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Abstract

Model-Based and Machine Learning-Based Control of Biological Oscillators

by

Bharat Monga

Nonlinear oscillators - dynamical systems with stable periodic orbits - arise in many

systems of physical, technological, and biological interest. This dissertation investigates

the dynamics of such oscillators arising in biology, and develops several control algorithms

to modify their collective behavior. We demonstrate that these control algorithms have

potential in devising treatments for Parkinson’s disease, cardiac alternans, and jet lag.

Phase reduction, a classical reduction technique, has been instrumental in under-

standing such biological oscillators. In this dissertation, we investigate a new reduction

technique called augmented phase reduction, and calculate its associated analytical ex-

pressions for six dynamically different planar systems: This helps us to understand the

dynamical regimes for which the use of augmented phase reduction is advantageous over

the standard phase reduction.

We further this study by developing a novel optimal control algorithm based on the

augmented phase reduction to change the phase of a single oscillator using a minimum

energy input. We show that our control algorithm is effective even when a large phase

change is required or when the nontrivial Floquet multiplier of the oscillator is close to

unity; in such cases, the previously proposed control algorithm based on the standard

phase reduction fails.

We then devise a novel framework to control a population of biological oscillators

as a whole, and change their collective behavior. Our first two control algorithms are

Lyapunov-based, and our third is an optimal control algorithm which minimizes the con-
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trol energy consumption while achieving the desired collective behavior of an oscillator

population. We show that the developed control algorithms can synchronize, desynchro-

nize, cluster, and phase shift the population.

We continue this investigation by developing two novel machine learning control al-

gorithms, which have a simple and intelligent structure that makes them effective even

with a sparse data set. We show that these algorithms are powerful enough to control a

wide variety of dynamical systems and not just biological oscillators. We conclude this

study by understanding how the developed machine learning algorithms work in terms

of phase reduction.

In this dissertation, we have developed all these algorithms with the goal of ease of

experimental implementation, for which the model parameters/training data can be mea-

sured experimentally. We close the loop on this dissertation by carrying out robustness

analysis for the developed algorithms; demonstrating their resilience to noise, and thus

their suitability for controlling living biological tissue. They truly hold great potential in

devising treatments for Parkinson’s disease, cardiac alternans, and jet lag.
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Chapter 1

Introduction

Nonlinear oscillators - dynamical systems with stable periodic orbits - arise in many

systems of physical, technological, and biological interest [1, 2, 3, 4]. This dissertation

investigates the dynamics of such oscillators arising in biology, and develops several con-

trol algorithms to modify their behavior.

Examples of biological oscillators include the beating of pacemaker cells in the heart,

the firing of action potentials in neurons, and circadian rhythms, among many others.

The collective behavior of such oscillators varies, and includes synchronization, desyn-

chronization, and clustering. For example, the beating of the heart is regulated by

constant pacing of synchronized cardiac pacemaker cells [5, 6], and neural synchrony is

essential in visual and odor processing [7, 8], and also in learning and memory recall

[9, 10]. However, synchronization can be detrimental as well. For example, pathological

neural synchronization in the thalamus and the subthalamic nucleus (STN) brain region

is hypothesized to be one of the causes of motor symptoms for essential and parkinso-

nian tremor, respectively [11, 12]; this motivates the goal of designing a control stimulus

to desynchronize a neural oscillator population. Recently there has also been focus on

achieving partial synchrony through clustering instead of complete neural desynchro-
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Introduction Chapter 1

nization [13, 14, 15]. One motivation behind such clustering is that neural plasticity

rewires synaptic connections between neurons and thus stabilizes clusters in the long

term. Besides these control objectives, it is also advantageous to change the phase of a

synchronized oscillator population to potentially help in treatment of cardiac alternans,

and to treat jet lag [16].

This motivates devising algorithms to control the behavior of these biological oscil-

lators. However, the dynamical models describing such biological oscillations tend to be

highly nonlinear and high-dimensional. This hinders analysis of their dynamics and the

formulation of control algorithms. “Standard” phase reduction [3, 17, 2, 18], a classical

reduction technique based on isochrons [3, 17, 19], has been instrumental in understand-

ing such biological oscillators. It works by reducing the dimensionality of a dynamical

system with a periodic orbit to a single phase variable. This reduction captures the os-

cillator’s dynamics near the periodic orbit and the change in its phase due to an external

control stimulus through the phase response curve (PRC). Not only does it make the

analysis of the high dimensional biological systems more tractable, but it also has the

potential to make their control [20, 21, 22, 23, 24] experimentally implementable; see

e.g., [25, 26, 27, 22]. This is because although the whole state space dynamics of the

biological system may not be known, PRCs can often be measured experimentally; see

e.g., [28, 24]. We heavily employ standard phase reduction for analysis and control of

biological oscillators in this dissertation.

Standard phase reduction is valid only in a small neighborhood of the periodic orbit.

Consequently, the magnitude of the allowable perturbation is limited by the nontrivial

Floquet multiplier [29] of the periodic orbit: in systems with a Floquet multiplier close

to one, even a relatively small perturbation can lead to a trajectory which stays away

from the periodic orbit, rendering the phase reduction inaccurate and phase reduction

based control ineffective. This necessitates the use of augmented phase reduction [30],

2



Introduction Chapter 1

an n-dimensional reduction based on both isochrons and isostables [31]. While the first

dimension captures the phase of the oscillator along the periodic orbit, like the standard

phase reduction, the other dimensions capture the oscillator’s transversal approach to

the periodic orbit. This reduction ascertains the effect of an external stimulus on the

oscillator’s phase change through the PRC, and the change in its transversal distance to

the periodic orbit through the isostable response curve (IRC). We envision that IRCs can

be measured experimentally just like PRCs, making the control based on the augmented

phase reduction experimentally amenable as well. In this dissertation, we show that

control algorithms based on the augmented phase reduction are expected to be more

effective [16], as they can be designed to allow a larger stimulus without the risk of

driving the oscillator too far away from the periodic orbit.

We begin this dissertation by giving background on standard and augmented phase

reduction in Chapter 2. In the same chapter, we also detail how the control stimulus

comes into the picture in these model reduction techniques. Finally, we describe various

methods to calculate the response functions of these model reductions - PRCs and IRCs,

as they are instrumental in development of the control algorithms.

In Chapter 3, we calculate analytical expressions for the augmented phase reduc-

tion for six dynamically different planar systems: λ − ω systems, periodic orbits born

out of four codimension-one bifurcations, and relaxation oscillators. Our contribution

is the analytical calculation of IRCs and the nontrivial Floquet exponent for each of

these six systems, and the PRC for a simple model undergoing SNIPER bifurcation. To

validate our calculations, we simulate several models in these dynamical regimes, and

compare their numerically computed augmented phase reduction with the derived ana-

lytical expressions. These analytical and numerical calculations help us understand the

dynamical regimes for which the use of augmented phase reduction is advantageous over

the standard phase reduction.

3



Introduction Chapter 1

We continue this investigation in Chapter 4, where we control the phase of a single

oscillator. We develop a novel optimal control algorithm based on augmented phase

reduction to change the phase of an oscillator using a minimum energy input, which also

minimizes the oscillator’s transversal distance to the uncontrolled periodic orbit. In the

same chapter, we develop a novel method to eliminate cardiac alternans by connecting

our control algorithm with the underlying physiological problem. We also describe how

the devised algorithm can be used for spike timing control, which can potentially help

with motor symptoms of essential and parkinsonian tremor, and aid in treating jet lag. To

demonstrate the advantages of this algorithm, we compare it with a previously proposed

optimal control algorithm based on standard phase reduction for the Hopf bifurcation

normal form, and models for cardiac pacemaker cells, thalamic neurons, and the circadian

gene regulation cycle in the suprachiasmatic nucleus. We show that our control algorithm

is effective even when a large phase change is required or when the nontrivial Floquet

multiplier is close to unity; in such cases, the previously proposed control algorithm fails.

The aforementioned chapters focus on dynamics and control of a single oscillator.

In Chapter 5, we formulate dynamics of a population of biological oscillators and de-

velop control algorithms to change their collective behavior. Our formulation is based

on the Fourier decomposition of the partial differential equation governing the evolution

of the phase distribution of a population of identical, uncoupled oscillators. Our first

two control algorithms in this chapter are Lyapunov-based, which work by decreasing a

positive definite Lyapunov function towards zero. We construct a degenerate set of phase

distributions and phase response curves for which the devised controls would not work.

Our third control is an optimal control algorithm, which minimizes the control energy

consumption while achieving the desired collective behavior of an oscillator population.

This formulation results in high-dimensional Euler-Lagrange equations that we solve as

a two point Boundary Value Problem (BVP) numerically. Since the BVP is high dimen-
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Introduction Chapter 1

sional, we construct a modified Newton Iteration method that is effective for our problem.

Motivated by pathological neural synchrony, we apply our control to desynchronize an

initially synchronized neural population. Given the proposed importance of enhancing

spike time dependent plasticity to stabilize neural clusters and counteract pathological

neural synchronization, we formulate the phase difference distribution in terms of the

phase distribution, and prove some of its fundamental properties, and in turn apply our

control to transform the neural phase distribution to form clusters. Finally, motivated by

eliminating cardiac alternans, we apply our control to phase shift a synchronous cardiac

pacemaker cell population. To demonstrate the effectiveness of our control for each of

these applications, we show that a population of 100 phase oscillators with the applied

control mimics the desired phase distribution.

The control algorithms developed in Chapters 4 and 5 are model-based, which can

have limitations when the system under study is very complex and it is not possible to

construct a model. Even if an accurate model could be built to describe the dynamics

of such a system, developing a classical model-based control for such an underactuated

system is a challenging task. If the parameters of the system change with time, or if the

model doesn’t describe the dynamics accurately, the theoretical control guarantees like

stability and boundedness may not apply in real systems [32, 33]. This calls for data

driven control methods like machine learning, which has spread to many fields in the

recent years including control theory. However, the success of such algorithms has been

dependent on availability of large datasets [34], which can be limited in fields like neu-

roscience where the cost of obtaining human/animal brain data is very high. Moreover,

due to their black box nature, it is challenging to analyze how they work, which may

be crucial in applications where safety is very important and failure is costly. Another

limitation of such methods is their inability to take advantage of the inherent dynamics

of the system to achieve the task, which limits their performance. All these limitations
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Introduction Chapter 1

call for a new machine learning control algorithm that doesn’t rely on large amounts

of data, is easy to understand, and can take advantage of the underlying dynamics in

achieving the task. In Chapter 6, we have developed two related novel supervised learn-

ing algorithms based on these three goals. The algorithms are powerful enough to control

a wide variety of complex underactuated dynamical systems, and yet have a simple and

intelligent structure that allows them to work with a sparse data set even in the presence

of noise. We demonstrate the versatility of our algorithms by applying them to a diverse

range of applications including: switching between bistable states, changing the phase

of an oscillator, desynchronizing a population of synchronized coupled oscillators, and

stabilizing an unstable fixed point. For most of these applications we are able to reason

why our algorithms work by using traditional dynamical systems and control theory. We

also compare our learning algorithms with some traditional phase reduction based control

algorithms, and reason out why our algorithms work based on phase reduction. Finally,

we carry out a robustness analysis to demonstrate the effectiveness of our algorithms

even in the presence of noise.

In Chapter 7, we conclude this dissertation by summarizing the work done, and

discussing future research directions and experimental implementations of the developed

algorithms in living biological tissue.

Publications

This dissertation covers our work originally documented in the following peer reviewed

publications:

� B. Monga, D. Wilson, T. Matchen and J. Moehlis, Phase Reduction and Phase-

Based Optimal Control for Biological Systems: A Tutorial, Biological Cybernetics,

113 (2019), pp. 11 - 46.

6



Introduction Chapter 1

� B. Monga and J. Moehlis, Optimal Phase Control of Biological Oscillators using

Augmented Phase Reduction, Biological Cybernetics, 113 (2019), pp. 161 - 178.

� B. Monga, G. Froyland, and J. Moehlis, Synchronizing and Desynchronizing Neu-

ral Populations through Phase Distribution Control, in 2018 American Control

Conference (ACC), June 2018, pp. 2808 - 2813.

� B. Monga and J. Moehlis, Phase Distribution Control of a Population of Oscillators,

Physica D: Nonlinear Phenomena, 398 (2019), pp. 115 - 129.

� B. Monga and J. Moehlis, Supervised Learning Algorithms for Controlling Under-

actuated Dynamical Systems, arXiv preprint arXiv:1909.11119.

� B. Monga and J. Moehlis, Augmented Phase Reduction for Homoclinic Bifurcation

and Relaxation Oscillators, (In preparation).

7



Chapter 2

Background

2.1 Introduction

Phase reduction, a powerful classical technique for the analysis of periodic orbits, is

heavily employed in this dissertation. Thus we give background on phase reduction in this

chapter, which is organized as follows. Section 2.2 describes the standard phase reduction

and phase response curves for nonlinear oscillators. Section 2.3 covers an extension of

standard phase reduction called augmented phase reduction, which includes the concept

of isostable response curves for nonlinear oscillators.

2.2 Standard Phase Reduction and Control

Consider an autonomous vector field

dx

dt
= F (x), x ∈ Rn, (n ≥ 2) (2.1)

8



Background Chapter 2

having a stable hyperbolic periodic orbit xγ(t) with period T . The set of all points in

the basin of attraction is defined as B. For each point x∗ in B there exists a unique θ(x∗)

such that [35, 36, 17, 37, 19, 20, 38]

lim
t→∞

∣∣∣∣x(t)− xγ
(
t+

T

2π
θ(x∗)

)∣∣∣∣ = 0, (2.2)

where x(t) is a trajectory starting with the initial point x∗. The function θ(x) is called

the asymptotic phase of x, and takes values in [0, 2π). Other conventions, related to this

through a simple rescaling, define the asymptotic phase to take values in [0, T ) or in

[0, 1).

Let xγ0 be the point on the periodic orbit where the phase is zero. The typical

convention is to choose xγ0 as corresponding to the global maximum of the first coordinate

on the periodic orbit. An isochron is a level set of θ(x), that is, the collection of all points

in the basin of attraction of xγ with the same asymptotic phase [3, 19]. We note that if

x(0) is a point on a periodic orbit, the isochron associated with that point is the set of

all initial conditions x̃(0) such that ||x(t) − x̃(t)|| → 0 as t → ∞. Isochrons extend the

notion of phase of a stable periodic orbit to the basin of attraction of the periodic orbit.

It is conventional to define isochrons so that the phase of a trajectory on the periodic

orbit advances linearly in time:

dθ

dt
=

2π

T
≡ ω (2.3)

both on and off the periodic orbit.

Control theory seeks to design inputs to a dynamical system which change its behavior

in a desired way. With this in mind, we consider the perturbed system

dx

dt
= F (x) + U(t), (2.4)

9
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where U(t) is a small control input. The evolution of this system in terms of isochrons

is [37, 18]

dθ

dt
=
∂θ

∂x
· dx
dt

=
∂θ

∂x
· (F (x) + U(t)) = ω +

∂θ

∂x
· U(t).

Evaluating on the periodic orbit xγ for the unperturbed system gives, to leading order,

dθ

dt
= ω + Z(θ) · U(t), Z(θ) =

∂θ

∂x

∣∣∣∣
xγ(θ)

≡ ∇xγθ. (2.5)

Here Z(θ) ∈ Rn is the gradient of phase variable θ evaluated on the periodic orbit, and is

referred to as the (infinitesimal) phase response curve (PRC) [19, 39, 40, 28]. It quantifies

the effect of an external perturbation on the phase of a periodic orbit. We call (2.5) the

standard phase reduction.

2.2.1 Calculating Phase Response Curves

Given the importance of PRCs for phase reduction, we now describe several ways in

which they can be calculated.

Direct Method

The direct method [19, 41, 28] is the classical way to compute the PRC, which is

useful especially in experimental studies. Letting x = (x1, x2, . . . , xn), by definition

∂θ

∂xi

∣∣∣∣
x̃γ

= lim
∆xi→0

∆θ

∆xi
, i = 1, . . . , n, (2.6)

where ∆θ = θ(x̃γ + ∆xiî)− θ(x̃γ) is the change in θ(x) resulting from the perturbation

x̃γ → x̃γ + ∆xiî from the base point x̃γ on the periodic orbit in the direction of the

ith coordinate. Since θ̇ = 2π/T everywhere in the neighborhood of xγ, where the dot

indicates d
dt

, the difference ∆θ is preserved under the flow; thus, it may be measured in the

10
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limit as t→∞, when the perturbed trajectory has collapsed back to the periodic orbit.

That is, ∂θ
∂xi

∣∣∣
xγ

can be found by comparing the phases of solutions in the infinite-time

limit with initial conditions on and infinitesimally shifted from base points on γ.

Adjoint Method

Another technique for finding the PRC involves solving an associated adjoint equation

[42, 43, 18]:

d∇xγ(t)θ

dt
= −DF T (xγ(t))∇xγ(t)θ, (2.7)

subject to the initial condition

∇xγ(0)θ · F(xγ(0)) = ω. (2.8)

Since ∇xγ(t)θ evolves in Rn, (2.8) supplies only one of n required initial conditions; the

rest arise from requiring that the solution ∇xγ(t)θ to (2.7) be T -periodic. This adjoint

equation can be solved numerically with the program XPP [44] to find the PRC QXPP.

Since XPP computes the PRC in terms of the change in time instead of the change in

phase, we rescale the XPP PRC QXPP as

∇xγθ = ωQXPP.

Example PRC Calculation: Thalamic Neuron Model

As an illustration, we calculate the PRC using both the direct method and the adjoint

method for the thalamic neuron model [45] for the spiking behavior of neurons in the

11
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thalamus:

v̇ =
−IL(v)− INa(v, h)− IK(v, h)− IT (v, r) + Ib

Cm
+ u(t), (2.9)

ḣ =
h∞(v)− h
τh(v)

, (2.10)

ṙ =
r∞(v)− r
τr(v)

. (2.11)

In these equations Ib is the baseline current, which we take as 5µA/cm2, v is the trans-

membrane voltage, and h, r are the gating variables of the neuron which describe the

modulation of the flow of ions across the neural membrane. u(t) represents the ap-

plied current as the control input. For details of the currents (IL, INa, IK , IT ), functions

h∞, τh, r∞, τr and the rest of the parameters, see Appendix A.1. With no control input,

these parameters give a stable periodic orbit with period T = 8.3955 ms.

The first (i.e., voltage) component of the PRC for this periodic orbit is shown in the

right panel of Figure 2.1. In this figure, we used XPP to calculate the first component

of the PRC from the adjoint method. For the direct method, a Matlab code was written

where perturbations of size δv = −0.3 were given at 20 points spread along the periodic

orbit. Once the perturbed trajectories came reasonably close to the periodic orbit, spike

time changes caused by the perturbations were scaled to obtain the corresponding phase

changes, which when normalized by the magnitude of the perturbation gives the first

component of the PRC.

2.3 Augmented Phase Reduction

The standard phase reduction (2.5) is valid only in a small neighborhood of the peri-

odic orbit. Therefore, a control input derived based on the standard phase reduction can

only be expected to be effective if its amplitude is small enough that it does not drive the

12
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Figure 2.1: Thalamic neuron model: Left panel shows how the spike time changes by
δT under an external perturbation δv. Here, black (resp., red) line shows the voltage
under no (resp., δv) perturbation. In the right panel, the blue line (resp., red dots)
shows the first component of the PRC computed from the adjoint (resp., the direct)
method.

system far away from the periodic orbit. This limitation becomes even more important

if the nontrivial Floquet multiplier, which describes the rate of decay of perturbations

transverse to the periodic orbit, has magnitude close to unity [16]. This limits the ability

to achieve certain control objectives and necessitates the use of augmented phase reduc-

tion, to be described below. Augmented phase reduction, an n-dimensional reduction,

uses the concept of isostables for a periodic orbit [30], which are coordinates that give a

sense of the distance in directions transverse to the periodic orbit. The first dimension

captures the phase of the oscillator along the periodic orbit, as for the standard phase

reduction, while the other n− 1 dimensions give a measure of the oscillator’s transversal

distance from the periodic orbit along the n−1 isostable directions. The addition of these

transversal coordinates allows one to design control algorithms which, while achieving

the desired control objective, also keep the controlled trajectory close to the periodic

13
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Figure 2.2: Isostables for a periodic orbit. The left panel shows the Poincaré map
P on the isochron Γ0 of the periodic orbit xγ(t). The trajectory starting from x on
the isochron lands back on the isochron at P (x) after one period. The right panel
visualizes the isostables as giving a sense of transversal distance from the periodic
orbit by showing two isostable level sets ψ1 and ψ2.

orbit [16].

For systems which have a stable fixed point, it can be useful to define isostables [31],

which are sets of points in phase space that approach the fixed point together and are

analogous to isochrons for asymptotically periodic systems. Isostables are related to

the eigenfunctions of the Koopman operator [31]. The notion of isostables was recently

adapted for systems having a stable periodic orbit [30], where isostables were defined

to be the set of points that approach a periodic orbit together. They give a sense of

the distance in directions transverse to the periodic orbit, visualized in the right panel

of Figure 2.2. Standard phase reduction can be augmented with these coordinates as

follows.

Consider a point x0 on the periodic orbit xγ(t) with the corresponding isochron Γ0. The

transient behavior of the system (2.4) near x0 can be analyzed by a Poincaré map P on

14
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Γ0,

P : Γ0 → Γ0; x→ P (x). (2.12)

This is shown in the left panel of Figure 2.2. Here x0 is a fixed point of this map, and

we can approximate P in a small neighborhood of x0 as

P (x) = x0 +DP (x− x0) +O(||x− x0||2), (2.13)

where DP = dP/dx|x0 . Suppose DP is diagonalizable with V ∈ Rn×n as a matrix

with columns of unit length eigenvectors {vi|i = 1, . . . , n} and the associated eigenvalues

{λi|i = 1, . . . , n} of DP . These eigenvalues λi are the Floquet multipliers of the periodic

orbit. For every nontrivial Floquet multiplier λi, with the corresponding eigenvector vi,

the set of isostable coordinates is defined as [30]

ψi(x) = eTi V
−1(xΓ − x0) exp(− log(λi)tΓ/T ), i = 1, . . . , n− 1. (2.14)

Here xΓ and tΓ ∈ [0, T ) are defined to be the position and the time at which the trajectory

first returns to the isochron Γ0, and ei is a vector with 1 in the ith position and 0 elsewhere.

As shown in [30], we get the following equations for ψi and its gradient ∇γ(t)ψi under the

flow ẋ = F (x):

ψ̇i = kiψi, (2.15)

d∇xγ(t)ψi
dt

=
(
kiI −DF (xγ(t))T

)
∇xγ(t)ψi, (2.16)

where ki = log(λi)/T is the ith nontrivial Floquet exponent, DF is the Jacobian of

F , and I is the identity matrix. We refer to this gradient ∇xγ(t)ψi ≡ Ii(θ) as the

isostable response curve (IRC). Its T -periodicity along with the normalization condition
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∇x0ψi · vi = 1 gives a unique IRC. It gives a measure of the effect of a control input in

driving the trajectory away from the periodic orbit. The n-dimensional system (given by

equation (2.4)) can be realized as [30]

θ̇ = ω + ZT (θ) · U(t), (2.17)

ψ̇i = kiψi + ITi (θ) · U(t), for i = 1, . . . , n− 1. (2.18)

We refer to this reduction as the augmented phase reduction. Here, the phase variable

θ indicates the position of the trajectory along the periodic orbit, and the isostable

coordinate ψi gives information about transversal distance from the periodic orbit along

the ith eigenvector vi. It is evident from (2.17, 2.18) that an external perturbation affects

the oscillator’s phase through the PRC, and its transversal distance to the periodic orbit

through the IRC. In practice, isostable coordinates with nontrivial Floquet multiplier

close to 0 can be ignored as perturbations in those directions are nullified quickly under

the evolution of the vector field. If all isostable coordinates are ignored, the augmented

phase reduction reduces to the standard phase reduction.

2.3.1 Calculating Isostable Response Curves

Given the importance of IRCs for the augmented phase reduction, we now describe

several ways in which they can be calculated.

Direct Method

PRCs are calculated by the direct method by giving perturbations to the oscillator at

various phases, and recording the phase change caused by the perturbation as a function

of the stimulation phase. IRCs can be measured in a similar way. Perturbations (x̃γ +

∆xiî) are applied at various phases along the periodic orbit in the direction of the ith
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coordinate. A time series of crossings of the Γ0 isochron, tjΓ, as well as the crossing

locations, xjΓ are recorded. This information is used with the definition of isostable in

(2.14) to calculate the isostable change ∆ψ caused by the perturbation, which when

scaled by the magnitude of the perturbation yields the IRC.

Adjoint Method

Unlike solving for the PRC, backwards integration of equation (2.16) will result in

positive Floquet exponents, and hence a periodic solution that is unstable. We have

therefore found it useful to formulate the calculation as a boundary value problem and

solve it with Newton iteration; see Appendix C. The first step is to compute and save

the periodic solution xγ(t) using an ODE solver. For the two point boundary value

formation, we take the boundary conditions as I(0) = I(T ). For Newton iteration, we

take

cν = I(0),

g(cν) = I(0)− I(T ),

∂g

∂c

∣∣∣∣
cν

= Id− J,

where Id is the identity matrix, and J is the Jacobian matrix

J =
∂I(T )

∂I(0)
,

which is computed numerically. Once a periodic solution is obtained, the computed IRC

is scaled by the normalization condition ∇x0ψ · vi = 1.
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Figure 2.3: IRC for the thalamic neuron model: the blue line (resp., red dots) shows
IRC in response to voltage perturbations computed from the adjoint (resp., the direct)
method.

