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Abstract

Event-Based Optimal Control of Neurons

by

Ali Nabi Bidhendi

Motivated by issues related to treating certain neurological diseases such as

Parkinson’s disease by a method called electrical deep brain stimulation, we con-

sider applying different control methods to both mathematical models of neurons

and in vitro neurons. Patients suffering from Parkinson’s disease experience invol-

untary tremors that typically affect the distal portion of their upper limbs. It has

been hypothesized that these tremors are associated with simultaneous spiking of

a cluster of neurons in the thalamus and basal ganglia regions of the brain. In a

healthy situation, the periodic firing of neurons is not synchronized, but they can

engage in a pathological synchrony and all fire at the same time which results in re-

lease of strong action potentials that trigger the downstream muscles with periodic

shocks, manifested as tremors.

This dissertation investigates the control of different neuronal systems using

methods of optimal control. The neuronal systems considered range from sim-

ple one-dimensional phase models to multi-dimensional conductance-based mod-

els, both on a single neuron level and on a population level. The optimal control

methods considered produce event-based, continuous-time, typically bounded input

vii



stimuli that can optimally achieve the desired control objective. The optimality cri-

teria considered are minimum energy and minimum time. The control objectives

of interest are the interspike interval for single neurons and desynchrony for popu-

lations of neurons.

There are three parts to this dissertation. In the first part, (Chapters 2 and 3),

event-based time optimal and energy optimal control is presented to achieve de-

sired interspike intervals for phase models of single neurons. In the second part,

(Chapters 4 and 5), the problem of desynchronizing a network of pathologically

synchronized coupled neurons is considered. In the third part, (Chapter 6), the

theoretical method of Chapter 3 is adopted and the applicability of this method

is shown in practice by testing the controller on in vitro pyramidal neurons in the

CA1 region of rat hippocampus.
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Chapter 1

Introduction

This dissertation investigates optimal control of periodically spiking neurons.

Specifically, it considers several model-dependent and model-independent demand-

control minimum energy and minimum time stimulation protocols for controlling

the spike timing for single neurons and synchrony for populations of neurons. Much

of the motivation for controlling neurons comes from the desire to treat certain neu-

rological diseases such as epilepsy, essential tremor, and Parkinson’s disease (PD).

In PD, which we focus on in this dissertation, the patient experiences involuntary

tremors that have been associated with the synchronization of a cluster of neurons

in the thalamus and basal ganglia [4].

Patients with advanced PD have been offered partial relief through electrical

Deep Brain Stimulation (DBS) [5]. In this FDA-approved surgical procedure, an

electrode is implanted into the patient’s brain which, in its standard form, de-

livers a high frequency pulsatile current stimulus that, hypothetically, breaks the
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pathological synchrony among the periodically spiking neurons [4, 6, 7]. The input

stimulus is generated by a neurostimulator that is implanted in the patient’s chest

and is powered by batteries. While the standard DBS has shown success in treat-

ing PD patients, there are a few issues that are, clinically, of concern. The high

frequency nature of the stimulus is thought to have potential side-effects. These

pulses are administered at around 130 − 180 Hz and could potentially result in

permanent damage to the tissue (e.g., lesioning) [8]. It is also seen that the brain

adapts to the high frequency pulsatile input over time and thus the efficiency of the

input drops [9]. Moreover, the accumulated charge that is inputed to the patient’s

brain is clinically undesirable [10] which has encouraged most of today’s neurostim-

ulators to administer a low-amplitude long-duration recharge current after each

high-amplitude short-duration stimulation pulse [11]. In addition, if the amount

of energy that is used in the standard DBS is reduced, it can lessen the need for

battery replacement surgeries. Furthermore, the complexity and the amount of

uncertainties that are present in the behavior of neurons reduce even the most

comprehensive models to only approximations that, at best, capture the qualita-

tive behavior of these systems. Therefore, while the models create platforms that

enable testing of novel ideas, the results and findings that emerge from them may

not meet expectations when directly applied to the biological tissue. So, another

challenge is to design input stimuli that are not overly dependent on the accuracy

of the model used.

To address different aspects of these issues and to find better inputs, different
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control approaches have been considered in the literature both on a population

level and on a single neuron level. These approaches range from applying different

optimization techniques [11–23] in designing stimuli for neuron systems to methods

rooted in hybrid control ideas [24–26], chaos theory [27], and delay differential

equations [28–30].

The models used in these studies range from simple one-dimensional phase

models to more complicated multi-dimensional conductance-based compartmental

models. While multi-dimensional compartment models capture the spatiotemporal

properties of the neurons better, the phase models have proven to be sufficiently

accurate with considerably lower computational cost and the advantage of being

applicable in practice.

Phase models are one-dimensional reductions of multi-dimensional (conductance-

based) models that emerge from performing the so-called phase reduction technique

on these models (see Appendix A). In a phase model, the oscillatory behavior of

the neuron is represented by the evolution of this single phase variable [31–33].

The phase model for a neuron is characterized by its Phase Response Curve (PRC)

which is a measure of how sensitive the neuron is to impulsive input stimulus. It

characterizes the phase change of the neuron as a function of the phase at which

the stimulus is applied. The PRC, and hence the phase model, can be computed

for models of neurons by solving the appropriate adjoint equation [32, 34] or ob-

tained for biological neurons by implementing the so-called direct method [33] (see

Appendix B). In the direct method, a short-duration pulse (that approximates an
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impulse) is injected into the periodically spiking neuron and the resulting advance

in spike time is measured and recorded as a function of the phase at which the

stimulus has been applied. The advantage of using phase models for controlling

neurons extends beyond their computational benefits. By designing control stimuli

using a neuron’s PRC, one bypasses all the biological complexity of the neuron’s

dynamics and obtains a control law that is not so much dependent on the biological

parameters of the model and can work for any neuron given its PRC. Since PRCs

can be experimentally measured for real neurons, this increases the likelihood of

the designed control stimuli to be also effective in practice. In this dissertation, we

consider designing control stimuli for both phase models and more detailed models

of neurons. We also demonstrate the applicability of some of the designed control

strategies in practice.

The outline of this dissertation is as follows. In Chapter 2, we investigate the

time optimal control problem for phase models of periodically firing neurons, and

find analytical expressions for the minimum and maximum values of interspike in-

tervals achievable with small bounded control stimuli. We consider two cases: with

a charge-balance constraint on the input, and without it. The clinically desired

charge-balance constraint ensures a zero net integral of the input stimulus. The

analytical calculations are supported with numerical results for examples of quali-

tatively different neuron models.

In Chapter 3, we consider the minimum energy control problem for periodically

firing phase neurons. The objective in this chapter is to control the interspike
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interval of the neuron to a prespecified value with minimum energy, while imposing

a charge-balance constraint on the input.

In Chapter 4, we consider the problem of desynchronizing a network of syn-

chronized, globally (all-to-all) coupled neurons using an input to a single neuron.

This is done by applying the discrete time dynamic programming method to re-

duced phase models for neural populations. This technique numerically minimizes

a certain cost function over the whole state space. We evaluate the effectiveness

of control inputs obtained by averaging over results obtained for different coupling

strengths.

In Chapter 5, we employ optimal control theory to design an event-based, min-

imum energy, desynchronizing control stimulus for a network of pathologically syn-

chronized, heterogeneously coupled neurons. This works by optimally driving the

neurons to their so-called phaseless sets, switching the control off, and letting the

phases of the neurons randomize under intrinsic background noise. For the example

considered, it is shown that the proposed control causes a considerable amount of

randomization in the timing of each neuron’s next spike, leading to desynchroniza-

tion for the network.

In Chapter 6, we demonstrate the applicability of optimal control theory for

designing efficient input stimulus waveforms for single periodically-firing in vitro

neurons from brain slices of long-evans rats. The method of control presented here

is similar to that presented in Chapter 3, which uses the phase model of a neuron

and does not require prior knowledge of the neuron’s biological details. The PRC
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for each neuron is experimentally obtained using the direct method. Based on the

measured PRC, continuous-time, charge-balanced, minimum energy control wave-

forms are designed that apply at the onset of an action potential and can optimally

change the next spike time for the neuron. The significance of this work is that

it combines electrophysiology experiments with optimal control theory to achieve

control waveforms for in vitro neurons with levels of energy that are in some cases

multiple orders of magnitude smaller than those of similar past studies.
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Chapter 2

Time Optimal Control of Spiking

Neurons

In this chapter, we investigate the time optimal control for a single neuron

described by a phase model, and in particular find the extreme values of the next

spiking time when the input is constrained between prespecified upper and lower

bounds. In such time optimal control problems, which give what is known as bang-

bang control, the objective is to find an input that would take the system to the

target point in minimum or maximum time, without any constraint on the amount

of energy used. From this analysis, one can gain insight about the maximum

capability of single cell treatment procedures when input stimuli are bounded. The

main focus here will be on charge-balanced input stimuli.

The organization of this chapter is as follows. In Section 2.1, we present a brief

introduction to the problem. In Section 2.2, we first introduce the dynamic phase
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equation and then develop and provide the solution to the time optimal control

problem formulation in its general format. In Section 2.3, we present four different

neural models and solve the control problem for each of these models. We give

detailed analytical results for three of these models, and numerical results for all

four. We summarize and discuss the results in Section 2.4.

The main results from this chapter were published in [20].

2.1 Introduction

Phase models of neurons have been used to investigate the patterns of synchrony

that result from the type and architecture of coupling [35–41], and the response of

large groups of oscillators to external stimuli [32, 42–44]. Phase models of neurons

have also been employed in the context of controlling neurons to give a prespecified

behavior [16,19–21,26,43,45].

An area of recent research interest has been to find control stimuli, in the form

of electrical currents, that can effectively break this pathological synchrony; see,

for example, [18, 22, 27, 43]. On a single neuron level, this objective reduces to

controlling the spiking time of a neuron. Here, upon detection of a voltage spike (or

a firing event), a precomputed input stimulus is injected into the neural system that

would shift the next spike time to a certain prespecified value. This input stimulus

may be computed under different criteria and/or constraints. By considering a

time optimal control problem, one can gain insight about the maximum capability

of bounded control in changing a neuron’s interspike interval.
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One relevant constraint that one can impose on the control stimulus is the

charge-balance constraint. The charge-balance constraint ensures that the total

electrical charge that is transferred to the neural tissue is zero over the course of

one cycle of control input. This is important to prevent neural tissue damage. In

practice, applying charge-imbalanced inputs, especially uni-sign inputs, to the neu-

ron causes irreversible Faradaic chemical reactions to take place in the environment

immediate to the electrode, which could result in permanent damage to the tissue.

With charge-balanced inputs, one prevents this damage, although this could po-

tentially cause corrosive damage to the electrode, something that can be mitigated

by modifying the material and design of the electrode [10].

2.2 Model Equations

A periodically firing or spiking neuron can be considered to be a periodic oscil-

lator with the general dynamical equation [16,32,46]

dθ

dt
= f(θ) + Z(θ)u(t). (2.1)

This equation is referred to as the phase model for the neuron. Here, f(θ) represents

the neuron’s baseline dynamics, Z(θ) is the Phase Response Curve (PRC) of the

neuron, and u(t) is the control input which is an electrical current divided by

the capacitance of the neural membrane [16,32]. θ(t) ∈ R≥0, is the neuron’s phase,

where by convention {θ|θ mod 2π = 0} corresponds to the spiking of the neuron. We

note that the typical definition of phase for neurons is such that for realistic neuron
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models it yields f(θ) = ω = constant. However, there are models in the literature

(like the theta neuron model that we consider later) that have non-constant f(θ)

functions; in the regime where the neuron fires periodically, we have f(θ) > 0. The

PRC for a neuron characterizes a measure of how sensitive the phase of the neuron

is to external stimuli. The timing of the external input plays an important role in

the amount of phase shift in the neuron. It is very unlikely to have a case where

the neuron would be insensitive to the time of the input stimulus. This means that

the PRC does not usually have a constant flat part.

For intrinsically oscillatory neurons with u(t) = 0, the neuron would fire (or

spike) at its natural period T , determined by f(θ). Without loss of generality, we

assume that the initial time of firing is t = 0. By inputting a control stimulus u(t),

the next firing time of the neuron, or the Inter-Spike Interval (ISI), can be adjusted

to a desired target time t1 6= T . However, we note that |u(t)| must be sufficiently

small for the phase model to remain valid. Strictly speaking, the phase reduction

assumes that |u(t)| is infinitesimal, but in practice (2.1) is a good model for small

inputs. We will only consider inputs which are small enough that θ̇ > 0 for all

times; we view this as a necessary condition for the validity of the model. As is

typical for realistic neuron models, we also assume that Z(θ) has isolated roots and

furthermore, we assume that there does not exist τ1, τ2 : 0 ≤ τ1 < τ2 ≤ t1 such

that Z(θ(t))f ′(θ(t)) = Z ′(θ(t))f(θ(t)), ∀t ∈ [τ1, τ2]. In the common case where

f(θ) = ω > 0, this means that the PRC should not be constant on an interval

which is true for almost all realistic neuron models. We use this assumption later
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in Lemma 2.2.1 to prove that a particular function of Z(θ) that is of interest also

has isolated roots. We note that this assumption is valid for most realistic neuron

models in the literature.

The objective here is to find the control input u(t) that, when bounded to

be less than a certain value ū in magnitude, i.e. |u(t)| ≤ ū, would result in the

minimum/maximum value of t1. This is an optimization problem in which the

next spike time t1 needs to be extremized. This yields C(t1) =
∫ t1

0
1 dt as the cost

function for this system. We will solve this problem for two different cases: with

and without a charge-balance constraint imposed on the control input. The charge-

balance constraint can be mathematically expressed as
∫ t1

0
u(t)dt = 0. In order to

simplify the upcoming calculations, we restate this constraint as follows.

Let q̇ = u(t). Integrating both sides of this equation from 0 to t1, we obtain

q(t1)− q(0) =

∫ t1

0

u(τ)dτ.

For the charge-balance constraint to hold we need the righthand side of this equation

to be zero. This means q(t1) = q(0), and assuming that the input is being applied

from time t = 0, which implies q(0) = 0, we have q(t1) = q(0) = 0.

Summarizing, we seek a control input u(t), which extremizes

C(t1) =

∫ t1

0

1 dt,

with the following constraints:

θ̇ = f(θ) + Z(θ)u(t), θ(0) = 0, θ(t1) = 2π,

q̇ = u(t), |u(t)| ≤ ū, q(0) = 0, q(t1) = 0.

(2.2)
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The Hamiltonian associated with this system is

H(θ, q, λ1, λ2, u) = 1 + λ1(f(θ) + Z(θ)u(t)) + λ2u(t), (2.3)

where λ1 and λ2 are the Lagrange multipliers or the co-states for this system. To

obtain the necessary conditions for optimality one can use the Hamiltonian in (2.3)

and write

θ̇ =
∂H

∂λ1

⇒ θ̇ = f(θ) + Z(θ)u(t), (2.4)

λ̇1 = −∂H
∂θ

⇒ λ̇1 = −λ1(f ′(θ) + Z ′(θ)u(t)), (2.5)

q̇ =
∂H

∂λ2

⇒ q̇ = u(t), (2.6)

λ̇2 = −∂H
∂q

⇒ λ̇2 = 0, (2.7)

where prime represents differentiation with respect to θ [47, 48].

The optimal control for this problem is obtained from Pontryagin’s minimum

principle [47,48] as

u∗(t) = argM|u(t)|≤ū (1 + λ∗1 (f(θ∗) + Z(θ∗)u(t)) + λ∗2u(t)) ,

whereM∈ {min,max}. This yields the following equations for the optimal control

input, u∗(t), for the cases of minimizing the ISI (or t1) of the neuron and maximizing

it:

u∗(t) = −sign[λ∗1Z(θ∗) + λ∗2]ū for the min. problem, (2.8)

u∗(t) = +sign[λ∗1Z(θ∗) + λ∗2]ū for the max. problem. (2.9)

The star superscript indicates the optimal trajectories or functions. Equations (2.8)

and (2.9) indicate that the magnitude of the optimal control is always equal to its
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bound and that only its sign changes with respect to time. This solution, known

as bang-bang control, is expected since the objective here is to achieve extreme

final time, and thus one expects maximum effort from the control stimulus. These

equations hold because (λ1Z(θ) + λ2) only has isolated roots, as follows:

Lemma 2.2.1 Suppose Z(θ) has isolated roots and that there does not exist τ1, τ2 :

0 ≤ τ1 < τ2 ≤ t1 such that Z(θ(t))f ′(θ(t)) = Z ′(θ(t))f(θ(t)), ∀t ∈ [τ1, τ2]. Then,

the roots of λ1Z(θ) + λ2 are isolated.

Proof By contradiction, assume that ∃ τ1, τ2 : 0 ≤ τ1 < τ2 ≤ t1 such that λ1Z(θ)+

λ2 ≡ 0 ∀t ∈ [τ1, τ2]. Taking the derivative of this with respect to time, one gets

λ̇1Z + λ1Z
′θ̇ ≡ 0. Substituting for λ̇1 from (2.5) and θ̇ from (2.4), dividing both

sides by λ1, and simplifying the results, we get Zf ′ = Z ′f which contradicts the

prior assumptions.

Minimizing the ISI corresponds to speeding up the neuron dynamics, whereas

maximizing it corresponds to slowing it down. Equations (2.4)-(2.7) are ordinary

differential equations (ODEs) that need to be solved in order to evaluate the optimal

control equations (2.8) and (2.9). When solving the system, we have these four

ODEs along with one of the last two algebraic equations for u∗(t), depending on

which optimization problem is being considered. This makes five equations with six

unknowns: θ∗(t), λ∗1(t), q∗(t), λ∗2(t), u∗(t), and the next spike time t1. So we need

one more equation to be able to solve this problem. This sixth equation is obtained

from the fact that in the absence of any end point cost on the states of the system,
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the final value of the Hamiltonian evaluated along the optimal trajectories needs

to be zero, regardless of whether the minimization problem or the maximization

problem is considered [47,48]. This can be stated mathematically as

H(θ∗(t1), λ∗1(t1), q∗(t1), λ∗2(t1), u∗(t1)) = 0. (2.10)

Equations (2.4)-(2.8)/(2.9) together with (2.10) comprise a two point boundary

value problem (TPBVP) where the boundary values for θ(t) and q(t) are given in

(2.2). We note that since (2.4)-(2.7) are a Hamiltonian system, (2.10) holds for

all t ∈ [0 , t1]. The total input energy associated with the optimal control can be

obtained by

E(u∗, t1) =

∫ t1

0

[u∗(t)]2dt = t1ū
2.

In order to solve this problem we substitute (2.8) and (2.9) into (2.4) and (2.5)

to get

θ̇ = f(θ)∓ Z(θ)sign[λ1Z(θ) + λ2]ū, (2.11)

λ̇1 = −λ1 (f ′(θ)∓ Z ′(θ)sign[λ1Z(θ) + λ2]ū) , (2.12)

where, here and elsewhere, the top signs are for the minimization problem and

the bottom signs are for the maximization problem. In the minimization (resp.,

maximization) problem, the average angular velocity of the system with external

stimulus has to be larger (resp., smaller) than that of the system running without

any external stimuli. In other words, when the system is stimulated, θ(t) goes from

zero to 2π in time t1 < T (resp., t1 > T ), where T is the natural period of the system

without any stimuli. So if we integrate both the stimulated and the unstimulated
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systems from t = 0 to t = t1, while the stimulated system reaches θ(t1) = 2π, the

unstimulated system reaches θ(t1) < 2π in the minimization problem and θ(t1) > 2π

in the maximization problem. Therefore, from (2.11) we can write

1

t1

∫ t1

0

{f(θ)− Z(θ) sign[λ1Z(θ) + λ2] ū} dt > 1

t1

∫ t1

0

f(θ) dt ≥ 0

for the minimization problem, and

0 ≤ 1

t1

∫ t1

0

{f(θ) + Z(θ)sign[λ1Z(θ) + λ2] ū} dt < 1

t1

∫ t1

0

f(θ) dt

for the maximization problem. In the limit as ū → 0, i.e., the external stimulus

vanishes, t1 → T and the strict inequalities become equalities. For ū 6= 0, these

equations yield

∫ t1

0

Z(θ)sign[λ1Z(θ) + λ2]dt ≤ 0. (2.13)

When the charge-balance constraint is imposed, we require the following relation-

ship to hold as well:

∫ t1
0
u(t) dt = ∓ū

∫ t1
0

sign[λ1Z(θ) + λ2]dt = 0

⇒
∫ t1

0
sign[λ1Z(θ) + λ2]dt = 0. (2.14)

Also, equations (2.3) and (2.10) in this case yield

λ1(t1) = − 1 + λ2u(t1)

f(2π) + Z(2π)u(t1)
. (2.15)

16



When the charge-balance constraint is not imposed, λ2 and q are eliminated

from the system equations. Then (2.13) becomes∫ t1

0

Z(θ)sign[λ1Z(θ)]dt ≤ 0. (2.16)

We note that, from (2.5), λ1 = 0 defines an invariant surface, so if λ1(0) < 0

then λ1 will remain negative, or if λ1(0) > 0 then λ1 will remain positive, i.e., λ1

is a uni-sign function. Therefore, in (2.16), sign[λ1Z(θ)] is either +sign[Z(θ)] or

−sign[Z(θ)], where the plus and the minus signs represent the sign of λ1(t). In

order to have (2.16) satisfied, necessarily, we must have λ1(t) < 0 for all t. This

simplifies (2.8) and (2.9) to

u∗(t) = ±sign [Z[θ∗(t)]] ū, (2.17)

for the case where charge-balance is not considered. This is in accordance with the

argument made in [16] which shows that the time optimal control (2.17) extremizes

the righthand side of (2.1) and so is a sufficient condition for achieving the extremum

of ISI.

2.3 Examples

We now solve this time optimal control problem for examples of Type I and

Type II neurons [49]. Type I neurons are those that have a non-negative PRC for

all phases, i.e., Z(θ) ≥ 0 for all θ. For these neurons, any positive (resp., negative)

impulsive input stimulus will advance (resp., retard) the phase regardless of the

time at which the stimulus is applied. For Type II neurons, on the other hand,
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the PRC takes both positive and negative values. Therefore, an impulsive input

stimulus could advance or retard the phase depending on the time at which it is

applied. The PRC for a neuron can be obtained experimentally, numerically, or in

some cases, analytically.

Specifically, we consider four different neuron models: the SNIPER model, theta

neuron model, sinusoidal model, and phase-reduced Hodgkin-Huxley model. The

SNIPER model arises when the periodic orbit corresponding to periodic firing of

the neuron comes from a Saddle-Node bifurcation of two fixed points on an Infinite

PERiod orbit (SNIPER bifurcation). Close to the bifurcation point one can ana-

lytically approximate the associated PRC; since this turns out to be non-negative,

it is a Type I PRC [32,34]. The theta neuron model generalizes the SNIPER model

to include the non-oscillatory regime [34]. On the other hand, if the bifurcation

which gives the periodic orbit corresponding to periodic firing of the neuron is a

saddle-node bifurcation of periodic orbits, then one can approximate the PRC as

sinusoidal, giving the sinusoidal model [32]; this corresponds to a Type II PRC.

Finally, the phase-reduced Hodgkin-Huxley model uses the PRC for the Hodgkin-

Huxley equations calculated numerically using XPPAUT (available as open source

software [1]), which solves the appropriate adjoint equations [2, 32].
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Figure 2.1: SNIPER PRC with Zd = 1

2.3.1 SNIPER Model

In this model, Z(θ) = Zd(1− cos(θ)) (see Figure 2.1) and f(θ) = ω = constant,

where Zd > 0 is a constant [32,34]. Equations (2.11) and (2.12) become

θ̇ = ω ∓ Zd(1− cos(θ))sign[λ1Zd(1− cos(θ)) + λ2]ū, (2.18)

λ̇1 = ±λ1Zd sin(θ)sign[λ1Zd(1− cos(θ)) + λ2]ū, (2.19)

where, as before, the signs on top are for the minimization problem, and those on

the bottom are for the maximization problem. We consider two cases, namely, with

the charge-balance constraint and without it.

With Charge-Balance Constraint: When the charge-balance constraint (2.14)

is imposed, equation (2.13) becomes

∫ t1

0

cos(θ)sign[λ1Zd(1− cos(θ)) + λ2] dt > 0. (2.20)

The solution that satisfies (2.20) and maximizes (resp., minimizes) the average
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angular velocity in the righthand side of (2.18) subject to (2.14), is one that the

function sign[·] varies according to the following:

sign[λ1(1− cos(θ)) + λ2] = −1, t1
4
≤ t ≤ 3t1

4
,

sign[λ1(1− cos(θ)) + λ2] = 1, otherwise.

(2.21)

To see this, we point out that maximizing (resp., minimizing) the average angu-

lar velocity in (2.18) amounts to minimizing the function
∫ t1

0
(1 − cos(θ))sign[·]dt.

