## 1 Errata

```
p.3, l.-4
p.4, l. 6,7
p.4, l.14
p.20, l. -1
p. }3
p.53, l.16
p.59, l.16,17
p.83, Exercise 3
```

p.105, l.-11
p.110, 1.14
p.110, l.-7
p.112, l. 3
p.114, l.-1
p.128, 1.8
p.138,
p.147, l.-9
p.149, 1.17
p.154, 1.19
p.154, l.-2
p.155,
p.160, 1.-8,-7
p.162, Exercise 12
p.171, l.-4
p.173, l.-15
p.179, Exercise 2
p.191, l.-1
p.217, 1.23
p.218, Equation(5.30)
p.222, l.-3
p.241, 1.7
p.243, 1.7
p.243, 1.12
p.273,
p.290, Exercise 2
p.293, 1.9
p.298, 1.4
p.105, 1.-11
population density (instead of population size)
if the birth, death, and migration rates
(which means competition for hosts or patches)
$\left|x(t)-x_{\infty}\right|<\epsilon$
Figure 1.8. Delete yeild in caption
in each generation
$c_{n}$ instead of $c$ (3 places)
Add remark at end of exercise: (Global asymptotic stability means that every solution approaches the origin, not just solutions starting clse to the origin.)
$D^{\prime}\left(x_{\infty}\right)>R^{\prime}\left(x_{\infty}\right)$
$g^{\prime}\left(x_{\infty}\right)$
formulae
$B^{\prime}\left(x_{\infty}\right)$
$R^{\prime}\left(x_{\infty}\right)$
... of solutions, (that is, curves in ... )
Renumber second Exercise 10 as 11 and Exercises 11-14 as Exercises 12-15 respectively.
around the equilibrium with the orbits approaching
this equilibrium
Add period at end of sentence
However, for two-dimensional systems
$x\left(t_{n}\right) \rightarrow \bar{x}, y\left(t_{n}\right) \rightarrow \bar{y}$
Figure 4.9 Reverse lower right arrow direction
$x+y$ instead of $y+z$ (three places)
Period at end should be inside parenthesis
population, so that if $x$ and $y$ are not too close to zero
Case $2 c / a>\mu / \lambda>d / b$
$60-3 x-y$
and in fact every orbit
Section 5.9
$f(x, y, z), g(x, y, z), h(x, y, z)$
Section 5.9
$\left(x_{\infty}(H), y_{\infty}(H)\right)$
$y_{\infty}(H)$
$y_{\infty}(H)$
Structured Population Models
Consider a disease with $\beta=1 / 3000$,
Hyphenate Hethcote as Heth-cote
The derivation of $A=1 / \beta I_{\infty}$ is obtained from considering surviving susceptible members at each age. This is the value that would be obtained from data giving the fraction of susceptibles at each age. However, if average age at infection has the normal meaning of average age at which those people who become infected do become infected, then
the calculation would be different. The susceptible population at age $a$ is a fraction $e^{-}\left(\mu+\beta I_{\infty}\right)$ of the number of newborn members, and the incidence of new infections is $\beta I_{\mathrm{inf}} e^{-}\left(\mu+\beta I_{\infty}\right)$. This would lead to an average age at infection $A^{*}=1 /\left(\mu+\beta I_{\mathrm{inf}}\right)$ and the relation $L / A=R_{0}$.
p.315, l.-1
p.339, l.-1
p.340, l.-7
p.343, l.-13
p.345, Exercise 6
p.378, 1.4
p.401,
p.409, 1.19

Back cover, 1.17
$-\gamma I(t-\omega)$ measurements of population size
$p_{0}, p_{1}, \ldots p_{m-1}$ $\sum_{j=0}^{m} \pi_{j} \beta_{j} \lambda_{j}^{-(j+1)}=1$
First row of matrix should be 001
$\frac{r-\sqrt{r^{2}-4 A}}{2}$ (unstable)
Reorder references: Current [182], [183] should be between current [179] and [180]
Assyria
recipient

## 2 Additions

The following figures lack labels for the axes, and the following labels should be added for the x -axis and y -axis respectively.

| 34 | Figure 1.10 | P, ${ }^{\text {Q }}$ |
| :---: | :---: | :---: |
| p. 35 | Figure 1.11 | p,Q |
| p. 36 | Figure 1.12 | p,Q |
| p. 36 | Figure 1.13 | p, Q |
| p. 97 | Figure 3.1 | ,x |
| p. 101 | Figure 3.2 | t,x |
| p. 108 | Figure 3.5 | t,x |
| p. 116 | Figure 3.7 | t, x |
| p. 121 | Figure 3.8 | t, x |
| p. 208 | Figure 5.28 | u, |
| p. 209 | Figure 5.29 | u,y |
| p. 210 | Figure 5.30 | u,y |
| p. 244 | Figure 6.13 | $\mathrm{x}, \mathrm{y}$ |
| p. 306 | Figure 7.5 | S,I |
| p. 307 | Figure 7.6 | t,I |
| p. 308 | Figure 7.7 | t,I |
| p. 317 | Figure 7.8 | $\beta, \gamma$ |
| p. 377 | Figure A. 1 | $\mathrm{x}, \mathrm{y}$ |
| p. 378 | Figure A. 2 | x, |

We are indebted to Jonathan Dushoff, Steve Krone, Simon Levin, Marcin Mersan, Joseph Mugisha, and Dan Rubin for supplying some of these corrections.

Most recent update: November 1, 2001.