Example IRC Calcuation: Thalamic Neuron Model

As an illustration, we calculate the IRC using both the direct method and the ad-

joint method for the thalamic neuron model given by equations (2.9-2.11) with the same

parameters as before. Those parameters give a stable periodic orbit with time period

T = 8.3955 ms and nontrivial Floquet multipliers 0.8275 and 0.0453. Since one of the

nontrivial Floquet multiplier is close to 0, we only consider the isostable coordinate cor-

responding to the larger nontrivial Floquet multiplier in the augmented phase reduction.

To calculate the IRC by the adjoint method, we solve the corresponding adjoint equa-

tion as a two-point boundary value problem. For the direct method, a Matlab code

was written where perturbations of size δv = −0.3 were given at 20 points spread along

the periodic orbit. Once the perturbed trajectories came reasonably close to the peri-

odic orbit, the corresponding isostable change was calculated, which when normalized by

the magnitude of the perturbation gives the first component of the IRC. The first (i.e.,

voltage) component of the IRC for the periodic orbit is shown in Figure 2.3.
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Chapter 3

On Augmented Phase Reduction:

Analytical and Numerical Results

3.1 Introduction

As previously discussed, Standard phase reduction is valid only in a small neighbor-

hood of the periodic orbit. Consequently, the magnitude of the allowable control stimulus

is limited by the nontrivial Floquet multiplier [29] of the periodic orbit: in systems with

a small-magnitude negative nontrivial Floquet exponent, even a relatively small pertur-

bation can lead to a trajectory which stays away from the periodic orbit, rendering the

phase reduction inaccurate and phase reduction based control ineffective. This necessi-

tates the use of augmented phase reduction [30], a two-dimensional reduction based on

both isochrons and isostables [31]. While the first dimension captures the phase of the

oscillator along the periodic orbit, like the standard phase reduction, the second dimen-

sion captures the oscillator’s transversal approach to the periodic orbit. This reduction

ascertains the effect of an external stimulus on the oscillator’s phase change through

the PRC, and the change in its transversal distance to the periodic orbit through the
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isostable response curve (IRC). An equivalent reduction based on the Koopman operator

is given in [46].

This gives the same outcome as the phase-amplitude reduction devised in [47] for

planar systems, but the augmented phase reduction does not require computationally

intensive calculation of a coordinate system with respect to periodic orbit of dimension-

ality greater than 2. Moreover, the phase-amplitude description devised in [48] is not

explicitly dependent on the Floquet multipliers of the system, whereas the augmented

phase reduction is. This dependency on Floquet multipliers is advantageous in higher

dimensional systems, where the periodic orbit is weakly stable in only a few directions,

as it allows us to reduce the dimensionality of the augmented phase reduction to capture

transversal dynamics only along the weakly stable directions. The use of Floquet coor-

dinates [49] results in a similar reduction, but an additional step is required to quantify

the effect of an external perturbation on the oscillator’s dynamics. It also requires the

knowledge of the whole state space dynamics along the periodic orbit, which might not

be observable in an electrophysiological setting. On the other hand, for our algorithm,

the response functions that arise for augmented phase reduction in principle can be mea-

sured in an electrophysiological setting; indeed, we envision that IRCs can be measured

experimentally just like PRCs, making the control based on the augmented phase reduc-

tion experimentally amenable as well. Control algorithms based on the augmented phase

reduction are expected to be more effective [30, 16], as they can be designed to allow a

larger stimulus without the risk of driving the oscillator too far away from the periodic

orbit.

In this chapter, we analytically calculate the augmented phase reduction for periodic

orbits of planar systems having distinct dynamics. Specifically, we derive expressions

for λ − ω systems, relaxation oscillators, and systems in which periodic orbits are born

out of four codimension one bifurcations, the last four systems being the normal form
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of a supercritical Hopf bifurcation, the normal form of a Bautin bifurcation which has a

saddle-node bifurcation of limit cycles, and simple two-dimensional models undergoing

SNIPER and homoclinic bifurcations. Our contribution is the analytical calculation of

IRCs and the nontrivial Floquet exponent for each of these six systems, and the PRC

for the simple model undergoing SNIPER bifurcation. A similar analysis was done in

[50, 18], where analytical expressions of PRCs were derived for λ − ω systems, and for

systems undergoing the stated codimension one bifurcations, respectively. While the

authors in [18] considered a one dimensional model of SNIPER bifurcation for the PRC

calculation, here we consider a two-dimensional model, as a minimum of two dimensions

is necessary for the augmented phase reduction. My approach for the IRC calculation

for a relaxation oscillator is in line with Izhikevich’s analysis [51] for the calculation of

the PRC for such systems. To validate our calculations, we simulate six different models

in these regimes, and compare their numerically computed augmented phase reduction

with the derived analytical expressions. These analytical and numerical calculations help

us understand under which dynamical regimes is the use of augmented phase reduction

advantageous over the standard phase reduction.

The models that we calculate the augmented phase reduction for are two-dimensional,

so there is only one isostable coordinate. We thus write the adjoint equation as

d∇xγ(t)ψ

dt
=
(
kI −DF (xγ(t))T

)
∇xγ(t)ψ, (3.1)

and the augmented phase reduction as

θ̇ = ω + ZT (θ) · U(t), (3.2)

ψ̇ = kψ + IT (θ) · U(t), (3.3)

21



On Augmented Phase Reduction: Analytical and Numerical Results Chapter 3

where I(θ) ≡ ∇xγ(t)ψ. We have removed the subscript for ψ and k, as we only have one

isostable coordinate. The eigenvector v is then the unit vector along the one-dimensional

isochron Γ0. The nontrivial Floquet exponent k can then be computed from the diver-

gence of the vector field as [52]

k =

∫ T
0
∇ · F (xγ(t))dt

T
. (3.4)

This chapter in organized as follows. In Section 3.2, we analytically calculate the

augmented phase reduction for the six systems, and simulate six different models under

the appropriate regimes to validate our calculations. Section 3.3 concludes the chapter

by summarizing the derived analytical expressions, and discussing their implications.

The main results of this chapter have been published in [38, 53].

3.2 Analytical and Numerical Computation of the

Augmented Phase Reduction

Bifurcation theory [29, 54] identifies four codimension one bifurcations which give

birth to a stable limit cycle for generic families of vector fields: a supercritical Hopf

bifurcation, a saddle-node bifurcation of limit cycles, a SNIPER bifurcation (saddle-node

bifurcation of fixed points on a periodic orbit, also called a SNIC bifurcation), and a

homoclinic bifurcation. These bifurcations are illustrated in Figure 3.1. Figure 3.1 also

shows a relaxation oscillator, where dynamics for one of the variables is considerably

faster than the other.

In this section, we analyze planar dynamical systems which have a stable limit cycle

which arises from these four codimension one bifurcations, specifically the normal form

for a supercritical Hopf bifurcation, the normal form for a Bautin bifurcation which has a
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Figure 3.1: (a) SNIPER bifurcation: Two fixed points die in a saddle-node bifurcation
at η = 1, giving a periodic orbit for η > 1, assumed to be stable. (b) Supercritical
Hopf bifurcation: A fixed point loses stability as a increases through zero, giving a
stable periodic orbit (closed curve). (c) Bautin bifurcation: There is a subcritical Hopf
bifurcation at a = 0, and a saddle-node bifurcation of periodic orbits at a = c2/4f .
Both a stable (solid closed curve) and unstable (dashed closed curve) periodic orbit
exist for c2/4f < a < 0. The fixed point is stable (resp., unstable) for a < 0 (resp.,
a > 0). (d) Homoclinic bifurcation: A homoclinic orbit exists at µ = 0, giving rise
to a stable periodic orbit for µ > 0. (e) A relaxation oscillator (solid closed curve) is
shown with its nullclines (dashed curves).
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saddle-node bifurcation of limit cycles, and simple two-dimensional models undergoing a

SNIPER and a homoclinic bifurcations. We first consider λ − ω systems, of which Hopf

and Bautin normal forms are specific examples. We also consider relaxation oscillators

with fast-slow dynamics. We derive analytical expressions of the augmented phase re-

duction (3.2, 3.3) for these systems. Specifically, our contributions are the calculation of

the nontrivial Floquet exponent k and IRCs for all six dynamical systems, and the PRC

for the system undergoing a SNIPER bifurcation. Similar calculations for the λ − ω

system, and for the system undergoing a SNIPER bifurcation have been done in [55]

using different methods.

To validate the calculations, we simulate six different models whose dynamics are

expected to be captured by the aforementioned planar systems. We compare their nu-

merically computed IRCs (and PRC for SNIPER case) with the derived analytical ex-

pressions. In the numerical computation of the IRCs for the planar systems, we directly

calculate the nontrivial Floquet exponent k as the mean of the divergence of vector field

along the periodic orbit according to (3.4). On the other hand, for higher dimensional

models, we first compute the PRC using the software XPP [44], then choose an arbitrary

point on the periodic orbit as θ = 0, and approximate the isochron as a vector orthogonal

to the PRC at that point. To compute the Jacobian DF , we compute xΓ for a number

of initial conditions x0 spread out on the isochron. Eigenvector decomposition of DF

gives us the Floquet multipliers of the periodic orbit and thus k. After obtaining k, we

use Newton iteration to obtain the IRC as the periodic solution to equation (3.1). Note

that the higher dimensional systems we consider for numerical simulation in this section

have only one negative small magnitude nontrivial Floquet exponent, so the reduction

given by (3.2,3.3) still applies.
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3.2.1 λ− ω systems

The normal forms for Hopf and Bautin bifurcations are special cases of λ − ω systems

[56, 57]. Therefore, we first analyze these general dynamical systems and calculate their

IRC expressions, which we then will use to evaluate for the IRCs for the Hopf and Bautin

normal forms. Some of these results are similar, but obtained using a different method,

to the results in [55]. The general form of λ − ω systems is most conveniently written

as

ṙ = G(r), (3.5)

φ̇ = H(r), (3.6)

where r and φ are the standard polar coordinates in two dimensions. We assume there

is a stable periodic orbit with radius rpo found from G(rpo) = 0, and angular frequency

ω = H(rpo). The PRC of the periodic orbit can be written in polar coordinates as [50]

(
∂θ

∂r
,
∂θ

∂φ

)
=

(
−H

′(rpo)

G′(rpo)
, 1

)
. (3.7)

This implies that the phase coordinate θ is equal to the azimuthal coordinate φ on the

periodic orbit. Transforming to Cartesian coordinates (x, y) = (r cosφ, r sinφ), the PRC

can be written as

Z(θ) =

(
−H

′(rpo)

G′(rpo)
cos θ − sin θ

rpo

)
x̂+

(
−H

′(rpo)

G′(rpo)
sin θ +

cos θ

rpo

)
ŷ. (3.8)

At a point (x, y) = (rpo, 0) ≡ (x0, y0), the isochron is in the direction orthogonal to the

PRC (surfaces of constant phase are orthogonal to the gradient of the phase). Thus the
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eigenvector v is given as (
− 1
rpo

)
x̂+

(
−H′(rpo)
G′(rpo)

)
ŷ√(

H′(rpo)
G′(rpo)

)2

+ 1
rpo2

. (3.9)

We will use this vector in the normalization condition for the IRC below. The IRC (in

polar coordinates: ∂ψ
∂r
r̂+ ∂ψ

∂φ
φ̂ = Ir r̂+Iφ φ̂) can be found by solving the adjoint equation

subject to T -periodicity and normalization condition as:

İr = (k −G′(rpo)) Ir −H ′(rpo)Iφ, (3.10)

İφ = kIφ, (3.11)

⇒ Iφ = Iφ0ekt. (3.12)

From the mean of the divergence of the vector field along the periodic orbit, see (3.4),

we get k = G′(rpo). Since Iφ and Ir are T -periodic, we must have Iφ0 = 0. Thus the

IRC in polar and Cartesian coordinates is

Ir,φ = Ir0 r̂ + 0 φ̂, (3.13)

Ix,y = Ir0 cos θ x̂+ Ir0 sin θ ŷ. (3.14)

To find the constant Ir0 , we use the normalization condition at point (x0, y0)

Ix0,y0 . v = 1. (3.15)

⇒ {Ir0 x̂+ 0 ŷ} .


(
− 1
rpo

)
x̂+

(
−H′(rpo)
G′(rpo)

)
ŷ√(

H′(rpo)
G′(rpo)

)2

+ 1
rpo2

 = 1, (3.16)

⇒ Ir0 = −

√
1 +

rpo2H ′(rpo)2

G′(rpo)2
. (3.17)
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This gives the IRC in polar and Cartesian coordinates as

Ir,φ = −

√
1 +

rpo2H ′(rpo)2

G′(rpo)2
r̂ + 0 φ̂, (3.18)

Ix,y = −

√
1 +

rpo2H ′(rpo)2

G′(rpo)2
(cos θ x̂+ sin θ ŷ) . (3.19)

We see that the Cartesian components of the IRC for a λ−ω system each take positive and

negative values, depending on the value of the phase θ. Thus, the same instantaneous,

infinitesimal perturbation can either increase or decrease the isostable coordinate (moving

the trajectory inward or outward from the periodic orbit, in the sense of isostables),

depending on when it is applied.

We now consider two special cases of λ− ω systems.

3.2.2 Hopf Bifurcation

The normal form for a supercritical Hopf bifurcation [29, 58] in Cartesian coordinates

is given as:

ẋ = ax− by + (x2 + y2)(cx− dy), (3.20)

ẏ = bx+ ay + (x2 + y2)(dx+ cy). (3.21)

This can be written in polar coordinates as:

ṙ = ar + cr3, (3.22)

φ̇ = b+ dr2. (3.23)
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Figure 3.2: Supercritical Hopf normal form bifurcation diagram for c = −2. Solid
blue (resp., dashed red) lines show stable (resp., unstable) solutions.

Thus, the Hopf normal form is a λ−ω system, with G(r) = ar+ cr3 and H(r) = b+dr2.

With parameters c < 0, and a < 0, the system has a stable fixed point. As a increases

through 0, a stable periodic orbit is born, and the fixed point loses stability. This is

shown in Figure 3.2. For a > 0, the radius of the stable periodic orbit is rpo =
√
−a/c,

and its time period is given by T = 2π/
(
b+ dr2

po

)
. Using equations (3.18, 3.19), we get

the IRC as

Ix,y = −
√

1 +
d2

c2
(cos θ x̂+ sin θ ŷ) . (3.24)

Thus we get a sinusoidal IRC. We note that a special case of this problem was considered

using different methods in Example 5.1 from [55].
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Figure 3.3: Periodic orbit and trajectories for the Rössler system with parameters
a = 0.125, b = 2, and c = 4.

Rössler system

We use the Rössler system [59] to validate our IRC calculations:

ẋ = −y − z, (3.25)

ẏ = x+ ay, (3.26)

ż = b+ z(x− c). (3.27)

With parameters a = 0.125, b = 2, and c = 4, we get a stable periodic orbit with

time period T = 6.2331, and nontrivial Floquet multipliers ≈ 1, and 5.14× 10−9. Since

one of the nontrivial Floquet multipliers is close to 0, we only consider the isostable

coordinate corresponding to the larger nontrivial Floquet multiplier in the augmented

phase reduction. The nontrivial Floquet exponent comes out to be k = −1.0543× 10−7.

Figure 3.3 shows the periodic trajectories and orbit for the Rössler system with the given

parameter values. Figure 3.4 compares the numerically computed IRC (blue lines) for the

Rössler system near a supercritical Hopf bifurcation with the red sinusoidal curves. We

see that that the both curves overlap, validating our analytical calculation of a sinusoidal
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Figure 3.4: IRC for the Rössler system near a supercritical Hopf bifurcation: The blue
line (nearly invisible beneath the red line) shows the numerically computed IRCs, while
the red line shows the best matching sinusoid curve. The left, middle and right panels
show the x, y, and z components of the IRC, respectively.

IRC for a periodic orbit near a supercritical Hopf bifurcation.

3.2.3 Saddle-node bifurcation of periodic orbits

The Bautin normal form [54, 60] can capture a saddle-node bifurcation of periodic

orbits, where an unstable branch of periodic orbits born out of a subcritical Hopf bifur-

cation turns around and gains stability. It is given in Cartesian coordinates as:

ẋ = ax− by + (x2 + y2)
(
cx− dy + (x2 + y2)(fx− gy)

)
, (3.28)

ẏ = bx+ ay + (x2 + y2)
(
dx+ cy + (x2 + y2)(gx+ fy)

)
. (3.29)

This can be written in polar coordinates as:

ṙ = ar + cr3 + fr5, (3.30)

φ̇ = b+ dr2 + gr4. (3.31)
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Figure 3.5: Bautin normal form bifurcation diagram for c = 1, and f = −2. Solid
blue (resp., dashed red) lines show stable (resp., unstable) solutions.

The Bautin normal form is thus a λ − ω system, with G(r) = ar + cr3 + fr5 and

H(r) = b + dr2 + gr4. With parameters c > 0, f < 0, and a > 0, the system has an

unstable fixed point, and a stable periodic orbit. As a decreases through 0, an unstable

periodic orbit is born in a subcritical Hopf bifurcation, and the fixed point becomes

stable. As a decreases further, the stable and unstable periodic orbits in a saddle-node

bifurcation of periodic orbits at a = c2/4f . The bifurcation diagram is shown in Figure

3.5. In this chapter, we consider the stable periodic orbit with radius rpo =

√
−c−
√
c2−4af

2f
,

and time period T = 2π/
(
b+ dr2

po + gr4
po

)
. Using equations (3.18, 3.19), we get the IRC

in polar and Cartesian coordinates as

Ir,φ = −

√
1 + r2

po

(
2drpo + 4gr3

po

a+ 3cr2
po + 5fr4

po

)2

r̂ + 0 φ̂, (3.32)

Ix,y = −

√
1 + r2

po

(
2drpo + 4gr3

po

a+ 3cr2
po + 5fr4

po

)2

(cos θ x̂+ sinθ ŷ) . (3.33)

Thalamic neuron model

The thalamic neuron model [45] introduced in Chapter 2 describes the spiking be-

havior of neurons inside the thalamus. For details of the model, see Appendix A.1.
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Figure 3.6: Periodic orbit for the thalamic neuron model system with Ib = 0.3281.

With model parameter Ib = 0.3281µA/cm2, there exists a stable periodic orbit near a

saddle-node bifurcation of periodic orbits with time period T = 88.6816 ms and non-

trivial Floquet multipliers 0.8415 and 2.584 × 10−8. Since one of the nontrivial Floquet

multiplier is close to 0, we only consider the isostable coordinate corresponding to the

larger nontrivial Floquet multiplier in the augmented phase reduction. The nontrivial

Floquet exponent comes out to be k = −0.001946. Figure 3.6 shows the periodic orbit

for the thalamic neuron model with the given parameter values. Figure 3.7 shows the

numerically computed IRC for the thalamic neuron model for these parameters. We see

that the IRC along the voltage v and gating variable r match closely with a sinusoid,

whereas the IRC along the gating variable h does not. Instead it resembles the IRC for

a relaxation oscillator (see section 3.2.6). This is because the Bautin normal form only

captures the turning around of an unstable periodic orbit branch born out of a subcriti-

cal Hopf bifurcation and gaining stability in a saddle-node bifurcation of periodic orbits.

However, it does not capture the relaxation nature of dynamics present in some models,

32



On Augmented Phase Reduction: Analytical and Numerical Results Chapter 3

0 2 4 6
θ

-1.5

-1

-0.5

0

0.5

1

I
r

0 2 4 6
θ

-60

-40

-20

0

20

I
h

0 2 4 6
θ

1000

1500

2000

2500

I
r

Figure 3.7: IRC for the thalamic neuron model near the saddle-node bifurcation of
periodic orbits: The blue line shows the numerically computed IRCs, while the red
line shows the best matching sinusoid curve. The left, middle and right panels show
the v, h, and r components of the IRC and its closest matching sinusoid, respectively.

including this one. That is why the IRC computed numerically for such models does not

match closely in shape with the derived analytical expression, cf. [61]. The variables

x, and y in the Bautin normal form vary at a similar rate, but the variables v, and h

in the thalamic neuron model vary at a much faster rate than the variable r. Thus one

component of the IRC shows a shape similar to that of a relaxation oscillator (see section

3.2.6).

3.2.4 SNIPER bifurcation

The SNIPER (Saddle-Node Infinite PERiod) bifurcation [29, 54], also sometimes

called SNIC (Saddle-Node on Invariant Circle) bifurcation, takes place when a saddle-

node bifurcation of fixed points occurs on a periodic orbit. A simple model for the
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SNIPER bifurcation is

ẋ = x(ρ− x2 − y2)− y

(
η − y√

x2 + y2

)
, (3.34)

ẏ = y(ρ− x2 − y2) + x

(
η − y√

x2 + y2

)
, (3.35)

where ρ > 0; this example was considered using different methods in [55]. This can be

written in polar coordinates as:

ṙ = ρr − r3, (3.36)

φ̇ = η − sinφ. (3.37)

Unlike [18], here we use a two-dimensional model, as a minimum of two dimensions is

necessary for applying the augmented phase reduction; for the standard phase reduction,

a one dimensional model would suffice. As the bifurcation parameter η varies, two fixed

points annihilate at η = 1, φ = π/2, and r =
√
ρ, giving rise to a periodic orbit for η > 1.

The stable manifold of the fixed point at the bifurcation is along the radial direction,

and the unstable manifold is along the azimuthal direction of the periodic orbit.

The periodic orbit is stable with radius rpo =
√
ρ, and time period T = 2π/

√
η2 − 1.