Considering the graph of (1 − cos(θ)) in Figure 2.1, it is readily inferred that the

value of this integral is most effectively reduced if the sign[·] function is −1 when

(1− cos(θ)) has largest area under curve, that is for intermediate values of θ. Since

we also require (2.14), the sign[·] function has to change as indicated in (2.21) to

achieve most effective minimization. Note that in the presence of external stimuli,

even though θ(0) = 0 and θ(t1) = 2π, but θ( t1
4

) 6= π
2

and θ(3t1
4

) 6= 3π
2

as shown in

Figure 2.2. Equations (2.21) yield

u∗(t) = ±ū, t1
4
≤ t ≤ 3t1

4
,

u∗(t) = ∓ū, otherwise.

(2.22)

From (2.21), (2.18) and (2.19) become

θ̇ = ω ± Zd(1− cos(θ))ū, t1
4
≤ t ≤ 3t1

4
,

θ̇ = ω ∓ Zd(1− cos(θ))ū, otherwise,

(2.23)

λ̇1 = ∓λ1Zd sin(θ)ū t1
4
≤ t ≤ 3t1

4
,

λ̇1 = ±λ1Zd sin(θ)ū otherwise.

(2.24)
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These equations are symmetric about t = t1
2

, meaning that the (θ, λ1) trajectories

take on identical values for t = t1
2
− δ and t = t1

2
+ δ for all δ ∈ [0 , t1

2
], which

implies θ( t1
2

) = π and λ1(0) = λ1(t1). Since λ1 = 0 is an invariant set, λ1 is

either always positive or always negative. In order to determine the sign of λ1 we

note that we want to satisfy (2.21). Considering the shape of the PRC function in

Figure 2.1, one can verify that the only way to arrive at (2.21) is to have a negative

λ1(t) to flip and scale (1 − cos(θ)) function and a positive scalar value λ2 to shift

the product λ1(1 − cos(θ)) up along the vertical axis just enough for (2.21) to be

satisfied. This amounts to having λ1(0) < 0 with λ2 = −λ1( t1
4

)Zd(1− cos(θa)) > 0,

where θa = θ( t1
4

), for both the minimization and maximization problems.

From (2.15), we get

λ1(0) = − 1

ω
(1∓ λ2ū), (2.25)

where we have used the facts that Z(2π) = 0 and λ1(0) = λ1(t1). In order to have

λ1(0) < 0, from (2.25), we conclude that we must have λ2 <
1
ū
, which gives an

upper bound for λ2 for the minimization problem.

By symmetry, θ( t1
2

) = π. Thus, from (2.23), provided θ̇ > 0 for all times,

∫ t1/2

0

dt =

∫ θa

0

dθ

ω ∓ Zd(1− cos(θ))ū
+

∫ π

θa

dθ

ω ± Zd(1− cos(θ))ū
, (2.26)

where θa = θ( t1
4

). In order to solve equation (2.26) in terms of t1, first θa needs to

be determined. We realize that by construction, the first integral in (2.26) is valid

for t ∈ [0 , t1
4

) and the second integral is valid for t ∈ [ t1
4
, t1

2
]. So solving the first
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integral in (2.26), setting the result equal to t1
4

in the limit, and solving for θa, one

gets

θa = 2 arctan
[√

ω
ω−2Zdū

tan
(
t1
8

√
ω(ω − 2Zdū)

)]
, 0 ≤ ū < ω

2Zd

θa = 2 arctan
[
t1
8
ω
]
, ū = ω

2Zd

θa = 2 arctan
[√

ω
2Zdū−ω

tanh
(
t1
8

√
ω(2Zdū− ω)

)]
, ū > ω

2Zd

for the minimization problem and

θa = 2 arctan
[√

ω
2Zdū+ω

tan
(
t1
8

√
ω(2Zdū+ ω)

)]
, 0 ≤ ū < ω

2Zd

for the maximization problem. In both of these cases, when ū ≡ 0, t1 = T = 2π
ω

and

θa = π
2
. However, when ū 6= 0, 0 < θa <

π
2

for the minimization problem and π
2
<

θa < π for the maximization problem. Figure 2.2 shows the evolution of θ in time

for when ū ≡ 0 (intrinsic firing) and for when ū = 0.2 for both the minimization and

the maximization problems. Note that the time axis is scaled so that 0, π
2
, π, 3π

2
,

and 2π points on the horizontal axis correspond to t = 0, t1
4
, t1

2
, 3t1

4
, and t1,

respectively.

Now solving the second integral in (2.26) with these θa values results in the

following implicit expressions for t1:

t1
8

√
ω(2Zdū+ ω) = π

2
− arctan

[√
2Zdū+ω
ω−2Zdū

tan
(
t1
8

√
ω(ω − 2Zdū)

)]
, 0 ≤ ū < ω

2Zd

√
2

8
t1ω = π

2
− arctan

[√
2

8
t1ω
]
, ū = ω

2Zd

t1
8

√
ω(2Zdū+ ω) = π

2
− arctan

[√
2Zdū+ω
2Zdū−ω

tanh
(
t1
8

√
ω(2Zdū− ω)

)]
, ū > ω

2Zd

(2.27)
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Figure 2.2: Evolution of θ in time for ū ≡ 0 (solid gray line) corresponding to the neuron’s
intrinsic firing and ū = 0.2 for both the minimization (solid black line) and the maximization
(dashed line) problems. We see that at t = t1

4 , marked as π/2 on the scaled horizontal axis, when
ū ≡ 0, θ( t14 ) = π

2 , when ū 6= 0, for the minimization problem θ( t14 ) < π
2 and for the maximization

problem θ( t14 ) > π
2 .

for the minimization problem and

t1
8

√
ω(ω − 2Zdū) = π

2
− arctan

[√
ω−2Zdū
ω+2Zdū

tan
(
t1
8

√
ω(ω + 2Zdū)

)]
, 0 ≤ ū < ω

2Zd

(2.28)

for the maximization problem.

In order to find an explicit formula for t1, we Taylor expand (2.27) and (2.28)

for small ū and solve for t1 to obtain

t1 =
2π

ω
∓ 4Zd

ω2
ū+

πZ2
d

ω3
ū2 +O(ū3), (2.29)

where the top sign is for the minimization problem and the bottom sign for the

maximization problem.
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It is worth pointing out that in writing (2.26), we have assumed that θ̇ > 0 for all

times. Considering (2.23), we see that for the minimization problem, θ̇ > 0 implies

that when t /∈ [ t1
4
, 3t1

4
], we must have ū < ω

Zd(1−cos(θa))
for all ū. Lemmas 2.3.1

and 2.3.2 prove that regardless of ū this statement, which is equivalent to saying

θ̇ > 0, is always true, although we recall that the phase model is only valid for

sufficiently small ū. For the maximization problem, when t /∈ [ t1
4
, 3t1

4
], θ̇ is positive,

but when t ∈ [ t1
4
, 3t1

4
], θ̇ would be positive provided ū < ω

Zd(1−cos(π))
= ω

2Zd
.

Lemma 2.3.1 For the SNIPER model, for ω > 0, ū > ω
Zd

, and 0 < θ < π
2
,

ω − Zd(1− cos(θ))ū > 0 ⇔ 0 < tan

(
θ

2

)
<

√
ω

2Zdū− ω
. (2.30)

Proof Given the assumptions of the Lemma, one can write

ω − Zd(1− cos(θ))ū > 0 ⇔ cos(θ) > 1− ω

Zdū
⇔ θ < arccos

(
1− ω

Zdū

)
.

Let α = arccos(1− ω
Zdū

) < π
2
, then

cos2
(α

2

)
=

1

2
(1 + cos(α)) =

1

2

(
1 + 1− ω

Zdū

)
= 1− ω

2Zdū
,

sin2
(α

2

)
= 1− cos2

(α
2

)
=

ω

2Zdū
,

tan
(α

2

)
=

√
ω

2Zdū− ω
.
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Now one can write

0 < θ < α <
π

2
,

⇔ 0 <
θ

2
<
α

2
<
π

4
,

⇔ 0 ≤ tan

(
θ

2

)
< tan

(α
2

)
=

√
ω

2Zdū− ω
< 1,

so, (2.30) holds.

Lemma 2.3.2 Consider (2.23). For the minimization problem, we have

θ̇ > 0 ∀ū for 0 ≤ t ≤ t1
4

and
3t1
4
≤ t ≤ t1. (2.31)

Proof First consider 0 ≤ t ≤ t1
4

. We consider three cases: ū < ω
Zd

, ū = ω
Zd

, and

ū > ω
Zd

.

If ū < ω
Zd

, then min θ̇ = θ̇( t1
4

) = ω − Zd(1 − cos(θa))ū > ω − Zdū > 0 since

0 < θa < π/2. The last inequality follows from the fact that the input over this

time interval slows down the phase evolution of the neuron, so it does not reach a

quarter of its total desired phase change of 2π in a quarter of the total time t1.

If ū = ω
Zd

, then min θ̇ = θ̇( t1
4

) = ω cos(θa) > 0 as θa <
π
2

for the minimization

problem.

If ū > ω
Zd

, then let θ̄ = min(arccos(1 − ω
Zdū

), θa), where arccos(1 − ω
Zdū

) is where θ̇

becomes zero first and θa is where the control switches (before θ̇ becomes negative).

This way, we can say that for 0 < θ ≤ θ̄, we have θ̇ ≥ 0 and min θ̇ = ω − Zd(1 −
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cos(θ̄))ū. We can write:

∫ t̄
0
dt =

∫ θ̄
0

dθ
ω−Zd(1−cos(θ))ū

⇒ t̄ = 2√
ω(2Zdū−ω)

arctanh

[√
2Zdū−ω

ω
tan
(
θ̄
2

)]
, (2.32)

where t̄ is the time at which θ = θ̄. Now if θ̄ = θa, meaning t̄ = t1
4
< +∞ then we

must have 0 <
√

2Zdū−ω
ω

tan( θa
2

) < 1 for the arctanh(·) function to be real, which

from (2.30) implies θ̇( t1
4

) = ω − Zd(1− cos(θa))ū > 0.

However, if θ̄ → arccos(1 − ω
Zdū

) then it is inferred that t̄ < t1
4
< +∞. From

(2.32) we see that as θ̄ → arccos(1− ω
Zdū

), t̄→ +∞ which contradicts t̄ < t1
4
< +∞.

So t always reaches t1
4

before θ̇ becomes negative. We remark that by symmetry,

these results also imply that θ̇ > 0 for 3t1
4
≤ t ≤ t1.

Without Charge-Balance Constraint: When the charge-balance constraint is

not imposed the optimal current is given by (2.17). For the SNIPER PRC, this

optimal current further simplifies to

u∗(t) = ±ū, (2.33)

resulting in

θ̇ = ω ± Zd(1− cos(θ))ū. (2.34)

Since the PRC is symmetric about θ = π, one can integrate this equation and

write
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∫ t1/2

0

dt =

∫ π

0

dθ

ω ± Zd(1− cos(θ))ū
,

which yields

t1 =
2π√

ω(ω ± 2Zdū)
. (2.35)

It should be noted that in order to make sure θ̇ in (2.34) is always positive, for the

maximization problem, we must have ū < ω
2Zd

.

Figure 2.3(a) shows the extreme values for the ISI (or t1) as a function of ū for

this model. As can be seen in this figure, applying the charge-balance constraint

has a notable effect on the value of the extreme t1. This is due to the fact that

the optimal control inputs that we achieve with this model without imposing the

charge-balance constraint are always either positive or negative, and thus very

different from the charge-balanced control inputs.

2.3.2 Theta Neuron Model

In this model, Z(θ) = 1 − cos(θ) and f(θ) = 1 + cos(θ) + Ib(1 − cos(θ)). In

the absence of control input, the dynamics of this neuron model are such that for

Ib > 0 the neuron fires periodically with a natural angular velocity of ω = 2
√
Ib.

However, when Ib < 0, the neuron is said to be excitable, i.e., upon injection of

some appropriate input stimuli it would start to fire periodically; otherwise it would

not fire at all [16, 34].

In order to investigate the effect of a control input on the firing time of the
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Figure 2.3: Extreme ISI (or t1) values as functions of the control bound ū. (a-c) Results for
the SNIPER, theta neuron, and sinusoidal models, respectively. For these results, ω = 1 rad/s,
Zd = 1, and Ib = 0.5 have been chosen where applicable. The solid lines are the extreme t1 for
the charge-balanced optimal control case for the maximization (top solid line) and minimization
(bottom solid line) problems obtained from the analytical formulas provided in the text. The
dashed lines are the results without the charge-balance constraint. (For the sinusoidal model,
since the results with or without the charge-balance constraint are identical, the dashed lines
have not been shown.) The dotted lines are the second order approximations for t1 while the
star and circle markers are the results obtained from numerical simulation for the cases with and
without the charge-balance constraint, respectively. (d) Numerical results for the phase-reduced
Hodgkin-Huxley model with standard parameters given in Appendix C, where again the solid
lines and the star markers are for the case with the charge-balance constraint and the dashed
lines and the circle markers are for the case without the constraint. We see that the constraint
has negligible effect on the results for this model.
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neuron, we again consider two cases, namely, a control input with charge-balance

constraint and one without it.

With Charge-Balance Constraint: Since this model has the same PRC as the

SNIPER model (with Zd = 1), similar arguments can be used to arrive at (2.21)

and (2.22), giving

θ̇ = (1 + Ib ± ū) + cos(θ) (1− (Ib ± ū)) , t1
4
≤ t ≤ 3t1

4
,

θ̇ = (1 + Ib ∓ ū) + cos(θ) (1− (Ib ∓ ū)) , otherwise,

(2.36)

λ̇1 = −λ1 sin(θ)(Ib ± ū− 1), t1
4
≤ t ≤ 3t1

4
,

λ̇1 = −λ1 sin(θ)(Ib ∓ ū− 1), otherwise.

(2.37)

As in the case of SNIPER model, due to the symmetry that these equations

have about t = t1
2

, we have θ( t1
2

) = π and λ1(0) = λ1(t1). Also λ1 is either always

negative or always positive. By considering the shape of the PRC, one can easily

verify that we need λ1(0) < 0 together with λ2 = −λ1( t1
4

)(1− cos(θa)) > 0, where

θa = θ( t1
4

), in order to satisfy (2.21) for both the minimization and maximization

problems.

Furthermore, we want to make sure that θ̇ > 0 for all 0 < t < t1. Consider-

ing (2.36), for the minimization problem, when t ∈ [ t1
4
, 3t1

4
], θ̇ would be positive

provided (Ib + ū) > −1+cos(π)
1−cos(π)

= 0. For t /∈ [ t1
4
, 3t1

4
], we need (Ib − ū) > −1+cos(θa)

1−cos(θa)

in order to guarantee a positive θ̇. Lemma 2.3.3 proves that for arbitrary (Ib − ū)

this criterion is always satisfied. In summary, for the minimization problem, taking

Ib + ū > 0 will guarantee that θ̇ > 0 for all times.
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Similarly, for the maximization problem, one arrives at the requirement that

Ib − ū > 0 (which means Ib + ū > 0 since ū > 0) for a positive θ̇.

Lemma 2.3.3 For the minimization problem of the theta neuron model, when 0 ≤

t ≤ t1
4

, for arbitrary Ib − ū we have

θ̇ = (1 + Ib − ū) + cos(θ)(1− (Ib − ū)) > 0 ∀ ū ≥ 0. (2.38)

Proof For Ib − ū > 0, this is trivial, because one can easily rearrange (2.38) and

write θ̇ = 1 + cos(θ) + (Ib − ū)(1 − cos(θ)), which is exactly the equation for a

non-stimulated theta neuron model with (Ib − ū) substituted for Ib.

For Ib − ū ≤ 0, when θ = 0 we have θ̇ = 2 > 0. So, for θ̇ to become negative,

it has to become zero first. Assume at t = t̄ < +∞, θ(t̄) = θ̄ = arccos( Ib−ū+1
Ib−ū−1

) for

which θ̇ vanishes. Integrating the system in (2.38), we obtain

t̄ =
1√
ū− Ib

arctanh

[√
ū− Ib tan

(
θ̄

2

)]
. (2.39)

Now if θ(t̄)→ arccos( Ib−ū+1
Ib−ū−1

) then, using the identity cos(θ) = 2 cos2( θ
2
)−1, one can

easily verify that tan( θ̄
2
) →

√
1

ū−Ib
, implying t̄ → +∞, which in turn contradicts

the assumption of t̄ being finite. Thus, θ̇ > 0 for 0 ≤ t ≤ t1
4

and θa < θ̄ regardless

of how negative (Ib − ū) is.

In order to obtain an analytical solution for t1, one can perform similar calcu-

lations as for the SNIPER model case by writing
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∫ t1/2

0

dt =

∫ θa

0

dθ

(1 + Ib ± ū) + cos(θ) (1− (Ib ± ū))
+

+

∫ π

θa

dθ

(1 + Ib ∓ ū) + cos(θ) (1− (Ib ∓ ū))
,

where θa = θ( t1
4

), giving the following implicit formulas for t1:

t1
4

√
Ib + ū = π

2
− arctan

[√
Ib+ū
Ib−ū

tan
(
t1
4

√
Ib − ū

)]
, Ib − ū > 0

t1
4

√
2Ib = π

2
− arctan

[
t1
4

√
2Ib
]
, Ib = ū

t1
4

√
Ib + ū = π

2
− arctan

[√
ū+Ib
ū−Ib

tanh
(
t1
4

√
ū− Ib

)]
, Ib − ū < 0

(2.40)

for the minimization problem, where Ib + ū > 0, and

t1
4

√
Ib − ū = π

2
− arctan

[√
Ib−ū
Ib+ū

tan
(
t1
4

√
Ib + ū

)]
, Ib − ū > 0 (2.41)

for the maximization problem.

In order to find an explicit formula for t1, we Taylor expand the first equation

in (2.40) and (2.41) for small ū and solve for t1 to obtain

t1 =
π√
Ib
∓ I−

3
2

b ū+
π

8
I
− 5

2
b ū2 +O(ū3), (2.42)

where the top sign is for the minimization problem and the bottom sign for the

maximization problem. We note that, for the minimization problem, for Ib− ū ≤ 0,

we do not have an approximation for t1. We cannot use the second and third

equations in (2.40) for small ū as they lead to Ib + ū ≤ 0 in the limit ū → 0,

violating the validity domain for (2.40).

31



Without Charge-Balance Constraint: Since the theta neuron model has a

PRC with the same shape as for the SNIPER model, when the charge-balance

constraint is not imposed the optimal control input would be the same as (2.33),

resulting in:

t1
2

=

∫ π

0

dθ

1 + cos(θ) + (1− cos(θ))(Ib ± ū)
.

This yields

t1 =
π√
Ib ± ū

, Ib ± ū > 0. (2.43)

We point out that when the charge-balance constraint is not imposed, we need to

have Ib + ū > 0 for the minimization problem, and Ib− ū > 0 for the maximization

problem in order to have oscillatory motion; this is analogous to the requirement

for Ib in the absence of a control input.

Figure 2.3(b) shows the extreme values for ISI (or t1) as a function of ū for this

model. We see that applying the charge-balance constraint has a notable effect on

the value of the extreme t1. This is due to the fact that the optimal control inputs

that we achieve with this model when the charge-balance constraint is not imposed

are, similar to the SNIPER model case, always either positive or negative and thus

very different from the charge-balanced control inputs.
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2.3.3 Sinusoidal Model

In this model, Z(θ) = Zd sin(θ) and f(θ) = ω = constant, where Zd > 0 is a

constant. The PRC for this model is perfectly symmetric with respect to the point

θ = π. If one attempts to solve the time optimization problem without considering

the charge-balance constraint, one would use (2.17) for the optimal control input.

This yields

θ̇ = ω ± Zd sin(θ)ū, 0 ≤ θ < π,

θ̇ = ω ∓ Zd sin(θ)ū, π ≤ θ < 2π.

(2.44)

In addition, considering the symmetry of the PRC about θ = π, it follows that

if the system is to evolve from θ(0) = 0 to θ(t1) = 2π, then it would satisfy

θ( t1
2

) = π. This means that the optimal current in (2.17) changes sign at t = t1
2

,

which implies that it is actually charge-balanced. If one solves the Euler-Lagrange

equations in (2.4)-(2.8)/(2.9), one would get λ2 ≡ 0 for this model, which implies

that the optimal control inputs are always charge-balanced regardless of imposing

the charge-balance constraint or not.

In this model, when 0 ≤ θ ≤ π, θ̇ takes on identical values with respect to θ = π
2
,

i.e., θ̇(π
2
− δ) = θ̇(π

2
+ δ) for δ ∈ [0 , π

2
]. This means that θ evolves from 0 to π

2
in

exactly the same time as it evolves from π
2

to π, which implies that θ(t = t1
4

) = π
2
.

Also, we want to make sure that θ̇ > 0 for all times. This is always the case for

the minimization problem, but for the maximization problem it will only hold if

ū < ω
Zd

.
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One can now calculate the optimal spiking time by integrating (2.44):

∫ t1/4

0

dt =

∫ π/2

0

dθ

ω ± Zd sin(θ)ū
.

This yields

t1 = 8√
ω2−Z2

d ū
2

arctan
[√

ω−Zdū
ω+Zdū

]
, 0 ≤ ū < ω

Zd

t1 = 4
ω
, ū = ω

Zd

t1 = 8√
Z2
d ū

2−ω2
arctanh

[√
Zdū−ω
Zdū+ω

]
, ū > ω

Zd

(2.45)

for the minimization problem, and

t1 = 8√
ω2−Z2

d ū
2

arctan
[√

ω+Zdū
ω−Zdū

]
, 0 ≤ ū < ω

Zd
(2.46)

for the maximization problem.

In order to find an approximation to t1, we Taylor expand (2.45) and (2.46) for

small ū and solve for t1 to obtain

t1 =
2π

ω
∓ 4Zd

ω2
ū+

πZ2
d

ω3
ū2 +O(ū3). (2.47)

Figure 2.3(c) shows the extreme values for the ISI (or t1) as a function of ū for

this model. As mentioned before, applying the charge-balance constraint here has

no effect on the value of the extreme t1. This is due to the fact that the optimal

control inputs that we achieve with the sinusoidal model without imposing the

charge-balance constraint are exactly charge-balanced themselves.
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2.3.4 Phase-Reduced Hodgkin-Huxley Model

The Hodgkin-Huxley equations are a conductance-based model for neurons pro-

posed in 1952 as a result of a series of experiments on the giant axon of a squid [50].

This model has become the prototypical model for neuronal membrane dynamics.

Although not representing human brain neurons, the Hodgkin-Huxley model ex-

hibits oscillatory behavior, as do human motor control neurons in the thalamus

and basal ganglia regions of the brain. The equations and parameters of this model

are presented in Appendix C.

The PRC for this model has been calculated numerically using XPPAUT [2]

with time steps of 0.005 ms, see Figure 2.4. The specifics of this PRC are:

Z(0) = Z(2π) = 7.7× 10−5,

Z(0.354) = Z(4.120) = 0,

Z(θ) < 0 0.354 < θ < 4.120,

Z(θ) > 0 otherwise.

Due to the complex shape of this PRC, very little can be said analytically. Thus,

we present numerical results for the time optimal problem for this neuron model.

In this model, for the parameters that we use, f(θ) = ω = 0.429 rad/ms = constant

which results in T = 14.63 ms.

With Charge-Balance Constraint: To solve the TPBVP in this case, given a

ū, we initially guess arbitrary values for λ1(0) and t1. We calculate λ2 from (2.15)

with u∗(t1) = ū, and we solve the system of ODE’s (2.4)-(2.7) for 0 ≤ t ≤ t1
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Figure 2.4: Hodgkin-Huxley PRC, obtained numerically using XPPAUT with Ib = 10

using a shooting method. In this shooting method, we solve the system and if

θ(t1) < 2π, we increase t1 by a certain dt and if θ(t1) > 2π we decrease t1 by dt

until |θ(t1) − 2π| < ε1 where ε1 is a predefined tolerance. In other words, we keep

shooting the system with different t1 values until we reach the t1 that would satisfy

this inequality. We note here that in this process, when an upper bound and a

lower bound for t1 is found, the actual value of t1 is then found by employing the

bisection method. Now if q(t1) 6= 0, we conclude that the original guess for λ1(0)

had been incorrect. So we perform another shooting process for λ1(0) exactly like

the one for t1, until we find the upper and lower bounds of λ1(0). We then employ

the bisection method to converge to the correct λ1(0) for which |q(t1)| < ε2, where

ε2 is a predefined tolerance. Figure 2.5 shows the results for this model for ū = 0.2.

We used fourth order Runge-Kutta for numerical integration.

Without Charge-Balance Constraint: In this case, λ2 ≡ 0 and the optimal

control is simply given by (2.17).
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Figure 2.3(d) shows the extreme values for the ISI (or t1) as a function of ū for

this model. We see that applying the charge-balance constraint has little effect on

the value of the extreme t1. This is due to the fact that the optimal control inputs

that we achieve with the phase-reduced Hodgkin-Huxley model without imposing

the charge-balance constraint are almost charge-balanced themselves.

