.(x1)=C,(%1)-
C.(% 1) =C,(x1) -

o TR
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e, G,

Only “chemistry”

L.A. Segel and J.L. Jackson, “Dissipative Structure: An Explanation and an Ecological
Example”, J. theor. Biol., 1972, 37, 545-559
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Diffusive I nstability: Linear Analysis

T, (% 1)0_ ggﬁqfcos(qlx)exp(l 1)

Linear dynamics:
g écz'(x,t)g ~0&B g

Stability: 1, <0" 1| |(I;- a, +D,o°)(I; - &y, +D,0°) - a8, =0
uniform perturbations decay when | (g) q
1. a,+a,<0 |
2. a8y, - 8,8, >0 only diffusion
Can nonuniform perturbations | i(qi)h q
grow under these conditions? ditfusion + reaction




Diffusive I nstability: Conditions

Necessary and sufficient conditions Possible Jacobians:
1. a,+a,<0 U uniform SSis stable & -U QOD
_ e, _u =
2' afl.la‘22 - afI.2a21 > O% (Only Chernlgry) = . activator/inhibitor
stem
chemistry + — K
3. ayD, +a,Db, >0 =r
transport ¢ .4

What does this mean?

1. One substance is an "inhibitor" (pick 2) 5 5
2. The other oneis an "activator" (1) L _—2
3. Range of activator islessthan the range of inhibitor % |3z|

More species and dimensions:
1) Satnoianu RA, Menzinger M, Maini PK. “Turing instabilities in genera systems’. J Math Biol. 2000, 41, 498°>

2) De Wit A, “Spatial patterns and spatiotempora dynamicsin chemical systems’ Adv. Chem. Phys., (109), 435, 1999



cAMP Network: Cartoon

1111_?:Dg+%f(g,r) _ "fast" & diffusing

ﬁ:g(g,r) - "dow" & localized
f@,r)=0
I
B N r=const
Variables: 9(g,r)=0
I' —fraction of receptorsin the active state g
J-extracellular cAMP Fixr P ghas 3 steady states

Other examples. Cainduced calcium release
Growth factor-induced growth factor release

JL Martiel, A. Goldbeter, “A model based on receptor desensitization for CAMP signaling in o]
Dictyostelium cells’, Biophys.J. , 52, 807, 1987



Positive Feedback Alone: Bistability

| Two stable steady states
degradation N
f(u; p) S U S
production
\ L7z
< > u N\ N\
> U V u u, u,
du Diffusion + local bistability
o N HEp)- R A 4
u
balance of production & degradation 3» UJ..»
2 u
T _ f(uyp)+D 2 l: - with diffusion i Uy
X

1t

Nonuniform transitions between uniform steady states

AS Mikhailov, “Foundations of Synergetics1”, Springer, 1994
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Bistable Media: Propagating Fronts

2
o _ f(u; p)+Dﬂ—

qt ﬂx |
Look for self-similar solutions; U, h
. . 2

wave propagating to the right

X=ct

u(x,t) =u(x- ct);x © x- ct > 1
lim u(x) = Us; lim u(x) =u, Both the propagation speed (c) and its profile
X®-¥ X® +¥ are uniquely determined by the properties of the
Change variables: medium : all frontsin abistable medium have the
same profile, independently of initial conditions
-ay, = f(u)+Du, ’ Y
What determines the direction and speed of propagatlon’?
Uy
of U; p)du
0( cu, = f(u)+Du, )uxbc— W
o(—)2
11

AS Mikhailov, “Foundations of Synergetics1”, Springer, 1994



Bistable Media: Front Speed

Front stationarity (c=0) is
determined by kinetics alone:

c(p)

Thefront is stationarity only
for asingle parameter value:

Expressions for speed are available
only for 2 cases.

fu)=-k@u-u)u-u)u-u) b

c=%\/kD(u1+u3- u,)

F(u) =k(w - u)+(u- w)H(U- )P

C

_ KD (U + U5 - )
\/(uz' ul)(us' U2)

AS Mikhailov, “Foundations of Synergetics1”, Springer, 1994
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Bistable M edia: Conclusions

1cm

pre-lesion

Diffusion can be a very fast way iﬁfafi on
to propagate signals, when coupled
to positive feedback .
time
Time to reach a point:
30’
\4
30" +U0126

Purediffusonin1D: T=1%/2D

JM Mandell, NC Gocan, SR, Vandenberg, “Mechanica Trauma Induces Rapid
Astroglial Activation of ERK/MAP Kinase: Evidence for a Paracrine Signal”, GLIA, 34, 283, (2001) 13



Excitability

>

‘H_u: f(u,v)+DDu W
qt
ﬂV — activator/inhibitor
(ﬂ—e(-v+u) .
~

Slow variable with characteristic
time scalee!

T~O(1): v =const —bistable medium

i)

There are superthreshold excitations

How do they propagate?
c(v=const)

|—| . —»

At longer times v startsto decrease:

—» c(v=const)

14



Patternsin 1D Excitable M edia

Solitary pulse rEe)t(SIrLattlgrt]he equilibrium

u(x), v(x)

X = X- ct \(t

Periodic Wave New axcitstion

u (X ) Y (X ) before return to equllbrlum

ux +2p) =u(x),

V(X +2p) = v(x)

X =kx- wt Group veocity: w/k

Group velocity of awavetrainisless
than velocity of a solitary pulse (Why?)

AS Mikhailov, “Foundations of Synergetics1”, Springer, 1994
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Spiral Waves

Periodic wave train, period L : @ @ @

Pulsein athin ring, R=2p/L:

O,

Rmi n R

E. Meron, “Pattern formation in Excitable Media’, Phys. Rep., 218, 1-66, 1992 16



New Stationary Patterns

Traveling: Solitary or Periodic

Reverse properties of
activator and inhibitor

fast diffusing activator/ >

slow localized inhibitor

Stationary & Periodic different

S. Kogaand Y. Kuramoto, “Localized Patterns in Reaction Diffusion Systems”,
Prog. theor. Phys., 1980, 63, 106-121.

Meinhardt H, Gierer A. “Pattern formation by local self-activation and lateral inhibition”,
Bioessays. 2000, 22, 753-60. 17