We can find the phase variable θ = f(φ) by setting its time derivative equal to the angular

frequency. This gives

θ = 2 arctan

(
η tan

(
φ
2

)
− 1√

η2 − 1

)
+ π. (3.38)

Thus as φ varies from −π to π, θ advances linearly in time from 0 to 2π. The bifurcation

occurs at φ = π/2, which corresponds to θ = π. The periodic trajectory spends most

of its time near φ = π/2 near the bifurcation, as shown in Figure 3.8. Thus we expect

the PRC to be large near φ = π/2 i.e., (θ = π), and small elsewhere. Differentiating
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Figure 3.8: φ evolution for SNIPER bifurcation model: The figure plots the evolution
of azimuthal angle φ as a function of the phase θ of the periodic orbit, which advances
linearly in time. The blue, red, green and black lines corresponds to η = 20, 1.5, 1.05,
and 1.00001 respectively.

equation (3.38) with respect to r and φ, we get the PRC as

(
∂θ

∂r
,
∂θ

∂φ

)
=

(
0,

√
η2 − 1

η − sinφ

)
, (3.39)

which simplifies to

(
∂θ

∂r
,
∂θ

∂φ

)
=

(
0,
η2 − cos θ −

√
η2 − 1 sin θ

η
√
η2 − 1

)
. (3.40)

It is clear from (3.39) that the PRC is always positive, and it blows up to infinity at

φ = π/2 (i.e., θ = π) at the bifurcation. This is evident from the Figure 3.9. Note:

for η & 1, the expression in (3.40) reduces to ∂θ
∂φ

= 1−cos θ
ω

, which is consistent with the

analysis given in [40, 18]. Transforming to Cartesian coordinates (x, y) = (r cosφ, r sinφ),
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Figure 3.9: PRC for SNIPER bifurcation model: The left (resp., the right) column
plots the PRC Zφ versus θ (resp., φ). In both plots, the blue, red, green and black
lines corresponds to η = 1.1, 1.01, 1.001, and 1.0001 respectively. The red dots mark
the bifurcation point φ = π/2 / θ = π.

we can write the PRC as

Z(θ) =
cos θ +

√
η2 − 1 sin θ − 1

√
ρ
√
η2 − 1

x̂+
sin θ −

√
η2 − 1 cos θ
√
ρη

ŷ. (3.41)

Thus the isochrons are radial lines, with eigenvector v = x̂ + 0ŷ at point (x, y) =

(−rpo, 0) ≡ (x0, y0). From the mean of the divergence of the vector field along the

periodic orbit, we get

k =

∫ T
0

(2ρ− 4r2) dt

T
−
∫ T

0
cosφ dt

rT
, (3.42)

⇒ k = −2ρ−

∫ 2π

0

√
η2−1 sin θ−(η2−1) cos θ√
η2−1 sin θ+cos θ−η2

dθ

2πr
. (3.43)

Since the integral in (3.43) is calculated to be zero, we get k = −2ρ. Thus the adjoint

equation for the IRC becomes:

İr = 0, (3.44)

İφ = (cosφ− 2ρ) Iφ0 . (3.45)

36



On Augmented Phase Reduction: Analytical and Numerical Results Chapter 3

Since the IRC is T -periodic, Iφ0 = 0. Thus we get the IRC in polar and Cartesian

coordinates:

Ir,φ = Ir0 r̂ + 0 φ̂, (3.46)

Ix,y = Ir0 cosφ x̂+ Ir0 sinφ ŷ. (3.47)

To find the constant Ir0 , we use the normalization condition at point (x0, y0)

Ix0,y0 . v = 1 ⇒ Ir0 = −1. (3.48)

This gives the IRC in polar and Cartesian coordinates as

Ir,φ = −r̂ + 0φ̂, (3.49)

Ix,y = − cosφ x̂− sinφ ŷ. (3.50)

At first glance, it seems that the IRC is sinusoidal. It is, but only far away from the

bifurcation point. As we approach the bifurcation, φ no longer varies linearly with phase

(see Figure 3.8). The “sinusoidal” IRC gets expanded near the bifurcation point, and

squeezed away from the bifurcation point. This is seen in Figure 3.10, which plots the

IRC as the bifurcation parameter η varies. We see that near the bifurcation point, the

IRC stays close to zero in the x direction, and close to −1 in the y direction. This

observation agrees with the intuitive definition of the IRC. Near the bifurcation point,

the periodic trajectory points in the x direction, so the IRC, which is the gradient of

ψ coordinate, is zero along that direction. On the other hand, the y coordinate is anti-

parallel to the isochron, along which the gradient of ψ is unity. We can write the IRC as
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Figure 3.10: IRC for SNIPER bifurcation model: The left (resp., the right) column
plots the IRC Ix (resp., Iy) versus θ. In both plots, the blue, red, green and black
lines corresponds to η = 20, 1.5, 1.05, and 1.00001 respectively.

a function of phase as

Ix,y =

√
η2 − 1 sin θ − (η2 − 1) cos θ√
η2 − 1 sin θ + cos θ − η2

x̂+
η
(

1−
√
η2 − 1 sin θ − cos θ

)
√
η2 − 1 sin θ + cos θ − η2

ŷ. (3.51)

Morris-Lecar Model

The Morris-Lecar model [62], a two-dimensional excitation model, is given as

CM v̇ = Ib − gL(v − EL)− gKn(v − EK)− gCam∞(v)(v − ECa), (3.52)

ṅ = φ(n∞(v)− n)/τn(v), (3.53)

m∞(v) = 0.5

(
1 + tanh

(
v − v1

v2

))
, (3.54)

τn(v) =
1(

cosh
(
v−v3
2v4

)) , (3.55)

n∞(v) = 0.5

(
1 + tanh

(
v − v3

v4

))
. (3.56)

Parameters φ, gCa, v3, v4, ECa, EK , EL, gK , gL, v1, v2, and CM are taken from the

column “SNLC” of Table 3.1 in [57]. For Ib = 39.9957 mA, the system has a stable
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Figure 3.11: Morris-Lecar Model: Time series for the periodic orbit near the SNIPER
bifurcation. Here Ib = 39.9957 mA.
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Figure 3.12: Morris-Lecar Model: Top (resp., bottom) row plots the PRC (resp., IRC)
near the SNIPER bifurcation. Here Ib = 39.9957 mA.

periodic orbit near a SNIPER bifurcation with time period T = 1002.88 ms, nontrivial

Floquet multiplier λ = 3.632 × 10−45, with corresponding nontrivial Floquet exponent

k = −0.1020. The time series for one period is shown in Figure 3.11. Figure 3.12 plots

the PRC and IRC for the Morris-Lecar oscillator. The PRC is sinusoidal and does not

change sign, just like the simple model (see Figure 3.9 for comparison). The IRC looks
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like a sinusoid skewed to one side, similar to the IRC calculated for the simple model (see

Figure 3.10 for comparison).

3.2.5 Homoclinic bifurcation

For a homoclinic bifurcation [29, 54], a periodic orbit is born out of a homoclinic

orbit to a hyperbolic saddle point p upon varying a parameter µ. If a homoclinic orbit

exists for µ = 0, then there will be a periodic orbit for, say, µ > 0, but not for µ < 0,

as shown in Figure 3.1(d). We assume that the magnitude of the unstable eigenvalue λu

of the saddle point is smaller than the stable eigenvalue λs, resulting in a stable periodic

orbit [29]. For µ close to zero, the periodic solution spends most of its time near the

saddle point p, where the vector field can be approximated by its linearization. It can be

written in diagonal form as

ẋ = λux, (3.57)

ẏ = λsy, (3.58)

where λu > 0, and λs < 0. As in [18], we consider a box B = [0,∆] × [0,∆] ≡ Σ0 × Σ1

that encloses the periodic orbit for most of its time period, and within which equations

(3.57, 3.58) are accurate. This is shown in the left panel of Figure 3.13. We do not model

the periodic orbit outside B, but assume that trajectory re-enters the box after a time

δT at a distance ε from the y axis, where ε varies with the bifurcation parameter µ. The

time taken for the trajectory to traverse B can be found as [18]

τ(ε) =
1

λu
log

(
∆

ε

)
. (3.59)
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Figure 3.13: Periodic trajectory near a homoclinic bifurcation. The left panel shows
the periodic trajectory near the saddle point. The right panel shows the Poincaré
sections used in the analysis

Thus the time period of periodic orbit is given as τ(ε) + δT . As µ decreases towards

zero, the periodic orbit approaches p, resulting in ε approaching 0. Near the bifurcation,

δT � τ(ε), so T ≈ τ(ε). Thus we approximate the trajectory as spending all its time

within the box B, and re-injecting into the box instantaneously. Thus we set θ = 0 at

the point where trajectory enters B, and θ = 2π where trajectory exists B. To find the

PRC, we solve the adjoint equation (2.7) in B to get

Z(θ) = Zx0e−λutx̂+ Zy0e−λstŷ, (3.60)

subject to the initial condition (equation (2.8))

Zx0λuε+ Zy0λs∆ =
2πλu

log
(

∆
ε

) . (3.61)

As µ → 0, ε → 0, thus the first term in the left hand side and the right hand side term

in above equation go to zero. Thus we get Zy0 ≈ 0 near the bifurcation point, and the
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PRC is only significant in the x-direction. Since the isochrons are orthogonal to the PRC

on the limit cycle, the eigenvector v ≈ 0 x̂ + 1 ŷ. We will use this information for the

normalization condition of the IRC later. Since the trajectory spends most of its time

inside the box B, we get k = λs + λu by the mean of the divergence of the linear vector

field inside B. We will also prove this by the Poincaré analysis below.

Consider the Poincaré maps

P = P2 ◦ P1 : Σ0 → Σ0, where (3.62)

P1 : Σ0 → Σ1; (x,∆)→ (∆,∆eλsT ), (3.63)

P2 : Σ1 → Σ0; (∆, y)→ (x,∆). (3.64)

The Poincaré sections Σ0 and Σ1 are shown in the right panel of Figure 3.13. Following

the analysis in Chapter 10 in [63], we get the Poincaré map P as

P : Σ0 → Σ0, (x,∆)→ (Ax−
λs
λu + µ,∆), (3.65)

where A is a positive constant, and µ is the bifurcation parameter. This gives the

nontrivial Floquet multiplier of the periodic orbit as

λ = A′ε−
λs
λu
−1, (3.66)

where A′ = −Aλs/λu. From this equation, it is easy to see that λ → 0 as ε → 0. Note

that although the isochrons in the box B may not be horizontal, we have calculated the

nontrivial Floquet multiplier for a horizontal section, as that is more convenient; the

value of the nontrivial Floquet multiplier is independent of the Poincaré section [63]. k
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can be found as

k =
log
(
A′ε−

λs
λu
−1
)

T
. (3.67)

Near the bifurcation, this can be written as

k = lim
ε→0

log
(
A′ε−

λs
λu
−1
)

1
λu

log
(

∆
ε

) . (3.68)

Since both the numerator and denominator approach plus or minus infinity as ε→ 0, the

limit can be solved by L’Hospital’s rule as

k = lim
ε→0

(
λu∆ε

−1

A′ε−
λs
λu
−1

)A′
(
λs
λu

+ 1
)
ε−

λs
λu
−2

∆ε−2

 = λs + λu. (3.69)

With this, we get the following adjoint equation for the IRC:

İx = λsIx, (3.70)

İy = λuIy, (3.71)

⇒ Ix = Ix0eλst, (3.72)

Iy = Iy0eλut. (3.73)

The normalization condition Ix0,y0 . v = 1 gives the IRC as

Ix,y = Ix0e
λsθ
ω x̂+ e

λuθ
ω ŷ. (3.74)

Here Ix0 remains indeterminate as we do not model the dynamics outside B. The x

component of the IRC decreases at an exponential rate, while the y component increases

at an exponential rate inside the box B. We do not implement the condition of T -
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Figure 3.14: Periodic orbit near homoclinic bifurcation with parameters
µ = 1×10−13, a = −1, and b = 2. The left (resp., middle) panel shows the time series
(resp., orbit). The blue and the red lines show the x and y component of trajectories
respectively. The right panel shows the box B.

periodicity on equations (3.72, 3.73), as the calculated expressions of the IRC are valid

only in the box B. We expect the IRC to jump back to its initial value as the trajectory

re-enters the box.

A simple model for homoclinic bifurcation

We use a 2-dimensional model derived from [64] to validate our result:

ẋ = (a+ b− 0.5µ)x− 0.5µy − (a/4 + 3b/8)(x+ y)2 − 3a/8(x2 − y2), (3.75)

ẏ = 0.5µx+ (a− b+ 0.5µ)y + (−a/4 + 3b/8)(x+ y)2 + 3a/8(x2 − y2). (3.76)

This system undergoes a homoclinic bifurcation at µ = 0, and has a stable periodic orbit

for µ > 0, a < 0 < b, and |b| > |a|. With parameters µ = 1× 10−13, a = −1, and b = 2,

we get a stable periodic orbit with the period T = 31.7689, eigenvalues λs = −3, λu = 1,

nontrivial Floquet exponent k = −1.7579, and the eigenvector v = 0.0006x̂ + 0.9999ŷ.

The periodic trajectory, orbit, and the box B are shown in Figure 3.14. With ∆ = 0.0201,

the trajectory spends 86.5 % of its period in the box B. Figure 3.15 compares the
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Figure 3.15: IRC for periodic orbit near a homoclinic bifurcation. The left and the
right panels shows the x and y component of the IRC respectively, the middle panel
shows the zoomed in plot of the left panel. The blue line shows the numerically
computed IRC, while the red line shows an exponential curve with rate constant
given by (3.74).

numerically computed IRC with the exponential curve having rate constants from the

analytical IRC (3.74). We see that the numerically computed IRC agrees well with the

analytical one in the beginning (inside box B), but diverges after. It oscillates quickly

back to its initial value at the end of its period, as is expected.

3.2.6 Relaxation oscillator

In a relaxation oscillator, at least one variable evolves at a much faster rate than

the other variables. Such oscillators are ubiquitous in conductance-based models of cells,

where the gating variables evolve at a much slower rate than the cell membrane potential.

A two-dimensional relaxation oscillator can be written as

µẋ = f(x, y), 0 < µ� 1, (3.77)

ẏ = g(x, y). (3.78)
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In the relaxation limit (µ→ 0), the PRC is given as [51]

Z(θ) = −ωgx
fxg

x̂+
ω

g
ŷ. (3.79)

Here the functions g, gx, and fx are evaluated on the periodic orbit, and thus are functions

of θ. The eigenvector v in the direction of isochron is given as

v =
−x̂− gx

fx
ŷ√

1 + g2x
f2x

. (3.80)

For computing the adjoint equation for IRC in relaxation limit, we do the following

analysis in the spirit of [18].

Consider an infinitesimal perturbation ∆x = (∆x,∆y) to the periodic trajectory

x ∈ xγ(t). Then the perturbed trajectory evolves as

µ∆̇x = fx∆x+ fy∆y, (3.81)

∆̇y = gx∆x+ gy∆y. (3.82)

This can be written as A∆̇x = DF∆x, where A =

µ 0

0 1

, and DF is the Jacobian

evaluated on the periodic orbit. The isostable shift ∆ψ by a perturbation A∆x is given

by ∆ψ = 〈∇ψ,A∆x〉, where 〈·, ·〉 is the Euclidean inner product. Its time evolution can

be written as

∆̇ψ = 〈∇ψ̇, A∆x〉+ 〈∇ψ,A∆̇x〉 = k∆ψ, (3.83)

⇒ 〈AT∇ψ̇,∆x〉 = 〈kAT∇ψ,∆x〉 − 〈∇ψ,DF∆x〉. (3.84)
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This can be written as

µİx = (kµ− fx)Ix − gxIy, (3.85)

İy = −fyIx + (k − gy)Iy, (3.86)

where Ix = ∂ψ/∂x, and Iy = ∂ψ/∂y. From the mean of the divergence of the vector

field along periodic trajectory, we get the nontrivial Floquet exponent and multiplier as

λ = exp

(∫ T

0

(fx/µ+ gy) dt

)
, (3.87)

k = a/µ+ b, (3.88)

where a =
∫ T
0 fxdt

T
, and b =

∫ T
0 gydt

T
. We must have k < 0 for a stable periodic orbit.

This implies that a < 0, because otherwise, k would get positive as µ→ 0. Thus in the

relaxation limit, k → −∞ and λ → 0. Thus any perturbation from the periodic orbit

gets nullified instantly by the vector field. The adjoint equation for the IRC becomes

µİx = (a+ µb− fx)Ix − gxIy, (3.89)

İy = −fyIx + (a/µ+ b− gy)Iy. (3.90)

⇒ Ix =
gx

a+ µb− fx
Iy +O(µ), (3.91)

⇒ µİy =

(
a+ µb− µgy −

µgxfy
a+ µb− fx

)
Iy +O(µ2). (3.92)

In the relaxation limit (µ→ 0), we get

(a− fx) Iy = 0. (3.93)
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We know from the mean value theorem that there is at least one phase θi where a = fx.

Thus the coefficient of Iy in (3.93) is nonzero except at θi. Thus in order to satisfy the

equation (3.93), Iy has to be zero for all θ except at θi where it can be non-zero. The

same can be said about Ix from equation (3.91). Thus we can write the the IRC as

Ix,y =
(

Σ
i
Ix(θi)

)
x̂+

(
Σ
i
Iy(θi)

)
ŷ. (3.94)

It makes sense intuitively that the IRC is zero everywhere except at few points because

the periodic orbit is very strongly stable in the relaxation limit (the nontrivial Floquet

multiplier is close to zero). Therefore, a perturbation from the periodic orbit gets nullified

instantaneously by the stabilizing vector field. This renders the isostable coordinate zero

near the periodic orbit, and its gradient zero almost everywhere on the periodic orbit.

van der Pol oscillator

An example of a relaxation oscillator is the van der Pol oscillator [65, 66] which can

be written as

µẋ = −y + x− x3/3, 0 < µ� 1, (3.95)

ẏ = x. (3.96)

In the relaxation limit (µ→ 0), we find numerically that a−fx crosses zero at θ1 = 1.6567

and θ2 = 4.7983. Thus we expect the IRC to be zero everywhere except these two θ′is.

We compute periodic orbits and their IRCs for three different values of the parameter

µ : 0.1, 0.01, and 0.001, as shown in Figure 3.16. We see from Figure 3.16 that as µ

approaches the relaxation limit, IRC becomes zero everywhere except near the phases θ1,

and θ2, thus validating our analytical results. Since the IRC is zero everywhere except
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Figure 3.16: van der Pol Oscillator: The left panel plots the periodic orbits and
nullclines. The middle (resp., the right) panel plots Ix (resp., Iy). In all plots, the
blue, red and black lines correspond to µ = 0.1, 0.01,, and 0.001, respectively. The
two red dots in the middle and right panels mark the phases θ1 and θ2.

near 2 points, we do not use the normalization condition of Section 2.3; instead we

normalize the IRC by the maximum absolute value of {Ix(θi), Iy(θi)}.

3.3 Discussion and Conclusions

In this chapter, we have derived expressions for the augmented phase reduction for

six distinct systems with a periodic orbit. We found that the λ − ω, Hopf, and Bautin

normal form systems have sinusoidal PRCs and IRCs. For a model near a SNIPER

bifurcation, the PRC never changes sign, while the IRC looks like a skewed sinusoid. For

a system near homoclinic bifurcation, the IRC is exponential for a large part of its phase.

Finally for a relaxation oscillator, the IRC is zero everywhere except at a few points.

We simulated dynamic models which are examples of these six systems, and found

that their numerically computed IRCs matches with their analytical counterparts very

closely except in the system undergoing a saddle-node bifurcation of periodic orbits,

for which we have used the Bautin normal form. This normal form captures a saddle-
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node bifurcation of periodic orbits, where an unstable periodic orbit branch born out

of a subcritical Hopf bifurcation turns around and gains stability; however, it does not

capture the relaxation nature of dynamics present in some models. That is why the IRC

computed numerically for such models does not match closely in shape with the derived

sinusoidal IRC.

For a strongly stable system, the nontrivial Floquet exponent k goes to −∞. This

is the case for relaxation oscillator in the relaxation limit. Thus, any perturbation to

the periodic orbit gets nullified instantly. In such a case, it is not necessary to use the

augmented phase reduction, instead the standard phase reduction would suffice. On the

other hand, for the other five systems, it is better to use the augmented phase reduction

over the standard phase reduction, especially when k is a negative number that is small

in magnitude.

Table 3.1 summarizes the analytical expressions for augmented phase reduction de-

rived in Section 3.2.
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Table 3.1: Summary of analytical expressions of augmented phase reduction for six dynamically distinct systems

Dynamic Model PRC IRC k

λ − ω

ṙ = G(r),

φ̇ = H(r).

(
−H

′(rpo)

G′(rpo)
cos θ − sin θ

rpo

)
x̂

+

(
−H

′(rpo)

G′(rpo)
sin θ +

cos θ

rpo

)
ŷ

−

√
1 +

rpo2H ′(rpo)2

G′(rpo)2
cos θ x̂

−

√
1 +

rpo2H ′(rpo)2

G′(rpo)2
sin θ ŷ

G′(rpo)

Hopf

ṙ = ar + cr3,

φ̇ = b+ dr2.

(
d√
−ac

cos θ +
c√
−ac

sin θ

)
x̂

+

(
d√
−ac

sin θ − c√
−ac

cos θ

)
ŷ

−
√

1 +
d2

c2
cos θ x̂

−
√

1 +
d2

c2
sin θ ŷ

−2a

Bautin

ṙ = ar + cr3 + fr5,

φ̇ = b+ dr2 + gr4.

(
−

2drpo + 4gr3
po

a+ 3cr2
po + 5fr4

po

cos θ − sin θ

rpo

)
x̂

+

(
−

2drpo + 4gr3
po

a+ 3cr2
po + 5fr4

po

sin θ +
cos θ

rpo

)
ŷ

−

√
1 + r2

po

(
2drpo + 4gr3

po

a+ 3cr2
po + 5fr4

po

)2

cos θ x̂

−

√
1 + r2

po

(
2drpo + 4gr3

po

a+ 3cr2
po + 5fr4

po

)2

sin θ ŷ

a+ 3cr2
po

+5fr4
po

SNIPER

ṙ = ρr − r3,

φ̇ = η − sinφ.

cos θ +
√
η2 − 1 sin θ − 1

√
ρ
√
η2 − 1

x̂

+
sin θ −

√
η2 − 1 cos θ
√
ρη

ŷ

√
η2 − 1 sin θ − (η2 − 1) cos θ√
η2 − 1 sin θ + cos θ − η2

x̂

+
η
(

1−
√
η2 − 1 sin θ − cos θ

)
√
η2 − 1 sin θ + cos θ − η2

ŷ

−2ρ

Homoclinic

ẋ = λux,

ẏ = λsy.

Zx0e−
λuθ
ω x̂+ Zy0e−

λsθ
ω ŷ Ix0e

λsθ
ω x̂+ e

λuθ
ω ŷ λs + λu

Relaxation

µẋ = f(x, y),

ẏ = g(x, y).

−ωgx
fxg

x̂+
ω

g
ŷ

(
Σ
i
Ix(θi)

)
x̂+

(
Σ
i
Iy(θi)

)
ŷ −∞
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Chapter 4

Optimal Phase Control using

Augmented Phase Reduction

4.1 Introduction

As previously discussed, standard phase reduction is valid only in close proximity

to the periodic orbit. Consequently, the magnitude of the allowable control stimulus

is limited by the nontrivial Floquet multipliers [29] of the periodic orbit: in systems

with a nontrivial Floquet multiplier close to 1, even a relatively small stimulus can drive

the trajectory away from the periodic orbit, rendering the phase reduction inaccurate

and control based on phase reduction ineffective. In most practical applications, the

effectiveness of a control algorithm depends on the size of the allowable stimulus [21, 27,

22]. This suggests that control algorithms based on the augmented phase reduction will

be more effective than those based on just the phase coordinate, as they can be designed

to allow a larger stimulus without the risk of driving the oscillator away from the periodic

orbit [30].

In this chapter, we develop a novel optimal control algorithm based on augmented
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phase reduction to advance (resp., delay) the phase of the oscillator, such that the os-

cillator completes one periodic trajectory sooner (resp., slower). Along with minimizing

the total energy consumption, our control algorithm also minimizes a measure of the

transversal distance of the oscillator from the unperturbed periodic orbit. This novel

aspect of our control algorithm is crucial in ensuring that the controlled oscillator al-

ways stays close to the unperturbed periodic orbit, where phase reduction is valid, thus

making our control algorithm effective. Note that this way of incorporating closeness of

the controlled trajectory to the periodic trajectory in the cost function is possible due

to the explicit formulation of transversal dynamics in terms of Floquet multipliers in the

augmented phase reduction. This allows us to efficiently keep the perturbed trajectory

close to the periodic orbit along weakly stable isostable directions, even in the presence

of noise.

Moreover, we develop a novel strategy to eliminate cardiac alternans by connecting

our control algorithm with the underlying physiological problem to change the phase of

cardiac pacemaker cells. This strategy removes the need to excite the myocardium tissue

at multiple sites. We also show how our control algorithm can be used to change the spike

timing of neurons, which could be relevant to the problem of desynchronizing neurons

for the treatment of essential and parkinsonian tremor [67, 68]. Such an optimal control

is expected to consume less energy than the pulsatile current in the present Deep Brain

Stimulation (DBS) protocol, thus possibly prolonging the battery life of the stimulator,

and also preventing tissue damage caused by the high energy DBS stimuli. Finally, we

apply our control algorithm to re-align circadian rhythm with the new light and dark

cycle to treat jet lag [69] or adapt to night shift work [70, 71].

We compare our new algorithm with a previous algorithm based on standard phase

reduction proposed in [20] by applying it to four different dynamical systems: the Hopf

bifurcation normal form, cardiac pacemaker cells (motivated by suppressing alternans),
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thalamic neurons (motivated by desynchronizing neurons via spike timing control), and

circadian gene regulation in the superchiasmatic nucleus (motivated by controlling cir-

cadian rhythm). We show that our algorithm effectively changes the phase in these

dynamical systems while keeping the controlled oscillator close to the unperturbed pe-

riodic orbit. The previous algorithm drives the oscillator away from the periodic orbit,

and thus can fail. We also perform a parametric study to analyze the dependence of

the control error on the nontrivial Floquet multiplier of the periodic orbit and on the

amount of phase change desired. This study demonstrates the promising potential of our

new algorithm over the previous algorithm, especially when a large change in phase is

required or when a nontrivial Floquet multiplier of the oscillator is close to 1. In such

cases, our algorithm does an order of magnitude better in terms of the calculated control

error.

In this chapter, we consider dynamical systems that only have one of the nontrivial

Floquet multipliers close to one, and the remaining n− 2 nontrivial Floquet multipliers

close to zero. Thus the augmented phase reduction is given by equations (3.2) and (3.3).

This chapter in organized as follows. In Section 4.2, we devise our optimal control

algorithm based on augmented phase reduction and also present the previously devised

algorithm based on standard phase reduction. In Section 4.3, we compare the two control

algorithms by applying them to four different dynamical systems, and in turn develop

strategies to suppress cardiac alternans, change the firing time of thalamic neurons, and

shift the phase of a circadian rhythm. Section 4.4 analyzes the effect of noise on the

performance of our control algorithm. Section 4.5 summarizes the results and gives

concluding remarks. Numerical methods used in this chapter are detailed in Appendix

B, and Appendix A lists the mathematical models used in this chapter.

The main results of this chapter have been published in [16].
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4.2 Optimal Phase Control

Suppose we start at the point x0 on xγ(t). Without any control input, we expect

the trajectory will return to the point x0 at time t = T . Our objective here is to devise

a control which returns the trajectory to its initial position after time t = T1, where

T1 6= T . It should do so using minimal energy input and staying close to the uncontrolled

periodic trajectory. An “easy” way of doing this is by taking the control input to be a

scalar multiple of the vector field, U(t) = sF (x). s would be positive (resp., negative)

when phase advance (resp., delay) is the control objective. However, there are three

problems with such a control in an experimental setting: first, the dynamical system

under consideration may not be fully actuated (not all the states of the system can be

perturbed), which is generally the case in practical situations; second, the entire state of

the system may not be experimentally measurable; and third, the function F (x) might

be unknown.