In order to see the performance of the phase reduction technique and the phase-

reduced Hodgkin-Huxley model, we have solved the phase-reduced model for a

number of different ū values and have obtained the optimal input for each of them.

We have then applied these inputs to the full Hodgkin-Huxley equations, given

in Appendix C, and have computed the resulting ISI values t1,full, to compare

with those for the phase-reduced model t1,prm. Figure 2.6 shows the results of

this investigation. Recall that the natural period of oscillation for this model is

T = 14.63 ms. The phase-reduced model yields accuracy for δt to within one

percent for ū ≤ 0.3 for the maximization problem and for much larger ū for the

minimization problem.

2.4 Discussion

We investigated the time optimal control problem for phase models of spiking

neurons for which the input is constrained between prespecified upper and lower

bounds. The dynamical equations were derived from the Hamiltonian for the sys-

tem, and the control inputs obtained from Pontryagin’s minimum principle, which

gives bang-bang control. The problem was considered for two cases: with a charge-
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Figure 2.5: Optimal control for the Hodgkin-Huxley model with the charge-balance constraint
imposed for the minimization problem (top) and the maximization problem (bottom). The control
bound was set ū = 0.2. In the case of the maximization problem, the optimal control has a spike
at (2π/t1)t ≈ 0.66 which is due to a small dent in the PRC for this model at the corresponding
location.
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Figure 2.6: Comparison between the phase-reduced Hodgkin-Huxley model and the full Hodgkin-
Huxley model. δt = t1,full − t1,prm is the difference between the t1 value calculated from the full
model and the t1 value obtained from the phase-reduced model when the u∗(t) obtained from the
phase-reduced model is used as the input to both models. The solid lines with asterisk markers
represent the case with the charge-balance constraint and the dashed lines with circle markers
represent the case without the constraint. Also, the two top lines are for the maximization problem
and the two bottom lines are for the minimization problem.
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balance constraint imposed on the input, and without it. Here the charge-balance

constraint ensures that the total electrical charge that is transferred to the neural

tissue is zero over the course of one cycle of control input; this is important to

prevent neural tissue damage. Analytical expressions for the ISI were derived for

these two cases for the SNIPER, theta neuron, and sinusoidal models.

We looked at the SNIPER model as a simplified version of the theta neuron

model and as a platform for describing the details of our control strategy. Specifi-

cally, we found that in order to have θ̇ > 0 at all times, we do not need to limit our

control input if the minimization problem is considered. However, when considering

the maximization problem, θ̇ > 0 implies that ū < ω
2Zd

. The ISI values are then

found from (2.27)-(2.29) when the charge-balance constraint is imposed and from

(2.35) when the constraint is not imposed.

In the theta neuron model, Ib ± ū > 0 guarantees θ̇ > 0 for all time. The

ISI values are then found from (2.40)-(2.42) when the charge-balance constraint is

imposed and from (2.43) when the constraint is not imposed.

The sinusoidal model was considered as a simple, yet very insightful, Type

II neuron model. It was found that regardless of imposing the charge-balance

constraint, the optimal inputs always come out charge-balanced. This is due to the

symmetry of the PRC, the equations (2.44), as well as the fact that the sinusoidal

PRC has equal positive and negative intervals. Due to these specifications, the

control input found from the bang-bang optimal control method are always charge-

balanced. We note that to ensure θ̇ > 0 for all time, we need to have ū < ω
Zd

for the
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maximization problem, but no such condition on ū for the minimization problem.

This yields (2.45)-(2.47) as the ISI values.

We also considered the phase-reduced Hodgkin-Huxley model as a more realistic

model for neuronal membrane dynamics and found out that the control input in

both cases of with and without the charge-balance constraint are very close to each

other. The results from the sinusoidal and Hodgkin-Huxley models suggest that

control inputs found for Type II neurons can be almost charge-balanced even when

the constraint is not imposed.

We also presented numerical results for the phase-reduced Hodgkin-Huxley

model as well as for the three other models mentioned. These numerical results

agree well with the analytical computations. The performance of the phase reduc-

tion method was validated through the close agreement of the ISI values obtained

by using the same computed control input for both the phase-reduced and the full

Hodgkin-Huxley models.

The results for the ISI presented here are the minimum and maximum values

that one can achieve with bounded input stimuli for the aforementioned neuron

models on a single neuron level. However, one may consider the problem of finding

the ū that would achieve a prespecified ISI value t1. We note that depending on

the t1, a ū may or may not exist. If, for example, we consider a t1 significantly

larger than the neuron’s natural period T , then there would not be a ū that would

result in t1 while satisfying the condition θ̇ > 0. As another example, if t1 � T ,

the ū needed for this would be large and hence outside of the range of validity of
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phase models as these models are only valid for small inputs. If we choose t1 ≈ T ,

there will be a ū for the problem, but determining the specific value is not trivial;

in particular cases, one can use equations (2.29), (2.35), (2.42), (2.43), or (2.47) to

find an estimate for or the exact value of the ū.

We note that one can use these results as a foundation for considering the control

of a population of neurons. In particular, one can gain insight about the maximum

capability of treatment procedures like deep brain stimulation when input stimuli

are bounded so as to account for potential practical limitations for the hardware in

delivering the input stimulus, as well as the endurance of the biological tissue close

to the injection apparatus.
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Chapter 3

Energy Optimal Control of

Spiking Neurons

In this chapter, we consider regulating the interspike interval for phase models

of neurons by designing event-based minimum energy control stimuli that would be

applied at the onset of an action potential and optimally change the next spiking

time for the neuron. We show simulation results for implementing the designed

control on the phase models considered in Chapter 2. The control is constrained to

be charge-balanced, i.e., to have a zero net integral over the period of application.

The organization of this chapter is as follows. After a brief introduction in

Section 3.1, the model equations are presented and the minimum energy control

formulation is derived using a calculus of variations method in Section 3.2. In Sec-

tion 3.3, several examples are considered for which the results of implementing the

derived optimal control are shown. The results are discussed further in Section 3.4.
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The main results from this chapter were partially published in [17,19].

3.1 Introduction

The motivation for designing event-based minimum energy input stimuli comes

from the desire to increase battery life for implanted neurostimulators for deep

brain stimulation applications. In addition to the fact that the input stimulus is

one that uses minimum energy, its event-based nature results in its application only

when an action potential is detected, hence a fewer number of applications. The

importance of this is more evident when a population of neurons is considered. In

a population setting, the event-based feature of the control could result in consid-

erably fewer number of applications, as the triggering event would be the crossing

of some threshold by the mean field voltage.

From a clinical standpoint, charge-balanced inputs are important because they

preserve the internal electrical balance in the neuron and reduce the amount of

irreversible Faradaic reduction-oxidation reactions at the electrode-brain interface,

thus considerably limiting the formation of toxic products over time.

3.2 Model equations

Consider the phase model presented in (2.1):

dθ

dt
= f(θ) + Z(θ)u(t), (3.1)
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where, f(θ) represents the neuron’s baseline dynamics, Z(θ) is the Phase Response

Curve (PRC) of the neuron, and u(t) = I(t)/c is the input stimulus with c repre-

senting the membrane capacitance. Also, θ(t) ∈ [0, 2π) is the neuron’s phase, and

by convention θ = 0 corresponds to the spiking of the neuron.

Without loss of generality, we assume that the neuron fires at t = 0. Our

objective is to find the optimal input stimulus to the neuron so that it fires at the

prespecified desired time t1. This means that we require,

θ(0) = 0, θ(t1) = 2π. (3.2)

Here we present an event-based control scheme that, after detecting a spike at

time t∗, stimulates the neuron with a pre-computed charge-balanced energy optimal

waveform in order to drive the neuron to spike next at t1 > t∗. Without loss of

generality, we can take t∗ = 0.

Consider the phase model (3.1) for a spiking neuron augmented by an additional

dynamic state q as,

θ̇ = f(θ) + Z(θ)u(t),

q̇ = u(t),

θ(0) = 0,

q(0) = 0,

(3.3)

where q is simply the integral of the total stimulus delivered to the neuron [17]. In

order to achieve charge-balance, q must equal zero after the control waveform is

applied.

The total input energy to the system is the integral of the square of the input
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stimulus over the time horizon of [0, t1], scaled by the equivalent circuit impedance.

The optimality criterion is to minimize this total input energy. So, for a specified

spike time t1, from the set of all stimuli u(t) which evolve θ(t) via (3.1) from

θ(0) = 0 to θ(t1) = 2π, we want to find the stimulus which minimizes the following

cost function:

G[u(t)] =

∫ t1

0

[u(t)]2dt, (3.4)

and yields q(t1) = 0. Other optimality criteria lead to other cost functions, but can

be handled similarly (cf. [51]).

We apply calculus of variations to minimize [44]

C[Φ(t), Φ̇(t), u(t)] =

∫ t1

0

[u(t)]2 + [λ1(t) λ2(t)] ·

f(θ) + Z(θ)u(t)− θ̇

u(t)− q̇


︸ ︷︷ ︸

L[Φ,Φ̇,u(t)]

dt,

(3.5)

where Φ(t) = [θ(t), q(t), λ1(t), λ2(t)]T . The Lagrange multipliers λ1(t) and λ2(t)

force the dynamics to satisfy (3.3).

Using vector notation, the associated Euler-Lagrange equations are:

∂L
∂u

=
d

dt

(
∂L
∂u̇

)
,

∂L
∂Φ

=
d

dt

(
∂L
∂Φ̇

)
,
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so that

u(t) = −λ1(t)Z(θ) + λ2(t)

2
, (3.6)

θ̇ = f(θ)− λ1(t)[Z(θ)]2 + λ2(t)Z(θ)

2
, (3.7)

q̇ = u(t) = −λ1(t)Z(θ) + λ2(t)

2
, (3.8)

λ̇1 = −λ1(t)f ′(θ) +
[λ1(t)]2Z(θ)Z ′(θ) + λ1(t)λ2(t)Z ′(θ)

2
, (3.9)

λ̇2 = 0, (3.10)

where ′ = d/dθ. To find the optimal u(t), (3.7)-(3.10) need to be solved subject to

the conditions

θ(0) = 0, θ(t1) = 2π, q(0) = 0, q(t1) = 0. (3.11)

This is a two point boundary value problem (TPBVP) where the boundary values

for θ(t) and q(t) are given in (3.11). In most realistic models of neurons, the baseline

dynamics of the neuron is represented by a constant positive scalar ω, indicating

periodic spiking at a fixed rate. For the following analytical derivations, we assume

that f(θ) = ω > 0. However, we present numerical results for the theta neuron

model which is an example with nonconstant f(θ).

Theorem 3.2.1 Suppose Z(0) = 0 and f(θ) = ω > 0. Then, for given values

t1 and λ2, there is a unique trajectory solving the Euler-Lagrange equations (3.7)-

(3.10) with boundary conditions (3.11).

Proof From (3.10), λ2 is a constant. Therefore, for the 2-dimensional system

46



(3.7,3.9) the Hamiltonian

h(θ, λ1) = λ1(t)ω − [λ1(t)]2[Z(θ)]2

4
− λ1(t)λ2Z(θ)

2
(3.12)

is conserved along the solutions (θ(t), λ1(t)). Letting

h0 = h(θ(0), λ1(0)) = h(0, λ1(0)),

we have

λ1(t)ω − [λ1(t)]2[Z(θ)]2

4
− λ1(t)λ2Z(θ)

2
− h0 = 0. (3.13)

We first demonstrate that

dθ

dt
> 0, (3.14)

as follows. Consider a trajectory {(θ(t), λ1(t))}, 0 ≤ t ≤ τ with θ(τ) = 2π and

which solves (3.7),(3.9). From (3.7), we have dθ
dt
|t=0 > 0. Now assume in point

of contradiction that there exists a time 0 < t̂ < τ such that dθ
dt
|t=t̂ < 0. Since

θ(τ) = 2π, in this case there also exists a phase θ̄ < 2π such that θ(t) = θ̄ for three

distinct times between 0 and τ . A quick sketch in the (θ, λ1) plane shows that,

since any trajectory {(θ(t), λ1(t))} is not self-intersecting, the trajectory under our

assumption contains three distinct points (θ̄, λ
(j)
1 ), j = 1, 2, 3. However, the trajec-

tory must also be a level set of the Hamiltonian; from (3.13), which is quadratic in

λ1, such a level set contains at most two points (θ, λ1) for any value of θ. Therefore,

a contradiction has been reached, and (3.14) follows.

Now, multiplying (3.13) by [Z(θ)]2 and rearranging we get

(
[λ1(t)][Z(θ)]2

)2
+ (2λ2Z(θ)− 4ω)

(
λ1(t)[Z(θ)]2

)
+ 4h0[Z(θ)]2 = 0.
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Solving for λ1(t)[Z(θ)]2 yields

λ1(t)[Z(θ)]2 = −(λ2Z(θ)− 2ω)±
√

(λ2Z(θ)− 2ω)2 − 4h0[Z(θ)]2. (3.15)

From (3.7) and (3.14), λ1(t)[Z(θ)]2 < −(λ2Z(θ)−2ω). Thus, in (3.15) the valid

solution is the minus branch, i.e.,

λ1(t)[Z(θ)]2 = −(λ2Z(θ)− 2ω)−
√

(λ2Z(θ)− 2ω)2 − 4h0[Z(θ)]2. (3.16)

Now, from (3.7) we can write

t1 =

∫ t1

0

dt =

∫ 2π

0

dθ

ω − λ1(t)[Z(θ)]2+λ2Z(θ)
2

=

∫ 2π

0

dθ√(
λ2Z(θ)

2
− ω

)2

− h0[Z(θ)]2
, (3.17)

where the last equality uses (3.16). Differentiating with respect to h0, gives

dt1
dh0

=
1

2

∫ 2π

0

[Z(θ)]2dθ[(
λ2Z(θ)

2
− ω

)2

− h0[Z(θ)]2
]3/2

> 0, (3.18)

Therefore, t1 increases monotonically with h0. Also, from (3.12), h0 = h(θ(0), λ1(0))

= h(0, λ1(0)) = ωλ1(0). So t1 increases monotonically with λ1(0). This means that,

for a given t1 and λ2, there is a unique value of λ1(0), which gives a unique trajectory.

A shooting method is used to solve this boundary value problem numerically.

We choose an arbitrary nonzero value of λ2, take θ(0) = q(0) = 0, and solve the

system (3.7)-(3.10) iteratively for different nonzero guesses of λ1(0) until θ(t1) = 2π

with a predefined tolerance. Once an upper and a lower bound for λ1(0) is found,

employing the bisection method guarantees an answer. From Theorem 3.2.1, there
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is a unique λ1(0) that satisfies this. After finding this λ1(0) and its associated tra-

jectory numerically, we check if the resulting q(t1) is within a small tolerance of 0. If

so, the problem is considered solved. If not, we conclude that our original choice for

λ2 had been wrong and so a new value is chosen for λ2 using the bisection method,

and the process is repeated. The next choice of λ2 is made by examining the q(t1)

error gradient from the previous two simulations. The procedure continues until a

pair (λ1(0), λ2) is found for which the boundary conditions in (3.11) are achieved.

A consequence of Theorem 3.2.1 is that we can effectively search for a solution to

the Euler-Lagrange equations along a one-dimensional curve in (λ1(0), λ2) space.

Once the optimal trajectories for θ(t) and λ1(t) are found, we can find the optimal

control input by evaluating (3.6).

3.3 Examples

3.3.1 SNIPER Neuron Model

For a periodically firing neuron near a SNIPER bifurcation, Z(θ) = Zd(1 −

cos(θ)), where Zd is a model dependent constant, which we take to be Zd = 1

for simplicity, and f(θ) = ω = 1, which gives the natural period of spiking as

T = 2π [32, 34].

The phase portraits for (3.7,3.9) with t1 = 5 and t1 = 9 are shown in Figures 3.1a

and 3.1b, respectively. These figures also show the fixed points which exist for

the (3.7,3.9) subsystem, along with their associated stable and unstable manifolds.

49



These manifolds can sometimes be used to interpret the trajectories associated with

the optimal stimulus: in particular, the t1 = 9 trajectory of the Euler-Lagrange

equations is close to the stable and unstable manifolds of the fixed point. This

forces the trajectory to spend a long time near the fixed point, delaying its arrival

to θ = 2π.

We note that Figures 3.1a and 3.1b are for different values of λ2, the Lagrange

multiplier associated with the charge-balance constraint. Each of the t1 = 5 and

t1 = 9 trajectories shown in these Figures are the only trajectories in their respective

phase planes that can take the (3.6)-(3.10) system from θ(0) = 0 to θ(t1) = 2π with

zero charge transfer and the least amount of input energy. Without the charge-

balance constraint, the phase portrait of the system would not change for different

t1 values and different trajectories corresponding to different t1 values can be drawn

in the same phase plot with different λ1(0) values.

A comparison of the optimal stimulus with and without the charge-balance

constraint is shown in Figure 3.2. Clearly for this model, the constraint has a large

effect on the form of the optimal stimulus. Note that the horizontal axis in this

figure is scaled for ease of comparison. Indeed, when there is no such constraint,

the optimal stimulus is always positive (resp., negative) when we want the neuron

to fire earlier (resp., later) than it would in the absence of external input.
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Figure 3.1: Phase portraits for the SNIPER neuron model with the charge-balance constraint for
(a) t1 = 5 and (b) t1 = 9. When the charge-balance constraint is imposed, phase portrait of the
system changes as the value of t1 changes. Also, it is seen that the trajectory of the system for
t1 = 9 is closer to the fixed point of the system than that of for t1 = 5. This translates into its
spending more time around the fixed point, hence delaying its total time from t1 = 5 to t1 = 9.
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Figure 3.2: SNIPER neuron model optimal stimulus for three different values of t1 with (solid
lines) and without (dashed lines) the charge-balance constraint.

3.3.2 Theta Neuron

The PRC for this model is the same as the SNIPER PRC, but the baseline

dynamics is quite different: f(θ) = 1 + cos(θ) + Ib(1 − cos(θ)) where Ib is the

baseline current. In order to see the effect of charge-balance constraint on the

optimal stimuli, Figures 3.3(a) and 3.3(b) show the optimal stimuli for the two

cases of with and without the constraint, for Ib = 0.25 and Ib = −0.25, respectively.

It is seen that the charge-balance constraint has a notable effect for this model as

well. It is worth mentioning that the horizontal axis in this figure is scaled for ease

of comparison.

3.3.3 Sinusoidal PRC

In this model, we take f(θ) = ω = 1 and Z(θ) = sin(θ). The natural period

of oscillations would then be T = 2π. The PRC for this model is a Type II

PRC where it has both positive and negative values. For this particular neuronal
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Figure 3.3: Theta neuron model optimal stimulus comparison for different values of t1 with
(solid lines) and without (dashed lines) the charge-balance constraint, for (a) Ib = 0.25 and (b)
Ib = −0.25.

53



model, the results obtained with and without the charge-balance constraint are the

same. This is due to the fact that the optimal stimuli obtained without the charge-

balance constraint are in fact sinusoidal and thus enclose a zero-net area, i.e., the

total charge transferred is zero.

Figure 3.4 shows the optimal stimulus, with and without the charge-balance

constraint for three different values of t1. Again, the horizontal axis in this figure

is scaled for ease of comparison. It can be seen that for values of t1 greater than

the natural period (T = 2π), the optimal stimulus starts off negative first and then

builds up to positive values, whereas for values of t1 less than T = 2π, the result

is reversed. Considering equation (3.1), we expect this to happen, because this

stimulus is being multiplied by the PRC and added to the baseline dynamics of

the neuron to give the phase dynamics of the neuron. Since the Sine PRC is a

sinusoidal curve in θ, when multiplied by a quantity of opposite (resp., same) sign,

it produces a negative (resp., positive) value which results in slowing down (resp.,

speeding up) the phase dynamics and thus, causing the neuron to fire later (resp.,

earlier) than it would have naturally.

3.3.4 Hodgkin-Huxley Neuron Model

The PRC for the Hodgkin-Huxley neuron model is numerically obtained using

the XPPAUT software [1] and is shown in Figure 3.5. This PRC is another example

of a Type II PRC. The solid lines in Figure 3.6 show the charge-balanced optimal

inputs to the system for different t1’s. Recall that we have assumed the neuron’s
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Figure 3.4: Sine neuron model optimal stimulus for three different values of t1. The same results
are obtained with or without the charge-balance constraint.

capacitance to be c = 1 for these simulations, and thus the optimal input is actually

an electrical current stimulus. Note that the horizontal axis in this figure is scaled

for ease of comparison.

By removing the charge-balance constraint we reproduce the results of [16]. In

this case λ2 ≡ 0, hence eliminating the charge-balance constraint. Again the shoot-

ing method is used to find the λ1(0) that would result in θ(t1) = 2π. The results

for the optimal stimuli for this case are shown by the dashed lines in Figure 3.6.

In this case, the optimal stimuli all start and end at zero, whereas in the case with

the charge-balance constraint, they do not. It is worth pointing out that consid-

ering the phase-reduced model (3.1) and the shape of the PRC in Figure 3.5, one

can easily verify the shape of achieved stimuli. The natural period of oscillations

for this model is T = 14.63 ms. Therefore, for spike times t1 < T one needs to

increase θ̇ in (3.1). Since the objective is to minimize the input energy, intuitively,

one would expect the sign of the stimuli to approximately follow the PRC’s sign to
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Figure 3.5: Hodgkin-Huxley phase response curve computed numerically using XPPAUT [1].

make maximum use of the injected stimulus. Conversely, for t1 > T , one expects

to achieve stimuli with signs opposite to that of the PRC’s in most of the time.

The stimuli in Figure 3.6 justify this argument. In fact, when the charge-balance

constraint is not imposed, the optimal stimuli take the exact same (resp., opposite)

sign of the PRC for t1 < T (resp., t1 > T ).

We note that it has been proven in [16] that in the case of no charge-balance

constraint, the optimal solutions always exist and are unique. Furthermore, it was

shown analytically that for small |t1− T |, the optimal stimulus u(t) approximately

takes the shape of the PRC.

Theoretically, given (3.1), one can achieve an optimal control input for any

desired t1. However, a constraining factor is the range of validity of the phase-

reduced model for the large stimulus waveforms necessary to obtain extreme values

of t1. As mentioned before, the phase-reduced model is only valid when the stimuli

are small, meaning the system is in a close neighborhood of the periodic orbit.
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Figure 3.6: Hodgkin-Huxley phase neuron model energy optimal stimulus for three different values
of t1 with (solid lines) and without (dashed lines) the charge-balance constraint.

Therefore, for large values of |t1 − T | that require large stimuli, the phase-reduced

model may not yield accurate results. In addition, there are practical limitations

for the level of the current stimulus based on the capability of the hardware in

delivering the current and the endurance of the biological tissue immediate to the

injection probe.

3.4 Discussion

The results presented in this chapter suggest that for Type II neurons (those

with both positive and negative values of PRC, like the sinusoidal and the Hodgkin-

Huxley models), the optimal stimuli obtained with the charge-balance constraint

are quite similar to those obtained without the constraint. This is due to the fact

that the optimal stimuli approximately take the shape of the PRC, and since the

PRC in a Type II neuron has both positive and negative values, the optimal stimuli
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are almost charge-balanced even without the constraint having been imposed. For

the sinusoidal model, because of the symmetry in the PRC, the optimal stimuli

are also always charge-balanced, regardless of imposing the constraint or not. For

the Hodgkin-Huxley model, the PRC is slightly asymmetric which yields optimal

stimuli that are slightly charge-imbalanced when the constraint is not imposed.

On the other hand, for Type I neurons (those with positive values of PRC, like

the SNIPER and theta neuron models), imposing the charge-balance constraint

has a notable effect on the resulting optimal stimuli. For these neurons, when

the constraint is not imposed the optimal control stimuli are either non-negative

or non-positive, depending on t1. However, when the constraint is imposed, they

necessarily have both negative and positive values. As a result, given a t1, we see

that the values of the stimuli with the constraint are larger than those without it.

One way to quantify the effect of the difference between the optimal stimuli

obtained in the two cases of with and without the charge-balance constraint is

to look at their associated energy. This energy is the cost of the optimal control

problem that is minimized as the objective (see (3.4)). By plotting this input energy

versus values of t1, one can get an intuition for how the target time t1 affects the

amount of input energy required. Figure 3.7 shows this quantization for the four

models considered. It is interesting to see that it takes a significantly larger amount

of energy to make the neuron fire sooner than it takes for having it fire later than

its natural period. This is due to the fact that, when slowing down the neuron, the

input stimulus is applied over a larger period of time than when speeding up the
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neuron. Hence, the magnitude of the stimuli and therefore their associated energy

are smaller for t1 values greater than the natural period, relative to those less than

the natural period. Figure 3.7 also verifies that when t1 is taken to be the natural

period T , the energy is zero.

The significant difference in the optimal stimulus energy for the two cases of

with and without the charge-balance constraint is clearly seen when one compares

Figure 3.7 (a) and (b) with Figure 3.7 (c) and (d). Specifically, for the SNIPER

model, without the charge-balance constraint we need less than half of the energy

than that with the constraint, but for the sinusoidal model, the two coincide.

59



4 6 8
0

5

10

15

t
1

(a)

In
pu

t 
E

ne
rg

y

4 6 8
0

2

4

6

8

10

t
1

(b)

In
pu

t 
E

ne
rg

y

4 6 8
0

5

10

15

t
1

(c)

In
pu

t 
E

ne
rg

y

10 12 14 16 18
0

50

100

150

200

t
1

(d)

In
pu

t 
E

ne
rg

y

Figure 3.7: Input energy as a function of the target spike time t1 with (solid lines) and without
(dashed lines) the charge-balance constraint. (a) SNIPER model, (b) theta neuron model with
Ib = +0.25 shown with dot markers and Ib = −0.25 shown with square markers, (c) sinusoidal
model, and (d) Hodgkin-Huxley model. For the theta neuron with Ib = −0.25, shown in (b) with
square markers, there is no point with zero energy. This is due to the fact that the theta neuron
with negative baseline current will not fire periodically in the absence of input. So in order to
make it fire periodically one has to input a stimulus, meaning that one has to spend energy. The
zero energy point for this plot would be when t1 →∞ which means the neuron not firing at all.
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Chapter 4

Single Input Optimal Control for

Globally Coupled Neuron

Networks

In this chapter we employ discrete dynamic programming as an efficient math-

ematical optimization method for numerically solving the problem of desynchro-

nizing a network of pathologically synchronized, globally (all-to-all) coupled phase

neurons.

The organization of this chapter is as follows. In section 4.1, we present a brief

introduction to the problem. In section 4.2, after giving the general form for phase

models of networks of coupled neurons, we briefly introduce the Kuramoto model

and then elaborate on deriving the Hodgkin-Huxley phase model for networks of

coupled neurons. In Section 4.3, we present the setup of the discretized model and

61



explain, in detail, our control strategy in the dynamic programming framework.

We present the results in Section 4.4 along with some discussion. In Section 4.5, we

consider applying dynamic programming to a Hodgkin-Huxley phase model driven

by a multiplicative control. Finally, in Section 4.6 we draw conclusions and discuss

some future directions.

The main results from this chapter were published in [45].

4.1 Introduction

When it comes to controlling phase models of neurons, most of the work in the

literature has been either on a single neuron level [16,17,29,43,52–54] or, if on the

population level, multiple inputs have been allowed to the system [19,55]. However,

since there is typically only one electrode implanted into the brain, electrical DBS

in its current state is limited by the number of input stimuli that it can deliver. In

this chapter, we look at synchronized networks of coupled neurons that are subject

to only one single input and investigate the ability of the input in desynchronizing

different network examples using a dynamic programming approach.

In dynamic programming, a cost function is defined that is to be minimized

over the entire time horizon. From this cost function, one finds the value functions

V1(x), V2(x), · · · , VK(x) for all states x ∈ X d, where the indices 1, 2, · · · , K repre-

sent time and X d is the state space. These value functions indicate the cost-to-go

from time k at state x to the end time. Therefore, by computing the value func-

tions, one has knowledge of the cost incurred for accomplishing a certain desired
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task starting from any point in the time domain and any point in the state space.

The value functions are recursively computed by defining the value of the cost-to-go

at time step K + 1, VK+1(x) [47, 56].

4.2 The mathematical model

For a general network of N weakly coupled phase neurons (or, more generally,

oscillators) we have [57]:

θ̇i = ωi +
N∑
j=1

Fij(θj − θi), i = 1, 2, · · · , N,

where θi ∈ (0, 2π] is the phase of neuron i, ωi is its natural frequency of spiking,

and Fij(·) is the 2π-periodic coupling function acting on neuron i from neuron j.

As mentioned earlier, we restrict the problem by only allowing a single control

input, with the assumption that this control input is an additive control input that,

without loss of generality, is applied to the N th neuron in the network. Later, in

section 4.5 we briefly explore the case of a multiplicative control as well. We also

assume in this study that all neurons are identical, hence they all have identical

natural frequencies ω, and that the functional form of the coupling between any

pair of neurons is identical, but the strength of this coupling may be different. This

yields the controlled form of the coupled phase neuron system as:

θ̇i = ω +
N∑
j=1

αijf(θj − θi) + δiNu(t), (4.1)

for i = 1, 2, · · · , N . Here we have assumed that Fij(·) = αijf(·) where αij is

the coupling strength from neuron j to neuron i, f(·) is the 2π-periodic coupling
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function acting between every pair of neurons, δ is the Kronecker delta function,

and u(t) is the single control input.

The coupling function f(·) distinguishes between different models. For the Ku-

ramoto model, f(·) = sin(·) which yields

θ̇i = ω +
N∑
j=1

αij sin(θj − θi) + δiNu(t). (4.2)

Equation (4.2) characterizes a system of globally heterogeneously coupled Ku-

ramoto phase neurons driven by a single control input. We should mention that

Kuramoto’s phase model can be applied to many other oscillator systems and is

not specific to neurons. Applications range from biology [58–61], to physics and

engineering [62–66]. A good review on the Kuramoto model is given in [57].

For the rest of this section, we focus on deriving an example coupling function

for Hodgkin-Huxley’s model for neurons [50]. This model, presented in 1952, was

derived to model Loligo squid’s giant axon. Since it is the most widely used model

in the literature for modeling the dynamics of neurons, we chose to consider it

in the present study. The specifics of this model are given in Appendix C. For

Ib = 10 µA/cm2, which we will use in the following, the period of oscillations

is Ts = 14.63 ms. In the oscillatory mode, the neuron periodically gives action

potentials in the form of voltage spikes.

When grouped together, the spiking of each neuron affects the voltage dynamics

of the neighboring neurons as they sense the spike as an input. This interaction is

referred to as electrotonic coupling. It can be mathematically modeled by modifying

the voltage equation in (C.1):
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V̇i = (Ib + Ig + I(t)) /c + αe

N∑
j=1

(Vj − Vi), (4.3)

where αe is the electrotonic coupling strength between the neurons. We assume that

the network is weakly coupled and hence αe = O(ε), where ε > 0 is a small number.

It should be pointed out that the effect of electrotonic coupling manifests itself only

in the voltage dynamics and not in the dynamics of the gating variables [67]. We

also note that the techniques that we consider in this chapter could also be used

for synaptic coupling, and in fact any type of coupling for which a phase reduction

can be performed. We chose to consider electrotonic coupling for simplicity of

presentation.

In order to find the reduced phase model [31,40,46,68] for the Hodgkin-Huxley

coupled neuron system, we first consider (C.1) in the absence of any external input

stimulus I(t). This system oscillates with period T . To characterize this oscillation,

following [32,69], a phase variable θ ∈ (0, 2π] is defined such that

dθ

dt
= ω =

2π

T
.

Now if we define X = [V,m, h, n]T as the state vector for the system, we can

combine (C.1) and (4.3) and write the coupled system’s equations as

dXi

dt
= F(Xi) + ε

N∑
j=1

p(Xi,Xj),

for i = 1, · · · , N . In this equation F(Xi) represents the dynamics of neuron i in

the absence of any external stimuli or coupling effects, and p(Xi,Xj) accounts for
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the effect that neuron j has on neuron i due to coupling. We can write [40]

dθi
dt

=
∂θi
∂Xi

· dXi

dt

=
∂θi
∂Xi

·

(
F(Xi) + ε

N∑
j=1

p(Xi,Xj)

)

= ω + ε
∂θi
∂Xi

·
N∑
j=1

p(Xi,Xj),

for i = 1, · · · , N . We note that in the absence of coupling terms, we get dθi
dt

= ω

where we have assumed that all neurons have identical natural frequencies.

Since we have assumed weak coupling, we argue that each neuron, even under

the influence of coupling, remains close to its stable periodic orbit that character-

izes its periodic spiking in its phase space, i.e., T ≈ Ts. In addition, there is a

mapping from the states to the phase variable on the periodic orbit and so with

the assumption of weak coupling (small ε), we can consider the effect of coupling

as a perturbation to the oscillatory neuron and write

dθi
dt

= ω + εZ(θi) ·
N∑
j=1

p(θi, θj), (4.4)

where p(θi, θj) = p(Xpo(θi),Xpo(θj)), with Xpo denoting the periodic orbit. Z(θi)

represents the gradient of the phase variable θi with respect to the state variables

[V,m, h, n]T on the periodic orbit and is defined as

Z(θi) =
∂θi
∂Xi

∣∣∣∣
Xpo(θi)

.
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It turns out that since the coupling term p(Xpo(θi),Xpo(θj)) is dependent only

on the first state variable V (see (4.3)), only the first entry of Z(θi) comes into play.

This first entry, denoted by ZV (θi), is called the Phase Response Curve (PRC) of

the ith neuron. For the Hodgkin-Huxley equations, as mentioned before, ZV (θi)

can be computed numerically using the software XPPAUT available as open source

software on the web [1,2]. The PRC for the Hodgkin-Huxley equations is shown in

Figure 3.5. For notational convenience, we continue using the vector form of Z(θi)

in the equations.

We can simplify (4.4) by first defining θi = ωt+ φi. Substituting this into (4.4)

one can take out the mean field effect of ω and write

dφi
dt

= εZ(φi + ωt) ·
N∑
j=1

p(φi + ωt, φj + ωt). (4.5)

Using the averaging theorem from [70] and [71], we get the approximate equation

dφi
dt

=
ε

T

∫ T

0

[
Z(φi + ωτ) ·

N∑
j=1

p(φi + ωτ, φj + ωτ)

]
dτ.

Letting s = φi + ωτ , we get

dφi
dt

=
ε

2π

N∑
j=1

∫ 2π

0

[Z(s) · p(s, φj − φi + s)] ds,

which in terms of θi is

dθi
dt

= ω +
ε

2π

N∑
j=1

∫ 2π

0

[Z(s) · p(s, θj − θi + s)] ds. (4.6)

It is worth pointing out that the righthand sides of these equations are functions
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Figure 4.1: Electrotonic coupling function for the Hodgkin-Huxley equations with Ib =
10 µA/cm2.

of the phase differences only. If we rewrite equation (4.6) more succinctly as

dθi
dt

= ω + αe

N∑
j=1

fe(θj − θi), (4.7)

with fe(·) denoting the electrotonic coupling, considering (4.3) and the fact that

αe = O(ε), we find fe(·) to be

fe(θ) =
1

2π

∫ 2π

0

ZV (s)(Vj(θ + s)− Vi(s))ds,

where ZV (·) is the PRC for the Hodgkin-Huxley equation as shown in Figure 3.5.

Figure 4.1 shows the plot of this coupling function computed numerically. ZV (·)

from Figure 3.5 has been used in producing this figure.

In the presence of external control, an additional term would appear in (4.7) that

would be a function of the external control stimulus I(t) in (C.1), as we discuss

more carefully in section 4.5. For now, we simplify the problem by considering

the control input to be an additive u(t) to (4.7) that incorporates the appropriate

functional relationship with I(t). Furthermore, we restrict the problem by only

allowing a single control input to the system that, without loss of generality, is
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applied to the N th neuron in the network. In order to incorporate heterogeneity

of electrotonic coupling, instead of a common αe, we consider different coupling

strengths between different neuron pairs and rewrite (4.7) as

dθi
dt

= ω +
N∑
j=1

αijfe(θj − θi) + δiNu(t), (4.8)

where δiN is the Kronecker delta function and u represents the control input. This

equation is similar in form to (4.2), but with the coupling function being that shown

in Figure 4.1.

Now in order to further simplify the equations, we note that the righthand side

of (4.2) and (4.8), and in general (4.1), are only in terms of phase differences. This

allows us to find the phase difference dynamics for these systems and hence, by

defining ψi = θi− θ1 for i = 2, 3, · · · , N , reduce the system dimension by one. This

yields the following general phase difference equations:

ψ̇i = αi1f(−ψi)− α11f(0)

+
∑N

j=2 [αijf(ψj − ψi)− α1jf(ψj)] + δiNu(t),

(4.9)

for i = 2, 3, · · · , N . In these equations, f(·) can be any 2π-periodic coupling func-

tion. Equations (4.9) will be the basis on which we design and present the desyn-

chronizing control law in subsequent sections.
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4.3 Discretization and Control

4.3.1 Discretization

In order to compute the desynchronizing control input for the system (4.9) nu-

merically, we need to discretize these equations. To this end, we define dψ to be the

grid size for the phase differences ψi, and du to be the step size for the control in-

put u. This yields the phase differences and control spaces ψdi = {dψ, 2dψ, · · · , 2π}

and Ud = {−umax, · · · ,−du, 0, du, · · · , umax}, for i = 2, 3, · · · , N . We define the

discrete state space X d such that it has a state variable for every possible vec-

tor (ψ2, ψ3, · · · , ψN). Enumerating the states in the discrete state space yields

X d = {1, 2, · · · , nX d}, where nX d = ( 2π
dψ

)N−1 is the total number of states. We

assign the first state in X d to the state (ψ2, ψ3, · · · , ψN) = (dψ, dψ, · · · , dψ). Sub-

sequent states in X d are assigned to vectors of (ψ2, ψ3, · · · , ψN) in which, for

j = 2, · · · , N − 1, each ψj increments by dψ when ψj+1 has finished marching

through its minimum to its maximum with dψ increments. This way, the nX d state

of X d corresponds to (ψ2, ψ3, · · · , ψN) = (2π, 2π, · · · , 2π). At each instant of time,

the state of the system is one of the states in the discrete state space X d. We choose

dψ to be a divisor of 2π to have an integer nX d .

4.3.2 Discrete Time Dynamic Programming

Considering (4.9), one can write the following general difference equation:

xk+1 = Fk(xk, uk), ∀k ∈ {1, 2, · · · , K}, (4.10)
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where xk ∈ X d denotes the state of the system, corresponding to a case of (ψ2, ψ3,

· · · , ψN), at time k, uk ∈ Ud is the control input at time k, and Fk( · , · ) gives the

dynamics of the system at time k computed by integrating the righthand side of

(4.9) numerically. K is the end time.

The objective is to find a sequence uk for all k ∈ {1, 2, · · · , K}, such that the

state in (4.10) approaches a value for which the phase difference between any two

neurons is at least as big as a predetermined amount ∆min ∈ [0, 2π
N

]. The ideal case

for desynchronizing the firing times for the population is when the state x in (4.10)

approaches xsplay = {x|ψi ∈ {2π
N
, 4π
N
, · · · , 2π} & ψi 6= ψj ∀i, j = 2, 3, · · · , N , i 6=

j}. For a system of N neurons, there are (N − 1)! splay states.

More concretely, we define the target set

Xtarg = {x| (ψi & (2π − ψi) & |ψi − ψj|) > ∆min} , (4.11)

for all i, j = 2, 3, · · · , N, i 6= j. If xK ∈ Xtarg, then the system is considered to be

desynchronized. In order to formulate the problem, we define the following time

additive cost function:

J =
K∑
k=1

γ2u2
k + R(xK+1), (4.12)

where γ > 0 is a scalar penalizing factor and

R(xK+1) =

∣∣∣∣∣1 +
i=N∑
i=2

ejψi,K+1

∣∣∣∣∣ , (4.13)

where here j =
√
−1 and the ψi,K+1’s are the phase differences at time K+1 associ-

ated with state xK+1 as obtained from (4.10). R(xK+1) ∈ R[0,N ] is known as the end
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point cost. The objective is to find a sequence uk ∈ Ud for k = {1, 2, · · · , K} such

that (4.12) is minimized subject to (4.10). It is worth mentioning that R(xK+1)

is a variation of the order parameter for systems of coupled oscillators [57] rear-

ranged to fit the phase difference system here, and is minimized if the neurons

desynchronize fully by assuming one of the splay states, and is maximized if the

neurons synchronize. Therefore, by minimizing (4.12) along the solutions of (4.10)

the state x is driven towards xsplay ⊂ Xtarg. We note that although reaching the

splay state would be ideal in maximizing the phase differences, any state within the

spectrum of in-phase and splay states may be achieved and as long as the phase

differences of the neurons are greater than ∆min, the system is considered desyn-

chronized. Considering the bounded control, the values of the coupling strengths,

the discretization error due to meshing the phase space, and the limited time of

control application, it is likely that the optimal controller results in a final state

that is not one of the splay states. Another point to make here is that by defining

the cost function as in (4.12), we are emphasizing desynchronization at the last time

step, K. By choosing K to correspond to the spiking instant of the population, one

can hope for achieving desynchronization of spikes.

To cast the problem in the dynamic programming format, we argue that the

cost presented in (4.12) is composed of the cost incurred from the current time

step to the next, plus the cost-to-go from the next time step to the final time. The

cost-to-go (also known as the value function) from a state x at time l, denoted as

Vl(x), can be written as follows [47]:
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Vl(x) = inf
uk∈Ud,∀k≥l

(
K∑
k=l

γ2u2
k +R(xK+1)

)

= inf
uk∈Ud,∀k≥l

(
γ2u2

l +
K∑

k=l+1

γ2u2
k +R(xK+1)

)

= inf
ul∈Ud

(
γ2u2

l + inf
uk∈Ud,∀k≥l+1

(
K∑

k=l+1

γ2u2
k +R(xK+1)

))
.

The inner infimum on the righthand side of the above equation is exactly the cost-

to-go starting at time k = l + 1 from the state xl+1 = Fl(x, ul). So we can write

Vl(x) = inf
ul∈Ud

(
γ2u2

l + Vl+1(Fl(x, ul))
)
, (4.14)

for all x ∈ X d. This equation is valid for all l ∈ {1, 2, · · · , K} when we define

VK+1(x) =


R(xK+1) if xK+1 ∈ Xtarg,

+∞ if xK+1 /∈ Xtarg,
(4.15)

for all x ∈ X d. With this, the optimal control and trajectory will be

u∗k = arg min
uk∈Ud

(
γ2u2

k + Vk+1(Fk(x
∗
k, uk))

)
, (4.16)

x∗k+1 = Fk(x
∗
k, u

∗
k), x∗1 = x1, (4.17)

for all k ∈ {1, 2, · · · , K}.

The final time K in the above formulation is chosen to be the time beyond which

the control law would not be applied. We note that xK+1 = Fk(xK , uK) and so if

the state of the system is not going to fall within the set Xtarg even by applying the

optimum control at time K, u∗K , then it is considered to be not desynchronizable

and the cost-to-go that is associated to it for time step K+1 is infinity (see (4.15)).
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However, if with the control sequence u∗1, u
∗
2, · · · , u∗K the system falls within the set

Xtarg at time K + 1, then it would be considered desynchronized and a cost-to-go

of R(xK+1) is associated to it for time step K + 1. This formulation is known as

fixed termination time dynamic programming.

4.3.3 Implementation in Matlab

Dynamic programming characterized by equations (4.14)-(4.17) forms a compu-

tationally efficient way to compute the cost-to-go for a system throughout the time

and state domains recursively. After initializing VK+1(x), one can first perform a

backward iteration to compute V1(x) for all x ∈ X d [56]:

for k=K:-1:1

V{k} = min(G{k}+V{k+1}(F{k}),[ ],2);

end

Then, given an initial condition x(1), a forward iteration loop will yield the

optimal control and state trajectories:

for k=1:K

[dummy, u] = min(G{k}(x(k),:)+

V{k+1}(F{k}(x(k),:))′,[ ],2);

x(k+1) = F{k}(x(k),u);

end

A more detailed Matlab code is given in Appendix D.
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4.4 Example

As an example, we solve this problem for a network of three neurons. In accor-

dance with (4.9), we present the phase difference equations for a network of three

neurons as

ψ̇2 = −2α12 sin(ψ2)

+ α23 sin(ψ3 − ψ2)− α13 sin(ψ3),

ψ̇3 = −2α13 sin(ψ3)

+ α23 sin(ψ2 − ψ3)− α12 sin(ψ2) + u,

(4.18)

for the Kuramoto system and

ψ̇2 = α12 (fe(−ψ2)− fe(ψ2))

+ α23fe(ψ3 − ψ2)− α13fe(ψ3),

ψ̇3 = α13 (fe(−ψ3)− fe(ψ3))

+ α23fe(ψ2 − ψ3)− α12fe(ψ2) + u,

(4.19)

for the Hodgkin-Huxley system. We note that we have assumed symmetry for

the coupling strengths, i.e., αij = αji. The two splay states for this system are

(ψ2, ψ3) = (2π
3
, 4π

3
) and (ψ2, ψ3) = (4π

3
, 2π

3
).

With positive values for αij, and in the absence of control, these systems syn-

chronize resulting in ψ2 = ψ3 at all times. In order to find a desynchronizing

control for these systems, one needs knowledge of αij values. Several experimen-

tal and numerical studies have been carried out to find these coupling strengths

[72–77]. The values that are suggested in these studies generally fall within the

range of [0 , 1]. Since the true values of the coupling strengths are unknown, we
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allow each α to change within this interval. For the purpose of simulations we con-

sider 0.1 ≤ αij ≤ 1 with 0.1 steps. This gives 10 possibilities for each α resulting in

1000 different combinations of (α12, α13, α23). We note that since we are considering

all-to-all coupling, we have omitted zero values for the α’s. In addition, allowing

different combinations for (α12, α13, α23) results in situations where the α values

are very close to (or far from) each other, which resembles the different coupling

strengths among an actual neural population.

To find the desynchronizing control law for (4.18) and (4.19), we apply the

fixed termination time dynamic programming formulation and find the optimal

control law for every case of (α12, α13, α23). Depending on the maximum allowable

value for the control input umax, and the minimum acceptable phase difference

∆min, a control sequence u∗1, u
∗
2, · · · , u∗K can be found for some of the cases. This

means that for those cases of (α12, α13, α23), a control input can be found that can

achieve, for the system, a phase desynchronization of at least ∆min. The simulations

were carried out for ∆min = 10◦ and using three different values for umax, namely

umax ∈ {1, 2, 3}. The penalizing constant in (4.12) is taken to be γ = 10−4. The

statistics for the ratio of desynchronizable cases to the total number of cases (which

is 1000) for both the Kuramoto system (4.18) and the Hodgkin-Huxley system

(4.19) is shown in Table 4.1. The period of control application was taken to be

approximately equal to that of the uncontrolled neurons. The initial condition for

all simulation results shown here is the synchronized state where ψ2 = ψ3 = 2π. As

expected, Table 4.1 shows an increase in the percentage of desynchronizable cases

76



Table 4.1: The percentage of different (α12, α13, α23) cases for which a desynchronizing control
law exists when employing fixed termination time dynamic programming with a synchronized
initial condition. The simulations were performed for Tf = 6.28 time units with dt = 0.0349 for
the Kuramoto system and Tf = 14.6 with dt = 0.08 for the Hodgkin-Huxley system. In these
simulations ∆min = 10◦ and dψ = 2◦.

umax Kuramoto Hodgkin-Huxley
1 0% 30.7%
2 6.6% 61.1%
3 11.2% 77.7%

with increase in control authority umax.

As an example, with umax = 3 and ∆min = 10◦, Figure 4.2(a) shows the end

state (ψ2(K), ψ3(K)) for all different cases of (α12, α13, α23) for the Kuramoto model

(4.18). Each case has been subject to its own optimal control input computed

through fixed termination time dynamic programming, equations (4.12), (4.14), and

(4.15). We note that multiple cases can end up at a same location in the state space.

Figure 4.2(b) shows four planes in the α space with points shown for those cases

that were desynchronized. Figure 4.3 communicates similar information for the

Hodgkin-Huxley system (4.19). It can be seen from figures 4.2(b) and 4.3(b) that

as α12 increases, those (α12, α13, α23) combinations in which α13 and α23 values are

close to each other have a lesser chance of being desynchronized. This is intuitively

appealing, because the control is being applied to neuron 3 and so there needs

to be a significant difference between the forces applied to neurons 1 and 2 (i.e.,

significant difference between α13 and α23) for the control to even have a chance of

overcoming the strong bond between neurons 1 and 2 (i.e., large α12).

As an example, we have included the optimal control input and state trajectory
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Figure 4.2: Simulation results for the Kuramoto system with umax = 3 and ∆min = 10◦: (a) The
end state (ψ2(K), ψ3(K)) for all different cases of (α12, α13, α23). Each case has been subject to
its own optimal control input computed through fixed termination time dynamic programming.
(b) Four planes in the α space with points shown for those cases that were desynchronized.
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Figure 4.3: Simulation results for the Hodgkin-Huxley system with umax = 3 and ∆min = 10◦: (a)
The end state (ψ2(K), ψ3(K)) for all different cases of (α12, α13, α23). Each case has been subject
to its own optimal control input computed through fixed termination time dynamic programming.
(b) Four planes in the α space with points shown for those cases that were desynchronized.
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obtained for the specific case of (α12, α13, α23) = (0.1, 0.1, 0.7) with ∆min = 10◦ and

umax = 3 for both the Kuramoto and the Hodgkin-Huxley systems in Figure 4.4(a)

and (b), respectively. As it can be seen from these figures, the control has been

able to take the system from the in-phase initial state to final states that are very

close to the splay states.