Here we consider dynamical systems which only have one degree of actuation: the

control input vector is U(t) = [u(t), 0, . . . , 0]T . Such a control input is motivated by

the applications we consider in this chapter, where only one of the elements of the state

vector is affected directly by the control input. So the standard phase reduction becomes

θ̇ = ω + Zx1(θ)u(t), (4.1)

and the augmented phase reduction is

θ̇ = ω + Zx1(θ)u(t), (4.2)

ψ̇ = kψ + Ix1(θ)u(t). (4.3)

Here Zx1 and Ix1 correspond to the first component in the n-dimensional vector functions
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Z and I, respectively. Without loss of generality, we will do away with the subscripts

and write them as Z and I. An optimal control law based on the augmented phase

reduction is found by using the cost function C:

C =

∫ T1

0

[
αu2 + βψ2 + λ1

(
θ̇ − ω −Z(θ)u(t)

)
+λ2

(
ψ̇ − kψ − I(θ)u(t)

)]
dt.

(4.4)

The first term in the cost function ensures that the control law uses a minimum energy

input. The second term minimizes the transversal distance (in the direction of the slow

isostable coordinate ψ) from the uncontrolled periodic trajectory, thus ensuring that

the controlled trajectory stays close to the periodic trajectory where the reduction is

valid. The coefficients α and β give us the freedom to weight energy minimization and

transversal distance minimization differently for different problems. The last two terms

ensure that the system obeys the augmented phase reduction, with λ1 and λ2 being the

Lagrange multipliers. The Euler-Lagrange equations are obtained from

∂P

∂q
=

d

dt

(
∂P

∂q̇

)
, q = λ1, λ2, θ, ψ, u, (4.5)

where P is the integrand in the cost function C. This gives

θ̇ = ω + Z(θ)u(t), (4.6)

ψ̇ = kψ + I(θ)u(t), (4.7)

λ̇1 = −u (λ1Z ′(θ) + λ2I ′(θ)) , (4.8)

λ̇2 = 2βψ − kλ2, (4.9)
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where

u(t) =
λ1Z(θ) + λ2I(θ)

2α
. (4.10)

These equations are solved as a two point boundary value problem (see Appendix B.3)

with the boundary conditions

θ(0) = 0, θ(T1) = 2π, ψ(0) = 0, ψ(T1) = 0. (4.11)

The last boundary condition makes sure that trajectory ends back on the periodic orbit.

The previously proposed optimal control problem based on standard phase reduction [20]

can be obtained by setting β = 0 and λ2 = 0 in the cost function. This gives Euler-

Lagrange equations for the variables θ and λ1 as

θ̇ = ω + Z(θ)u(t), (4.12)

λ̇1 = −uλ1Z ′(θ), (4.13)

where

u =
λ1Z(θ)

2α
. (4.14)

These control laws (equations (4.10) and (4.14)) can then be applied to the full model

ẋ = F (x) + U(t) to change the orbit’s phase. To compare the control laws, we compute

the control energy as ∫ T1

0

u2dt, (4.15)

and the control error as the normalized Euclidean distance between the final position

and the initial position given as

||x(T1)− x(0)||
max(||x(t)||)

, (4.16)
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∫ T1

0

Euler-Lagrange equations

θ(t), ψ(t), λ1(t), λ2(t)

U(t) =


[
λ1(t)Z(θ(t))+λ2(t)I(θ(t))

2α , 0, . . . , 0
]T

0 ≤ t ≤ T1

[0, 0, . . . , 0]T t > T1

x(t) =

∫ t

0
[F (x) + U(t)] dt

Control error = ||x(T1) − x(0)||/max(||x(t)||)

Figure 4.1: Flowchart describing the control algorithm based on augmented phase reduction

where ||x|| represents the standard Euclidean norm, and max (||x(t)||) represents the

maximum value of the Euclidean norm of the periodic solution x(t). The control error

arises because we apply the control input (equations (4.10) and (4.14)) based on the

reduced model to the full model (equation (2.4)).The control algorithm based on aug-

mented phase reduction is outlined in the flowchart in Figure 4.1. The algorithm based

on standard phase reduction is implemented in a similar manner. We will see in Sec-

tion 4.3 that our new control law is effective in circumstances in which the previously

proposed control law fails since the novel attribute of our cost function minimizes the

transversal distance, ensuring that the controlled trajectory is always close enough to

the periodic orbit so that the phase reduction is valid. On the other hand, with the

previously proposed control law, even a small control input can drive the trajectory away

from the periodic orbit, thereby rendering the phase reduction invalid and the control

law ineffective.
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4.3 Applications

We apply the new optimal control algorithm (based on the augmented phase reduc-

tion) and the previously proposed optimal control algorithm (based on the standard phase

reduction) to four different dynamical systems: the Hopf bifurcation normal form, cardiac

pacemaker cells, thalamic neurons, and circadian gene regulation in the suprachiasmatic

nucleus. For all these systems, the PRC is numerically computed using the software XPP

[44]. We solve a two point boundary value problem to obtain the IRC as the periodic

solution to equation (3.1) (see Appendix B.3). The control input is obtained by solving

the Euler-Lagrange equations (4.6) - (4.9) or (4.12) - (4.13) as a two point boundary value

problem numerically. It is then applied to the full model to compute the resulting tra-

jectory x(t). A parametric study is performed to compute this error as a function of the

ratio T1/T and, for the Hopf bifurcation normal form, the nontrivial Floquet multiplier

of the periodic orbit.

4.3.1 Hopf Bifurcation Normal Form

Motivation

Here we consider the normal form for a supercritical Hopf bifurcation [29], which

occurs in several applications including biological and chemical oscillators [19, 72, 56, 73].

This example allows us to explore in detail the interplay between the control objective

and the nontrivial Floquet multiplier for the new and the previously proposed control

algorithm.

Control Strategy

We use our control algorithms to change the phase of a periodic orbit near a super-

critical Hopf bifurcation. By varying parameters, we can calculate the control error for
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both algorithms as a function of the nontrivial Floquet multiplier and the target phase

change, which gives a sense of which control algorithm would work better in what ranges

of these quantities.

The normal form of the supercritical Hopf bifurcation with an external control input

u(t) is:

ẋ = ax− by + (x2 + y2)(cx− dy) + u(t), (4.17)

ẏ = bx+ ay + (x2 + y2)(dx+ cy), (4.18)

with c < 0. With zero control input u(t), and a < 0, the system has a stable fixed

point. As a increases through 0, a stable periodic orbit is born, and the fixed point

becomes unstable. With parameters a = 0.004, b = 1, c = −1, d = 1, the system has

a stable periodic orbit with the time period T = 6.2582 and the nontrivial Floquet

multiplier exp(−2aT ) = 0.9512. The PRC and the IRC are sinusodial, see Table 3.1, cf.

[47, 38], with amplitudes
√

d2+c2

−ac and
√

1 + d2

c2
, respectively. Here, θ = 0 corresponds

to the initial condition x = −0.0447, y = 0.0447. The top row of Figure 4.2 shows the

uncontrolled periodic orbit, PRC, and IRC for the given parameter values. The control

parameters α and β are both taken to be unity. We calculate the optimal control with

T1 = 1.3T = 8.1356 both for our new algorithm and the previously proposed algorithm.

The resulting trajectories, time series, and control inputs are shown in the bottom

two rows of Figure 4.2. As seen in this figure, the new control algorithm does much better

in changing the phase of the periodic orbit while also keeping the trajectory close to the

periodic orbit for the uncontrolled system. This is because our algorithm minimizes the

transversal distance, ensuring that the controlled trajectory is always close enough to the

periodic orbit so that the phase reduction is valid. On the other hand, with the previously

proposed control law, the control input drives the trajectory away from the periodic
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Figure 4.2: Hopf bifurcation normal form: Top row shows the uncontrolled periodic
orbit, PRC, and IRC for the Hopf normal form with parameters given in the main
text. The middle (resp., bottom) row shows the trajectory, time series, and control
input for control based on our new (resp., the previously proposed) algorithm. Control
is on (resp., off) for the portion shown by the thick black (resp., thin blue) line. The
trajectory starts at the small red circle. The red horizontal line shows the amplitude
of the uncontrolled periodic orbit.

orbit, thereby rendering the phase reduction invalid and the control law ineffective. This

is apparent from the control error (given by equation (4.16)) as well, which is 0.1435 and

1.1394 for the new and the previous optimal control algorithms, respectively. However,

the new control algorithm does better at the expense of consuming more energy (given

by equation (4.15)), which comes out to be 0.0032 units, compared with 0.0015 units for

the previous control algorithm. We note that the trajectory in the bottom row of Figure
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Figure 4.3: Hopf bifurcation normal form: Top (resp., bottom) row shows the con-
trol error (equation (4.16)) from the control based on our new (resp., the previously
proposed) algorithm as a function of the nontrivial Floquet multiplier and the ratio
T1/T .

4.2 will eventually return to the stable uncontrolled periodic orbit, but will not have the

corresponding desired phase shift.

As the parameter a is further increased, the system moves away from the bifurcation

point, resulting in a decreasing nontrivial Floquet multiplier. A parametric study is per-

formed to analyze the dependence of the control error on the nontrivial Floquet multiplier

and the ratio T1/T . The top (resp., bottom) row of Figure 4.3 shows this error for the

new (resp., the previously proposed) control algorithm. The error for the previously pro-

posed control algorithm increases as the nontrivial Floquet multiplier increases towards 1

and/or ratio T1
T

moves away from 1 (the control objective becomes more extreme). This

is because an extreme control objective requires a large control input, which drives the

trajectory away from the periodic orbit, resulting in the phase reduction losing accuracy.
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However when the nontrivial Floquet multiplier is close to zero, a trajectory kicked away

from the periodic orbit returns quickly back to it, thereby nullifying the effect of a large

control input on the accuracy of phase reduction. On the other hand, for the new control

algorithm, the error remains small for all values of the ratio T1
T

and nontrivial Floquet

multiplier considered. Thus, we can conclude that our new control algorithm is much

more effective than the previously proposed control algorithm, especially when the con-

trol objective is extreme and/or the nontrivial Floquet multiplier of the periodic orbit is

close to 1.

We expect that the asymmetry in control error, as seen in the bottom panel of Figure

4.3, can be explained by the inherent shear present in the model’s dynamics [74]. For

the parameters considered, we observe that when phase delay is the desired control

objective, the trajectory is kicked inside the periodic orbit, i.e., the amplitude of the

transient trajectory decreases. On the other hand, for a phase advance control objective,

the trajectory is kicked out of the periodic orbit, i.e., the amplitude of the transient

trajectory increases. The difference between this amplitude increase and decrease is

magnified for the standard phase reduction-based control with a small Floquet multiplier.

Shear present in the dynamics acts differently on these two cases, which is reflected as

a small asymmetry in control error seen in the bottom panel of Figure 4.3. For the

new control algorithm, the difference between the amplitude increase and decrease stays

relatively small, and thus the control error is more symmetric as can be seen in the top

panel of Figure 4.3.
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4.3.2 Controlling Cardiac Pacemaker Cells

Motivation

The heartbeat is initiated by a collection of cells in the Sinoatrial node (SA node),

which acts as a pacemaker. These cells elicit periodic electrical pulses which polarize a

collection of excitable and contractile cells called myocytes. In the process of depolarizing,

myocytes contract and propagate action potentials to the neighboring cells. This well-

coordinated process of excitation / depolarization and contraction enables the heart to

pump blood throughout the body. Under normal conditions, with constant pacing, the

action potential duration (APD), that is the time for which an action potential lasts, also

remains constant. However, under some conditions, this 1:1 rhythm between pacing and

the APD can become unstable, bifurcating into a 2:2 rhythm of alternating long and short

APD, known as alternans [75]. Alternans is observed to be a possible first step leading to

fibrillation [76]. Thus, a number of researchers have worked on suppressing alternans as a

method of preventing fibrillation, thereby preventing the need for painful and damaging

defibrillating shocks. Many of these methods [77, 78, 79, 80] operate by exciting the

myocardium tissue externally with periodic pulses, and changing the period according to

the alternating rhythm. However such a control requires excitation at several sites in the

tissue [81].

Control Strategy

We devise a novel strategy to suppress alternans by changing the phase of the inherent

pacemaker cells. Such a control strategy could eliminate the need to excite the tissue at

multiple sites. We make use of the relation between APD, diastolic interval (DI), and

basic cycle length (BCL) to devise our control strategy. DI is the time for which a myocyte

cell remains depolarized, and BCL is the time between successive action potentials, which
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is dictated by the period of the pacemaker cells. In the simplest model [82], APD is a

function of the previous DI, given by the restitution curve: APDi = f(DIi−1). DI is a

function of the current APD, given by what we call the BCL curve: APDi + DIi = BCL.

The intersection of these two curves gives the normal 1:1 rhythm. If the slope of the

restitution curve at this intersection is greater than 1, the 1:1 rhythm is unstable, giving

rise to alternans. This was first shown by [83] and is illustrated in the top panel of Figure

4.4. Given the current DIi, the next APDi+1 is given by the restitution curve. Traversing

horizontally from this point to the BCL curve gives the next DIi+1. Repeating this

analysis gives all the successive DIs and APDs. Under constant BCL, it is graphically

illustrated in the top panel of Figure 4.4 that when slope of the restitution curve is

greater than 1, APDs and DIs alternate between two values, corresponding to alternans.

If starting from point 2 in the bottom panel of Figure 4.4 we reduce the BCL for one

cycle such that the next DI corresponds to the unstable 1:1 state, this would stabilize

the 1:1 rhythm, eliminating alternans. Thus our control strategy to eliminate alternans

corresponds to decreasing the BCL for one cycle, i.e., advancing the phase of the SA node

cells. Note that in a clinical setting, we may need to apply this control strategy multiple

times, as the 1:1 rhythm is unstable. Applying control multiple times is physically

realistic as long as the trajectory returns back to the limit cycle before the next stimulus

arrives. As we will see later, this is not the the case with the previously proposed optimal

control algorithm based on the standard phase reduction. This novel strategy should be

clinically feasible as well, since an implanted battery could generate multiple stimuli.

To demonstrate our approach, we consider the SA node cell dynamics, instead of the

discrete APD/DI dynamics. Our control objective is to change the phase of SA node

cells; the amount of change required is linked to the amount by which the BCL curve

needs to be shifted to stabilize the unstable APD/DI dynamics. Here we advance the

phase by 20 % as an example. We consider the 7-dimensional YNI model of SA node cells
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Figure 4.4: Suppression of alternans: The top panel shows the stable 2:2 rhythm of
alternans. The bottom panel shows the 1:1 rhythm stabilized by reducing the BCL
for one cycle.

in rabbit heart proposed by [84]. The model is of Hodgkin-Huxley type with 6 gating
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variables d, f,m, h, q, p and a transmembrane voltage variable V . The model is given as

V̇ =
Im − INa − Ik − Il − Is − Ih

C
+ u(t), (4.19)

ẏ = αy(1− y)− βyy, (4.20)

where y represents the 6 gating variables. u(t) represents the applied current as the

control input. For details of the currents (INa, Ik, Il, Is, Ih) and the parameters, see

Appendix A.2. With Im = 1.0609, we get a stable periodic orbit with time period

T = 203.4552 ms and nontrivial Floquet multipliers 0.7595, 0.1365, 0.0299, ≈ 0, ≈ 0, ≈ 0.

Since one of the nontrivial Floquet multipliers is considerably larger than others, we only

consider the isostable coordinate corresponding to it. The top row of Figure 4.5 shows

the uncontrolled periodic orbit, PRC, and IRC for the given parameter values. Control

parameters α and β are taken as 100 and 0.1, respectively. Here we give considerable

more weight to minimizing energy, to overcome our new control algorithm’s tendency

for this problem to require more energy than the previously proposed control algorithm.

We calculate optimal control for the new and previously proposed algorithms with T1 =

0.8T = 162.7641 ms.

The resulting trajectories, time series, and control inputs are shown in the bottom two

rows of Figure 4.5. As seen in this figure, our new control algorithm successfully achieves

the control objective while keeping the trajectory close to the uncontrolled periodic orbit.

It is able to do so while giving considerable importance to energy minimization (α is

significantly bigger than β). On the other hand, with the previous control algorithm,

instead of staying close to the periodic orbit, the trajectory decays to the stable fixed point

of the system. This is evident from the control error, which is 0.0858 and 0.3677 for our

new and the previous optimal control algorithms, respectively. Our control does better at

the expense of consuming more energy (6.3850 units) than the previous control (0.2100
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Figure 4.5: YNI model for cardiac pacemaker cells: Top row shows the uncontrolled
periodic orbit, PRC, and IRC for the YNI model with parameters given in the main
text. The middle (resp., bottom) row shows the trajectory, time series, and control
input for control based on our new (resp., the previously proposed) algorithm. Control
is on (resp., off) for the portion shown by the thick black (resp., thin blue) line. The
trajectory starts at the small red circle. The red horizontal line shows the amplitude
of the uncontrolled periodic orbit.

units). Note that here we change the phase by 20% as an example. In a more realistic

setting, we would require a more integrated model which combines the discrete APD/DI

dynamics together with the dynamics of the SA node cell. This would automatically

determine the phase change required.
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4.3.3 Controlling Neurons

Motivation

Essential and parkinsonian tremor, the most common movement disorders, affect

millions of people worldwide. These cause involuntary tremors in various parts of the

body, disrupting the activities of daily living. Pathological neural synchronization in the

thalamus and the STN brain region is hypothesized to be one of the causes of motor

symptoms of essential and parkinsonian tremor, respectively [11, 12]. Deep brain stim-

ulation (DBS), an FDA approved treatment, helps to alleviate these symptoms [85, 86]

by stimulating the thalamus or the STN brain regions with a high frequency high en-

ergy pulsatile waveform. In the process, the high frequency high energy waveform has

been hypothesized to desynchronize the synchronized neurons; see, e.g., [87, 15]. This

has motivated researchers to come up with efficient control techniques [88, 67] which not

only desynchronize the neurons but also consume less energy, thus prolonging the battery

life of the stimulator and preventing tissue damage caused by the high energy pulsatile

stimuli.

Control Strategy

At a single neuron level, desynchronization can be viewed as changing the phase of

a neuron to be at a different phase than other neurons [20, 68]. With this in mind, we

use our algorithm to change the phase of neuron spikes in thalamic neurons. To see

the performance of our algorithm in an extreme scenario, we set the control objective to

advance the phase by 60%. We demonstrate this by using the thalamic neuron model

introduced in Chapter 2. For details of the model, see Appendix A.1. Under zero control

input, these parameters give a stable periodic orbit with time period T = 8.3955 ms and

nontrivial Floquet multipliers 0.8275 and 0.0453. Since one of the nontrivial Floquet mul-
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Figure 4.6: Thalamic neuron model: Top row shows the uncontrolled periodic orbit,
PRC, and IRC for the thalamic neuron model with parameters given in the main text.
The middle (resp., bottom) row shows the trajectory, time series, and control input
for our new (resp., the previously proposed) control algorithm. Control is on (resp.,
off) for the portion shown by the thick black (resp., thin blue) line. The trajectory
starts at the small red circle. The red horizontal line shows the amplitude of the
uncontrolled periodic orbit.

tiplier is close to 0, we only consider the isostable coordinate corresponding to the larger

nontrivial Floquet multiplier in the augmented phase reduction. The top row of Figure

4.6 shows the uncontrolled periodic orbit, PRC, and IRC for the given parameter values.

Control parameters α and β are taken as unity. We calculate the optimal control for our

new algorithm and the previously proposed algorithm with T1 = 0.4T = 3.3582 ms.

The resulting trajectories, time series, and control inputs are shown in the bottom

70



Optimal Phase Control using Augmented Phase Reduction Chapter 4

0.2 0.4 0.6 0.8
T1

T

0

0.1

0.2

0.3

0.4

0.5

C
on

tr
ol

 e
rr

or

1.2 1.4 1.6 1.8
T1

T

0

0.002

0.004

0.006

0.008

0.01

0.012

C
on

tr
ol

 e
rr

or
Figure 4.7: Thalamic neuron model: Blue � (resp., red ∗) shows the control error for
the control from our new (resp., the previously proposed) algorithm as a function of
the ratio T1/T .

two rows of Figure 4.6. As seen in middle and bottom panels of the left column of

this figure, our new control algorithm does better in keeping the trajectory close to the

periodic orbit. On the other hand, with the previous control algorithm, the trajectory

moves away from the periodic orbit. Looking at the central middle and bottom panels,

it seems that the trajectory returns back to the periodic orbit even for the previously

proposed optimal control algorithm, but this is not the case. Since one of the Floquet

multipliers is close to zero, the voltage state returns back quickly, but the other states

still remain far away from the limit cycle. This is evident from the first two panels of

the bottom row of Figure 4.6, as well as from the control error, which is 0.032 and 0.088

for our new and the previous optimal control algorithms, respectively. Our new control

algorithm does better at the expense of consuming more energy (1119.15 units) compared

to (784.16 units) in the previous control algorithm.

We test the control algorithms for various target phase changes, corresponding to

the range from T1 = 0.2T to T1 = 1.8T . Figure 4.7 shows control error for these phase

changes for both our new and the previous optimal control algorithms. We see that the
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control error grows as the control objective becomes more extreme, which is expected.

But it still remains relatively small for our new control algorithm. This again shows that

our new control algorithm is more effective in changing the phase than the previously

proposed control algorithm.

4.3.4 Controlling Circadian Oscillators

Motivation

Neurons in the suprachiasmatic nucleus (SCN) of the brain are responsible for main-

taining the circadian rhythm in mammals. This rhythm is synchronized with the external

day and night cycle under normal conditions. A disruption between these two rhythms

can happen due to multiple reasons, such as travel across time zones, starting a night

shift job, working in extreme environments (space, earth poles, underwater), etc. Such

an asynchrony leads to several physiological disorders like insomnia, improper digestion,

and even cancer and cardiovascular diseases [89, 90], thus driving researchers to try to

develop ways to remove this asynchrony. One way of doing this is by using a light stim-

ulus, which affects the circadian rhythm [91]. Therefore, many researchers have used

appropriately timed exposure to light to entrain circadian rhythm with the new external

cycle; see, e.g., [69, 70, 71].

Control Strategy

Several control-theoretic approaches have been used in the past to determine timing

and intensity of the light stimulus to synchronize the circadian rhythm with a new light

- dark cycle [92, 93, 94]. One way of doing this is by changing the phase of one circadian

oscillation so that the oscillation gets aligned with the external cycle after the end of the

controlled oscillation. As an example, consider a person who is going on a vacation to
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London, traveling east from New York City. The day-night cycle in his new environment

would be 5 hours behind his internal rhythm. Thus, advancing the phase of his internal

circadian rhythm by 20 percent (≈ 5 hours) for one cycle would realign his internal

rhythm with the new environment. This would be equivalent of taking T1 = 0.8T in our

control algorithm.

We use the 3-dimensional model of the clock gene regulation in SCN developed in [95]

to demonstrate our control algorithm. This model has a negative feedback loop, where

production of one gene leads to the inhibition of the other, thus causing oscillatory

behavior. It is given as:

Ẋ = v1
K4

1

K4
1 + Z4

− v2
X

K2 +X
+ L(t), (4.21)

Ẏ = k3X − v4
Y

K4 + Y
, (4.22)

Ż = k5Y − v6
Z

K6 + Z
. (4.23)

Here X represents mRNA concentration of a clock gene, per or cry, Y represents the

resulting protein, PER or CRY [96], and Z is the active protein which inhibits production

of the clock gene. L(t), the perturbation in ambient light, acts as the control input.

Parameters v1, K1, v2, K2, k3, v4, K4, k5, v6, K6 are taken from Figure 1 in [95], and are

given in Appendix A.3. These parameters give a stable periodic orbit with time period

T = 23.5398 hrs and the nontrivial Floquet multipliers 0.9509 and ≈ 0. Since one

of the nontrivial Floquet multipliers is approximately 0, we only consider the isostable

coordinate corresponding to the larger nontrivial Floquet multiplier in the augmented

phase reduction. The top row of Figure 4.8 shows the uncontrolled periodic orbit, PRC,

and IRC for the given parameter values. We have taken the control parameters α = 10
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Figure 4.8: Circadian oscillator: Top row shows the uncontrolled periodic orbit, PRC,
and IRC for the circadian oscillator model with parameters given in the main text.
The middle (resp., bottom) row shows the trajectory, time series, and control input
for control based on our new (resp., the previously proposed) algorithm. Control is
on (resp., off) for the portion shown by the thick black (resp., thin blue) line. The
trajectory starts at the small red circle. The red horizontal line shows the amplitude
of the uncontrolled periodic orbit.

and β = 0.1. We again give more weight to minimizing energy to compensate for our

new control algorithm’s tendency to require more energy than the previously proposed

control algorithm for this problem.

The resulting trajectories, time series, and control inputs are shown in the bottom

two rows of Figure 4.8. We see that our new control algorithm is able to advance the

phase while keeping the trajectory close to the unperturbed periodic orbit. It is able

to do so while giving considerable importance to energy minimization (α is 100 times

bigger than β). On the other hand, with the previous control algorithm, the trajectory
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Figure 4.9: Circadian oscillator: Blue � (resp., red ∗) shows the control error from
the control based on our new (resp., the previously proposed) algorithm as a function
of the ratio T1/T .

moves away from the unperturbed periodic orbit. This is apparent from the control

error as well, which is 0.0099 and 0.0665 for our new and the previous optimal control,

respectively. Our new control algorithm does better at the expense of consuming more

energy (0.00096 units) than the previous control algorithm (0.00015 units).

We also test our algorithm for more extreme cases of asynchrony, ranging from T1 =

0.5T (traveling west and gaining 12 hours in time) to T1 = 1.4T (traveling east and

losing 9 hours in time). Figure 4.9 shows the control error for these cases for both

our new and the previous control algorithm. The control error increases as the control

objective becomes more extreme, but it still remains relatively small for our new control

algorithm. This again demonstrates the effectiveness of our new control algorithm over

the previously proposed control algorithm.

4.4 Effect of Noise

So far we have demonstrated that our new control is effective in deterministic systems.

However, real systems are subjected to noise, so here we analyze how such noise affects
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the performance of our new algorithm. We calculate control from the deterministic phase

model ((4.10) and (4.14)), and apply it to the full model with added white noise. So

in effect we consider noise to be an external disturbance that affects only the first state

variable that we control directly. Thus, we simulate the stochastic dynamical system

dx

dt
= F (x) + [u(t) + ση(t), . . . , 0]T . (4.24)

Here ση(t) = σN (0, 1) is zero mean white noise with strength σ. To simulate this

equation numerically, we rewrite it as

dx = F (x)dt+ [u(t)dt+ σdW (t), . . . , 0]T , (4.25)

where dW (t) = η(t)dt and W (t) is the standard Weiner process. We use the second order

Runge-Kutta algorithm developed in [97] to simulate the above equation.

To analyze the effect of noise on the performance of our control algorithm, we perform

a parameteric study by calculating control error as a function of the nontrivial Floquet

multiplier and the ratio T1/T for the Hopf bifurcation normal form. We take the noise

strength σ = 0.1rpo, where rpo =
√
−a/c is the radius of the periodic orbit. This ensures

that the relative noise strength remains the same as the radius of the periodic orbit varies

with the parameter a. The top (resp., bottom) row of Figure 4.10 shows the control error

for the new (resp., the previously proposed) control algorithm in presence of white noise.

We see that this figure is very similar to Figure 4.3 where we did not include white noise.

The addition of white noise increases control errors for both the algorithms slightly, but

the algorithm based on the augmented phase reduction still does much better than the

algorithm based on standard phase reduction. Noise doesn’t affect the performance of the

previous algorithm when the nontrivial Floquet multiplier is close to 0 and the ratio T1/T

76



Optimal Phase Control using Augmented Phase Reduction Chapter 4

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

N
on

tr
iv

ia
l

F
lo

qu
et

 m
ul

tip
lie

r
0.5

1

1.5

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

N
on

tr
iv

ia
F

lo
qu

et
 m

ul
tip

lie
r

0.5

1

1.5

Figure 4.10: Hopf bifurcation normal form with white noise: Top (resp., bottom) row
shows the control error (equation (4.16)) from the control based on our new (resp.,
the previously proposed) algorithm for the system with white noise.

is close to one. This is because any perturbation caused by the noise is nullified quickly

under the evolution of the vector field. However the control error for our algorithm based

on the augmented phase reduction remains small in the presence of noise for all analyzed

values of the nontrivial Floquet multipliers and ratios T1/T .

We also present results for controlling the circadian oscillator from Section 4.3.4 with

white noise added to the X equation. Here we take the noise strength σ = 0.004, and the

rest of the control parameters are the same as before. The corresponding results displayed

in Figure 4.11 show that white noise drives the controlled trajectory slightly further away

from the periodic orbit for both algorithms, but our new control is still able to bring the

trajectory close to where it started at time T1. However, the previously proposed control

algorithm fails to do so. Thus these results demonstrate the effectiveness of our new

control algorithm in the presence of noise.
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Figure 4.11: Circadian oscillator with noise: Top left (resp., bottom left) panel shows
the controlled trajectory in blue for control based on our new (resp., the previously
proposed) algorithm, and the periodic orbit in black. The trajectory starts at the
small red circle and reaches the small blue circle at time T1 = 0.8T . Top right (resp.,
bottom right) panel shows the control input added to the noise for our new (resp., the
previously proposed) algorithm.

4.5 Discussion and Conclusion

In this chapter, we have developed a novel optimal control algorithm based on the

augmented phase reduction to change the phase of a periodic orbit. Our algorithm not

only minimizes the total energy consumption but also reduces the controlled trajectory’s

transversal distance from the uncontrolled periodic orbit. This is because of inclusion

of both the “energy” (u2) and the “transversal distance” term (ψ2) in the cost function

ensures that the control input remains small overall, and keeps the controlled trajectory

from getting far away from the unperturbed periodic orbit.
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Our algorithm is applicable to generic oscillators, which we have demonstrated for a

diversity of applications. We compared the performance of our algorithm as a function

of both the Floquet multiplier and the desired phase change by applying it to the normal

form for the supercritical Hopf bifurcation. We devised a novel approach to eliminate

alternans by changing the phase of the pacemaker cells, and showed how our optimal

control algorithm can be tied to the formulated geometrical approach. Such a control

strategy could remove the need to excite the myocardium tissue at multiple sites. We

also applied our algorithm to change the phase of thalamic neurons, which could be

useful for desynchronizing pathologically synchronized neurons, thus holding potential

to alleviate the motor symptoms of essential and parkinsonian tremor. Such an optimal

control is expected to consume less energy than the pulsatile current used in present DBS

protocol, thus prolonging the battery life of the stimulator, and also preventing tissue

damage caused by the high energy DBS stimuli. Additionally, we applied the algorithm

to change the phase of the clock gene regulation in SCN, which has relevance to treating

jet lag or to adapting to night shift work. Finally, we showed that our algorithm performs

well even in the presence of noise.

For some systems, the previous control algorithm based on the standard phase reduc-

tion could not keep the trajectory close to the unperturbed periodic orbit, and thus failed

in achieving the desired control objective. We showed that our new algorithm works much

better than the previous algorithm, especially when a nontrivial Floquet multiplier of the

periodic orbit is close to 1 and/or a significant change in phase is required. In such cases,

our new algorithm can do an order of magnitude better in terms of the calculated control

error. From the right column of Figures 4.2, 4.5, 4.6, and 4.8, we see that the control

inputs for both of the control algorithms have similar shape, but are shifted in phase. As

seen in these figures, for our new control algorithm, the control input is large when the

IRC is near zero, and is small when the IRC is large. This diminishes the effect of the
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control input on the isostable coordinate, and thus the oscillator’s transversal distance

from the periodic orbit remains small. This ensures that the augmented phase reduction

represents the dynamics accurately, making the control more effective. Our new control

algorithm does better at the expense of consuming more energy than the previously pro-

posed control algorithm. We expect that by tuning the control parameters α and β, this

energy difference can be reduced.
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Chapter 5

Phase Distribution Control

5.1 Introduction

Populations of nonlinear oscillators are found in a variety of applications from physics,

chemistry, biology, and engineering [1, 2, 3, 4]. The collective behavior of such oscillators

varies, and includes synchronization, desynchronization, and clustering. Such diversity

of collective behavior has motivated researchers to develop specific control techniques

to achieve different behaviors. For example, [94, 93, 98] develop control to promote

synchrony, [88, 87, 21] develop control to promote desynchronization, and [13, 14] develop

ways to promote clustering. We note that some of these previously proposed algorithms

to promote collective behavior are based on individual neuron models [20, 99, 100, 21],

and some can face implementation challenges if they require observability of phases of all

neurons at all times [100], or demand initial phases to be sufficiently close [21, 23]. There

are also population-level algorithms for desynchronization in the literature which use

multiple inputs [101, 88, 23], making experimental implementation challenging because

they require multiple electrodes to be implanted in a small region of brain tissue.

In this chapter we overcome these difficulties by developing unified control frame-
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works which can achieve all of the collective behaviors mentioned above using a single

control input. Our algorithms are based on standard phase reduction, which has been

instrumental in the development of many of the above control algorithms. The algo-

rithms presented in this chapter use a partial differential equation (PDE) formulation

which governs the evolution of the probability distribution of phases (phase distribution)

of a population of identical, uncoupled oscillators [18, 23]. We use Fourier analysis to

decompose this PDE into a system of ordinary differential equations (ODEs) governing

the evolution of the Fourier coefficients of the phase distribution. Thus, to transform

the phase distribution of an oscillator population to a desired distribution, we drive the

corresponding Fourier coefficients to the Fourier coefficients of the desired distribution.

Our first two algorithms are Lyapunov-based, which work by decreasing the L2 norm

difference between the current and the desired phase distributions. Note that a related

control algorithm has been published in [102], where we did not employ Fourier analysis

to decompose the PDE into a systems of ODEs, but like the present first two algorithms

it also decreases the L2 norm difference between the current and the desired phase dis-

tributions. This formulation in Fourier space makes our algorithm suitable for using a

pseudospectral method for more accurate numerical simulation of the PDEs, which en-

ables us to realize new control objectives and applications discussed in Section 5.5. Such

a formulation also allows us to obtain the degenerate set of phase distributions and phase

response curves for which the control would not work.

Our third algorithm is an optimal control algorithm, which unlike the previous two

algorithms, minimizes the control energy consumption while achieving the desired con-

trol objective. We formulate it by constructing a cost function in terms of the Fourier

coefficients of the phase distribution. This formulation results in high dimensional Euler-

Lagrange equations that we solve as a two point Boundary Value Problem (BVP) nu-

merically. Since the BVP is high dimensional, we construct a modified Newton Iteration

82



Phase Distribution Control Chapter 5

method that is effective for our problem. To demonstrate the effectiveness of our control

algorithms for each of the applications considered, we apply them to a population of 100

uncoupled phase oscillators, and show that the population of phase oscillators with the

applied control mimics the desired phase distribution. Other control algorithms based

on the probability distribution of phases include [21, 103, 104].

This chapter in organized as follows. In Section 5.2, we develop a pseudospectral

framework to write distributions as a finite Fourier series, and devise a Lyapunov-based

control algorithm to control their Fourier coefficients. We construct a degenerate set

of phase distributions and phase response curves for which the devised control would

not work in Section 5.3. In Section 5.4, we detail the pseudospectral method used for

numerical simulations throughout the chapter. In Sections 5.5, we demonstrate versatility

of our control through several diverse applications and show the corresponding simulation

results. In the same section, we formulate the phase difference distribution and prove

some of its properties. In Section 5.6, we devise another Lyapunov-based control to take

into account the effect of white noise on the oscillator population. We develop our optimal

control algorithm in Section 5.7 and compare it with our Lyapunov-based algorithm.

Section 5.8 summarizes our work and concludes by suggesting future extensions and

tools needed for experimental implementation of our algorithms. Numerical methods

used in this chapter are detailed in Appendix B, and Appendix A lists the mathematical

models used in this chapter.

The main results of this chapter have been published in [102] and [105].

5.2 Control Algorithm

In this section, we devise a control algorithm to change the probability distribution

of a population of oscillators. We do this by approximating the probability distribution
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as a finite Fourier series and controlling its Fourier coefficients. This algorithm can be

applied to a network of noise-free, identical, uncoupled oscillators to achieve any desired

traveling-wave probability distribution, as long as the combination of phase distributions

and the phase response curve is non-degenerate. A related control algorithm was given in

[102], but here we formulate the algorithm in terms of Fourier coefficients; this is better

suited for determining the control input using a pseudospectral method which does not

have numerical dissipation unlike the method of lines approach used in [102].

Similar to Chapter 4, we consider control inputs of the form U(t) = [u(t), 0, . . . , 0]T

in this chapter. Thus the standard phase reduction is given by equation (4.1). The

control algorithm in this chapter can be formulated for a more general control input as

well, but as a matter of convenience, we only consider control input of the above form.

5.2.1 Phase density equation

Given a population of noise-free, identical, uncoupled oscillators all receiving the

same control input, it is convenient to represent the population dynamics in terms of its

probability distribution ρ(θ, t), with the interpretation that ρ(θ, t)dθ is the probability

that an oscillator’s phase lies in the interval [θ, θ + dθ) at time t. This evolves according

to the advection equation [18, 23, 102]

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)u(t)) ρ(θ, t)] . (5.1)

The desired final probability distribution ρf (θ, t) will be taken to be a traveling wave

which evolves according to [102]

∂ρf (θ, t)

∂t
= −ω∂ρf (θ, t)

∂θ
. (5.2)
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Note that (5.2) is of the same form as (5.1) with u(t) = 0. Since these are probability

distributions, it is necessary that
∫ 2π

0
ρ(θ, t)dθ =

∫ 2π

0
ρf (θ, t)dθ = 1.

5.2.2 Fourier Decomposition

To devise our control laws, we use the approximation of a finite Fourier series to write

the phase distributions and the PRC as

ρ(θ, t) =
1

2π
+

N−1∑
l=1

[Al(t) cos(lθ) +Bl(t) sin(lθ)] , (5.3)

ρf (θ, t) =
1

2π
+

N−1∑
l=1

[
Ãl(t) cos(lθ) + B̃l(t) sin(lθ)

]
, (5.4)

Z(θ) = C0 +
N−1∑
l=1

[Cl cos(lθ) + Sl sin(lθ)] . (5.5)

Here N is a large number, so the effect of the omitted higher order Fourier modes is

negligible. Writing the distribution this way automatically ensures that the phase dis-

tribution is 2π-periodic, and that the total probability
∫ 2π

0
ρ(θ, t)dθ = 1 at all times.

Multiplying equation (5.3) by cos(kθ) and sin(kθ) on both sides and integrating from 0

to 2π with respect to θ, we obtain

Ak(t) =
1

π

∫ 2π

0

ρ(θ, t) cos(kθ)dθ,

Bk(t) =
1

π

∫ 2π

0

ρ(θ, t) sin(kθ)dθ.

Taking the derivative with respect to time of the above equations,

Ȧk(t) =
1

π

∫ 2π

0

∂ρ(θ, t)

∂t
cos(kθ)dθ = − 1

π

∫ 2π

0

∂

∂θ
[(ω + Z(θ)u(t)) ρ(θ, t)] cos(kθ)dθ,

Ḃk(t) =
1

π

∫ 2π

0

∂ρ(θ, t)

∂t
sin(kθ)dθ = − 1

π

∫ 2π

0

∂

∂θ
[(ω + Z(θ)u(t)) ρ(θ, t)] sin(kθ)dθ.

85



Phase Distribution Control Chapter 5

Integrating these equations by parts and imposing periodic boundary conditions, we

obtain

Ȧk(t) = −kωBk − IkA(t)u(t), (5.6)

Ḃk(t) = kωAk + IkB(t)u(t), (5.7)

where

IkA(t) =
k

π

∫ 2π

0

Z(θ)ρ(θ, t) sin(kθ)dθ, (5.8)

IkB(t) =
k

π

∫ 2π

0

Z(θ)ρ(θ, t) cos(kθ)dθ. (5.9)

Similarly we obtain following equations for time derivatives of Ãk and B̃k:

˙̃
Ak(t) = −kωB̃k(t), (5.10)

˙̃
Bk(t) = kωÃk(t). (5.11)

5.2.3 Control Design

If for all k, Ak(τ) = Ãk(τ) and Bk(τ) = B̃k(τ), the phase distribution ρ would be

equal to the desired distribution ρf at time τ . This motivates us to take our Lyapunov

function as the sum of the squared differences of the Fourier coefficients of the current

and the desired distribution:

V (t) =
1

2

N−1∑
k=1

[(
Ak(t)− Ãk(t)

)2

+
(
Bk(t)− B̃k(t)

)2
]
. (5.12)
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Thus the Lyapunov function is non-negative, and is zero only when ρ(θ, t) = ρf (θ, t). Its

derivative in time evolves as

V̇ (t) = I(t)u(t), (5.13)

where I(t) is given by the sum

I(t) =
N−1∑
k=1

[(
Bk(t)− B̃k(t)

)
IkB(t)−

(
Ak(t)− Ãk(t)

)
IkA(t)

]
. (5.14)

Then by taking the control input u(t) = −PI(t), where P is a positive scalar, we get

the time derivative of the Lyapunov function, V̇ (t) = −PI(t)2 as a negative scalar.

Thus, according to the Lyapunov theorem, the control law u(t) = −PI(t) will decrease

the Lyapunov function until the current probability distribution becomes equal to the

desired distribution. Here we do not consider the degenerate systems where I(t) ≡ 0

when ρ(θ, t) 6= ρf (θ, t) (see Section 5.3 for such a system).

For both experimental and numerical reasons, it is more practical to have a bounded

control input, so we take a “clipped” proportional control law

u(t) = max (min (umax,−PI(t)) , umin) . (5.15)

Here umax and umin are the upper and lower bounds of the control input, respectively.

The max, and min operators find the maximum and minimum of two scalars, respectively.

5.3 Degenerate Set

Note that for certain systems where ρ(θ, t) 6= ρf (θ, t), equation (5.14) gives I(t) ≡ 0

for all time t, and the probability distribution ρ(θ, t) would not converge to the desired

distribution ρf (θ, t). Here we derive the set of such phase distributions and PRCs that
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leads to this degeneracy, and give an example of such a system.

We can re-write I(t) as

I(t) =
1

π

∫ 2π

0

N−1∑
k=1

k
[(
Bk(t)− B̃k(t)

)
cos(kθ)−

(
Ak(t)− Ãk(t)

)
sin(kθ)

]
Z(θ)ρ(θ, t)dθ

=
1

π

∫ 2π

0

(
∂ρ

∂θ
− ∂ρf

∂θ

)
Z(θ)ρ(θ, t)dθ. (5.16)

Now expanding ρ(θ, t), ρf (θ, t), and Z(θ) into their complex Fourier series,

ρ(θ, t) =
N−1∑

k=1−N

ak(t) exp(ikθ), ρf (θ, t) =
N−1∑

k=1−N

ãk(t) exp(ikθ),

Z(θ) =
N−1∑

k=1−N

ck exp(ikθ),

where

a±k(t) =
Ak(t)∓ iBk(t)

2
, ã±k(t) =

Ãk(t)∓ iB̃k(t)

2
,

c±k =
Ck ∓ iSk

2
, k = 1, . . . , N − 1,

a0(t) = A0(t), ã0(t) = Ã0(t), c0(t) = C0(t),

we can write I(t) from equation (5.16) as

I(t) =
N−1∑
p=1−N

N−1∑
q=1−N

N−1∑
r=1−N

[
ip (ap(t)− ãp(t)) cqar(t)

1

π

∫ 2π

0

exp (i(p+ q + r)θ) dθ

]
.(5.17)

Thus the degenerate set of phase distributions and PRCs can be written in terms of their

respective Fourier coefficients as

∑
p∈M

N−1∑
q=1−N

N−1∑
r=1−N

[i2p (ap(t)− ãp(t)) cqar(t)δp+q+r,0] ≡ 0 (5.18)
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for all time t, where M is the subset of integers ranging from 1−N to N − 1 for which

ap(t) 6= ãp(t), and δp+q+r,0 is the Kronecker delta, which is equal to 1 ∀ p + q + r = 0,

and is 0 otherwise.

5.3.1 Degenerate System Example

As an example degenerate system, we consider the Type I PRC near a SNIPER

bifurcation given by [18]

Z(θ) =
2

ω
(1− cos(θ)) .

Thus c0 = 2/ω, c±1 = 1/ω, while rest of the PRC Fourier coefficients are 0. We take the

desired distribution as a uniform distribution,

ρf (θ, t) =
1

2π
.

Thus ã0(t) = 1/2π, while rest of the Fourier coefficients for ρf are 0 for all times. For the

degenerate set, I ≡ 0, and thus ρ(θ, t) is a traveling wave moving in the +θ direction.

We take it as

ρ(θ, t) =
sin2(θ − ωt)

π
.

It is a physically realistic distribution since ρ(θ, t) ≥ 0, and
∫ 2π

0
ρ(θ, t)dθ = 1. Thus

a0(t) = 1/2π, a±2(t) = − exp(∓i2ωt)/4π, while rest of its Fourier coefficients are 0.

There are only two nonzero cases to consider in the summation of the degenerate set
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(equation (5.18)):

p = 2, q = 0, r = −2; i2(2)

(
−exp(−i2ωt)

4π
− 0

)(
2

ω

)(
−exp(i2ωt)

4π

)
=

i

2ωπ2
,

p = −2, q = 0, r = 2; −i2(2)

(
−exp(i2ωt)

4π
− 0

)(
2

ω

)(
−exp(−i2ωt)

4π

)
= − i

2ωπ2
,

I(t) =
i

2ωπ2
− i

2ωπ2
= 0.

Thus as I is zero even though the phase distributions are not equal, this is a degenerate

system. This can also be verified by analytically evaluating the integral in equation (5.16)

to be zero, i.e.,

I(t) =
4

ωπ3

∫ 2π

0

sin3(θ − ωt) cos(θ − ωt)(1− cos θ)dθ

=
4

ωπ3

[
cos(θ − 2ωt)− cos(2θ − 2ωt)

8
+

cos(3θ − 2ωt)

24
− cos(3θ − 4ωt)

48

+
cos(4θ − 4ωt)

32
− cos(5θ − 4ωt)

80
+

3

32

]∣∣∣∣2π
0

= 0.

Note that such degeneracy arises due to the inherent simplicity and symmetry present

in the system under consideration, and thus should not be considered a limitation of the

devised control law. “Real world” systems would have more than two Fourier modes and

some sort of asymmetry, which would avoid degeneracy.

5.4 Numerical Methods

Here we give details on the numerical methods we use for the simulation results that

we present in this chapter. Since we are dealing with periodic probability distributions

in θ, we take the initial (and, later, the desired distributions) as a von Mises distribution
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[106]

ρ(θ, 0) =
eκ cos(θ+θ0)

2πI0(κ)
, (5.19)

with I0(κ) the modified Bessel function of first kind of order 0. For such a distribution,

the mean is θ0, and the variance is 1 − I1(κ)/I0(κ), where I1(κ) is the modified Bessel

function of first kind of order 1. The variance decreases as κ increases, and so the

distribution becomes narrower and taller. To demonstrate the effectiveness of our control

algorithm, we apply the control input given by equation (5.15) to a population of 100

phase oscillators

Θ̇i(t) = ω + Z(Θi(t))u(t), i = 1, 2, . . . , 100. (5.20)

For the case where initial distribution ρ(θ, 0) is a uniform distribution (κ = 0), we

take the initial value of phase oscillators Θi(0) = 2π(i − 1)/100, and for a non-zero

κ, we use the command randraw('vonmises', [Theta 0, kappa], 100 ) from the

circular statistical toolbox developed for Matlab in [107] to initialize the phase oscillators

corresponding to a von Mises distribution (equation (5.19)).

We discretize θ into a uniform mesh with 2N = 128 grid points. We choose this grid

size for a good spatial resolution of the probability distribution, and efficient computation

of the fast Fourier transform algorithm. For computing the PRCs of the various models

presented in next section, we use the XPP package [44] with a time step T/N . We scale

the PRC computed by this package by ω, as we consider PRC as Z(θ) = ∂θ
∂x

, whereas the

computed PRC from the XPP package is Z̃(t) = ∂t
∂x

[18, 38]. Then we use the Matlab

command fft to compute the Fourier coefficients of the initial distribution ρ(θ, 0). Note
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that the fft command computes coefficients of the complex Fourier series given as

ρ(θ, 0) =
N∑

k=1−N

ak(0) exp(ikθ),

giving an output [a0, a1(0), . . . , aN(0), a1−N(0), a2−N(0), . . . , a−1(0)] × 2N . From these

coefficients, we then compute the coefficients of the real Fourier series

ρ(θ, 0) = A0 +
N−1∑
k=1

Ak(0) cos(kθ) +Bk(0) sin(kθ),

as

A0 = a0,

Ak(0) = (ak(0) + a−k(0)),

Bk(0) = i(ak(0)− a−k(0)).

The same procedure is adopted to compute real Fourier coefficients of ρf (θ, 0) (Ãk(0), B̃k(0))

and the PRC (Ck, Sk).

To evolve these coefficients over time, ODEs given by equations (5.6), (5.7), (5.10),

(5.11) are evolved in time using a fourth order Runge-Kutta method with a fixed time step

dt = T/(8N). In order to maintain spectral accuracy, the integrals given by equations

(5.8)-(5.9) are evaluated in Fourier space, i.e., we take the FFT of the integrand using

Matlab command fft, and divide the first term of FFT by N to get the numerical value

of the integral at every time step.
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5.5 Applications

In this section, we apply the control law devised in the previous section to manipulate

the population density of uncoupled noise-free oscillators to achieve control objectives in a

diversity of applications. These applications are desynchronizing an initially synchronized

neuron population for the treatment of parkinsonian and essential tremor, forming neuron

clusters from an initial desynchronized neuron population to maximize neural plasticity,

and eliminating cardiac alternans by phase shifting a synchronized population of cardiac

pacemaker cells. For all these applications, we consider underactuated dynamical systems

with only one degree of actuation: the control input vector is U(t) = [u(t), 0, . . . , 0]T .

We make this assumption because in most conductance-based models of neurons and

cardiac pacemaker cells, we can only give a single control input in the form of a current

to one of the elements of the state vector, which corresponds to the voltage across the

cell membrane.