We note that, due to the way that the cost function (4.12) is defined, if one

increases the simulation time enough, the resulting control stimulus would remain

zero at first before it starts to apply force at some specific point in time. This is

because of the fact that the time additive cost is only on the control input and the

state cost manifests itself only at the last time step. As a result, the controller does

not apply any control until there is just enough time to optimally desynchronize the

system with an optimal control. For the specific case shown in Figure 4.4, however,

the duration of the control application has been chosen shorter and therefore, the

controller has started to apply force from the beginning.

One important point in finding a control law for networks of coupled neurons

is that we may not have any knowledge about the coupling strengths αij. In order

to find a more general solution, given a umax and ∆min, we might consider all

the control inputs that are able to achieve desynchronization, feed them through

an averaging filter, find the average control input, and apply it to the entire 1000

different cases to investigate the probability of achieving desynchronization without

having prior knowledge of α’s. However, one can imagine that running a simple

averaging routine on a number of different desynchronizing control sequences can
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Figure 4.4: The optimal control input and state trajectory obtained for (α12, α13, α23) =
(0.1, 0.1, 0.7) with ∆min = 10◦ and umax = 3 computed through fixed termination time dynamic
programming for the (a) Kuramoto and (b) Hodgkin-Huxley systems.
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result in an average sequence that is, due to potential cancellations, much smoother

than each of the desynchronizing controls. This greatly reduces the chances of the

averaged control in desynchronizing the network as it would, most likely, lack the

important features of each control sequence.

In order to achieve a better averaged control stimulus for the general network,

we first categorize the desynchronizing controls based on some similarity index

and then find the average of each group. We then apply each of these averaged

controls to the entire set of 1000 different cases and pick the one that results in

the most desynchronizations as the best (final) answer. The similarity index for

each desynchronizing control is a vector of length ten that is obtained as follows.

We divide the time axis of the control sequence into ten equal intervals. We find

the mean value of the control sequence for each of these intervals. If the mean

falls in [umax
2
, umax), we assign the number 2 to that interval. If the mean falls in

[0, umax
2

), we assign the number 1 to that interval, if in [−umax
2
, 0), we assign −1 and

if in [−umax,−umax
2

), we assign -2 to that interval. This way each desynchronizing

control will have an index vector of length ten where each entry is chosen from the

set {−2,−1, 1, 2}. We then group all controls that have the same index vector.

The averaged desynchronizing control inputs for different values of umax are

shown in Figure 4.5. The result of this investigation is summarized in Table 4.2. The

initial condition for all simulation results shown here is the synchronized state where

ψ2 = ψ3 = 2π. To show the performance of the average controls, we have included

figures 4.6 and 4.7 for the Kuramoto and Hodgkin-Huxley systems, respectively.
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Table 4.2: The probability of being able to desynchronize a synchronized network of three globally
coupled neurons. The simulations were performed for Tf = 6.28 time units with dt = 0.0349 for
the Kuramoto system and Tf = 14.6 with dt = 0.08 for the Hodgkin-Huxley system. In these
simulations ∆min = 10◦ and dψ = 2◦. The control input for each simulation is found by averaging
the desynchronizing control inputs.

umax Kuramoto Hodgkin-Huxley
1 0% 30.7%
2 4.9% 57.1%
3 8.4% 73.1%

These figures show simulation results for each of these systems using the umax = 3

averaged controls shown in Figure 4.5(a) and (b).

We see that for the Kuramoto and Hodgkin-Huxley systems, for umax = 3 and

∆min = 10◦ it is most likely to achieve desynchronization using the control input,

labeled as umax = 3, shown in figures 4.5(a) and 4.5(b), respectively.

4.5 Multiplicative Control in Hodgkin-Huxley Phase

Model

In this section, we briefly investigate the control laws that one obtains by im-

plementing dynamic programming on a different phase model for Hodgkin-Huxley

neurons which allows closer comparison to the full Hodgkin-Huxley model. In writ-

ing (4.1), we simplified the problem by assuming that the effect of the input current

stimulus I(t) on the phase dynamics is like an additive control u(t). However, when

one carefully does the phase reduction, the input current stimulus appears in the

phase reduced model having been multiplied by the PRC of the neuron to which
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Figure 4.5: The averaged desynchronizing control inputs for umax = 3 for (a) the Kuramoto
system and (b) the Hodgkin-Huxley system.

84



0  
90 

180
270

360

0  
90 

180
270

360
0

10

20

30

40

50

60

70

 

ψ2
ψ3

 

M
ul

tip
lic

ity

10

20

30

40

50

60

(a)

0.1 0.4 0.7 1  
0.1

0.5

1  

0.1
0.2

0.4

0.6

0.8

1  

α13

α12

α
2
3

(b)

Figure 4.6: Simulation results for the Kuramoto system using the umax = 3 averaged control
shown in Figure 4.5(a) and with ∆min = 10◦: (a) The end state (ψ2(K), ψ3(K)) for all different
cases of (α12, α13, α23). (b) Four planes in the α space with points shown for those cases that
were desynchronized using the common averaged control.
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Figure 4.7: Simulation results for the Hodgkin-Huxley system using the umax = 3 averaged control
shown in Figure 4.5(b) and with ∆min = 10◦: (a) The end state (ψ2(K), ψ3(K)) for all different
cases of (α12, α13, α23). (b) Four planes in the α space with points shown for those cases that
were desynchronized using the common averaged control.
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it is being applied, that is, u(θ, t) = ZV (θN)I(t). Indeed, using a generalization

of the general averaging theorem (Theorem 4.3.6 in [78]) when I(t) = O(ε), one

can show that when the coupling p in (4.4) and the external input u(θ, t) are Lips-

chitz continuous in the state variables and continuous in time, on the time scale of

O(1/ε) the solutions of (4.5) can be approximated with the solutions for the system

in which only the coupling term is averaged [79]. So instead of (4.1) one gets

dθi
dt

= ω +
N∑
j=1

αijfe(θj − θi) + δiNZV (θi)I(t). (4.20)

We note that models of this form have been considered elsewhere, for example [43],

but to our knowledge dynamic programming has not been applied to such a model

before. A computational challenge is that (4.20) cannot be rewritten in terms of

phase differences only, so it is necessary to discretize θ1, θ2, and θ3 separately,

which leads to a dynamic programming problem with one more dimension than the

analogous problem for additive control considered above.

We have applied the fixed termination time dynamic programming formula-

tion to find the optimal desynchronizing control law for (4.20) for the case of

(α12, α13, α23) = (0.2, 0.6, 0.2) and Imax = 2µA/cm2, with the results shown in

Figure 4.8(a). When this input is applied to the full model we see that the voltage

traces of the three neurons become slightly desynchronized (Figure 4.8(b)). This

result serves as a validating example for the phase reduction in the presence of

external stimulus that is presented (without proof) in (4.20).

We have also found that when one increases the bound on I(t) to Imax =

10µA/cm2, the resulting control only achieves a 2-1 state, in which two neurons
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have the same phase and the other has a different phase. It turns out that the

algorithm determines that going to a 2-1 state that is spaced out on the phase

circle results in less cost than going to any of the 1-1-1 states (in which all neurons

have different phases) within the domain of capability of the control law. Interest-

ingly, when the optimal control for this case is applied to the full Hodgkin-Huxley

equations, it achieves an appreciable desynchronization (see Figure 4.9).

We note that the major drawback for dynamic programming is that in this

method the size of the state vector grows exponentially with the number of neurons

in the system. Therefore, given one’s computational power and resources, there are

limitations as to how small the mesh size can be. In these simulations we have set

the mesh size to be reasonably small, but we can still see the effect of the mesh

size on the accuracy of the output results. For example, we have observed cases

where, in the absence of any input, the weak coupling that should be acting as a

synchronizing force for the neurons is actually unable to fully synchronize them.

This is because as the phases of the neurons get closer to each other, the dynamical

contribution from the coupling becomes smaller, eventually becoming so small that

it is unable to exert enough force to move the neurons over the boundaries of their

bins. An obvious future direction for this method would be to find efficient ways to

perform these computations with reduced mesh size to avoid such issues in these

systems. One observation that might help is that the computed controls that we

find tend to be zero for the first half of the period of the neurons, starting right

after they have fired. Intuitively, one can let the system evolve according to its

88



natural dynamics until the control is needed and most effective. This suggests that

we could start our initial condition at θ1 = θ2 = θ3 = 180 degrees at a time equal

to half the period of the periodic orbit, assuming zero input for the evolution from

θ1 = θ2 = θ3 = 0 up to this point, thereby freeing up computational resources for

the consideration of smaller bins.

4.6 Conclusion and Future Directions

We have considered the problem of desynchronizing a network of pathologically

synchronized globally coupled phase neurons using optimal control techniques. We

used the Kuramoto model and a reduced phase model derived for a network of

N Hodgkin-Huxley neurons under weak global electrotonic coupling as the basis

for our control design. We only allowed one bounded control input to one of the

neurons in the system, and we have assumed observability of all phases at all

times. We introduced discrete dynamic programming as an efficient mathematical

optimization method for numerically solving this problem.

For both the Kuramoto and Hodgkin-Huxley models, the desynchronization

problem was solved for a network of three coupled neurons. Since the coupling

strengths between the neurons are in practice unknown, a spectrum of different

coupling strengths was considered. For some combinations of coupling strengths

there exists a desynchronizing control, while for some there does not. The period of

control application was taken to be approximately equal to that of the uncontrolled

neurons. The different desynchronizing control laws were then categorized and

89



0 2 4 6 8 10 12 14
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t

I(
t)

0

50

100

150

200

250

300

350

400

θ 1, θ
2, θ

3 [d
eg

]

 

 

θ
1

θ
2

θ
3

(a)

0 5 10 15
−80

−60

−40

−20

0

20

40

t

V
1, V

2, V
3 [m

V
]

 

 

(b)

Figure 4.8: (a) The optimal control input and state trajectory obtained for (α12, α13, α23) =
(0.2, 0.6, 0.2) and Imax = 2µA/cm2 computed through fixed termination time dynamic program-
ming for the Hodgkin-Huxley coupled phase model, (b) Voltage variable evolution for three coupled
full Hodgkin-Huxley neurons under the control shown in part (a). For this simulation, we have
considered a mesh size of 1 degree.
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Figure 4.9: (a) Voltage traces for the full Hodgkin-Huxley model obtained for (α12, α13, α23) =
(0.2, 0.6, 0.2) by applying the optimal control input from the phase model (not shown) with Imax =
10 computed through fixed termination time dynamic programming. (b) Voltage traces as a result
of applying three copies of the optimal input. For this simulation, we have considered a mesh size
of 2 degrees.
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averaged, which resulted in a single control law for the entire system regardless of

what the coupling strengths may be. When the bound on the controller is set to be

umax = 3, this final control law can desynchronize the system, under the mentioned

assumptions, with a probability of 8.4% for the Kuramoto network and 73.1% for

the Hodgkin-Huxley network. Figure 4.5 and Table 4.2 present the final control

for each control bound and the probablity of it achieving desynchronization. We

argue that the large difference between the percentages obtained for the Kuramoto

and Hodgkin-Huxley systems are due to the notable difference in the slope of the

their respective coupling functions at 0. The Kuramoto coupling function, sin(θ)

has slope 1 at θ = 0, but the Hodgkin-Huxley coupling function has a slope very

close to zero at θ = 0 as is seen from Figure 4.1. The smaller slope in the Hodgkin-

Huxley coupling functions allows for notably easier desynchronization and hence

higher percentages.

The control method was also tested on a more realistic modeling of the control

for the Hodgkin-Huxley model in which the stimulus is multiplied by the PRC. It

was observed that there is a good agreement between the simulation results and the

theory on which the model is based. However, the curse of dimensionality and the

effect of discretization error due to relatively large mesh size proved to be limiting

factors that need more consideration in the future.

The control approach presented in this study can be viewed as an event-based

control approach where the controller starts to apply input upon occurrence of an

event. The event here would be the simultaneous spiking of all neurons. When the
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controller is triggered, it applies the precomputed traces of Figure 4.5 and waits

until the next event triggers it.

In order to improve the accuracy of the results presented in chapter, one can re-

duce the mesh size when discretizing the phases. This would substantially improve

the precision of the solutions. However, by reducing the mesh size, the number of

states grows exponentially, which can be detrimental given one’s available compu-

tational power. We believe that by decreasing the mesh size, the results from the

full Hodgkin-Huxley model will match more closely to the results from the phase

model presented in Section 4.5. In addition, one can optimize the averaging process

that leads to the final control laws, so that more systems, as characterized by their

(α12, α13, α23), can be desynchronized with an averaged final control. Also, it would

be beneficial to consider more combinations of (α12, α13, α23) in order to have a

better probabilistic estimate for any control input.

The main drawback in dynamic programming is that it demands exponentially

higher computational power as the number of states in the system is increased. An

interesting future direction for this work would be to find reasonable approximations

to networks of higher dimension to overcome the curse of dimensionality without

greatly sacrificing the accuracy of the results. As a suggestion, one can think of

splitting larger networks in several smaller networks that are each all-to-all coupled,

but only communicate with each other through a mean field effect. This way,

it might be possible to take advantage of parallel programming techniques and

distribute the computational burden onto several processors.
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Other interesting future directions would be to add uncertainties to the models

and investigate the extent of applicability of current control laws in the presence of

noise, and to compare the results obtained by dynamic programming to those for

other control schemes.
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Chapter 5

Minimum Energy

Desynchronizing Control for

Coupled Neurons

In this chapter, we design an event-based, minimum energy, desynchronizing

control stimulus for a network of pathologically synchronized, heterogeneously cou-

pled neurons. As previously mentioned, applying event-based minimum energy

stimuli in a deep brain stimulation setting for treatment of Parkinson’s disease is

clinically desirable in that it could reduce the number of stimulus applications and

the amount of energy needed per stimulation. The proposed design works by op-

timally driving the neurons to their phaseless sets, switching the control off, and

letting the phases of the neurons randomize under the intrinsic background noise

(cf., [46]). This is a non-trivial extension of work done in [18]. In [18] a minimum
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time control problem with the same objective has been considered that has resulted

in a bang-bang control input. We find that, even with considerably stronger cou-

pling between the neurons, the method of the present study substantially reduces

the amount of energy that is needed to effectively achieve desynchronization when

compared to the method of [18].

The organization of this chapter is as follows. In Section 5.1, a brief introduction

is presented. In Section 5.2 we describe the model used for the neuron. Then we

lay out the control method and derive the necessary equations in Section 5.3. In

Section 5.4, we describe the essentials of the numerical method that was used to

solve the equations. Results and discussion are presented in Section 5.5 for both a

single neuron and a network of neurons. Finally, we present concluding remarks in

Section 5.6.

The main results from this chapter are given in [23].

5.1 Introduction

Pathological synchronization among the spiking neurons of the basal ganglia and

the thalamus regions of the brain is thought to be one cause for the involuntary

tremors that patients with Parkinson’s disease experience [7]. Deep Brain Stimu-

lation (DBS), an FDA-approved surgical treatment procedure, has shown success

in alleviating these tremors by administration of high frequency pulsatile stimuli

through an electrode implanted deep into the patient’s brain which, hypotheti-

cally, desynchronizes the neurons [4,6,27]. This has motivated researchers to adopt
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control theory and investigate alternative desynchronizing stimuli with less possible

side-effects such as tissue damage or adaptation, and with less energy consumption.

Various control methods have been investigated and applied to different models in

the past. Among these control methods, feedback control and optimal control are

more prominent. These methods are attractive from a clinical perspective in that

the control stimulus is designed to be applied only when needed (characterized by

the feedback signal) and in an optimal way (characterized by the optimality crite-

ria). For example, in [43] a system of noisy coupled phase neurons is studied and a

demand-controlled deep-brain double-pulse stimulation has been suggested, where

a double-pulse stimulus is administered when a feedback signal indicates occur-

rence of synchronization. In [28] and [80] nonlinear delay feedback control has been

considered that can achieve desynchronization for systems of globally coupled limit-

cycle oscillators. In [12] and [13] the authors used a genetic algorithm to design a

model-independent optimal input specific to each patient’s brain. In [14] and [15],

unscented Kalman filtering has been shown to achieve success in optimally esti-

mating the unobservable states of a neuron through the feedback information from

the observable state, which may be important for designing DBS control. In [18],

a Hamilton-Jacobi-Bellman approach has been taken to design a minimum time

desynchronizing control law for a globally coupled network. In recent work [45], we

have considered the problem of desynchronization for a deterministic system of cou-

pled Hodgkin-Huxley phase neurons driven by a single constrained input. Dynamic

programming was used to find a minimum energy desynchronizing control. In ad-
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dition to those mentioned, a number of other studies have also shown potential in

desynchronizing a population of pathologically synchronized neurons [26,29]. On a

single neuron level, various event-based optimal control ideas have been considered

as well [3, 16,17,19–21].

As described in Appendix A, the phaseless set for an oscillatory system is where

the isochrons of the system converge together. One can randomize the phase of

a noisy oscillator by steering its state to its phaseless set, and letting it randomly

fall on an isochron due to its intrinsic noise. In neuronal systems, this yields

randomization of the next spike time for each neuron, and hence, desynchronization

in a network structure. As a proof of concept, Figure 5.1 shows the voltage traces

and spike time histogram for a network of 100 all-to-all coupled and synchronized

neurons, more formally introduced in the following section, that are all initialized

at their phaseless set after the control is switched off. It is seen that despite the

synchronizing force of the coupling and the fact that the network is initialized

coherently, the next spike time for the neurons has been effectively randomized due

to an intrinsic zero-mean, variance 2, Gaussian white background noise.

5.2 Model

The model considered for the neurons in the population is as follows:

V̇i = fV (Vi, ni) + ηi(t) + 1
N

∑N
j=1 αij(Vj − Vi) + u,

ṅi = fn(Vi, ni).

(5.1)
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Figure 5.1: Voltage traces and spike time histogram for a network of 100 coupled and synchronized
neurons (described by (1) in the absence of any control u) that are initialized at their phaseless
points, subject to i.i.d. Gaussian white background noise with zero-mean and variance 2.

Here, i, j = 1, · · · , N , where N is the total number of neurons in the network, Vi

and ni are the membrane voltage and the gating variable for neuron i, αij is the

coupling strength between neurons i and j, which are assumed to be electroton-

ically coupled [67] with αij = αji and αii = 0 for all i, j, ηi(t) =
√

2DN (0, 1) is

the intrinsic noise for each neuron taken as zero-mean Gaussian white noise with

variance 2D, u = I(t)/c is the common control input where I(t), in µA/cm2, gives

the DBS input current, and c = 1 µF/cm2 is the constant membrane capacitance.

Also,

fV = (Ib − ḡNa[m∞(V )]3(0.8− n)(V − VNa)

−ḡKn4(V − VK)− ḡL(V − VL))/c,

fn = an(V )(1− n)− bn(V )n,
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are the state dynamics for each neuron in the absence of noise, coupling, and

control. This is a two-dimensional reduction of the celebrated four-dimensional

Hodgkin-Huxley (HH) model [50] that captures the essentials of a neuron’s dynam-

ical behavior (cf., [81, 82]). The full HH model was originally developed for the

Loligo squid’s giant axon through a series of experiments. The other functions and

parameters in this reduced model are

m∞(V ) =
am(V )

am(V ) + bm(V )
,

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10)) ,

bm(V ) = 4 exp(−(V + 65)/18) ,

an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10)) ,

bn(V ) = 0.125 exp(−(V + 65)/80) ,

VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,

ḡNa = 120 mS/cm2, ḡK = 36 mS/cm2,

ḡL = 0.3 mS/cm2, c = 1 µF/cm2.

Also, Ib, in µA/cm2, is the neuron’s baseline current which represents the effect

of other parts of the brain on the neuron under consideration and can be viewed

as a bifurcation parameter in the model that controls whether the neuron is in

an excitable or an oscillatory regime. We consider Ib = 10 µA/cm2 to ensure

oscillatory (periodic spiking) behavior for the neuron. With this, the period of

spiking is Ts = 11.85 ms. ḡNa, ḡK , and ḡL are the conductances of the sodium,
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potassium, and leakage channels, respectively. Also, VNa, VK , and VL represent

their respective reversal potentials.

In the absence of noise, coupling, and control, the oscillatory behavior of (5.1) is

seen as a periodic orbit in the V −n phase plane of the system, shown in Figure 5.2

as the thick solid black line. The isochrons for this system are shown as gray lines.

The isochrons converge at the unstable fixed point where the V− and n−nullclines

intersect. This unstable fixed point is the phaseless set for this system [83]. In

the present article, we first find the optimal control stimulus that, when applied

to a single neuron, drives the system to its phaseless set. As mentioned before,

the idea here is that once the state of the system is at the phaseless set, the

intrinsic background noise could cause the system to fall on a random isochron,

thereby randomizing the phase of the neuron and its next spiking time. We then

apply this optimal control to the population of synchronized, coupled, and noisy

neurons and evaluate its performance in desynchronizing the population. Although

we consider this specific model in this chapter, we expect that a similar approach

to that described below can be used to find optimal control inputs for other neuron

models.

In order to better stabilize the numerical simulation, we scale down the V di-

mension in (5.1) by a factor of K = 100 so that the two states are of same order

of magnitude. Consider the change of variables z ≡ (x, y) = ( 1
K
V, n). In view of

(5.1), for a single deterministic neuron under control, we get

ż = F (z) +Bu, (5.2)
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Figure 5.2: Periodic orbit (thick solid), V -nullcline (thin dashed), and n-nullcline (thick dashed),
and fifty isochrons equally spaced in phase for the two-dimensional reduced Hodgkin-Huxley model
in the absence of noise, coupling, and control. The location of the unstable fixed point (phaseless
point) for this system is at the intersection of the nullclines.

where B = [ 1
K
, 0]T and

F (z) =

 fx(z)

fy(z)

 =

 1
K
fV (Kx, y)

fn(Kx, y)

 . (5.3)

We note that this scaling is only for the sake of numerical stability and the

results that we present later are all in the original V − n coordinates.

5.3 Optimal Control

We consider the system (5.2). The objective is to find the optimal control law

that would take the system to its phaseless set in some prespecified length of time
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[0, Tend], while minimizing the cost function

J(z, u(t)) =

∫ Tend

0

u2dt+ γq(z(Tend)). (5.4)

This cost function is composed of a time-additive portion,
∫ Tend

0
u2dt, that char-

acterizes the total input energy being used, and an end-point cost, q(z(Tend)), that

discriminates between different possible outcomes for the end states. γ is a penal-

izing scalar. We consider bounded inputs, i.e., |u| ≤ umax, as would be the case in

practice due to hardware limitations as well as tissue sensitivity.

Employing a Hamilton-Jacobi-Bellman (HJB) approach [47, 56], we define the

cost-to-go function, also known as the value function, from state z and time τ ∈

[0, Tend] to be

V(z, τ) = min
|u(t)|≤umax
∀ t∈[τ,Tend]

J = min
|u(t)|≤umax
∀ t∈[τ,Tend]

[∫ Tend

τ

u2dt+ γq(z(Tend))

]
. (5.5)

With this definition, following classical optimal control theory [47, 56], we can

write

V(z, τ) = min
|u(t)|≤umax
∀ t∈[τ,Tend]

[∫ τ+h

τ

u2dt+

∫ Tend

τ+h

u2dt+ γq(z(Tend))

]
,

where, h ∈ [0, Tend − τ). Now we realize that the first integral in this equation is

dependent only on u(t) for t ∈ [τ, τ + h], whereas the second integral and the value

of the end point cost are dependent on u(t) for t ∈ [τ, Tend]. The reason for this is

that the u for t ∈ [τ, τ+h] determines the state of the system at t = τ+h, z(τ+h),

which in turn comes into play when finding the u for t ∈ [τ + h, Tend]. With this,

we can write

V(z, τ) = min
|u(t)|≤umax
∀ t∈[τ,τ+h]

[∫ τ+h

τ

u2dt+ min
|u(t)|≤umax
∀ t∈[τ+h,Tend]

(∫ Tend

τ+h

u2dt+ γq(z(Tend))

)]
,
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where the inner minimum is exactly the cost-to-go function from state z(τ +h) and

time t = τ + h: V(z(τ + h), τ + h). By subtracting V(z(τ), τ) from both sides of

the above equation and dividing by h > 0, we get

0 = min
|u(t)|≤umax
∀ t∈[τ,τ+h]

[
1

h

∫ τ+h

τ

u2dt+
V(z(τ + h), τ + h)− V(z(τ), τ)

h

]
, (5.6)

for any τ ∈ [0, Tend] and h ∈ [0, Tend − τ). Taking the limit as h → 0, yields the

well-known HJB equation

0 =
∂V
∂t

(z(τ), τ) + min
|u(τ)|≤umax

[
u2 +

∂V
∂z

(z(τ), τ)
(
F (z(τ)) +Bu(τ)

)]
, (5.7)

which is a partial differential equation (PDE) with the boundary condition

V(z(Tend), Tend) = γq(z(Tend)). (5.8)

It should be noted that by letting h → 0 in (5.6), the minimization with respect

to the control function in (5.6) reduces from choosing values of a curve, |u(t)| ≤

umax, ∀t ∈ [τ, τ + h], to choosing a single value on the curve, |u(τ)| ≤ umax at

t = τ [84]. By defining,

H(z,∇V , u) = u2 +∇VT (z(t), t)(F (z(t)) +Bu(t)), (5.9)

as the Hamiltonian for the system, one can rewrite (5.7) more succinctly as

∂V
∂t

+ min
|u|≤umax

H(z,∇V , u) = 0, (5.10)

where ∇V is the gradient of the value function with respect to z, (∂V
∂x
, ∂V
∂y

)T . The

optimal control that globally minimizes H is obtained as

u∗(t) = arg min
|u|≤umax

[u2 +∇VT (z∗(t), t)(F (z∗(t)) +Bu(t))],
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where z∗(t) represents the optimal trajectory.

In order to find the optimal control, we can set the derivative of the Hamiltonian

(5.9) with respect to u equal to zero and solve for the extremal u. This is true as

long as the magnitude of the control remains smaller than the predetermined bound

umax. When the magnitude of the optimal control reaches the bound umax, it satu-

rates in accordance to Pontryagin’s minimum principle [47, 85]. Considering (5.9),

∂H
∂u

= 0 results in u∗(t) = −1
2
∇VTB as long as |u∗(t)| ≤ umax. Equivalently, one

can write u∗(t) = −1
2
∇VTB for when |∇VTB| ≤ 2umax. When |∇VTB| = 2umax,

the optimal control reaches its bound and if |∇VTB| > 2umax, it gets saturated, in

which case, considering (5.9) with |u∗(t)| = umax, the minimizing optimal control

becomes u∗(t) = −sign(∇VTB)umax. So in summary, considering the fact that

B = [ 1
K
, 0]T , we get the optimal control as

u∗(t) = − 1
2K
Vx |Vx| ≤ 2Kumax,

u∗(t) = −sign(Vx)umax |Vx| > 2Kumax,

(5.11)

where Vx = ∂V
∂x

. With this optimal control, the Hamiltonian can be written as

H = ∇VTF (z)− 1
4K2V2

x, |Vx| ≤ 2Kumax,

H = ∇VTF (z) + u2
max − |Vx|umaxK

, |Vx| > 2Kumax.

(5.12)

In order to find the optimal control u∗(t) in (5.11), we need to find the cost-to-

go, V(z, t) from the HJB PDE (5.7) with boundary condition (5.8). This is done

numerically as explained in the following.
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5.4 Numerical Method

The HJB PDE (5.7) is a special form of a broader class of equations known as

the Hamilton-Jacobi (HJ) equations which for a scalar variable V(z, t) are given by

∂V
∂t

+H(z, t,V ,∇V) = 0,

where H is the Hamiltonian and ∇V denotes spatial gradients. These equations

frequently appear in different areas of research such as optimal control theory, image

processing and computational physics [47, 86, 87] and thus have been well studied

in the past.

The numerical solution of the HJ equation is deeply rooted in the methods

that already had existed for the solution of nonlinear hyperbolic conservation laws

(HCL) [86]. Originally, Crandall and Lions [88] proposed their first-order accurate

numerical algorithm for the solution of the HJ equation and a few years later,

Osher and Sethian [89] used the connection between HJ and HCL to derive higher

order accurate algorithms. For a more complete list of references, one may consult

standard texts such as [86] and [87].

Generally, a convergent, high-order approximation to the HJ equation consists

of three steps: (i) Computing the solution gradient ∇V , which is typically achieved

with essentially non-oscillatory (ENO) schemes [90,91]. These schemes are designed

such that they do not produce oscillatory results when the solution gradients are

evaluated close to the discontinuities that are inherent to nonlinear HJ equations.

(ii) Evaluating the Hamiltonian function, which is straightforward only for linear
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problems. For nonlinear problems it is necessary to compute the so-called numerical

Hamiltonian (see Ĥ in [92]) in such a way as to account for the nonlinear shock

and rarefaction phenomena; Godunov or local Lax-Friedrichs (LLF) schemes are

traditionally used. In this study, we use the LLF scheme to obtain the numerical

Hamiltonian. (iii) Given an initial condition V(z, 0), time integration is needed to

obtain the solution V(z, t) at later times. To prevent non-physical oscillations in

the solution, this is done using a total variation diminishing (TVD) method [86].

The details regarding the careful implementation of these steps are included in

Appendix E. In this study we have used the Matlab toolbox, “Level Set Meth-

ods Toolbox” written by Ian Mitchell [93], which is a working example of such

implementations.

We set Tend = 7 ms and use a 321× 321 uniform grid for the states to solve the

HJB equation (5.7) for the cost-to-go function V(z, t). The control bound is set to

be umax = 10 µA/µF. We also set the end point cost to be

V(z(Tend), Tend) = γ

(
1− e

−
(

(x−xpl)
2

σ2x
+

(y−ypl)
2

σ2y

))
,

where γ = 1000, σ2
x = σ2

y = 0.001, and (xpl, ypl) = ( 1
K
Vpl, npl) where K = 100 and

(Vpl, npl) = (−59.6, 0.403) is the phaseless target point. This Gaussian end point

cost function has a minimum of zero at the phaseless point that encourages the

evolution of the controlled system towards this point. We note that we solve the

HJB equation backward in time and treat this end point cost as the initial condition

for the equations.

Once the solution V(z, t) is computed, the optimal control is found as a func-
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tion of the state at all time steps using (5.11). Given this data in time and space,

the optimal control sequence u(t), and the optimal trajectories can be found by

forward integrating (5.1) in the absence of noise and coupling, and for any initial

condition including the spiking point (V0, n0) = (44.8, 0.459) ≡ (Vs, ns), as we con-

sider here. A fourth order Runge-Kutta method is used for the integration. We

note that since V(z, t) is available on spatial grid points, a simple bilinear interpo-

lation scheme is used to obtain the input off grid points at each time step. This

optimal control sequence is then applied first to the noisy single neuron system

to evaluate its performance in randomizing the noisy neuron’s next spiking time,

and then, to a population of 100 initially synchronized, coupled neurons to eval-

uate its performance in desynchronizing the population in the presence of noise

and heterogeneities in the coupling. Since introducing noise into the equations

makes the problem a stochastic differential equation (SDE) problem, care must

be taken in choosing a proper numerical algorithm for integration. A simple and

straightforward algorithm is the Honeycutt’s second order stochastic Runge-Kutta

method [94] which was chosen in this study.

5.5 Results and Discussion

The top panel in Figure 5.3 shows the minimum energy control law for the

deterministic single neuron. As can be seen in Figure 5.3, the control has saturated

at the bound value umax = 10 µA/µF (equivalent to Imax = 10 µA/cm2). Figure 5.3

also shows the evolution of the system states (V, n) in time as well as the optimal
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Figure 5.3: Results for the deterministic single neuron system (equation (5.1) with ηi(t) ≡ 0 and
αij = 0,∀i, j). The system is initialized at the spiking point (Vs, ns) = (44.2, 0.465) and the
target point for the control is the phaseless set for the neuron which is its unstable fixed point
(Vpl, npl) = (−59.6, 0.403). Top: minimum energy control law that is bounded to |u| ≤ 10 µA/µF.
Middle: the time evolution of the states of the system. Bottom: the state space representation of
the trajectory of the system under the control shown in top panel. We see that the control has
been able to take the system close to the phaseless point shown with asterisk marker.

trajectory in the state space when driven by the control. It is worth pointing

out that we set the initial condition to be the spiking state as this is a practical

observable which can be used as a trigger for the control, hence producing an event-

based control.
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5.5.1 Single neuron level

To evaluate the performance of the control for phase randomization, we apply

it to the single neuron in the presence of noise and integrate the noisy system

forward in time. Figure 5.4 shows the results obtained for this case for 100 different

numerical realizations. We have included three different cases in this figure for

comparison. The top row in this figure shows the case of the neuron under its

natural dynamics in the absence of both the noise and the control. As expected,

the neuron spikes at its natural period Ts = 11.85 ms for all 100 different trials.

The second panel shows the case where noise is active, but the control is not. As

can be seen, the spiking instant of the neuron varies due to the effect of different

noise realizations. In the third panel, both noise and the control are acting on the

neuron. We see that applying the control causes the next spiking instant of the

neuron to randomize over a considerable time interval. We note that the control

has only been applied for one cycle and has been set to zero for t > 7 ms.

5.5.2 Population level

We now apply the minimum energy control that is found for a single neuron to

the network of N = 100 coupled synchronized noisy neurons with common coupling

strength αij = 0.1 and i.i.d. noise with D = 1. We note that, in this study, we

consider coupling strengths that are 10 times greater than those considered in [18].
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Figure 5.4: Results for 100 different simulations for the system (5.1) with initial condition
(V0, n0) = (44.8, 0.459). Top row: voltage trace (left) and histogram (right) for the case of
without noise and without external control; middle row: voltage trace (left) and histogram (right)
for the case of 100 different noise realizations, without control; bottom row: voltage trace (left)
and histogram (right) for the case of 100 different noise realizations, with one cycle of control.

For this system, we define the mean voltage as the observable for the network

V̄ (t) =
1

N

N∑
i=1

Vi(t), (5.13)

and set V̄ = −20 mV as the event that triggers one cycle of control administration.

After one cycle, the control turns off until the next event triggers it. Figure 5.5

shows the result for this with different noise for each of the neurons in the system.

The first panel shows the individual voltages and mean voltage for the coupled

system with activated noise, but without control. We see that the mean voltage

spikes are always above the −20 mV threshold that is shown as dotted line. The

second panel shows the individual voltages and mean voltage for the coupled system
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Figure 5.5: Results for a population of N = 100 coupled neurons with ηi =
√

2DN (0, 1), D = 1,
and coupling strength α = 0.1. First panel shows the result for the noisy network without control.
The second panel shows the results for the same network with active event-based control. The
dotted gray traces show the mean voltage for each case and the horizontal dotted lines mark
the control activation threshold. We see that the control (shown in third panel) has only been
applied when the mean voltage has reached the V̄ = −20 mV threshold, and has been able to
substantially desynchronize the network as communicated by the raster plot.

when both the noise and the control are present. The control input is shown in

the third panel. The desynchronizing effect of the control is clearly seen from the

raster plot. The event-based nature of the control is also apparent from the fact

that the control has only been turned on when the mean voltage has crossed the

threshold line.

To model more realistic networks, we now take into account the effect of net-

work heterogeneities on the performance of the optimal controller. First, instead of
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a common coupling strength, we take the coupling strengths from a normal distri-

bution with mean ᾱ = 0.1 and standard deviation σα = 0.02, i.e., αij = N (ᾱ, σα) =

N (0.1, 0.02). The left panel in Figure 5.6 shows this distribution. Simulating the

network with this variability in the coupling strengths, we get the result shown

in the second panel of Figure 5.7. The first panel in this figure is for the case of

network with common coupling strength αij = 0.1 as shown in Figure 5.5 and is reil-

lustrated here to facilitate comparison. When the coupling strengths are different,

we see very similar behavior as before except that there is a delay in resynchroniza-

tion after the network is desynchronized. We note that although this difference in

timing of the resynchronization is seen, it is dependent on the particular realization

of the α values. Next, we used the same realization of the coupling strengths, but

randomly set 20% of them equal to zero so that the network is not an all-to-all

coupled network. Again only a further delay in resynchronization is observed, as

shown in the third panel of Figure 5.7. This is reasonable since now some of the

connections are broken and thus the overall drive for resynchronizing the network is

smaller. We also considered the baseline current Ib of the neurons to be drawn from

a normal distribution so that the neurons are not all identical. The distribution

considered for the Ib values is shown in the right panel of Figure 5.6. With this

additional variability added to those described before, we get the result shown in

the fourth panel of Figure 5.7.

It should be noted that when increasing the mean coupling strength between the

neurons to ᾱ = 0.2, we see the same qualitative results, but with more instances
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Figure 5.6: Normal distributions for the coupling strengths (left) and the baseline currents (right)
for inducing heterogeneity into the network of neurons.

of control application due to the network’s higher tendency for synchronization

(results not shown).

5.6 Conclusion

We have considered the design of an event-based, minimum energy, desynchro-

nizing control stimulus for a network of pathologically synchronized coupled neu-

rons. The control drives the neurons to their phaseless sets, and lets the phases of

the neurons randomize under intrinsic background noise. The minimum energy op-

timality criterion is desirable for practical purposes, as it may increase the battery

life of implanted stimulus generators in patients with Parkinson’s disease treated

by DBS. By employing the minimum energy formulation, the total input energy for

the control input shown in Figure 5.3 is computed to be
∫ Tend

0
u2dt ≈ 194 which is

about 70% less than the minimum time approach considered in [18].
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Figure 5.7: Results for a population of N = 100 coupled neurons with ηi =
√

2DN (0, 1), D = 1;
first panel: the network has a common coupling strength α = 0.1 and the neurons all have
the same baseline current Ib = 10 µA/cm2; second panel: the coupling strengths are drawn
from the distribution shown in Figure 5.6, but the baseline current is the same for all neurons
Ib = 10 µA/cm2; third panel: the same coupling strengths and baseline current values are used as
in the second panel, except that 20% of the coupling strengths have been randomly chosen and set
equal to zero; fourth panel: the coupling strengths are exactly the same as those used to produce
panel three, but the baseline current values have been drawn from the normal distribution shown
in Figure 5.6. The seed for the random number generators have been set such that the same value
for the random vectors were produced across all four experiments to facilitate comparison. The
dotted gray traces show the mean voltage for each case and the horizontal dotted lines mark the
control activation threshold. The control is only active when the mean voltage has crossed the
threshold.
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Chapter 6

Minimum Energy Control for in

vitro Neurons

In this chapter, we consider optimal regulation of interspike intervals (ISI) for

periodically spiking in vitro neurons. Revisiting the approach presented in Chap-

ter 3, this is done by employing optimal control theory to design charge-balanced,

continuous-time, minimum energy input stimuli that can change the ISI of a neu-

ron to pre-specified values. The optimal control algorithm uses the neuron’s phase

response curve (PRC) which is measured experimentally using the so-called direct

method. In Chapter 3, following [16], we have applied optimal control theory to

phase models of neurons to derive charge-balanced minimum energy ISI regulatory

input stimuli. In this chapter, we extend the theoretical results from Chapter 3

and show the applicability of this method in practice by testing the controller on

in vitro pyramidal neurons in the CA1 region of rat hippocampus. In addition to
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being minimum energy, charge-balanced, and continuous-time, the designed input

stimuli are also low amplitude and of event-based nature. The event-based nature

of the input means that it applies only when a specific event, e.g., an action po-

tential, occurs. This way, the onset of an action potential could be considered as a

feedback signal that triggers the input.

This algorithm is independent of the biological details in neuron models and

is applicable to any neuron whose PRC can be measured. We first demonstrate

the theory through computational simulations using a model of cortical pyramidal

neuron [95]. We then show experimental evidence that the ISI of a periodically

spiking neuron can be optimally changed with energy levels that are in some cases

multiple orders of magnitude smaller than those previously considered in [3].

The main results from this chapter are given in [96].

6.1 Introduction

This work is motivated by the treatment of neurological diseases such as Parkin-

son’s disease, epilepsy, and essential tremor. When extended to a population level,

the ability to optimally control the spike timing of in vitro neurons could prove

useful in the treatment of these diseases by deep brain stimulation (DBS) [5]. In

recent years, various studies have considered different control approaches to neuron

systems both on a population level and on a single neuron level [11–23, 26–29, 45].

However, very few papers have shown experimental evidence of the applicability

of their method in practice: In [80], the authors present experimental results for
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model-independent control of electrochemical reactions of nickel electrode arrays in

sulfuric acid via a mild model-engineered feedback control method that suggests ap-

plicability to networks of coupled neurons. In [97], a model is developed to describe

thalamic DBS for patients with essential tremor and the authors present experimen-

tal results that support the idea that for high frequency pulsatile stimulation of the

Ventral Intermediate nucleus of the thalamus, there is an optimal voltage for max-

imum tremor suppression. In [98], the stabilization of the ISI of periodically firing

in vitro neurons is tested by designing and implementing a feedback PI controller

that changes the input current to the neuron based on the history of previous ISIs.

In another work, [3], the authors use a model-independent control algorithm that

regulates an in vitro neuron’s ISI by inputting an appropriately sized and timed

pulse. In all of these studies, phase models have been employed to bypass the need

for detailed biological characteristics for modeling of the cells.

6.2 Methods

6.2.1 Optimal Control

The control method used here is similar to that presented in Chapter 3. We

briefly repeat it here for convenience. The phase model for a neuron under an

arbitrary, small external stimulus u(t) is written as [32,34],

θ̇ = ω + Z(θ)u(t), (6.1)
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where θ ∈ [0, 2π) is the neuron’s phase. By convention, θ = 0 is associated with

the onset of a spike for the neuron and the neuron is periodically spiking in the

absence of external input with period Ts = 2π
ω

. The natural frequency of the neuron

is determined by the variable ω, and Z(θ) is its PRC, which determines how the

phase is changed due to an impulsive input at phase θ.

The objective of the optimal stimulus is to make the neuron fire at a desired spike

time. The algorithm finds a bounded input waveform |u(t)| ≤ umax, that starts at

the onset of a spike and steers the neuron (6.1) from θ(0) = 0 to θ(t1) = 2π, where

t1 is the desired next spiking time for the neuron. We also require the input to be

charge-balanced and to use minimum energy. In order to ensure charge-balance for

the input, we define the variable q(t) : R → R as the total accumulated charge in

the neuron at time t due to the external input u(t). Then one can write

q̇ = u(t), (6.2)

with the boundary conditions q(0) = q(t1) = 0. Minimizing the total input energy

is equivalent to minimization of the cost function

C =

∫ t1

0

u2(t)dt. (6.3)

Following standard optimal control theory [47], one can write the Hamiltonian

for this system as

H(θ, q, λ1, λ2, u) = u2(t) + λ1(t)(ω + Z(θ)u(t)) + λ2(t)u(t), (6.4)

where λ1(t) and λ2(t) are the Lagrange multipliers (or co-states) associated with the

θ-dynamics (6.1) and the q-dynamics (6.2), respectively. Using this Hamiltonian,
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the necessary conditions for optimality are written as

θ̇ =
∂H

∂λ1

⇒ θ̇ = ω + Z(θ)u(t), (6.5)

λ̇1 = −∂H
∂θ

⇒ λ̇1 = −λ1(t)Z ′(θ)u(t), (6.6)

q̇ =
∂H

∂λ2

⇒ q̇ = u(t), (6.7)

λ̇2 = −∂H
∂q

⇒ λ̇2 = 0, (6.8)

where prime represents differentiation with respect to θ [47, 48]. From Pontrya-

gin’s minimum principle, an optimal control stimulus is one that minimizes the

Hamiltonian (6.4)

u∗(t) = arg min
|u(t)|≤umax

(
u(t)2 + λ∗1(t) (ω + Z(θ∗)u(t)) + λ∗2(t)u(t)

)
,

where the search for the control stimulus is constrained to values bounded in mag-

nitude by umax and the asterisk superscript denotes optimal values. We note that

λ2(t) is a constant according to (6.8). This equation yields

u∗(t) = −1
2
(λ1(t)Z(θ) + λ2), |λ1(t)Z(θ) + λ2| ≤ 2umax,

u∗(t) = −sign(λ1(t)Z(θ) + λ2)umax, |λ1(t)Z(θ) + λ2| > 2umax.

(6.9)

By substituting (6.9) in the system of equations (6.5)-(6.8) we arrive at a two

point boundary value problem (TPBVP) which we solve using the shooting method.

The boundary values for this system are θ(0) = q(0) = q(t1) = 0 and θ(t1) = 2π.

This formulation can be solved to yield the minimum energy control stimulus for

any oscillatory system as long as a PRC can be obtained for it.
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6.2.2 Estimation of PRC

For computational models of periodically spiking neurons, the PRC, and hence

the phase model, can be obtained either by solving the appropriate adjoint equa-

tion or by implementing the so-called direct method [33]. For biological neurons

however, one can only use the direct method to obtain the PRC experimentally

(see Appendix B). We refer to the PRC found through solving the adjoint equation

as the adjoint PRC and that found from the direct method, the fit PRC.

In the direct method, a short-duration pulse (that approximates an impulse) is

injected into the periodically spiking neuron at various phase values, that results

in a change in the next spike time for the neuron (see Figure B.1). In measuring

the PRC with the direct method, it is necessary to choose pulse amplitudes that

are high enough to produce spike perturbation values beyond those due to the

neuron’s intrinsic noise. However, if the pulse amplitudes are too high, they can

induce instantaneous spikes which means that the neuron has been perturbed too

far off of its periodic orbit to the point where the linearity assumption of the PRC

analysis does not hold. This is usually seen when the input pulse is applied in

the last 20% − 30% of the phase cycle. At these phases, the amount of remaining

phase to advance may be less than what the pulse stimulus could achieve given the

sensitivity of the neuron in that phase: (2π − θst) < Z(θst)Qp/c, with Qp being

the pulse electrical charge, c the membrane capacitance, and θst being the phase

at which the stimulus is applied. The effect is that the data points in the last

20% − 30% of the phase cycle may fall along a straight line of slope −c/Qp, that
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passes through the (2π, 0) point in the PRC graph (see, for example, Figure 6.1a).

This line is referred to as the causality line (cf. [99]) and indicates the upper limit

for the phase advance in the PRC. Although some points will inevitably be near or

on the line of causality at the end of the phase cycle, a pronounced causality line

is an indicator that the stimulation has reached saturation, and thus has induced

nonlinearities in the computation of the PRC. In practice, the pulse amplitudes are

set by trial and error and on a case by case basis.

To measure the level of induced nonlinearity for the PRCs we define the non-

linearity coefficient, CNL, as the percentage of the data points that fall in a band

neighborhood of the causality line. The width of the band neighborhood is set to

be 0.03, i.e., any data point that falls in the band (2π − θst) − Z(θst)Qp/c ≤ 0.03

is considered to be under the effect of induced nonlinearity. This way, the more

pronounced the causality line, the higher the CNL.

6.2.3 GA Model

To bridge the theory described in the previous sections to practice, we use a

model of a pyramidal neuron introduced by Golomb and Amitai [95], hereafter re-

ferred to as the GA model, and evaluate the performance of the optimal control

(6.9) in simulation. The GA model is a conductance-based Hodgkin-Huxley [50]

type model with five dimensions that incorporates three potassium currents (IKdr,

IKA, IK,slow), two sodium currents (INa, INaP ), one leak current (IL), and an exter-

nally applied current (Iapp). The specifics of this model can be found in [95]. We
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present a slightly modified version for the voltage equation where a noise term is

added and the external current stimulus in the original equations, Iapp(t), is split

into two parts, Ib and Ic(t), as indicated below:

V̇ =
1

c
(−IKdr(V, n)− IKA(V, b)

− IK,slow(V, z)− INa(V, h)− INaP (V ) (6.10)

− IL(V ) + Ib + Ic(t)) + η(t),

where V is the voltage difference across the neuron’s membrane in mV, c = 1 µF/cm2

is the membrane capacitance, and Ib is a constant baseline current that induces sta-

ble periodic spiking of the neuron in the absence of any control current Ic and any

noise η(t). For Ib ≈ 0.93 µA/cm2, the neuron spikes with a period of Ts = 100 ms

which gives ω = 2π
Ts

= 0.0628 rad/ms. The noise process η(t) is added to gener-

ate uncertainties in the ISI seen in real neurons. We take η(t) to be a zero-mean

Gaussian white noise process with standard deviation 0.15, i.e., η(t) = N (0, 0.15),

to generate approximately 10% variability in the ISI for the GA model.

In the presence of small external perturbations Ic = O(ε), the behavior of the

model can be approximated by its phase model. Following standard phase reduction

techniques (see, e.g., [32,34]), one can write the phase dynamics for this model as in

(6.1) with the unperturbed angular velocity being ω = 0.0628 rad/ms, the control

input being u(t) = Ic/c (with units µA/µF), and the PRC Z(θ) being as shown

in Figure 6.1a. The two PRC traces shown in Figure 6.1a represent the adjoint

PRC (gray) for the noiseless GA model, obtained using XPPAUT, and the fit PRC

(black) for the noisy GA model, obtained from the direct method. Pulsatile inputs
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of amplitude 2 pA and duration 1 ms have been used for the direct method. This

figure also shows the data points, scaled by c/Qp, with black markers. We see that

the fit PRC found using the direct method approximates the adjoint PRC with

reasonable accuracy.

For the simulation shown in Figure 6.1a, the causality line is shown as the

straight black line and the neighborhood that is considered for calculating the

nonlinearity coefficient is shown with gray dotted line below it. For this simulation,

CNL = 4.0%.