5.5.1 Desynchronizing Neurons

Parkinsonian and essential tremor affect millions of people worldwide, causing invol-

untary tremors in various parts of the body, and disrupting the activities of daily living.

Pathological neural synchronization in the STN and the thalamus brain region is hypoth-

esized to be one of the causes of motor symptoms of parkinsonian and essential tremor,

respectively [12, 11]. Deep brain stimulation (DBS), an FDA approved treatment, has

proven to alleviate these symptoms [86, 85] by stimulating the STN or the thalamus

brain regions with a high frequency, (relatively) high energy pulsatile waveform, which

has been hypothesized to desynchronize the synchronized neurons; see, e.g., [87, 15].

This has motivated researchers to come up with efficient model dependent control tech-

niques [88, 67, 21] which not only desynchronize the neurons but also consume less energy,
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Figure 5.1: Desynchronizing Control: In the top left panel, the solid (resp., red dashed)
lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at various times. The
top middle panel shows the PRC, while the bottom left and middle panels show the
Lyapunov function V (t) (5.12), and the control input, respectively. The top (resp.,
bottom) right panels show 100 phase oscillators at time t = 0 ms (resp., t = 10T ms).
Here T = 8.91 ms.

thus prolonging the battery life of the stimulator and preventing tissue damage or side

effects caused by the pulsatile stimuli.

Thus, inspired by this treatment of parkinsonian and essential tremor, we employ our

algorithm to desynchronize an initially synchronized population of neurons. Here we use

our algorithm to change the probability distribution of synchronized neurons with mean

π and κ = 52, into a uniform distribution (κ = 0). As a proof of concept, we use the two-

dimensional reduced Hodgkin-Huxley model [4, 108] for calculating the PRC. For details

of this model, see Appendix A.4. Under zero control input, this model gives a stable

periodic orbit with time period T = 8.91ms. The top middle panel of Figure 5.1 shows

the corresponding PRC. We take the control parameters P = 1000, umin = −5, umax = 5,

and simulate until t = 10T . From the top and bottom left panels of Figure 5.1, we see
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that the control input is able to flatten out the bell shaped probability distribution, and

thus decrease the Lyapunov function towards zero. For t > 10 ms, we see that the decay

rate of Lyapunov function decreases, and thus the Lyapunov function asymptotically

decreases towards zero. This can be explained from equations (5.13 - 5.15) where we

see that control input (decay rate of Lyapunov function) depends on the (square of the)

difference between current coefficients and desired coefficients. Thus as the coefficients

get closer to their desired value, the magnitude of the control input decreases significantly,

which decreases the rate of decay of the Lyapunov function. The top right panel of Figure

5.1 shows 100 phase oscillators synchronized with mean π, and κ = 52 extracted through

the Matlab circular statistical toolbox. We apply the control input from the middle

bottom panel of Figure 5.1 to them in an open loop manner. The bottom right panel

of the same figure shows the same oscillators at time t = 10T . We see that the control

input is able to desynchronize these oscillators almost perfectly. In transforming the

probability distribution, the total control energy consumed (
∫ 10T

0
u2dt) comes out to be

141.78 units.

5.5.2 Clustering Neurons for Maximizing Neural Plasticity

An adult human brain is composed of billions of neurons, and each of these neurons

is connected to other neurons. Neural plasticity is a significant factor in forming specific

connections by wiring neurons that fire together [109]. Spike time dependent plasticity

(STDP) is one type of long-term plasticity, which wires neurons that fire together over

a long period of time, thus helping in the regulation of neural synchrony. However,

increased neural synchrony is a hallmark of several neurological disorders as discussed in

the previous section, and STDP can resynchronize a desynchronized neural population

over time in the presence of noise [110]. Thus, desynchronizing control, as considered
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in the previous section, may not be the best long-term solution. Recent results [15]

suggest another hypothesis that DBS works by forming neural clusters instead of complete

desynchronization. Coordinated Reset, a method which promotes clustering, has shown

to have long lasting effects even after the control stimulus is turned off [88, 111]. This

further motivates clustering as an alternative desynchronizing strategy for the treatment

of parkinsonian and essential tremor. This would not only reduce neural synchrony but

also promote clustering over long periods of time by re-wiring of neuron connections

through STDP. We demonstrate this by first defining the phase difference distribution,

and then the STDP curve.

Phase Difference Distribution

Given a phase distribution ρ(θ, t) governing the probability of a population of oscilla-

tors at phase θ and time t, a corresponding phase difference distribution ρd(φ, t) governs

the probability that the phase difference between any two set of oscillators in the pop-

ulation is φ at time t, where φ ∈ [0, 2π). We only consider uncoupled oscillators which

evolve independently from each other in this chapter. Thus the probability that the

phase difference between any two oscillators is φ at time t can be given by the integral of

the products of the phase distribution and the phase distribution shifted by φ at times t

over the entire domain:

ρd(φ, t) =

∫ 2π

0

ρ(θs, t)ρ(θs + φ, t)dθs. (5.21)

The phase difference distribution satisfies

∫ 2π

0

ρd(φ, t)dφ = 1. (5.22)
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This can be shown from equation (5.21):

∫ 2π

0

ρd(φ, t)dφ =

∫ 2π

0

[∫ 2π

0

ρ(θs, t)ρ(θs + φ, t)dθs

]
dφ

=

∫ 2π

0

[∫ 2π

0

ρ(θs + φ, t)dφ

]
ρ(θs, t)dθs

=

∫ 2π

0

1 · ρ(θs, t)dθs

= 1.

Note that phase difference distribution for a time-dependent traveling wave ρf (θ, t) gov-

erned by equation (5.2), is stationary and does not depend on time. This can be proven

by taking the time derivative of equation (5.21):

dρd
dt

=

∫ 2π

0

[
∂ρf (θs, t)

∂t
ρf (θs + φ, t) + ρf (θs, t)

∂ρf (θs + φ, t)

∂t

]
dθs

= −ω
∫ 2π

0

[
∂ρf (θs, t)

∂θs
ρf (θs + φ, t) + ρf (θs, t)

∂ρf (θs + φ, t)

∂θs

]
dθs

= −ω ρf (θs, t)ρf (θs + φ, t)|2π0 + ω

∫ 2π

0

ρf (θs, t)
∂ρf (θs + φ, t)

∂θs
dθs

−ω
∫ 2π

0

ρf (θs, t)
∂ρf (θs + φ, t)

∂θs
dθs

= 0.

Here, the first equality follows from the Leibniz rule from elementary calculus, and the

third equality follows from the previous line by applying integration by parts and impos-

ing periodic boundary conditions. Thus, this proves that the phase difference distribution

for a time-dependent traveling wave is independent of time. For such a traveling wave

phase distribution, we write the phase difference distribution as being independent of

time:

ρd(φ) =

∫ 2π

0

ρf (θs, t)ρf (θs + φ, t)dθs. (5.23)
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The Fourier coefficients for the phase difference distribution can be calculated as

follows:

ρd(φ) =

∫ 2π

0

(
1

2π
+

N−1∑
k=1

[
Ãk(t) cos(kθs) + B̃k(t) sin(kθs)

])
×

(
1

2π
+

N−1∑
l=1

[
Ãl(t) cos(l(θs + φ)) + B̃l(t) sin(l(θs + φ))

])
dθs.

By expanding cos(l(θs + φ)) and sin(l(θs + φ)), and making use of the orthogonality of

cos kθs and sin kθs, we obtain

ρd(φ) =
1

2π
+ π

N−1∑
k=1

(
Ãk

2
(t) + B̃k

2
(t)
)

cos(kφ). (5.24)

From this formulation of the phase difference distribution in terms of the Fourier coeffi-

cients of the desired phase distribution, one can easily verify that ρd(φ) is 2π-periodic,∫ 2π

0
ρd(φ)dφ = 1, and ρd(φ) is independent of time, which can be seen by taking the time

derivative of equation (5.24):

ρ̇d(φ) = π
N−1∑
k=1

2
(
Ãk(t)

˙̃
Ak(t) + B̃k(t)

˙̃
Bk(t)

)
cos(kφ)

= π
N−1∑
k=1

2kω
(
−Ãk(t)B̃k(t) + Ãk(t)B̃k(t)

)
cos(kφ)

= 0.

Another property that the phase difference distribution has is that it always has a local

maximum at zero phase difference. This can easily be verified from equation (5.24), as

dρd(0)
dφ

= 0 and d2ρd(0)
dφ2

< 0.
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Spike Time Dependent Plasticity Stabilizes Clusters

STDP is an asymmetric form of Hebbian learning [112] that modifies synaptic connec-

tions between neurons when they fire repeatedly in a causal manner [113, 114, 115]. At

the single synapse level, STDP potentiates (resp., depresses) the synaptic strength for re-

peated pre-synaptic action potentials arriving just before (resp., after) the post-synaptic

action potential. At the population level, STDP strengthens the synaptic connections

between neurons that fire action potentials synchronously and weakens those connections

in the out of phase neurons [110]. Plasticity is known to be an important factor in the

formation of neural pathways in initial brain development, as well as later in learning

and memory storage. Since we consider uncoupled oscillating neurons in this chapter, we

reformulate STDP in terms of the phase difference φ between two neurons instead of their

spike time difference; the distribution of interspike intervals is same as the phase differ-

ence distribution for uncoupled oscillating neurons. If the phase difference φ ∈ [0, π), the

STDP would increase the synaptic weight, and if the phase difference φ ∈ [π, 2π), STDP

would depress the synaptic weight. We call this increase or decrease of synaptic weights

as a function of phase difference the STDP curve given as

S(φ) =

 pe
− φ
τp , φ ∈ [0, π)

−de
φ−2π
τd , φ ∈ [π, 2π)

. (5.25)

We take the parameters p = 0.0096, d = 0.0053 from [114], while τp = 0.2, τd = 0.365

are taken so that the integral of the resulting STDP curve (
∫ 2π

0
S(φ)dφ) is zero [116].

The top left panel of Figure 5.2 shows the STDP curve S(φ) with the above parameters.

Let us suppose that we start with a desynchronized population. The average rate of
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Figure 5.2: The top left panel shows the spike time dependent plasticity curve S(φ).
The bottom left (resp., right) panel shows the desired phase (resp., phase difference)
distribution. The top right panel shows the change in synaptic weight between two
neurons as a function of their phase difference.

synaptic connection change between any two neurons in the population is given by [110]

∆c =

∫ 2π

0

ρd(φ)S(φ)dφ. (5.26)

A uniform phase distribution (desynchronized population) would result in a uniform

phase difference distribution, which would lead to a zero average synaptic change. On

the other hand, if we promote neural clustering, STDP would potentiate intra-cluster

synaptic connections and depress inter-cluster connections. This would thus potentially

help in long-term stabilizability of clusters in the presence of noise. We demonstrate

this by taking two clusters and calculating the average synaptic change (5.26) intra- and

inter-cluster. Thus we take the desired phase distribution as a bi-modal distribution,
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which can be realized as a sum of two uni-modal von Mises distributions

ρf (θ, t) =
eκ cos(θ+π/2) + eκ cos(θ+3π/2)

4πI0(κ)
, (5.27)

where κ = 52. From this we calculate the phase difference distribution from equation

(5.23) or (5.24), which can then be used to calculate the average synaptic change from

equation (5.26). The bottom left, right, and top right panels of Figure 5.2 show the

desired phase distribution, phase difference distribution, and the product of the phase

difference distribution with the STDP curve, respectively. The average synaptic change

for intra- and inter-cluster is calculated as

∆cintra−cluster =

∫ π
2

0

ρd(φ)S(φ)dφ+

∫ 2π

3π
2

ρd(φ)S(φ)dφ = 3.62× 10−4, (5.28)

∆cinter−cluster =

∫ 3π
2

π
2

ρd(φ)S(φ)dφ = −3.96× 10−7. (5.29)

Thus, STDP would strengthen synapse in each cluster and weaken them between the

two clusters, thereby potentially maintaining clusters over a long period of time. This

motivates us to transform an initially desynchronized phase distribution (κ = 0) into a

bi-modal phase distribution (5.27). As a proof of concept, here we again use the two-

dimensional reduced Hodgkin-Huxley model for calculating the PRC. We take the control

parameters P = 1200, umin = −15, umax = 15, and simulate until t = 15T . The results

are shown in Figure 5.3. From the top and bottom left panels of Figure 5.3, we see

that the control input is able to transform an initial uniform distribution into a bi-modal

distribution, and thus the Lyapunov function decreases towards zero. As the Fourier

coefficients of the current and desired distribution get closer, the control input decreases

in magnitude, which decreases the rate of decay of the Lyapunov function. The top right

panel of Figure 5.3 shows 100 desynchronized phase oscillators (Θi(0) = 2π(i − 1)/100)
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Figure 5.3: Clustering Control: In the top left panel, the solid (resp., red dashed) lines
show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at various times. The bottom
left and middle panels show the Lyapunov function V (t) (5.12), and the control input,
respectively. The top (resp., bottom) right panels show 100 desynchronized (resp.,
clustered) phase oscillators at time t = 0 ms (resp., t = 3T ms). Here T = 8.91 ms.

to which the control input from the middle bottom panel of Figure 5.3 is applied in

an open loop manner. The bottom right panel of the same figure shows the oscillators

at time t = 3T . We see that the control input is able to separate the desynchronized

oscillators into two distinct clusters corresponding to the bi-modal phase distribution. In

transforming the probability distribution, the total control energy consumed (
∫ 3T

0
u2dt)

comes out to be 152.59 units.

5.5.3 Eliminating Cardiac Alternans

The collection of cells in the Sinoatrial node (SA node) called cardiac pacemaker cells

elicit periodic electrical pulses which polarize a collection of excitable and contractile

cells called myocytes. In the process of depolarizing, myocytes contract and propagate

102



Phase Distribution Control Chapter 5

action potentials to the neighboring cells. This well-coordinated process of excitation /

depolarization and contraction enables the heart to pump blood throughout the body.

Under normal conditions, with constant pacing by the cardiac pacemaker cells, the action

potential duration (APD), that is the time for which an action potential lasts in a myocyte

cell, also remains constant. However, under some conditions, this 1:1 rhythm between

pacing and the APD can become unstable, bifurcating into a 2:2 rhythm of alternating

long and short APD, known as alternans [75]. Alternans is observed to be a possible first

step leading to fibrillation [76]. Thus, a number of researchers have worked on suppressing

alternans as a method of preventing fibrillation, thereby preventing the need for painful

and damaging defibrillating shocks. Many of these methods [77, 78, 79, 80] operate by

exciting the myocardium tissue externally with periodic pulses, and changing the period

according to the alternating rhythm. However, such a control requires excitation at

several sites in the tissue [81].

In Chapter 4 (cf. [16]), we developed a novel strategy to suppress alternans by

changing the phase of the pacemaker cells. The control strategy was based on a single

oscillator model to change the phase of a single cell. However for an effective cardiac

alternans elimination, we need to consider the entire population of cardiac pacemaker

cells which oscillate in synchrony. So, here we aim to phase shift the population of cardiac

pacemaker cells using the control algorithm we developed in Section 5.2.3. Such a control

strategy could eliminate the need to excite the tissue at multiple sites. The amount of

phase change required to eliminate alternans depends on the discrete APD dynamics

[16]. Here we advance the phase by π/4 as an example. For the PRC calculation, we

consider phase reduction of the 7-dimensional YNI model of SA node cells in rabbit

heart proposed in [84]. The model is of Hodgkin-Huxley type with 6 gating variables

and a transmembrane voltage variable on which the control input acts. For details of the

model, see Appendix A.2. With this model we get a stable periodic orbit with time period
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Figure 5.4: Phase shifting cardiac pacemaker cells: In the top left panel, the solid
(resp., red dashed) lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at
various times. The top middle panel shows the PRC, while the bottom left and middle
panels show the Lyapunov function V (t) (5.12), and the control input, respectively.
The top (resp., bottom) right panels show 100 phase oscillators at time t = 0 ms
(resp., t = 3T ms). Here T = 340.8 ms. Note that in the absence of control input,
the oscillators would have a mean of π/2 at t = 3T .

T = 340.8 ms. We start with a synchronous population distribution with mean π/2 and

κ = 52. In order to phase shift this distribution by π/4, we take the target population

distribution ρf (θ, t) with same κ value but an initial mean of 3π/4. Thus, our control

algorithm will push the distribution ρ(θ, t) forward until it matches with the desired

distribution ρf (θ, t). We take the control parameters P = 5, umin = −1, umax = 1

and apply control input until t = 3T . From the top and bottom right panels of Figure

5.4, we see that the control input is able to phase shift the probability distribution, and

thus decreases the Lyapunov function towards zero. In doing so, it changes the shape of

the distribution slightly. The top right panel of Figure 5.4 shows 100 phase oscillators

synchronized with mean π/2, and κ = 52 extracted through the Matlab circular statistical
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toolbox. We apply the control input from the middle bottom panel of the figure to those

in an open loop manner. The bottom right panel of the same figure shows the oscillators

at time t = 3T . We see that the control input is able to phase shift these oscillators

by π/4. The slight change in shape of the phase distribution is reflected in the final

position of phase oscillators, where handful of the oscillators get spread relative to the

main cluster. In shifting the phase of the probability distribution, the total control energy

consumed (
∫ 3T

0
u2dt) comes out to be 3.21 units.

Here we mention another application for which shifting the phase of an oscillator

population is desired: phase shifting circadian oscillators for the treatment of jet lag.

Neurons in the suprachiasmatic nucleus (SCN) of the brain are responsible for maintain-

ing the circadian rhythm in mammals. This rhythm is synchronized with the external day

and night cycle under normal conditions. A disruption between these two rhythms can

happen due to multiple reasons, such as travel across time zones, starting a night shift

job, working in extreme environments (space, earth poles, underwater), etc. Such asyn-

chrony can lead to several physiological disorders [89, 90], thus motivating researchers to

try to develop ways to remove it. In Chapter 4 (cf. [16]), we developed a strategy to

eliminate this asynchrony by changing the phase of a single SCN neuron by using a light

stimulus as the control input, since light is known to affect the circadian rhythm [91].

This would change the phase of the circadian rhythm so that it gets aligned with the

external cycle after the end of the controlled oscillation. However for a better alignment

of the circadian rhythm with the external environment, we need to phase shift the en-

tire population of SCN neurons which oscillate in synchrony, which can be achieved by

our control algorithm. This is very similar to the previous application of phase shifting

cardiac pacemaker cells.
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5.6 Addition of White Noise

So far we have demonstrated that our control is effective for a population of uncoupled,

noise-free oscillators. However, real systems are subjected to noise; thus, in this section

we modify our control to take this into account.

Given M noisy, uncoupled oscillators with dynamics given by

dxj
dt

= F (xj) +
[
u(t) +

√
2Dηj(t), 0, . . . , 0

]T
, j = 1, . . . ,M. (5.30)

Here each oscillator receives a common input u(t) modified by a different realization of

Gaussian white noise
√

2Dηj(t) with zero mean, variance 2D, and with 〈ηi(t)ηj(t′)〉 =

δijδ(t − t′). Letting θj be the phase of the jth oscillator, to leading order in the noise

strength Ito’s formula gives [117]

θ̇j = ω + Z(θ)
[
u(t) +

√
2Dηj(t)

]
, j = 1, . . . ,M. (5.31)

Assuming M is large and noise perturbations are small, the population dynamics can be

represented in terms of its phase distribution ρ(θ, t) with stochastic averaging [118, 103]:

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)u(t)) ρ(θ, t)] +

B2

2

∂2ρ(θ, t)

∂θ2
, (5.32)

where

B2 =
2D

2π

∫ 2π

0

Z2(θ)dθ.

As before, the desired final probability distribution ρf (θ, t) is taken to be a traveling

wave which evolves according to equation (5.2). To devise our control laws, we use the

approximation of a finite Fourier series to write the phase distributions (equations (5.3),

and (5.4)). The Fourier coefficients of the desired phase distribution evolve as before

106



Phase Distribution Control Chapter 5

(equations (5.10), and (5.11)), whereas the Fourier coefficients of phase distribution evolve

as

Ȧk(t) = −kωBk − IkA(t)u(t)− B2

2
k2Ak(t), (5.33)

Ḃk(t) = kωAk + IkB(t)u(t)− B2

2
k2Bk(t). (5.34)

5.6.1 Control Design

Here as well we take the Lyapunov function as the sum of squared differences of the

Fourier coefficients of the current and the desired distributions (equation (5.12)). Its

derivative in time evolves as

V̇ (t) = I(t)u(t) +G(t), (5.35)

where

G(t) = −B
2

2

N−1∑
k=1

k2
[
Ak(t)

(
Ak(t)− Ãk(t)

)
+Bk(t)

(
Bk(t)− B̃k(t)

)]
,

and I(t) is given by equation (5.14). Then by taking the control input

u(t) = −PI(t)− G(t)

I(t)
, (5.36)

where P is a positive scalar, we get the time derivative of the Lyapunov function to be

a negative scalar. Thus, according to the Lyapunov theorem, the control law (5.36) will

decrease the Lyapunov function until the current probability distribution becomes equal

to the desired distribution. Here we do not consider the degenerate case where I(t) ≡ 0

when ρ(θ, t) 6= ρf (θ, t) (see Section 5.3 for cases when I(t) ≡ 0 when ρ(θ, t) 6= ρf (θ, t)).
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5.6.2 Simulation Results

To demonstrate our control in the presence of noise, we use (5.36) to transform an

initial uniform phase distribution into a desired bi-modal distribution (5.27). We take

the noise strength
√

2D = 0.03 in equations (5.32) and (5.31). To simulate the noisy

phase oscillators, we write equation (5.31) as

dθj = ωdt+ Z(θ)
[
u(t)dt+

√
2DdWj(t)

]
, j = 1, . . . ,M,

where dWj(t) = ηj(t)dt and Wj(t) is the standard Weiner process. We use the second

order Runge-Kutta algorithm developed in [97] to simulate the above equation, and use

randn with a predefined seed in Matlab for generating the standard Weiner process. In

order to be consistent, we evaluate the phase distribution and the control input using

a second order Runge-Kutta method as well. As a proof of concept, here we again use

the two-dimensional reduced Hodgkin-Huxley model for calculating the PRC. We take

the control parameter P = 1200, and simulate until t = 3T . The results are shown in

Figure 5.5. From the top panel, we see that the control input is able to transform an

initial uniform distribution into a bi-modal distribution, and thus the Lyapunov function

decreases towards zero. The top right panel of Figure 5.5 shows 100 desynchronized

phase oscillators to which the control input from the bottom middle panel of Figure

5.5 is applied in an open loop manner. As seen from the bottom right panel of Figure

5.5, the control input is able to separate the desynchronized oscillators into two distinct

clusters corresponding to the bi-modal phase distribution. In transforming the probability

distribution, the total control energy consumed (
∫ 3T

0
u(t)2dt) comes out to be 153.30

units. The control input u(t) used for this energy consumption calculation is taken

from equation (5.36), and thus is same for all stochastic realizations with the same

noise intensity. The energy consumption is 0.46% more than the similar control without
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Figure 5.5: Clustering Control in presence of noise: In the top left panel, the solid
(resp., red dashed) lines show the probability distribution ρ(θ, t) (resp., ρf (θ, t)) at
various times. The bottom middle and left panels show the control input (5.36), and
the Lyapunov function V (t) (5.12), respectively. The top (resp., bottom) right panels
show 100 desynchronized (resp., clustered) phase oscillators at time t = 0 ms (resp.,
t = 3T ms). Here T = 8.91 ms.

noise. This is expected as the addition of white noise introduces a diffusion term in the

phase distribution PDE, and thus causes the phase distribution to decay down towards a

uniform distribution with time. Therefore, the control has to expend additional effort in

transforming the phase distribution into a bi-modal distribution. We note that non-zero

control will be necessary to maintain the bi-modal distribution for all time.

5.7 Optimal Control of Phase Distributions

In this section we formulate an optimal control algorithm to transform the phase

distribution ρ(θ, t) into the desired distribution ρf (θ, t). We do this by controlling the

Fourier coefficients of the phase distribution. We start with the coefficients Ak(0) and
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Bk(0) of ρ(θ, t) at time t = 0, and want them to match the coefficients Ãk(τ) and B̃k(τ)

of ρf (θ, t) at time t = τ . Thus we pose the optimal control problem as the following Two

Point Boundary Value Problem (BVP). We take the cost function R as

R =

∫ τ

0

{
u2 +

N−1∑
k=1

[
λkA

(
Ȧk + kωBk + IkAu

)
+ λkB

(
Ḃk − kωAk − IkBu

)]}
dt.

(5.37)

The first term in the cost function ensures that the control law uses a minimum energy

input. The second term ensures that the phase distribution evolves according to equation

(5.1), with λkA and λkB being the Lagrange multipliers. The Euler-Lagrange equations

are obtained from

∂P

∂q
=

d

dt

(
∂P

∂q̇

)
, q = λkA, λkB, Ak, Bk, u, (5.38)

where P is the integrand in the cost function R. This gives the Euler-Lagrange equations

for k = 1, . . . , N − 1:

Ȧk = −kωBk − IkAu, (5.39)

Ḃk = kωAk + IkBu, (5.40)

λ̇kA = −kωλkB +HkAu, (5.41)

λ̇kB = kωλkA +HkBu, (5.42)

where

u =
1

2

N−1∑
k=1

[λkBIkB − λkAIkA] , (5.43)

HkA =
1

π

∫ 2π

0

Z(θ)Λ(θ, t) cos(kθ)dθ, (5.44)
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HkB =
1

π

∫ 2π

0

Z(θ)Λ(θ, t) sin(kθ)dθ, (5.45)

Λ(θ, t) =
N−1∑
l=1

l [λlA sin(lθ)− λlB cos(lθ)] . (5.46)

We solve the Euler-Lagrange equations as a two point BVP with the boundary conditions:

Ak(0) = 1
π

∫ 2π

0
ρ(θ, 0) cos(kθ)dθ, Bk(0) = 1

π

∫ 2π

0
ρ(θ, 0) sin(kθ)dθ,

Ak(τ) = 1
π

∫ 2π

0
ρf (θ, τ) cos(kθ)dθ, Bk(τ) = 1

π

∫ 2π

0
ρf (θ, τ) sin(kθ)dθ.

(5.47)

Since Ak(0), and Bk(0) are fixed by the problem, the BVP can be solved by finding

appropriate values of λkA(0) and λkB(0). We formulate a modified Newton iteration

method to solve this high dimensional (2N − 2) BVP. For details of the method, see B.4.

We demonstrate the control by considering the application of phase shifting a distri-

bution as we did in Section 5.5.3. Here as well we consider the YNI model of SA node

cells in rabbit heart. We start with a synchronous population distribution with mean

π/2 and κ = 52. We use our optimal control algorithm to phase shift this distribution by

π/4 in time τ = T . So, we take the target distribution ρf (θ, t) with same κ value but an

initial mean of 3π/4. We also compute the Lyapunov function V (t) for comparison with

our results from Section 5.5.3, even though our optimal control algorithm is not based

on this Lyapunov function. Results are shown in Figure 5.6. From the top and bottom

left panels of Figure 5.6, we see that the control input is able to phase shift the phase

distribution, and thus decreases the Lyapunov function towards zero (non-monotonically

in this case). The top right panel of Figure 5.6 shows 100 phase oscillators synchronized

with mean π/2, and κ = 52 extracted through the Matlab circular statistical toolbox.

We apply the control input from the middle bottom panel of the figure to them in an

open loop manner. The bottom right panel of the same figure shows the oscillators at

time t = T . We see that the control input is able to phase shift these oscillators by π/4.
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Figure 5.6: Phase shifting cardiac pacemaker cells through optimal control: In the
top left panel, the solid (resp., red dashed) lines show the probability distribution
ρ(θ, t) (resp., ρf (θ, t)) at various times. The top middle panel shows the PRC, while
the bottom left and middle panels show the Lyapunov function V (t) (5.12), and the
control input, respectively. The top (resp., bottom) right panels show 100 phase
oscillators at time t = 0 ms (resp., t = T ms). Here T = 340.8 ms. Note that in the
absence of control input, the oscillators would have a mean of π/2 at t = T .

In shifting the phase of the probability distribution, the total control energy consumed

(
∫ T

0
u2dt) comes out to be 1.56 units, which is less than half of the energy required for the

same control objective using our Lyapunov-based control algorithm in Section 5.5.3. We

note that this energy comparison is fair as in both cases the control input decreases the

Lyapunov function by the same amount (by 99.6%). Thus our optimal control is able to

achieve the control objective while simultaneously minimizing the amount of total energy

required.
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5.8 Conclusion

In this chapter we developed a framework to control a population of uncoupled os-

cillators by controlling their phase distributions. By writing the phase distribution as

a finite Fourier series, we were able to decompose the PDE governing the evolution of

the phase distribution into a set of ODEs governing the evolution of the corresponding

Fourier coefficients. We formulated our control algorithms in Fourier space as well, driv-

ing the Fourier coefficients of the current phase distribution to the Fourier coefficients of

the desired distribution with a single control input. For our first Lyapunov-based control

algorithm, we constructed a degenerate set of phase distributions and the phase response

curves in terms of their Fourier coefficients. We extended this algorithm to take into ac-

count the effect of white noise on the dynamics of the oscillator population. Finally, we

formulated an optimal control algorithm which uses a minimum energy input to achieve

the desired phase distribution. Our control algorithms are quite flexible; for the systems

considered in this chapter, they have the potential to drive a system of uncoupled oscil-

lators from any initial phase distribution to any traveling-wave final phase distribution,

as long as the combination of those distributions is non-degenerate.

We demonstrated the versatility of our control algorithms by using them for three

distinct applications. First, motivated by the hypothesis of neural synchronization in the

STN and the thalamus brain region as one of the causes of motor symptoms of parkin-

sonian and essential tremor, respectively, we applied our control algorithm to drive an

initial synchronous phase distribution to a uniform distribution. For the second appli-

cation, we defined the phase difference distribution in terms of the phase distribution,

and proved some of its fundamental properties. This formulation of the phase differ-

ence distribution was essential in demonstrating the importance of a clustered neural

population for enhancing spike time dependent plasticity, and thus re-wiring of neural
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connections for better stability of the partially synchronous clustered state. Motivated

by the elimination of cardiac alternans, we applied our algorithm to control a population

of synchronized cardiac pacemaker cells by advancing their phase distribution by a speci-

fied phase. For all these applications, we demonstrated the effectiveness of our control by

applying the respective control inputs to a population of 100 uncoupled noise-free phase

oscillators.

An experimental setup in general will include effects due to coupling, which are absent

in our control algorithm. Our algorithm would still work on such systems as long as the

coupling is weak. If synchrony is stable with coupling, then it would be harder for our

control algorithm to desynchronize a synchronized population in the presence of coupling.

The addition of noise might make this even harder if STDP is present, as STDP promotes

synchrony in the presence of noise. However, in the absence of STDP, noise would make

it easier for our control algorithm to desynchronize a synchronized oscillator population.

114



Chapter 6

Supervised Learning Based Control

6.1 Introduction

Underactuated dynamical systems are systems with fewer actuators/controls than

the dimensionality of the state space of the system. Such systems are ubiquitous in a

variety of fields including physics, chemistry, biology and engineering. There have been

numerous advances made on controlling such systems, with much of the work in robotics

[119, 120, 121]. Control in other applications, especially biology [38, 88, 93, 94], is on the

rise as it provides promising treatment strategies for several disorders such as Parkinson’s

disease, cardiac arrhythmias, and jet lag. Most of these control methods, both in robotics

and biology, are based on the traditional model based control theory and optimal control.

Such methods work well when it is possible to model the dynamics of the system

accurately, which is very difficult as the systems become complicated, especially in neu-

roscience applications where the dynamics of a single neuron may change rapidly de-

pending on the response from other neurons in the network. Even if an accurate model

could be built to describe the dynamics of such a system, developing a classical model

based control for such an underactuated system is a challenging task. If the parameters
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of the system change with time, or if the model doesn’t describe the dynamics accurately,

the theoretical control guarantees like stability and boundedness may not apply in real

systems [32, 33]. This calls for the development of data driven control algorithms that

can learn to control the system without explicitly using a model.

Artificial intelligence algorithms are able to learn to control dynamical systems by

using deep neural networks. Such algorithms have been used for a long time [122, 123],

but with the availability of large data sets, improvement in deep learning architectures,

optimization methods, and cheap computation costs, their use is on the rise [124]. How-

ever, the success of such algorithms has been largely dependent on availability of large

datasets [34], which can be limited in fields like neuroscience where the cost of obtaining

human/animal brain data is very high. Moreover, the black box nature of such methods

makes their analysis difficult. Such analysis would be important in tasks where failure

is very costly. Another limitation of such methods is their inability to take advantage of

the inherent dynamics of the system to achieve the task, which limits their performance.

All these limitations call for a new machine learning control algorithm that doesn’t

rely on large amounts of data, is easy to understand, and can take advantage of the under-

lying dynamics in achieving the task. In this chapter, we have developed two related novel

supervised learning algorithms based on these three goals. Our algorithms are powerful

enough to control a wide variety of complex underactuated dynamical systems, and yet

have a simple structure so one can understand how they work using dynamical systems

and control theory foundations. Their simple yet intelligent structure also allows them

to effectively achieve the control objective by training on a sparse data set, even in the

presence of noise. Our algorithms output a bang-bang (binary) control input by taking

in feedback of the state of the dynamical system. The algorithms learn this control input

by maximizing a reward function in both short and long time horizons. We demonstrate

the versatility of our algorithms by applying them to a diverse range of underactuated
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dynamical systems including: switching between bistable states, changing the phase of

an oscillator, desynchronizing a population of synchronized coupled oscillators, and sta-

bilizing an unstable fixed point of a dynamical system. For most of these applications

we are able to reason why our algorithms work by using traditional dynamical systems

and control theory. We compare our algorithms with traditional control algorithms and

reason why our algorithms work better, especially because they autonomously learn to

take advantage of the underlying system dynamics in achieving the control objective. We

carry out a robustness analysis to demonstrate the effectiveness of our algorithms even

in the presence of noise.

This chapter in organized as follows. In Section 6.2, we develop our supervised learn-

ing algorithms and the binary classifier to output a binary control. We demonstrate

our first supervised learning algorithm by controlling underactuated bistable dynami-

cal systems in Section 6.3, and compare our algorithm to a fully actuated control. In

Section 6.4, we illustrate the effectiveness of our second supervised learning algorithm

by controlling the phase of a single oscillator and comparing the algorithm to a model

based optimal control algorithm. We further demonstrate the versatility of our second

supervised learning algorithm by using it to desynchronize a population of synchronized

coupled oscillators in Section 6.5. In Section 6.6, we apply our second algorithm to sta-

bilize an unstable fixed point of an underactuated dynamical system, and compare the

algorithm to a model based control algorithm. To demonstrate the applicability of our

algorithms in a real setting, we show how their intelligent structure allows them to per-

form well in the presence of noise in Section 6.7. Section 6.8 summarizes our work and

suggests future extensions and tools. Appendix A lists the mathematical models used in

this chapter.

This chapter is based on the work originally appearing in [125].
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6.2 Supervised Learning Algorithm

We consider an underactuated dynamical system with an additive control input

u (x(t)) as

d

dt
x(t) = F (x(t)) + [u (x(t)) , 0n−1]T , x(t) ∈ Rn, (6.1)

where 0n−1 is an n − 1 dimensional zero vector. Thus, the control input depends on

the full state of the dynamical system, and only directly affects the first state of the

dynamical system. The control input is binary in nature having two values {u1 > 0, u2},

which can be chosen differently for different applications. For our first algorithm, we

take u2 = 0, and thus the control can be thought of having an “ON” state with the

value u1 and an “OFF” state with value 0. For our second algorithm, we take the control

to be a bang bang control with u2 = −u1. Both algorithms learn the control input

u (x(t)) as a function of the state to achieve a particular control objective. They do so by

learning from the data generated by sampling a model describing the underlying dynamics

of the system. To demonstrate our algorithm in this chapter, we use an analytical

model (F (x(t))) which generates our training data. In case a model is not available

in an application, one can still use the same algorithms by obtaining training data by

direct measurement of the states of the system at different times. Below we describe our

supervised learning algorithms in more detail.

6.2.1 Supervised Learning Algorithm 1

Our first supervised learning algorithm outputs a “ON” and “OFF” binary control

input. The algorithm learns what control input to output to achieve a certain control

objective by maximizing a reward function R(x(t)) which needs to be carefully designed
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to achieve a control objective in a particular application.

We sample a state x(0) randomly from the state space of the dynamical model of

the system, and evolve the state forward in time for short time ∆t with control state

OFF. If R(x(∆t)) ≥ R(x(0)), we set the control policy for state x(0) as OFF. If it is

not, we again evolve the initial state forward for the same time but with control ON, and

compare R(x(∆t)) for both control ON and OFF. Whichever control policy maximizes

the reward is set for the sampled state x(0). We repeat the process N times by sampling

more initial states randomly. The algorithm is summarized below:

Algorithm 1

Initialize X as zeros(N,length(x)) and U as zeros(N,1)
for i=1,N do

Randomly sample x(0)
Compute x(∆t) and R(x(∆t)) with control OFF
if R(x(∆t)) ≥ R(x(0)) then

Set policy for x(0) as OFF
else

Compute x(∆t) and R(x(∆t)) with control ON
if R(x(∆t)) with control ON > R(x(∆t)) with control OFF then

Set policy for x(0) as ON
else

Set policy for x(0) as OFF
end if

end if
Assign X [i, :] as x(0) and U [i, :] as the policy

end for
return X , U

Such an algorithm takes advantage of the underlying dynamics by letting the trajec-

tories evolve without any control and only switching “ON” the control when necessary.

This makes our algorithm highly energy efficient. Such an algorithm is very suitable

for controlling bistable dynamical systems where the objective is for the trajectory to

converge to a particular stable state of the system, or to switch from one stable state to

another. The control can switch OFF when the trajectory enters the region of attraction
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of the desired stable state, and let the dynamics take the trajectory to the desired state.

6.2.2 Supervised Learning Algorithm 2

Our second supervised learning algorithm outputs a bang-bang control input which

can be used to control a variety of dynamical systems, including coupled oscillators. The

algorithm learns what control input to output to achieve a certain control objective by

maximizing a reward function R(x(∆t)), which needs to be carefully designed to achieve

a control objective in a particular application.

We sample a state x(0) randomly from the state space of the dynamical model of

the system, and evolve the state forward in time for short time ∆t with both control

u1 and −u1. In both scenarios we let the state evolve further in time with zero control

until some event occurs and measure the timing of this event. The reward R(x(∆t))

is dependent on the timing of this event. Whichever policy (u1 or −u1) maximizes this

reward is set for that sampled state. We repeat the process N times by sampling more

states randomly. The algorithm is summarized below:

Algorithm 2

Initialize X as zeros(N,length(x)) and U as zeros(N,1)
for i=1,N do

Randomly sample x(0)
Compute x(∆t) and R(x(∆t)) with control u1

Compute x(∆t) and R(x(∆t)) with control -u1

if R(x(∆t)) with control u1 ≥ R(x(∆t)) with control -u1 then
Set policy for x(0) as u1

else
Set policy for x(0) as -u1

end if
Assign X [i, :] as x(0) and U [i, :] as the policy

end for
return X , U

Such control is useful when the objective is to converge to an unstable state of the
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system, because the control needs to stay “ON” (be non-zero) the whole time even when

the control objective has been realized, since the trajectory will go back to the stable

state otherwise. Here as well the underlying dynamics of the system play a role in our

learning algorithm: to determine the control input for a particular initial state, we let

the dynamics evolve the trajectory until an event occurs.

Both these algorithms generate data comprising a set of N sampled states of the

dynamical system X , and a set of the corresponding control inputs U . However, we

need to know the control input u (x(t)) as a function of a general trajectory x(t) of the

system, since the trajectory is not restricted to these sampled states. This is achieved

with our binary classifier, that takes an input as the state of the dynamical system x(t)

and outputs the corresponding control input u (x(t)) based on this generated data.

6.2.3 Binary Classifier

Our supervised learning algorithms generate data comprising a set X of N sampled

states of the dynamical system, and a set of the corresponding control inputs U . Based

on this information we build a locally weighted binary classifier that takes as input as the

instantaneous state of the dynamical system x(t), and outputs the corresponding control

input u (x(t)) to be applied at that instant.

We assign each element of the set X with a weight

wi(x(t)) = exp

(
−|x(t)−Xi|2

2τ

)
, i = 1, 2, . . . , N,

where Xi represents the ith sampled state stored in the set X . Thus a sampled state is

given a higher weight if its closer to x(t), and a lower weight if it is further away from
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x(t). These weights are normalized so that

N∑
i=1

wi(x(t)) = 1.

For the first algorithm, the classifier outputs u (x(t)) = u1 (“ON”) if

N∑
i=1

wi(x(t))Ui > 0.5u1, (6.2)

and u (x(t)) = 0 (“OFF”) otherwise. Similarly for the second algorithm, the classifier

outputs u (x(t)) = u1 if

N∑
i=1

wi(x(t))Ui > 0, (6.3)

and u (x(t)) = −u1 otherwise.

With u (x(t)) defined to be the output of this binary classifier, we simulate the dy-

namical system from (6.1) starting from a random initial condition and find that our

supervised learning algorithms are able to achieve the desired control objectives, while

simultaneously maximizing the designed reward functions. The entire algorithm is de-

picted in the flowchart in Figure 6.1. Note that in our algorithm, the sets X , U need to

be computed only once for a given dynamical system, whereas the control input u (x(t))

is computed by the binary classifier at every timestep.

6.3 Bistable Dynamical Systems

Bistability is widely found in neural systems [126] and cardiac arrhythmia [127], and

is used in digital electronics for storing binary information, in mechanical switches for

transitioning between ON and OFF states, and in multivibrators, Schmitt trigger circuits,
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Learning 
Algorithm

Binary 
Classifier

Dynamics

Figure 6.1: Flowchart of the Learning Algorithm.

and even optical systems [128]. It is the key mechanism for understanding several cellular

processes including those associated with the onset and treatment of cancer [129]. In

this section we apply our first supervised learning algorithm to control underactuated

bistable dynamical systems. The control objective is for the trajectory to converge to a

particular stable fixed point of the system starting anywhere in the state space (including

in the basin of attraction of the other stable state). Such a control objective is relevant

for several applications such as biocomputing, gene therapy, and treatment of cancer

[130, 131], among others.

6.3.1 Duffing System

With the Duffing system [63, 132], we consider the class of bistable dynamical systems

having two stable fixed points (xs1, xs2), and an unstable fixed point (xu). The control

objective is for the trajectory to converge to xs2 starting anywhere in the state space.
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Figure 6.2: Duffing System (δ = 0.1): Solid (resp., open) black circles represent
xs1, xs2, (resp., xu). In the left panel, open blue circles (resp., black ×’s) represent
elements of the set X where the control policy given by elements of the set U is OFF
(resp., ON). The green (resp., red) region is where the output u (x(t)) of the binary
classifier is OFF (resp., ON). In the right panel, the trajectory starts in the region
of attraction of xs1, and converges to xs2 (resp., xs1) with (resp., without) control.
When the control input is ON (resp., OFF), the trajectory is plotted in black (resp.,
blue). The uncontrolled trajectory is plotted in red.

The Duffing system is given as:

ẋ = y + u (x(t)) ,

ẏ = x− x3 − δy.

For δ > 0, the system has two stable fixed points xs1 = (−1, 0) and xs2 = (1, 0), and

an unstable fixed point xu = (0, 0), all shown in Figure 6.2. We take δ = 0.1 in our

simulations.
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Learning Algorithm

We choose our reward function to be the negative of the Euclidean distance between

the current state and the desired state:

R(x(t)) = −||x(t)− xs2||. (6.4)

Thus the control will make the trajectory converge towards the desired fixed point while

increasing the reward to 0. To converge to xs2 starting anywhere in the state space, we

use our learning algorithm to generate a control policy. The ON (resp., OFF) state of the

control policy corresponds to a value of u1 = 4 (resp., 0). We randomly sample N = 50

points for generating the sets X , U , and choose ∆t = 0.001 and τ = 0.4.

Results

The generated control policy is shown in the left panel of Figure 6.2. Blue open

circles (resp., black ×’s) represent elements of the set X where the control policy given by

elements of the set U is OFF (resp., ON). The green (resp., red) region is where output

u (x(t)) of the binary classifier is OFF (resp., ON). A controlled and an uncontrolled

trajectory starting from same x(0) is shown in the right panel of Figure 6.2. As can be

seen in this figure, the control algorithm gradually converges the trajectory to xs2 by

turning the control ON a few times, whereas the uncontrolled trajectory converges to

xs1.

The algorithm generates an energy efficient control input as the control is OFF 60.41%

of the total time it takes to drive the trajectory within a ball of radius of 0.45 in the

region of attraction of xs2. We investigate the robustness of our learning algorithm by

testing it on 1000 randomly generated initial conditions, and in all the 1000 cases, the

control algorithm is able to converge the trajectories to xs2, achieving 100% accuracy.
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Choosing N is the crucial task in our learning algorithm. We start with a small N

and keep it increasing until the algorithm achieves 100% effectiveness. N = 50 points

turns out to be appropriate for the Duffing system as choosing a lower number of points

leads to underfitting, and choosing a higher number of points leads to overfitting. Both

underfitting and overfitting can have a detrimental effect on the accuracy of the learning

algorithm.

6.3.2 Reduced Hodgkin-Huxley model

With the reduced Hodgkin-Huxley model [133, 4, 108] introduced in Chapter 5, we

consider the class of bistable dynamical systems having a stable periodic orbit xs1(t), an

unstable periodic orbit xu(t), and a stable fixed point xs2. We take the model parameter

I as 6.69 µA/cm2. For the rest of the parameters, see Appendix A.4. In the absence

of control input, the system is bistable having xs1(t) with period 14.91 ms, xu(t) with

period 14.33 ms, and xs2 = (−61.04, 0.38), all shown in Figure 6.3.

Learning Algorithm

The control objective is for the trajectory to converge to the stable fixed point starting

anywhere in the state space. Here as well we choose the reward function (6.4). With-

out any control input, a trajectory starting outside xu(t) will converge to xs1(t), and

a trajectory starting inside xu(t) will converge to xs2. To converge to the stable fixed

point starting anywhere in the state space, we use our learning algorithm to generate a

control policy. The ON (resp., OFF) state of the control policy corresponds to a value of

uc = 15 (resp., 0). We sample N = 1000 points for generating the sets X , U , and choose

∆t = 0.001, and τ = 0.001. Because the two state variables v, n scale differently, it is

important to normalize them for calculating the reward function. This is also important

126



Supervised Learning Based Control Chapter 6

-100 -80 -60 -40 -20 0 20 40 60
v

0.3

0.4

0.5

0.6

0.7

0.8

n

-100 -80 -60 -40 -20 0 20 40 60
v

0.3

0.4

0.5

0.6

0.7

0.8

n

Figure 6.3: Reduced Hodgkin-Huxley model: The black and red curves are xs1(t)
and xu(t), respectively. The black point in the bottom left corner of figure panels is
xs2. In the left panel, small black circles (resp., black ×’s) represent elements of the
set X where the control policy given by elements of the set U is OFF (resp., ON).
Green (resp., red) regions are where the output u (x(t)) of the binary classifier is OFF
(resp., ON). In the right panel, the trajectory starts outside xu(t), and converges to
xs2. When the control input is ON (resp., OFF), the trajectory is plotted in black
(resp., blue) color.

for the binary classifier to work effectively, since it is based on the Euclidean norm. To

do this, we subtract from each element of the set X the mean of the set and then divide

each element by the variance of the set. We subtract the same mean and divide by the

same variance from the state x(t) that goes in calculating the reward function and also

the binary classifier.

Results

The generated control policy is shown in the left panel of Figure 6.3. As shown in

this figure, the learning algorithm indicates that is it is better to have control ON in

the left part of the state space in order to maximize the reward function. In all other

regions, the learning algorithm indicates that the control policy should be OFF. Since

the control policy is ON in only a small region of the state space, we need to sample 1000

points to accurately determine this region. A controlled trajectory using this policy is
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shown in the right panel of Figure 6.3. The learning algorithm is able to converge the

trajectory to the stable fixed point xs2 by bypassing the unstable periodic orbit xu(t).

The algorithm generates an energy efficient control input as the control is OFF 23.81%

of the time it takes for the algorithm to drive the trajectory inside xu(t). We investigate

the robustness of our learning algorithm by testing it on 1000 randomly generated initial

conditions, and in all the 1000 cases, the algorithm is able to converge the trajectories to

xs2, achieving 100% effectiveness. Note that the learning algorithm has no information

about the periodic orbits and fixed points of the system, it only works to maximize the

reward function.

Comparison with fully actuated control

To further demonstrate energy efficiency of our learning algorithm, we compare it

with a fully actuated feedback control given as

d

dt
x(t) = F (x(t)) + U(x(t)), x(t) ∈ Rn, (6.5)

U(x(t)) = −F (x(t))− 0.2
(
x(t)− xs2

)
, (6.6)

which also converges the trajectory to the stable fixed point in the same time frame

as our learning algorithm. However the energy required by this algorithm calculated as∫ t
0
||U(x(t))||22dt comes out to be more than 3 orders of magnitude larger compared to the

energy taken by the control obtained from our learning algorithm. This is because our

learning algorithm takes advantage of the natural dynamics of the system to drive the

trajectory close to the desired point, and turns the control ON only for a short amount

of time when its really needed. In contrast, the feedback based control is ON the whole

time, even when the trajectory reaches inside the unstable periodic orbit.
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6.4 Phase Control of an Oscillator

In this section, we use our second algorithm to control a class of underactuated

dynamical systems having a stable limit cycle solution xs(t). We seek to maximally

increase or decrease the phase of the limit cycle solution by using a bang-bang type

control input. The motivation behind such a control objective comes from controlling

neurons, where one might want a neuron to spike as quickly as possible subject to a

constraint on the magnitude of the allowed input current; this constraint can be due to

hardware limitations and/or concern that large inputs might cause tissue damage. Thus,

instead of thinking in terms of maximally increasing the phase, one can instead think in

terms of maximally decreasing the neuron’s spike time.