6.2.4 Experimental Preparation

The experiments were performed on brain slices of long-evans rats of 14-21

day postnatal age. The rats were deeply anesthetized using isoflurane before ex-

traction of the brain. Once extracted, the brain was bathed in chilled artificial

cerebral spinal fluid (aCSF) composed of 124 mM NaCl, 2 mM KCl, 2 mM MgSO4,

1.25 mM NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3, and 10 mM D-glucose at pH

7.4, 295 mosM [3]. Transverse slices of the ventral horn of the hipocampal region

were sectioned 350 µm thick on a vibratome (Leica Microsystems, Bannockburn,

IL). The slices were placed under the microscope with circulating aCSF and neu-

rons were visualized using differential interference contrast optics (Olympus, Center

Valley, PA). Whole cell patch-clamp recordings were performed in the CA1 region

of the hipocampus using pyramidal cells. Borosilicate capillary pipettes were pulled

to 8 MΩ and filled with intracellular recording fluid (ICF) composed of 120 mM K-
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Figure 6.1: PRC and optimal stimuli for the GA model. (a): Shown in gray, the adjoint PRC for
the noiseless GA model (6.10) computed mathematically by solving the adjoint equation using
XPPAUT [2]; shown in black, the fit PRC for the noisy GA model (6.10) computed by stimulating
the neuron with a pulse every 6th cycle with a 2 pA, 1 ms pulse, measuring the resulting phase
change, and fitting a sixth order polynomial to the data that is constrained to zero at both ends
and scaled by the pulse charge. The markers show the data points for the noisy system from
which the black PRC fit is obtained. An advance in the next spike time corresponds to a positive
value in the PRC graph. The diagonal black line on the right represents the line of causality,
above which a neuron would be firing prior to the stimulus, and on which represents the stimulus
instantaneously evoking an action potential. The dashed line offset from the diagonal represents
the area in which action potentials are considered to be evoked by the pulse stimulus, representing
a nonlinear response. The nonlinearity coefficient, CNL, is the percentage of the data points that
fall in this band neighborhood of the causality line. (b) Charge-balanced minimum energy input
stimuli for the GA model found from the adjoint PRC (gray lines) and the fit PRC (black lines)
for different values of t1.
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glucose, 10 mM HEPES, 1 mM EGTA, 20 mM KCl, 2 mM MgCl2, 2 mM Na2ATP,

and 0.25 mM Na3GTP at pH 7.3, 290 mosM. The neuron’s membrane potential was

amplified and low-pass filtered at 2.4 kHz (Axon 700B; Molecular Devices, Sunny-

vale, CA) and digitized on a real-time Linux computer (NiDAQ 6259; National

Instruments, Austin, TX).

6.2.5 Dynamic Clamp

Dynamic clamp is a low latency closed-loop control system that connects a com-

puter or an analog device to one or several (virtual or in vitro) neurons. In this

setting, a patch-clamp amplifier is connected to a data acquisition card (DAQ) and

in turn to a computer through a real-time interface [100]. We use the Real-Time

eXperiment Interface (RTXI) software, an open source program for real time ex-

periments (www.rtxi.org). RTXI can be used with a variety of DAQ cards through

Comedi project (www.comedi.org) which runs on the Real-Time Application In-

terface (RTAI) real-time Linux nanokernel (www.rtai.org). RTXI is a modular

software with a freely available software repository. We carried out experiments at

a rate of 5 kHz, which corresponds to a time step of 0.2 ms. The dynamic clamp is

used for measuring PRCs in both the virtual neuron and the in vitro neurons. It

is also used when the Matlab-calculated optimal control waveforms are applied to

the neurons.
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6.3 Results and Discussion

6.3.1 Simulations

Once the PRC for the GA model is available (see Figure 6.1a), equations (6.5)-

(6.9) can be solved to give the optimal input stimulus u(t) for a given target ISI.

We consider a set of seven different target ISI values around the neuron’s natural

ISI, Ts = 100 ms, ISIT = [80, 85, 90, 95, 100, 105, 110] ms, and find the charge-

balanced minimum energy stimuli corresponding to each of the target ISI values

using both the adjoint and the fit PRCs of Figure 6.1a. The resulting optimal input

stimuli are shown in Figure 6.1b. These optimal controls were applied to the full

GA model (6.10) in the following manner. At the onset of an action potential,

a target ISI, ISItarg ∈ ISIT is randomly selected and its corresponding optimal

stimulus waveform is applied to (6.10) as Ic(t) = c u(t) for t ∈ [0, Tend], where Tend

is the minimum of ISItarg and the time of next neuron spiking. In other words, the

control input Ic(t) is reset to zero at the onset of the next action potential or when

it has been applied fully for one cycle. Once Ic(t) is reset to zero, it will remain

zero for three cycles of the neuron firing before it comes back on at the onset of

the fourth action potential with another randomly selected ISItarg. The reason for

holding the input zero for three cycles is to allow the neuron to return to its original

periodic orbit which the PRC was originally computed for. Figure 6.2a shows an

example of how the stimulus waveform is applied to the neuron. The optimal

stimulus waveform (black) is determined from the fit PRC measured using the direct
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method. As shown in the figure, first a target ISI (of, in this case, ISItarg = 90 ms) is

set and its corresponding optimal input is applied. The measured ISI (for this case,

ISIact = 87.8 ms) is labeled below, indicating that the neuron spiked early. Then,

the input is set to zero for three cycles before turning back on for another randomly

selected target ISI of, in this case, 105 ms and the actual ISIact = 105.4 ms. Note

that for the first application of the input shown, the input is reset to zero at the

onset of the next spike, whereas for the second application, the input has been

reset to zero when the full cycle of the input is applied. Also, it is seen that due to

the presence of noise, during the middle resetting period, the actual ISIs fluctuate

around the nominal 100 ms spiking period.

Performance of the controller is measured by correlating the target ISI against

the measured actual ISI. The black and gray optimal inputs of Figure 6.1b were

applied to the noisy and noiseless full GA model to produce the results shown in

figures 6.2b and 6.2c, respectively. From Figure 6.2c, one can see that the controller

has been able to achieve the target ISI with a Pearson Rcont value of 0.998 for

perturbations over a range of 30 ms, which confirms the suitability, and justifies

the use, of phase models for controlling neurons. Figure 6.2b shows the same results

but for the noisy GA model with the fit PRC. It is seen that even though there is

noise in the system and the optimal stimuli are only accurate up to the accuracy of

the PRC, the controller has been able to achieve a Pearson Rcont value of 0.951 in

controlling the ISI of the neuron to the targeted values. We note that the accuracy

of the controller is also dependent on the target ISI: the further it is away from the
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natural period at which the PRC is measured, the less accurate it becomes.

6.3.2 Electrophysiology Experiments

After testing the control algorithm for a virtual neuron, we then tested it for real

neurons. This was done by patch-clamping neurons in the CA1 region of hippocam-

pus in brain slices from rats. Neurons were stimulated and recorded using whole

cell patch-clamp recording techniques. The applied current was determined using

a dynamic clamp and implemented using the RTXI platform. The implementation

consists of three parts. In the first part, we control a neuron to spike periodically at

an average rate of 100 ms. This is done by implementing an auxiliary closed-loop

controller that regulates the baseline current Ib for the neuron. It is important to

have stable periodic spiking behavior in the neuron, as the underlying assumption

in the formulation developed previously is that the system is on a stable limit cycle.

We note that the necessity of having a controller to maintain the periodicity of the

neuron comes from the empirical fact that the dynamics of in vitro neurons change

slowly in time when under laboratory conditions [98]. To compensate for this slow

change, a PI controller, previously designed and tested in [98], that makes small

perturbations to the DC Ib value at each spike time is used. The DC Ib value is

typically around 100 pA, and the amount of perturbation from the PI controller is

less than 1 pA per action potential.

Once the neuron has stabilized around a baseline firing rate, the PRC of the

neuron is obtained using the direct method. The neuron is stimulated with a pulse
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Figure 6.2: Results for the GA model. (a): An example illustrating the application of the optimal
stimulus to the full (noisy) system (6.10). The inputs are from those shown in Figure 6.1b in black.
(b): Performance of the phase model and the control characterized by the difference between the
actual ISIs and the target ISIs for the noisy full system. (c) Similar results as in (b), but for the
noiseless system (6.10) and under charge-balanced minimum energy control stimuli shown as gray
lines in Figure 6.1b. We see that the Pearson correlation factor, Rcont, between the target ISI
values and the actual ISI values increases due to higher accuracy in computing the PRC and the
lack of noise in the system.
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stimulus every 6th cycle, and the advance in spike time relative to the nominal 100

ms is measured and recorded to obtain the PRC. The phase at which the pulse is

injected is randomly chosen every time. As explained before, the reason for applying

the pulse stimulus every 6th cycle is to let the neuron return back to its natural

periodic orbit before applying the next stimulus; this is to minimize interactions

between stimuli which could affect the estimate of the PRC. The input pulse that

is used has 1 ms duration and 150 pA amplitude. Although we used pulses with

amplitude 150 pA for most of the experiments, we investigated the effect of other

pulse amplitudes as reported later.

The phase advance data points are then transferred into Matlab and are fit with

a sixth order polynomial constrained to zero at both ends and scaled by c/Qp to

estimate the fit PRC for the neuron under study. In Matlab, we use the fit PRC to

solve equations (6.5)-(6.9) for the minimum energy control stimuli for each of the

desired target ISI values in the ISIT set. The optimal input waveforms are then

fed back into RTXI where, at the onset of a spike, a target ISI value from ISIT is

randomly chosen and its corresponding optimal waveform is applied to the neuron

for one cycle. The actual ISI of the neuron for that cycle is measured to evaluate the

performance of the controller. We note that since a unit membrane capacitance, c,

is assumed, the resulting optimal control inputs u∗(t) can be thought as electrical

current stimuli, since u = Ic/c.

In Figure 6.3 the measured PRC and the calculated optimal inputs for an in vitro

neuron are shown. The correlation factor for this fit is obtained to be Rprc = 0.350.
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One can see the formation of the causality line in Figure 6.3a. For the example

shown in this figure, CNL = 8.4%, which is indicative of reasonable data set for

obtaining the PRC. As mentioned before, to ensure realistic PRCs, one must choose

pulse amplitudes that are small enough to avoid large nonlinear responses, while at

the same time are large enough that can produce a notable variability in the spike

time of the neuron.

When the optimal control inputs found using the PRC (shown in Figure 6.3b)

are applied to the in vitro neuron, we get the results shown in Figure 6.4. We

note that in the results presented in this figure, we have eliminated any ISIact value

less than 30 ms and greater than 200 ms, which amount to less than 1% of the

data, as outliers. The first subplot in this figure is a summary result figure, while

the others are the histograms for each of the target ISI values of interest. The

statistics of the actual ISIs achieved by the neuron are reported in each case in the

form of a mean and standard deviation: ISIact = mean± std. It is seen that for

the case with ISItarg = 100 ms, the mean is 100.7 ms and the standard deviation is

8.639 ms. Considering the optimal control for this case, which is practically zero

according to Figure 6.3b, we can conclude that the standard deviation is a result of

the intrinsic noise in the neuron. We see that the standard deviation in all of the

other cases is of the same order as in this case, which is indicative of consistency

across the different cases. By looking at the mean values, however, one observes

that in general, as the target ISI is moved away from the nominal (unstimulated)

ISI of Ts = 100 ms, the error in the mean values tend to increase. We argue that
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the main reason for this is that by targeting ISIs that are further away from Ts, the

magnitude of the optimal control inputs increases, which in turn pushes the phase

model of the neuron toward the edge of the parameter range for which it is valid.

The method was applied to a total of 9 different neurons from four different rats.

A total of 15 recordings were made, as summarized in Table 6.1. It is seen that

in finding the PRC, there is a relationship between the pulse amplitude, the PRC

correlation coefficient Rprc, and the associated PRC nonlinearity coefficient CNL, in

that when the pulse amplitude is high (e.g., 200 pA), the Rprc and CNL values are

also higher. The reason for this is that with higher amplitude pulses, the neuron

is being overstimulated, which results in saturation and increased importance of

nonlinearities for those pulses applied in the last 20%-30% of the phase. This

gives a higher CNL. Moreover, since the PRC fit function is a least squares fit

to the data and, by design, it approaches zero at 2π, it produces a higher Rprc

value as it easily hugs the dense causality line due to overstimulation. A PRC that

is overridden by nonlinearities is not reliable and oftentimes results in inefficient

control characterized by low Rcont values. This is better seen in Figure 6.5a. From

the left panel, one sees that higher Rcont values are obtained for CNL values less

than 20%. These values of CNL correspond to Rprc values that are mostly less than

0.5, as shown in the right panel. The data point with CNL = 37.8% in this figure

(shown with solid marker) indicates overstimulation in measuring the PRC, shown

in Figure 6.5b. Although this recording gives a very high value of Rprc = 0.645, the

resulting Rcont = 0.423 value is not very high, proving the unreliability of the PRC.
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Figure 6.3: PRC and optimal control inputs for an in vitro neuron. (a): PRC data points and
fit PRC computed from the direct method by stimulating the neuron with a 150 pA, 1 ms pulse
every 6th cycle. The fitted curve is a sixth order polynomial that is constrained to be zero at both
ends. The data shown here are scaled by the pulse area. The dotted box shows the neighborhood
around the causality line (shown as straight dashed line) that is used to compute the nonlinearity
coefficient. (b) Charge-balanced minimum energy input stimuli for the neuron found using the fit
PRC for different values of t1.
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Figure 6.4: Results for an in vitro neuron. The upper right subplot shows a summary plot for the
control where the data points are the actual ISIs achieved for each of the target ISIs. The mean
values of the actual ISIs are shown with gray markers around the straight unit slope black line.
The correlation coefficient for the overall controller output across all target ISIs is also reported.
Other subplots show histograms and statistical results for control to each of the target ISIs. The
actual ISIs achieved for each case is reported in the form: ISIact = mean± std.
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Table 6.1: Results for 9 different in vitro neurons and a total of 15 different recordings. Pls Amp
gives the pulse amplitude in pA that was used to obtain the PRC through the direct method. Rprc
gives the correlation coefficient for the PRC. %CNL give the value of the nonlinearity coefficient
for each of the PRC recordings. Rcont gives the correlation coefficient for administration of the
optimal controls across all seven different target ISIs. Cont. Hold indicates the number of reset
cycles that was allowed between every two consecutive control applications.

Cell No./Recording Pls Amp Rprc %CNL Rcont Cont. Hold
1/1 200 0.559 21.1 0.160 0
1/2 100 0.352 13.2 0.594 0
1/3 150 0.325 17.8 0.717 0
2/1 200 0.573 17.4 0.697 0
2/2 100 0.312 7.6 0.666 0
2/3 150 0.404 15.5 0.651 0
3/1 200 0.467 22.3 0.478 0
3/2 100 0.330 13.4 0.644 0
4/1 150 0.412 7.8 0.559 6
5/1 150 0.645 37.8 0.423 6
5/2 100 0.419 25.6 0.214 3
6/1 150 0.350 11.0 0.820 3
7/1 150 0.368 24.1 0.404 0
8/1 150 0.373 7.8 0.773 3
9/1 150 0.418 11.1 0.599 3

We did not observe a notable effect from changing the number of holding cycles in

the last column of the table. The results shown in figures 6.3 and 6.4 are for the

6/1 row in the table.

To evaluate the performance of the minimum energy control method presented

in this chapter, we compare a measure of the input energy obtained for this method

with the same measure calculated for a phase change achieved by applying a single

pulse input that is optimally timed to occur when the PRC of the neuron is most

effective at θ ≈ 0.7× 2π, as used previously for control in [3]. The duration of the

input pulse in [3] is fixed at 0.2 ms, but the amplitude is determined as a function

of the target ISI. Even though the timing of the pulse control method is optimized
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Figure 6.5: The nonlinearity coefficient versus the correlation coefficients for the control (top left)
and the measured (fit) PRC (top right). It is seen that better control, i.e., a higher Rcont value,
is achieved when CNL values are less than 20% which have mostly been obtained in cases where
the Rprc is less than 0.5. If the neuron is overstimulated when measuring the PRC, a high value
of CNL is obtained which makes the PRC unreliable despite a high Rprc as shown by the solid
markers in (a) corresponding to the PRC shown in (b), where the neuron has been overstimulated
with pulse amplitudes of 200 pA.

to yield minimum pulse amplitudes, we find that the (continuous-time) minimum

energy control method presented here achieves the same task with levels of energy

that are, in most cases, two orders of magnitude smaller, which is a significant

achievement. The measure of the input energy that is used to do the comparison is

of the form of the cost function written in (6.3). To find an average input energy for

each of the seven target ISI values, we calculate the quantity 1
Nk

∑Nk
i=1(
∫ Tend,k

0
u2dt),

where Nk is the number of times that the neuron is controlled to spike at a specific
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Figure 6.6: Input energy comparison for the method presented in this chapter (markers with
solid black fit) with that of [3] (gray). The x-axis presents the spike time advance (Ts − Tst in
Figure B.1) for all 15 recordings of Table 6.1. The data points for each recording, their least
squares quadratic fit (solid black line), and the dashed gray line have been shifted horizontally to
yield a minimum at zero for ease of comparison. We see that the method presented in this chapter
can reduce the level of the input energy by two orders of magnitude as the ISI of the neuron is
controlled to values further away from its natural period.

target ISI, and Tend,k is the total time that the corresponding optimal input is

applied in the kth round of control application. To evaluate the performance of

the presented minimum energy control method, Figure 6.6 shows the results of

this comparison between the experimental results reported here and those reported

in [3].

6.4 Conclusion

The optimal control method presented here uses a neuron’s phase model and

PRC to compute the minimum energy waveform for a specific target ISI that is
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charge-balanced, continuous, low frequency and low amplitude. We see that the

control inputs found from this method reduce the amount of energy required to

achieve a target ISI by, in most cases, two orders of magnitude compared to the

optimally timed pulsatile input considered in [3]. The results show that the accuracy

of the controller declines as the target ISI is set further away from the natural ISI

of the uncontrolled neuron. This is due to the fact that the phase model, on which

the control algorithm is based, loses validity as the system receives larger control

inputs and is pushed further away from its natural periodic orbit. The data also

suggest a correlation between the Rprc, CNL, and Rcont values in that higher Rcont

values are achieved for lower Rprc and CNL values (see top row in Figure 6.5).

We argue that by overstimulating the neuron when measuring the PRC, more

nonlinearities are induced which result in unreliable PRCs that can prove inefficient

in control. Nonlinearities seem to also result in spurious higher Rprc values due to

the fit PRC’s adherence to the unreliable data points along the causality line. This

highlights the importance of not overstimulating the neuron when measuring the

PRC. Since much of the accuracy for this method of control results from measuring

a good PRC for the neuron, designing more efficient protocols for measuring PRCs

would be of interest. It is worth mentioning that by employing the direct method

for computing the PRC for an in vitro neuron, the control method becomes model-

independent and can easily be applied to any neuron. Furthermore, since the

resulting control inputs are charge-balanced, there would be no concern for an

accumulated charge if the control is applied for long periods of time. Also, when
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extended to a population level, the low amplitude and frequency features of this

type of control may prove desirable as they can reduce concerns about lesioning due

to high amplitudes or other possible side effects due to the high frequency nature

of traditional DBS inputs. In addition, since the control method is event-based,

the control input is only applied when an event (such as a spike) is elicited, which

reduces the number of applications.
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Chapter 7

Conclusion and Future Directions

In this dissertation, we have studied different event-based optimal control meth-

ods for controlling single and populations of periodically spiking neurons. There

were three main parts to this disseration. First, we considered controlling the in-

terspike interval for single neurons represented by phase models. Specifically, in

Chapter 2, we considered the time optimal control problem and found analytical

expressions for the minimum and maximum values of interspike intervals achievable

with small bounded control stimuli. In Chapter 3, we studied the minimum energy

control for regulating the interspike interval of a neuron. In both of these chapters,

we studied the effect of imposing a charge-balance constraint on the control.

In the second part, we focused on the problem of desynchronization with min-

imum input energy for populations of pathologically synchronized neurons us-

ing a Hamilton-Jacobi-Bellman formulation and dynamic programming techniques.

Specifically, in Chapter 4, we achieved desynchronization by applying discrete time
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dynamic programming to a network of globally (all-to-all) coupled, synchronized,

phase neurons. The formulation was presented using a single input to the net-

work. In Chapter 5, we employed an HJB approach to optimally drive the state

of a pathologically synchronized network of neurons to its phaseless set, switch the

control off, and let the phases of the neurons randomize under intrinsic background

noise. For the example considered, it is shown that the proposed control causes a

considerable amount of randomization in the timing of each neuron’s next spike,

leading to desynchronization for the network.

In the third part, we investigated the suitability of optimal control in practi-

cal applications. Specifically, in Chapter 6, we demonstrated the applicability of

minimum energy control for designing efficient input stimulus waveforms for sin-

gle periodically-firing in vitro neurons from brain slices of long-evans rats. The

PRC for each neuron was experimentally obtained using the direct method. Based

on the measured PRC, continuous-time, charge-balanced, minimum energy control

waveforms were designed and shown to be effective.

One significant achievement of the work presented in this dissertaion is that

it is shown that for a single neuron under intracellular stimulation, one can com-

bine electrophisiology experiments with optimal control theory to achieve control

waveforms for in vitro neurons with levels of energy that are in some cases multi-

ple orders of magnitude smaller than those of similar past studies. The minimum

energy design of the controller may result in longer battery life for neurostimulators.

In the future, it would be interesting to extend the minimum energy control al-
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gorithm to populations of real neurons. However, for population level applications,

the stimulation would be extracellular and in this setting, one needs to account for

the irreversible faradaic reactions that happen at the electrode interface that are

not desirable and should be prevented. To prevent irreversible faradaic reactions,

the input stimulus should be designed such that it does not remain positive or

negative for long periods of time. If the input remains in the same polarity for

too long, this would allow the products of the chemical reactions to move away

from the stimulating electrode, thus not being available for reverse reactions upon

the change in the stimulus polarity [10]. One mathematical challenge is to formu-

late the optimal control scheme that incorporates this restriction. Also, obtaining

a population phase response curve can prove challenging both in practice and in

theory. One also needs to account for the location of stimulation and potential

correlations between the frequency and the amplitude of the input waveform to

ensure an effective input (cf. [97]). Apart from those mentioned here, there are

other interesting future directions as well, some of which have been mentioned at

the end of each chapter.

Finally, we note that there may be other applications of deep brain stimulation

for which the results presented in this dissertation are relevant, in particular treat-

ments of disorders for which the increase in the neurons’ firing rate is desirable;

this might also be useful for enhancing a person’s performance, for example by

heightening their attention through targeted stimulation. The results might also

be relevant for other stimulated oscillators for which a phase reduction can be per-
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formed. In the biological context, this could include the heart as stimulated by an

artificial pacemaker, or an organisim’s circadian rhythm as stimulated by light or

chemicals [44,101,102].
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Appendix A

Phase Models for Neurons

Phase models can be derived for any oscillatory system, such as a neuron. In

this appendix, we review the reduction of neuron models to phase models.

There are different mathematical models for neurons developed in the litera-

ture. One class of these models are the conductance-based models. As examples of

this group we can mention the Hodgkin-Huxley model [50, 103], Rose-Hindmarsh

model [104], Fitzhugh-Nagumo model [81], and Morris-Lecar model [105]. A general

conductance-based model of a single neuron is written as:


CV̇ = Ig(V,n) + Ib + I(V, t),

ṅ = N(V,n), (V,n)T ∈ Rn,

(A.1)

where V is the voltage across the membrane of the neuron, n is an (n − 1) di-

mensional vector referred to as the vector of the gating variables (gating variables

control the ionic flow across the membrane of the neuron), Ig(V,n) represents the
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membrane currents, Ib is the baseline inward current which effectively sets the spik-

ing frequency of the neuron, and I(V, t) represents the effect of all synaptic and

external currents from other areas of the brain or a stimulation electrode which

stimulate the neuron [32]. If we neglect reversal potentials we can write I(V, t) as

I(t), without any dependence on V .

The system (A.1) can more compactly be written as:

Ẋ = F(X) + εG(X, t), X = (V,n)T ∈ Rn, (A.2)

where F(X) is the baseline vector field and εG(X, t) is the stimulus effect in the

form of a disturbance. The important assumption here is that when G(X, t) ≡ 0

the neuron fires (or spikes) periodically with a frequency determined by the baseline

vector field F(X). In other words, the neural oscillator has a hyperbolic attracting

limit cycle γ in its phase portrait. We assume that such a limit cycle always

exists for each individual neuron. Note that the hyperbolic assumption guarantees

structural stability to small perturbations G(X,t), and attractivity basically means

local asymptotic stability of the limit cycle.

Now the objective here is to further simplify (A.2) by reducing it to a one-

dimensional scalar equation. To this end, we introduce the following definition.

Definition The scalar phase variable of the neuron system (A.2) is defined as

θ(X) : Rn → R where θ(X) ∈ [0, 2π) for all X in some neighborhood U of γ, where
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U ⊂ Bγ with Bγ denoting the basin of attraction of γ, such that the phase evolution

takes the simple form:

dθ(X)

dt
= ω when G(X,t) ≡ 0, ∀X ∈ U . (A.3)

In this definition the baseline frequency of the neural oscillator is ω = 2π
T

where

T is the period of equation (A.2) with G(X,t) ≡ 0. Note that θ(X) is a scalar

field.

We can associate another definition with this definition for θ(X) and that is

the definition of isochrons. For a system with a stable periodic orbit (or attracting

limit cycle) isochrons are defined as follows.

Definition Let γ be a stable periodic orbit. Let X(0) be a point on γ; the isochron

associated with X(0) is the set of all initial conditions Y(0) such that

lim
t→∞
‖X(t)−Y(t)‖ → 0.

That is, at each t, Y(t) has the same constant ω as X(t), but its radial distance

to γ is reducing due to the stability of the periodic orbit. It has been proven that

isochrons exist for any smooth vector field with a hyperbolic stable limit cycle [69].

Figure A.1 shows a schematic of the periodic orbit of the firing neuron in the phase
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Figure A.1: Two-dimensional phase portrait of a neural oscillator in its periodic firing mode. The
periodic orbit is locally asymptotically stable with the basin of attraction Bγ being the entire
state space minus the unstable fixed point shown with an x marker. The phase variable θ along
with the isochrons are shown. It is shown, schematically, that if two states intiate on the same
isochron, they converge to the same point on γ, whereas if they intiate on different isochrons,
the maintains their initial phase difference due to having the same ω. Although the concept of
isochrons is defined for everywhere within the basin of attraction, the phase model is only valid
in a neighborhood close to the periodic orbit.

space along with its basin of attraction and the isochrons. By convention, θ = 0

corresponds to the maximum value of V , i.e., when the neuron fires.

We also note that, according to our definition of θ and the isochrons, we have

less dense isochrons when the dynamics of the system are fast, and more dense

isochrons when the dynamics are slow. So in figure A.1, the isochrons, equally

spaced in phase, are far apart on the righthand side of the periodic orbit where the

neuron fires and closer on the left.

Having defined θ(X), we can now write:

dθ(X)

dt
=
∂θ(X)

∂X
· dX
dt

=
∂θ

∂X
· F(X) +

∂θ

∂X
· εG(X, t). (A.4)
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Since, by construction dθ
dt

= ω when G(X, t) ≡ 0, we can write

dθ(X)

dt
= ω +

∂θ

∂X
· εG(X, t). (A.5)

This is a first order partial differential equation that the scalar field θ(·) must

satisfy. Even after θ(·) has been found, this equation is not a phase-only (and

hence self-contained) description of the oscillator dynamics. This is because it is

dependent on X rather than just θ. However, evaluating the vector field at the

periodic orbit Xγ(θ), which is defined as the intersection of γ and the θ(X) level

sets (i.e., isochrons) gives an equation which is only in terms of θ and t:

dθ(X)

dt
= ω +

∂θ

∂X

(
Xγ(θ)

)
· εG

(
Xγ(θ), t

)
+ E ,

where E represents the error terms of O(|G|2). We can think of this as a lineariza-

tion about G = 0 for small perturbations G(X, t). Neglecting the error term, for

small perturbations close to the periodic orbit we can write:

dθ(X)

dt
= ω +

∂θ

∂X
(Xγ(θ)) · εG(Xγ(θ), t). (A.6)
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We define Z(θ) = ∂θ
∂X

(Xγ(θ)), and realize that for the system under consideration

(i.e., system (A.1)), εG(X, t) only has one entry: εG(X, t) = [I(t)/C 0 0 · · · 0]T .

This means that only the first entry of Z(θ), ZV (θ) comes into play. ZV (θ), or as

more commonly denoted, Z(θ) is called the Phase Response Curve (PRC) for the

neuron. Also, we can replace ω by a more general function f(θ). So, in summary,

the phase model is written as

dθ

dt
= f(θ) + Z(θ)u(t), (A.7)

where f(θ) represents the neuron’s baseline dynamics, Z(θ) is the PRC of the

neuron, and u(t) = I(t)/C is the input stimulus. By convention θ = 2kπ, k =

0, 1, 2, · · · corresponds to the spiking of the neuron. For u(t) = 0, the neuron would

fire at its natural period T determined by f(θ).

The concept of phase is extended from the periodic orbit to its entire basin

of attraction by defining isochrons using the idea of asymptotic phase [32, 69].

Isochrons are level sets of the phase within the basin of attraction [46]. The points

at which all isochrons converge are where a phase value can not be defined and

hence, the collection of these points make the phaseless set for the oscillator.
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Appendix B

Adjoint and Direct methods for

PRCs

For computational models of periodically spiking neurons, the PRC, and hence

the phase model, can be obtained either by solving the appropriate adjoint equa-

tion or by implementing the so-called direct method [33]. For biological neurons

however, one can only use the direct method to obtain the PRC experimentally.

In the adjoint method, for an n-dimensional model of an oscillator (such as a

periodically spiking neuron represented by (A.2)), the PRC is obtained as the first

element of the solution of the following adjoint equation which is an n-dimensional

system of first order linear differential equations obtained for the system in the

presence of small external impulsive inputs [32, 34]:

dZ(t)

dt
=

[
− ∂F

∂X
(Xγ(t))

]T
Z(t), (B.1)
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where Z(t) = ∂θ
∂X

(Xγ(t)). The condition for this equation can be written as

∂θ

∂X
(Xγ(0)) · F(Xγ(0)) = ω, (B.2)

where, ω is the constant angular velocity of oscillations in the absence of external

stimuli. This equation supplies only one condition for the n-dimensional system

(B.1). The rest arise from requiring periodicity for the solutions of Z(t) in (B.1).

In the adjoint method, it is required that the system’s periodic orbit be a stable

periodic orbit that would attract the state of the system when perturbed away from

it as a result of applying a small external input. Also, the underlying assumption in

deriving the linear adjoint equation is that the external input is small enough so that

when perturbed, the system remains close to its periodic orbit. This perturbation is

quantified by the oscillator’s PRC: the change in the oscillator’s phase as a function

of the phase at which the stimulus is applied. To solve the adjoint equation for

different models numerically, we use the software XPPAUT [1]. We refer to the

PRC found through solving the adjoint equation as the adjoint PRC.

In the direct method [33], a short-duration pulse (that approximates an impulse)

is injected into the periodically spiking neuron at various phase values, that results

in a change in the next spike time for the neuron (see Figure B.1). This change in

the next spike time is measured and recorded as a function of the phase at which

the stimulus was applied to give the PRC. For the results shown in this dissertation,

the pulsatile input has been applied once every 6th cycle of the neuron’s oscillation

to allow time for the neuron to settle back on its periodic orbit before the next

pulsatile input. Once the data points for the phase advances are collected, a sixth

166



-50

0

50

Time

V
 (

m
V

)

0 tst Tst Ts

A 3st =
tst

Ts

2: → → A"3 =
Ts ! Tst

Ts

2:

-2

0

2

4

u
 (

µ
 A

/µ
 F

)

Figure B.1: Measuring PRC with the direct method. Every 6th cycle, a pulse stimulus (solid
black) is applied at a random time tst, equivalent to a random phase θst, in the neuron’s cycle
which changes the next spiking time of the neuron from its natural ISI Ts (indicated with the
dashed gray voltage trace) to a stimulated ISI Tst (as indicated with the solid gray voltage trace).
The resulting advance in the sdspiking time, (Ts − Tst), is measured and converted to phase
∆θ. This phase advance in then normalized by Qp/c, where Qp is the total charge of the pulse
stimulus and c is the membrane capacitance, to give a single PRC data point (θst, Z(θst)), where
Z(θst) = c∆θ/Qp. The GA model, in the absence of noise, with Ts = 100 ms, pulse amplitude of
2 µA/cm2 and duration 1 ms is used for this figure.

order polynomial is fitted to the data which is constrained to be zero at both ends

of the phase, i.e., at θ = 0 and θ = 2π, and is scaled by c/Qp, where Qp is the

pulse electrical charge and c is the membrane capacitance. The resulting curve is

the PRC from the direct method, which we refer to as the fit PRC. We note that

the reason for constraining the fit PRC to be zero at both ends is to account for the

fact that biological neurons generally show little or no sensitivity to inputs right at

their spiking instance [99].
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Appendix C

Hodgkin-Huxley’s Full Model

The specifics of the Hodgkin-Huxley equations are as follows [32,50]:

V̇ = (Ib + I(t)) /c+

(−ḡNah(V − VNa)m3 − ḡK(V − VK)n4 − ḡL(V − VL)︸ ︷︷ ︸
Ig(V,m,h,n)

)/c,

ṁ = am(V )(1−m)− bm(V )m, (C.1)

ḣ = ah(V )(1− h)− bh(V )h,

ṅ = an(V )(1− n)− bn(V )n,

where,

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10)),

bm(V ) = 4 exp(−(V + 65)/18),

ah(V ) = 0.07 exp(−(V + 65)/20),

bh(V ) = 1/(1 + exp(−(V + 35)/10)),
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an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10)),

bn(V ) = 0.125 exp(−(V + 65)/80),

VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,

ḡNa = 120 mS/cm2, ḡK = 36 mS/cm2,

ḡL = 0.3 mS/cm2, c = 1 µF/cm2,

in which V ∈ R is the voltage across the neuron membrane, [m,h, n]T ∈ R3
[0,1] is

the vector of gating variables which correspond to the state of the membrane’s ion

channels, c ∈ R+ is the constant membrane capacitance, Ig : R × R3 7→ R is the

sum of the membrane currents, and I : R 7→ R is the stimulus current. Ib ∈ R is

the baseline current, which represents the effect of other parts of the brain on the

neuron under consideration and can be viewed as a bifurcation parameter in the

model that controls whether the neuron is in an excitable or an oscillatory regime.

In, e.g., [82] it is discussed that in this model for Ib < 6.26 µA/cm2 the neuron

would be in excitable mode where it does not show spontaneous periodic spiking.

For 6.26 ≤ Ib ≤ 9.78 µA/cm2 there is a bistable regime in which the neuron can be

excitable or oscillatory, and for Ib > 9.78 µA/cm2 the neuron would be in oscillatory

regime where it has a stable periodic orbit and oscillates with period Ts < +∞.
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Appendix D

Dynamic Programming in Matlab

In accordance with Section 4.3.1, let dpsi and du be the grid size for the phase

differences and the control, respectively. For a system of three Kuramoto neurons,

we have two phase difference angles that comprise a state space of size nx when

discretized. The following demonstrates how one can implement dynamic program-

ming for the Kuramoto network example presented in Section 4.4 using vectorized

Matlab coding.

% total number of states for the discretized system

nx = (360/dpsi)^ 2;

sqnx = sqrt(nx);

% states for the system

x = (1:nx)’;
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% converting state x to angle (in degrees): Section 4.3.1

angle(:,2)=2*((mod(x,360/dpsi)==0)*360/dpsi

+ (mod(x,360/dpsi)∼=0).*mod(x,360/dpsi));

angle(:,1)=2*(round((x-((mod(x,360/dpsi)==0)*360/dpsi

+ (mod(x,360/dpsi)∼=0).*mod(x,360/dpsi)))/(360/dpsi))+1);

% meshgrid over all possible u’s and x’s

[umesh,xmesh] = meshgrid(-umax:du:umax, 1:1:nx);

% create meshgrid-ed matrices Psi 3 and Psi 2 (in radians) using xmesh

Psi 3 = 2*((mod(xmesh,360/dpsi)==0)*360/dpsi

+(mod(xmesh,360/dpsi)∼=0).*mod(xmesh,360/dpsi))*pi/180;

Psi 2 = 2*(round((xmesh-((mod(xmesh,360/dpsi)==0)*360/dpsi

+(mod(xmesh,360/dpsi)∼=0).*mod(xmesh,360/dpsi)))/(360/dpsi))+1)*pi/180;

% solving the dynamics

Psi 2dot=(-2*a12*sin(Psi 2)+a23*sin(Psi 3-Psi 2)-a13*sin(Psi 3));

Psi 3dot=(-2*a13*sin(Psi 3)-a23*sin(Psi 3-Psi 2)-a12*sin(Psi 2))+umesh;

% forward integration and phase wrapping

Psi 2plus = mod(Psi 2+Psi 2dot*delta t,2*pi)*180/pi;

Psi 3plus = mod(Psi 3+Psi 3dot*delta t,2*pi)*180/pi;
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% quantization

rem1 = mod(Psi 2plus,dpsi);

rem2 = mod(Psi 3plus,dpsi);

Psi 2plus = mod(fix(Psi 2plus/dpsi)+(rem1>=dpsi/2),(360/dpsi));

Psi 3plus = mod(fix(Psi 3plus/dpsi)+(rem2>=dpsi/2),(360/dpsi));

c1 = Psi 2plus<1e-2;

c2 = Psi 3plus<1e-2;

Psi 2plus(c1) = sqnx;

Psi 3plus(c2) = sqnx;

% time-independent state transition matrix: constant for all time steps

% converting angle values to corresponding state numbers x

F{1} = ((Psi 2plus-1)*sqnx+Psi 3plus);

% end point cost R and time additive cost G: constant for all time steps

R{1} = sqrt((1+cos(Psi 2)+cos(Psi 3)).^ 2 + (sin(Psi 2)+sin(Psi 3)).^ 2 );

gamma = 0.0001;

G{1} = gamma^ 2*umesh.^ 2;

% end time step

K = round(T/delta t+1);

% target set

ISImin = 10;

X targ = x(Dangle(:,1)>ISImin & (360-Dangle(:,1))>ISImin &

angle(:,2)>ISImin & (360-angle(:,2))>ISImin &

abs(angle(:,1)-angle(:,2))>ISImin);
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% target set in terms of phase differences

Psi 3targ = 2*((mod(X targ,360/dpsi)==0)*360/dpsi

+(mod(X targ,360/dpsi)∼=0).*mod(X targ,360/dpsi))*pi/180;

Psi 2targ = 2*(round( ( X targ- ((mod(X targ,360/dpsi)==0)*360/dpsi

+(mod(X targ,360/dpsi)∼=0).* ...

mod(X targ,360/dpsi)))/(360/dpsi) )+1)*pi/180;

% dynamic programming backward loop

V{K+1} = inf*ones(size(G{1},1),1);

V{K+1}(X targ) = sqrt((1+cos(Psi 2targ)+cos(Psi 3targ)).^ 2

+ (sin(Psi 2targ)+sin(Psi 3targ)).^ 2);

for k=K:-1:1

V{k} = min(G{k}+V{k+1}(F{k}),[ ],2);

end

% initial condition: in-phase condition (in degrees)

IC=[360 360];

x(1)=(IC(1)/dpsi-1)*sqnx+IC(2)/dpsi;

% control space

uplot = -umax:du:umax;
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% dynamic programming forward loop

for k=1:K

[dummy, u ind] = min(G{k}(x(k),:)+V{k+1}(F{k}(x(k),:))′,[ ],2);

x(k+1) = F{k}(x(k),u ind);

control(k) = uplot(u ind);

end
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Appendix E

Solving the Hamilton-Jacobi

Equation

This appendix describes careful implementation of steps that one needs to take

to obtain a convergent, high-order approximation to the HJ equation.

A. Essentially Non-Oscillatory (ENO) schemes

Finite difference approximations of derivatives of a function V : Rn 7→ R, are

essentially equivalent to choosing an interpolation polynomial for the function V ,

and performing exact differentiation. In traditional finite difference methods, the

polynomial stencil is fixed, i.e., to approximate Vx ≡ ∂V
∂x

, at the grid point xi, one

assumes,

Vx|i ≈ f(Vi−m,Vi−m+1, . . . ,Vi, . . . ,Vi+n−1,Vi+n),

175



where constants m and n are fixed in space and are the same for all points (except

maybe at the boundaries). Here, the subscript indices refer to the grid points, i.e.,

Vi ≡ V(xi). Problems arise when the function V is not sufficiently smooth and this

interpolation, when combined with time integration, results in spurious oscillations

and even divergence.

To remedy this problem, Harten et al. [90] first introduced the idea of essentially

non-oscillatory (ENO) schemes. Unlike traditional finite difference methods, in

ENO schemes the polynomial stencil is not fixed, and at each point, one chooses

the smoothest possible polynomial. When combined with a TVD time integration

method (see below), the scheme is guaranteed not to produce any spurious solutions.

This idea was further improved, from the implementation point of view, by

Shu [91, 106] and later applied to the numerical solution of the HJ equation [92].

Here we merely consider the method in one spatial dimension. Extension of the

method to higher spatial dimensions is possible through a dimension-by-dimension

approach and we leave the details to the appropriate references mentioned above.

Consider the one-dimensional HJ equation written as,

∂V
∂t

+H(Vx) = 0,

where the explicit dependence on other variables have been dropped for brevity. To

construct a polynomial function, Qj+Mj (x), of degree M that interpolates through

points xj, xj+1, . . . , xi, . . . , xj+M, one first needs to define the mth-order Newton

divided differences coefficients, f j+mj , for m = 0, 1, . . . ,M. This is done via the
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recursive formula,

f j+mj =
f j+mj+1 − f

j+m−1
j

xj+m − xj
,

with f jj = Vj = V(xj). Here the subscript index, j, and superscript index, j + m,

refer to the lower and upper bounds of the interval used to compute the coefficient,

i.e., to compute f j+mj , m+ 1 grid points, xj through xj+m, are required. Using the

divided differences coefficients, the polynomial Qj+Mj (x) may be written as,

Qj+Mj (x) =
M∑
m=0

f j+mj φmj (x), (E.1)

where, by definition, φ0
j(x) = 1 and, for m ≥ 1,

φmj (x) =
m−1∏
n=0

(x− xj+n).

Once the interpolating polynomial, Qj+Mj (x), is known, equation (E.1) may be

differentiated with respect to x, to obtain the following approximation to the spatial

derivative:

Vx|i =
dQj+Mj

dx

∣∣∣∣∣
xi

+O
(
hM
)
,

where h ≡ max1≤n≤M |xj+n − xj+n−1|, is the maximum grid spacing in the interpo-

lation interval and determines the order of truncation error.

Constructing the polynomial Qj+Mj (x) also requires the knowledge of the in-

terpolation interval, I ≡ [xj, xj+1, . . . , xi, . . . , xj+M]. To build the interval, and

starting at point xi, one has two possible options for choosing the next point, xi−1

or xi+1. In fact, these are both valid, and as we shall see, required for the next

step of the algorithm. Thus at each point, xi, two different approximations for Vx

exist which we denote as V+
x and V−x based on whether xi+1 or xi−1 are chosen,
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respectively. In fact, if one choosesM = 1, these are simply the classical first-order

upwind methods.

What comes next is the core idea of the ENO scheme. At each remaining step,

toward finding the interval, one will face two options in choosing the next point.

The idea is to choose the point that will result in the smoothest polynomial. In

fact, it is easy to note that the divided differences coefficients are a good measure

of the variations in the interpolating function. A coefficient with a large magnitude

alerts the existence of a rapid change, or even a discontinuity in function V around

point xi, and thus should be avoided in constructing the polynomial.

For example, let’s consider the second-order correction to V−x . The two possible

options are xi−2 and xi+1. There are also two second-order divided differences

coefficients, f ii−2 and f i+1
i−1 . As a result one either chooses xi−2 if

∣∣f ii−2

∣∣ ≤ ∣∣f i+1
i−1

∣∣ ,
or xi+1 otherwise. This same idea is repeated for all higher-order coefficients until all

remaining points in the interval are found, after which the interpolation polynomial

is uniquely determined. Note that in this algorithm, one first determines the interval

and then constructs the polynomial. It is possible to combine the two in one single

pass as suggested in [86].

Finally let us briefly mention that, since the ENO scheme always chooses the

smoothest polynomial with minimal variations, it may dampen out even slightest

gradients in the solution where no shock or discontinuity exist. To remedy this

problem, [107] introduced the idea of the weighted ENO (WENO) schemes in which
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one obtains a higher order numerical approximation to Vx by appropriate weighting

of all possible Mth-order ENO schemes. The weighting coefficients are usually

chosen so that they inversely depend on the smoothness of corresponding ENO

scheme in a potential interval. This idea then results in a WENO scheme that

automatically switches to an ENO scheme in parts of the domain that solution

is non-smooth while obtaining higher-order approximations in smooth part of the

domain. We do not present the algorithm in detail here and refer the interested

reader to [86] for a discussion of the implementation and also the literature review

on WENO schemes.

B. Numerical Hamiltonian

The second part in constructing a high-order algorithm for solving the HJ equa-

tion is the high-order construction of a numerical Hamiltonian, Ĥ. As noted in

the previous section, at each point there are two approximations to the gradient,

denoted by V+
x and V−x , depending on the initial stencil bias. As such, in general,

the numerical Hamiltonian may generally be written as,

Ĥ = Ĥ
(
V+
x ,V−x

)
.

To get a numerical Hamiltonian that correctly accounts for the nonlinear shock

and rarefaction phenomena (see [92]), three criteria must be satisfied. First, the

Hamiltonian needs to be Lipschitz continuous in both V+
x and V−x . Second, the

numerical Hamiltonian needs to be a non-increasing function of V+
x and a non-
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decreasing function of V−x . Symbolically, this is usually denoted as Ĥ (↓, ↑). Third,

the numerical Hamiltonian needs to be consistent with the analytical Hamiltonian,

i.e., Ĥ(Vx,Vx) = H(Vx).

Usually, what makes one numerical Hamiltonian better than the other is the

degree of numerical dissipation it adds to the problem. Different constructs have

been proposed over the years that vary, not only in the degree of dissipation they

add, but also how hard they are to implement. One of the easiest ones, though

more dissipative, is the Lax-Friedrichs Hamiltonian. In one spatial dimension, this

is written as,

Ĥ(V+
x ,V−x ) = H

(
V+
x + V−x

2

)
− 1

2
αx
(
V+
x − V−x

)
, (E.2)

where αx = max |∂H/∂Vx|. If the maximum is computed globally through the

whole computational domain, the method is usually termed global Lax-Friedrichs

(LF). This, however, is usually unnecessarily too restrictive and the maximum, at

any point, is usually computed locally for adjacent grid points and the method is

termed local Lax-Friedrichs (LLF).

Although both LF and LLF Hamiltonians are very easy to implement, they

usually over-dampen the solution and distort sharp gradients. Better results may

be obtained via the Godunov’s Hamiltonian. The Godunov’s Hamiltonian, unfor-

tunately, is usually hard to obtain for complicated Hamiltonians and may be quite

computationally expensive. We do not go into the details of finding these, and

other, numerical Hamiltonians and refer the interested reader to [86] and [92] for

more details. Finally we note that to avoid the computational cost of evaluating
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the Godunov’s Hamiltonian, and to obtain solutions that are not overly damped

when using the LLF Hamiltonian, one can generally use a high-order ENO scheme

along with a high order TVD Runge-Kutta (see below) scheme and use a sufficiently

refined grid.

C. Total Variation Diminishing (TVD) Runge-Kutta

schemes

A TVD Runge-Kutta (TVD-RK) method is merely a Runge-Kutta method that

is ensured to decrease the total variation (TV) in the solution as integrated in time.

By definition, total variation of a differentiable function, f(x), is defined as,

TV (f) =

∫
|fx| dx,

while for a discrete function, uj, this definition changes to

TV (u) =
∑
j

|uj+1 − uj| .

In both cases, TV of a function simply is a measure of the amount of variation in

the function. To have a convergent solution, one requires a time integration method

that decreases the total variation in the function since otherwise it may lead to non-

physical oscillatory results. A TVD method is then any time integration scheme

that satisfies the following condition:

TV (un+1) ≤ TV (un).
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Many different TVD methods exist in the literature, from both the Runge-

Kutta [106] and the linear multi-step families [108]. Without going into much

detail, here we present the third-order TVD-RK method and leave other TVD

methods to the references mentioned above.

Just like normal Runge-Kutta methods, the third-order TVD-RK method con-

sists of three consecutive forward Euler parts. For the semi-discrete HJ equation,

i.e., already discretized in the space variable, x, using the ENO scheme,

∂V
∂t

= −Ĥ(V+
x ,V−x ),

the third-order TVD-RK method is written as,

Vn+1/3 = Vn −∆t Ĥn,

Vn+2/3 =
3

4
Vn +

1

4
Vn+1/3 − 1

4
∆t Ĥn+1/3,

Vn+1 =
1

3
Vn +

2

3
Vn+2/3 − 2

3
∆t Ĥn+2/3. (E.3)

Note that to ensure stability, and the TVD property, it is required to impose a

restriction on the time step according to,

∆t

hmin
αmax ≤ c,

where αmax = max |∂H/∂Vx| and hmin = min |xi+1 − xi|. These can also be local

evaluations (i.e., for each grid point, xi, within the stencil used to compute V±x ).

Here, 0 < c ≤ 1 is called the CFL number [86,92].
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