6.4.1 Model

To demonstrate our algorithm, we consider the 3-dimensional thalamic neuron model

[45] introduced in Chapter 2 that describes the oscillatory behavior of neurons in the

thalamus. Here the state x(t) is the tuple (v, h, r), v is the transmembrane voltage, and

h, r are the gating variables of the neuron. For details of the rest of the parameters, see

Appendix A.1. With no control input, these parameters give a stable limit cycle xs(t)

with period T = 8.40 ms shown in red in Figure 6.4.

6.4.2 Learning Algorithm

Here the control objective is to maximally decrease the spike time of the neuron,

meaning we want the oscillation to end sooner than it naturally would. We set the

reward function as the negative of the neuron’s next spike time (the time when the

129



Supervised Learning Based Control Chapter 6

1

0.8

0.6

0
0.4 -10

1.6

-20
-300.2 -40

-50
-600 -70

10-3

1.8

2

Figure 6.4: Thalamic neuron model: Red curve is the stable limit cycle. Small blue
circles (resp., black ×’s) represents elements of set X where control policy given by
elements of set U is −u1 (resp., u1). The controlled trajectory is plotted in blue (where
u (x(t)) = −u1) and black (where u (x(t)) = u1).

transmembrane voltage v(t) reaches a maximum):

R(x(t)) = −tspike. (6.7)

We sample 100 states randomly along the limit cycle and evolve them with both positive

and negative control inputs for time ∆t = 0.001, and then evolve them further with zero

control input until the neuron spikes. Whichever control input attains the minimal tspike

(maximizes the reward function) is selected as control policy for that sampled state. We

choose τ = 0.01. Because the state variables v, h, r have different dynamic ranges, we

normalize the set X and the state at every time step similar to in Section 6.3.2.
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6.4.3 Results

The generated control policy, along with the controlled trajectory, is shown in Figure

6.4. As seen in this figure, most of the sampled states need to have a positive control in

order to maximize the reward function. This is evident from the left panel of Figure 6.5

which plots the corresponding control input. Because of the control, the neuron spikes

(v reaches its maximum) in tspike = 7.49ms which is 10.82% decrease in its natural spike

time of 8.40 ms. Thus our algorithm is able to achieve the control objective while keeping

the controlled trajectory close to the stable limit cycle solution (see Figure 6.4).

6.4.4 Model based control comparison

The dynamics of neural oscillations are highly nonlinear and high dimensional, which

makes a model based control formulation very challenging. Phase reduction valid close

to the limit cycle can overcome these challenges. The neuron spike time control problem

was solved as an optimal control problem in [68, 38] using phase reduction, which also

resulted in a bang bang control with control input given as

u (x(t)) = −sign[Z(θ)]u1 for decreasing tspike, (6.8)

where u1 is the bound chosen by the user and Z(θ) is the phase response curve. Such

a control works well, except when the bound u1 is large, where the controlled trajectory

can diverge far away from the limit cycle, decreasing the accuracy of phase reduction and

making the control based on phase reduction ineffective. Effectiveness of such a control

also relies heavily on accurate measurement of phase response curve, which may not be

possible.

We find that our learning based control outputs a control input very similar to the
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Figure 6.5: Thalamic neuron model: The left panel plots the control input u (x(t))
for our learning algorithm and optimal control algorithm for u1 = 1. The right panel
shows the % decrease in tspike as a function of u1.

above model based control, both shown in the left panel of Figure 6.5 for u1 = 1. We

compute tspike as a function of the bound u1 and find that our learning based algorithm

does slightly better than the model based algorithm in decreasing tspike (shown in the

right panel of Figure 6.5). Both controls are able to decrease tspike more as u1 increases.

6.5 Desynchronization of a Population of Coupled

Oscillators

Pathological synchronization of neural oscillations in the thalamus and the subthala-

mic nucleus (STN) brain region is hypothesized to be one of the causes of motor symptoms

for essential and parkinsonian tremor, respectively [11, 12]. We employ our algorithm to

desynchronize an initially synchronized population of M coupled thalamic neural oscil-

lations inspired by treatment of parkinsonian and essential tremor.
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6.5.1 Model

We consider the 3-dimensional thalamic neuron model [45] for each individual oscil-

lator with added all-to-all electrotonic coupling:

v̇i =
−IL(vi)− INa(vi, hi)− IK(vi, hi)− IT (vi, ri) + Ib

Cm

+
1

N

M∑
j=1

αij(vj − vi) + u (x(t)) , (6.9)

ḣi =
h∞(vi)− hi
τh(vi)

, (6.10)

ṙi =
r∞(vi)− ri
τr(vi)

, (6.11)

where x(t) represents the full state (3 ×M dimensional) of the oscillator population.

Here, i = 1, · · · ,M , where M is the total number of oscillators in the neuron population.

vi is the transmembrane voltage, and hi, ri are the gating variables of the ith neural

oscillator. αij is the coupling strength between oscillators i and j, which are assumed

to be electrotonically coupled [134] with αij = 0.01 for j 6= i and αii = 0 for all i.

u (x(t)) represents the applied current as the control input. For details of the rest of the

parameters, see Appendix A.1. Note that the same control input u (x(t)) is applied to all

of the oscillators. With no control input, these parameters give a synchronized oscillator

population with period T = 8.40 ms.

6.5.2 Learning Algorithm

We index the individual neural oscillators in the order in which they spike, thus neuron

1 spikes first and neuron M spikes last. We set the reward function as the absolute value
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of spike time difference of neuron 1 and M :

R(x(t)) = |tspike1 − tspikeM |. (6.12)

Since the oscillator population is initially synchronized, this reward is initially a small

positive number as all neurons spike very close to each other. We aim to desynchronize

the population by maximally increasing this reward function. We consider M = 51

oscillators in the synchronized population and sample 51 states along the synchronized

oscillation. Since the state of the oscillator population is very large (3×M), we take the

mean across the population to reduce the dimension of our set X . The ith element of the

set X is given as

Xi =

∑M
i=1 (vi, hi, ri)

M
. (6.13)

We evolve the oscillator population with both positive and negative control inputs for

time ∆t = 0.001, and evolve them further with zero control input until all neurons in the

population spike. Whichever policy attains the maximum reward function is selected for

that sampled state Xi.

The binary classifier takes as input the full high dimensional state of the oscillator

population. It then computes the mean of the state across the population and compares

it with the sampled mean states to output a control input u (x(t)). Because the mean

of the states vi, hi, ri scale differently, it is important to normalize them for the binary

classifier to work effectively, since it is based on the Euclidean norm. Thus, we normalize

the set X and the mean state at every time step similar to in Section 6.3.2. We choose

τ = 0.01.
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Figure 6.6: Thalamic synchronized population oscillation: The closed curve is the
synchronized oscillation. Small blue circles (resp., black ×’s) represents elements of
the set X where the control policy given by elements of the set U is −u1 (resp., u1).
The oscillation is plotted in red (resp., green ) where Z ′(θ) is negative (resp., positive).

6.5.3 Results

The generated control policy shown in Figure 6.6 gives a positive control input in

the bottom left region of oscillation and a negative control in the top right region of

the oscillation. The same figure also plots a model based control input discussed below.

Figure 6.7 plots the results of desynchronization of a thalamic neuron population by our

learning algorithm. As shown in both the left and right panels of the figure, the control

input from our learning algorithm is able to desynchronize an initially synchronized

thalamic neuron population in about 90 ms while keeping the oscillators close to the

initially synchronized oscillation. It may seem that the population is largely synchronized

from the right panel of Figure 6.7 but that is not the case. Since the oscillators spend

most of their time near the top of the limit cycle, one naturally observes more of them

near the top of the limit cycle even though they are evenly spread out in time (and not

space). This becomes clear from the left panel of Figure 6.7.
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Figure 6.7: Desynchronization of thalamic neuron population: Left panel plots the
state vi for i = 1, · · · , 51 neurons as a function of time. Right panel plots the initially
synchronized (resp. final desynchronized) neurons as small red (resp., blue) circles.

6.5.4 Model based validation of control policy

Here we analyze why the policy predicted by our learning algorithm works. Consider

an oscillator population comprised of just 2 oscillators whose dynamics evolve according

to phase reduction as

θ̇1 = ω + Z(θ1)u(t), (6.14)

θ̇2 = ω + Z(θ2)u(t). (6.15)

The dynamics of their phase difference φ = θ1 − θ2 can be written as (cf, [21])

φ̇ = Z ′(θ)u(t)φ+O(φ3), (6.16)

where θ = 0.5(θ1+θ2) is the mean of the two oscillators’ phases, and Z ′(θ) is the derivative

of the phase response curve with respect to θ. If the oscillators are synchronized then

their phase difference φ ≈ 0, thus higher order term in equation (6.16) can be ignored
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and the equation can be rewritten as

φ̇ = Z ′(θ)u(t)φ. (6.17)

To desynchronize these two synchronized oscillators the coefficient of φ in the above

equation should be positive. This can be achieved if u(t) is of same sign as Z ′(θ). This

is exactly what our policy predicts, as is shown in Figure 6.6. The policy predicts the

control to be positive in the region of oscillation where Z ′(θ) is positive, and it predicts the

control to be negative in the region of oscillation where Z ′(θ) is negative, thus explaining

why our algorithm is able to desynchronize the oscillator population.

6.6 Stabilizing an Unstable Fixed Point

In this section we apply our second learning algorithm to stabilize an unstable fixed

point of an underactuated dynamical system. This control objective is one of the old-

est studied control theory problems that is employed in several fields including robotics,

electrochemical systems, and treatment of cardiac arrhythmias [121, 135, 16]. To demon-

strate this, we consider the Lorenz system [136] given as:

ẋ = σ(y − x) + u (x(t)) , (6.18)

ẏ = rx− y − xz, (6.19)

ż = xy − bz. (6.20)

In the absence of control input with parameters σ = 10, b = 8/3, r = 1.5, the system

is bistable with xs1 = (−1.15,−1.15, 0.5), xu = (0, 0, 0), and xs2 = (1.15, 1.15, 0.5), all

shown in Figure 6.8.
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Figure 6.8: Lorenz system: Solid green (resp., open red) circles represent xs1, xs2,
(resp., xu). In the left panel, open blue circles (resp., black ×’s) represent elements of
the set X where the control policy given by elements of the set U is -5 (resp., 5). In
the right panel, the uncontrolled trajectory plotted in red converges to xs1, and the
supervised learning (resp., Lyapanov) based control trajectory plotted in black (resp.,
blue) converges to xu.

6.6.1 Learning Algorithm

The control objective is for a trajectory to converge to the unstable fixed point xu

starting anywhere in the state space. We choose our reward function to be the negative

of the Euclidean distance between current state and the desired unstable fixed point

R(x(t)) = −||x(t)− xu||. (6.21)

Thus the control will make the trajectory converge towards the desired fixed point while

increasing the reward to 0. To converge to xu starting anywhere in the state space, we

use our learning algorithm to generate a control policy. We take u1 = −u2 = 5, and

sample N = 1000 points for generating the sets X , U . We choose ∆t = 0.001 and take
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the binary classifier parameter τ = 5.

6.6.2 Results

The generated control policy is shown in the left panel of Figure 6.8. Blue open

circles (resp., black ×’s) represent elements of the set X where the control policy given

by elements of the set U is -5 (resp., 5). A controlled trajectory using our learning

algorithm and an uncontrolled trajectory starting from same x(0) are shown in the right

panel of Figure 6.8. The learning algorithm converges the trajectory to xu, whereas the

uncontrolled trajectory converges to xs1. In doing so, the learning based control consumes

150 units of control energy (
∫ 6

0
u (x(t))2 dt). We investigate the robustness of our learning

algorithm by testing it on 1000 randomly generated initial conditions, and in all the 1000

cases, the learning based control algorithm is able to converge the trajectories within a

ball of radius 0.09 units centered at xu, achieving 100% effectiveness.

6.6.3 Comparison with Lyapanov based control

To demonstrate energy efficiency of our learning algorithm, we compare it with

Lyapunov-based control to stabilize xu. Consider the following positive definite Lya-

punov function

V (t) =
1

2
x(t)2 +

1

2
y(t)2 +

1

2
z(t)2, (6.22)

Its time derivative is given as

V̇ (t) = −2σx(t)2 − 2y(t)2 − 2bz(t)2 + 2x(t) (u(t) + (σ + r)y(t)) , (6.23)

where u(t) takes the place of u (x(t)) in equation (6.18). Then by taking u(t) = −(σ +

r)y(t), one gets a negative definite time derivative of the Lyapunov function. Thus by
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the Lyapunov theorem, this control asymptotically stabilizes the unstable fixed point xu.

The control trajectory based on this control is plotted in blue in the right panel of Figure

6.8. As seen in the figure, the Lyapunov-based control is able to converge the trajectory

towards the unstable fixed point as well. But in doing so, it consumes 1176.8 units of

control energy (
∫ 6

0
u(t)2dt), which is almost 8 times the energy consumed by our learning

based control. This is partly because our learning based control uses the inherent system

dynamics to control the trajectory, as the controlled trajectory seems to stay close to the

uncontrolled trajectory. In contrast, the Lyapanov based control drives the trajectory

far away before it converges to xu, thus it ends up consuming much more energy.

6.7 Robustness to Noise

We have demonstrated the effectiveness of our algorithms in several scenarios in which

the algorithms were based on data generated from a deterministic dynamical model.

However, real data measured from an experimental setup will be noisy. In order for

our algorithms to work in an experimental setup it is imperative to investigate their

performance when the data is corrupted with noise. We do that by considering the

Duffing system in the bistable parameter regime from Section 6.3.1. The control objective

is still for the trajectory to converge to xs2 starting anywhere in the state space.

6.7.1 Learning Algorithm

To replicate the effect of noise in an experimental setup, we use exactly the same

parameters as before to generate the sets X , U and corrupt the set X by adding Gaussian

white noise with mean 0 and standard deviation σ, resulting in the set X̃ . Thus each

element in the dataset will be offset from its true value. We also add Gaussian white

noise with the same mean and standard deviation to the state x(t) resulting in x̃(t),
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Figure 6.9: Flowchart of the Learning Algorithm with added noise.

which the binary classifier takes as input at every time step. This accounts for the noise

in estimation of the state by the classifier in a real system. The flowchart from Figure

6.1 with added noise is modified and shown in Figure 6.9

6.7.2 Results

The generated control policy corrupted with noise of standard deviation σ = 0.2 is

shown in the left panel of Figure 6.10. Blue open circles (resp., black ×’s) represent

elements of the noise corrupted set X̃ where the control policy given by elements of the

set U is OFF (resp., ON). The green (resp., red) region is where output u (x̃(t)) of the

binary classifier is OFF (resp., ON). The elements of the original set X are plotted in

white to show the shifting of the elements due to the noise. Besides shifting the elements,

the addition of white noise blurs the decision boundary between the ON and OFF policy

region . A controlled and an uncontrolled trajectory starting from the same x(0) is shown

in the right panel of Figure 6.10. As can be seen in this figure, the control algorithm
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Figure 6.10: Duffing System with noise (δ = 0.1): Solid (resp., open) black circles
represent xs1, xs2, (resp., xu). In the left panel, open blue circles (resp., black ×’s)
represent elements of the set X̃ where the control policy given by elements of the set
U is OFF (resp., ON). The green (resp., red) region is where the output u (x̃(t)) of the
binary classifier is OFF (resp., ON). The elements of the original set X are plotted in
white. In the right panel, the trajectory starts in the region of attraction of xs1, and
converges to xs2 (resp., xs1) with (resp., without) control. When the control input
is ON (resp., OFF), the trajectory is plotted in black (resp., blue). The uncontrolled
trajectory is plotted in red.

converges the trajectory to xs2 even though it has been corrupted by adding noise both

to the training dataset and to the input of of the binary classifier. On the other hand, the

uncontrolled trajectory converges to xs1. Note that the controlled trajectory follows a

different route when compared to the noiseless case from Figure 6.2. This is because the

noise distorts the decision boundary between ON and OFF states of the policy, resulting

in a slightly different path.

We investigate the robustness of our learning algorithm in the presence of noise by

testing it on 1000 randomly generated initial conditions, and in all the 1000 cases the

control algorithm is able to converge the trajectories to xs2, achieving 100% accuracy.

Choosing σ does have an effect on the effectiveness of our algorithm. We observed that

for σ up to 0.2 the algorithm achieves 100% effectiveness. This is because of the way
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our binary classifier is designed. It outputs a control based on all the elements of the

dataset X instead of just a few nearest neighbors (see equation (6.2)). Because of noise,

the elements get shifted to X̃ , but since all the elements are used in the summation in

equation (6.2) for making a decision, the slight shifting of each element is averaged out

by this summation. For σ > 0.25, the algorithm’s effectiveness starts dropping as the

shifts in X̃ become too big to be offset by the summation of N = 50 points. Thus, if the

noise intensity is very high, the algorithm can perform well by taking a higher number

of points (N) in the dataset to effectively offset the shifting of the elements.

6.8 Conclusion

In this chapter we have developed two novel supervised learning algorithms to control

a underactuated dynamical systems. The algorithms output a bang bang (binary) con-

trol input to achieve the desired control objectives which maximize a reward function.

A simple yet intelligent structure allows the algorithms to be energy efficient as they

autonomously learn to take advantage of the inherent dynamics. We demonstrated the

versatility of our algorithms by applying them to a diverse range of applications including:

switching between bistable states, changing the phase of an oscillator, desynchronizing

a population of synchronized coupled oscillators, and stabilizing an unstable fixed point.

For most of these applications we were able to reason why our algorithms work by using

traditional dynamical systems and control theory. We compared our algorithms to some

traditional nonlinear model control algorithms and showed that our algorithms work bet-

ter. We also carried out a robustness analysis to demonstrate the effectiveness of our

algorithms even with noisy data. Note that having an additive control input doesn’t

restrict our algorithms. Since the algorithms work by maximizing the reward function,

the structure of control input coming into the dynamics does not matter.
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Conclusions and Experimental

Implementation

Nonlinear oscillators are ubiquitous in biology, some examples being the beating of pace-

maker cells in the heart, the firing of action potentials in neurons, and circadian rhythms.

This dissertation develops several control algorithms for such biological oscillators, and

demonstrates their significance in devising treatment for Parkinson’s disease, cardiac

alternans, and jet lag.

Standard phase reduction is a crucial tool in the analysis and control of these bio-

logical oscillators. It reduces the dimensionality of a system, and can make its control

experimentally amenable. However, a recently developed reduction technique called aug-

mented phase reduction, could be better in some control applications. Thus, in the first

part of the dissertation, we investigated under what dynamical regimes is the use of the

augmented phase reduction better than the standard phase reduction. To do this, in

Chapter 3 we derived expressions for the augmented phase reduction for six distinct sys-

tems with a periodic orbit: λ − ω systems, relaxation oscillators, and systems in which

periodic orbits are born out of four codimension one bifurcations. We found that for a re-
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laxation oscillator, it is not necessary to use the augmented phase reduction, instead the

standard phase reduction would suffice. On the other hand, for the other five systems,

it is better to use the augmented phase reduction over the standard phase reduction,

especially when a nontrivial Floquet exponent of the periodic orbit has small magnitude.

We continued this investigation further in Chapter 4, where we developed a novel

optimal control algorithm based on the augmented phase reduction to change the phase

of a single oscillator. Our algorithm not only minimized the total energy consumption

but also reduced the controlled trajectory’s transversal distance from the uncontrolled

periodic orbit. We showed that our new algorithm works much better than a similar

algorithm based on standard phase reduction, especially when a nontrivial Floquet mul-

tiplier of the periodic orbit is close to 1 and/or a significant change in phase is required.

In such cases, our new algorithm can do an order of magnitude better in terms of the

calculated control error.

PRCs are measured experimentally by giving perturbations to the oscillator at various

phases, and recording the phase change caused by the perturbation as a function of the

stimulation phase. We propose that IRCs can be measured in a similar way. One can

apply perturbations at various phases, and record the resulting “amplitude” change as a

function of the stimulation phase, or one can record the time required for the trajectory

to return back to the periodic orbit as a function of the stimulation phase. Either of

these approaches will give a measure of the IRC, which can be appropriately scaled

to give the true IRC. Thus, just like the control algorithm based on standard phase

reduction, we propose that our new algorithm from this chapter can be applied in an

electrophysiological setting.

This finished our investigation of control of a single oscillator, and we moved on to

devising control algorithms for a population of oscillators in Chapter 5. There, we devel-

oped a framework based on the phase distribution of a population of uncoupled oscillators
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to control their collective behavior. We devised a Lyapunov-based control algorithm, and

extended it to take into account the effect of white noise on the dynamics of the oscillator

population. Finally, we formulated an optimal control algorithm which uses a minimum

energy input to achieve the desired phase distribution. Our control algorithms are quite

flexible; for the systems considered in this chapter, they have the potential to drive a sys-

tem of uncoupled oscillators from any initial phase distribution to any traveling-wave final

phase distribution, as long as the combination of those distributions is non-degenerate.

Since these algorithms require knowledge of the current phase distribution, one would

need to measure neuronal/cardiac pacemaker cell activity in order to back out the phase

distribution in real time. This measurement would require good spatial and temporal

resolution, so for both neuroscience and cardiovascular experiments we suggest that the

use of Micro-Electrode arrays (MEA) would be a good fit. Note that for in vivo exper-

iments, fMRI and EEG are unlikely to be the right tools since fMRI has poor temporal

resolution, while EEG is susceptible to noise and poorly measures neural activity beneath

the cortex.

All these control algorithms were model dependent, which may not be suitable in

situations for which it is difficult to obtain an accurate model of a system. Motivated by

this, we developed data-based control algorithms in Chapter 6. We developed two novel

supervised learning algorithms to control a range of underactuated dynamical systems.

The algorithms output a bang bang (binary) control input to achieve the desired control

objectives which maximizes a reward function. A simple yet intelligent structure allows

the algorithms to be energy efficient as they autonomously learn to take advantage of

the inherent dynamics. We demonstrated the versatility of our algorithms by applying

them to a diverse range of applications beyond biological oscillators.

In an experimental setting such an algorithm can be implemented by stimulating

the system with binary control inputs at different states of the system and determining
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which control input works best for the different sampled states, and ultimately using that

information in constructing a binary classifier. The data generated from an experimental

setting might be corrupted with noise, thus to demonstrate the potential of our algorithm

in a real setting we showed that our algorithm works even in the presence of noise. In

the future, we plan to explore how to modify our algorithm if some of the states are

not observable, and how to adapt our algorithm for very high dimensional dynamical

systems.

Closing the loop on this dissertation, we conclude that the control algorithms were de-

signed so that the required parameters/training data could be measured experimentally.

We tested the robustness of the algorithms by demonstrating their resilience to noise,

and thus showed their suitability for controlling living biological tissue. This work truly

holds great potential in devising treatments for Parkinson’s disease, cardiac alternans,

and jet lag, and thus is a step towards improving the health and well-being of the many

patients suffering from these conditions.
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Models

In this appendix, we give details of the dynamical models which are necessary to repro-
duce the results of this dissertation.

A.1 Thalamic neuron model

The thalamic neuron model used in Chapters 2, 3, 4, and 6 is given as

v̇ =
−IL(v)− INa(v, h)− IK(v, h)− IT (v, r) + Ib

Cm
+ u(t),

ḣ =
h∞(v)− h
τh(v)

,

ṙ =
r∞(v)− r
τr(v)

.

where

h∞(v) = 1/(1 + exp((v + 41)/4)),

r∞(v) = 1/(1 + exp((v + 84)/4)),

αh(v) = 0.128 exp(−(v + 46)/18),

βh(v) = 4/(1 + exp(−(v + 23)/5)),

τh(v) = 1/(αh + βh),

τr(v) = (28 + exp(−(v + 25)/10.5)),

m∞(v) = 1/(1 + exp(−(v + 37)/7)),

p∞(v) = 1/(1 + exp(−(v + 60)/6.2)),

IL(v) = gL(v − eL),

INa(v, h) = gNa(m∞
3)h(v − eNa),

IK(v, h) = gK((0.75(1− h))4)(v − eK),
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IT (v, r) = gT (p2
∞)r(v − eT ),

Cm = 1, gL = 0.05, eL = −70, gNa = 3, eNa = 50,

gK = 5, eK = −90, gT = 5, eT = 0, Ib = 5.

A.2 YNI model

The YNI model [84] used in Chapters 4, and 5 is given as

V̇ =
Im − INa − Ik − Il − Is − Ih

C
+ u(t),

ḋ = αd(1− d)− βdd,
ḟ = αf (1− f)− βff,
ṁ = αm(1−m)− βmm,
ḣ = αh(1− h)− βhh,
q̇ = αq(1− q)− βqq,
ṗ = αp(1− p)− βpp,

where

αd =
0.01045(V + 35)

(1− exp(−(V + 35)/2.5)) + 0.03125V
(1−exp(−V/4.8))

,

βd = 0.00421(V − 5)/(−1 + exp((V − 5)/2.5)),

αf = 0.000355(V + 20)/(−1 + exp((V + 20)/5.633)),

βf = 0.000944(V + 60)/(1 + exp(−(V + 29.5)/4.16)),

αm = (V + 37)/(1− exp(−(V + 37)/10)),

βm = 40 exp(−0.056(V + 62)),

αh = 0.001209(exp(−(V + 20)/6.534)),

βh = 1/(1 + exp(−(V + 30)/10)),

αq = 0.0000495 +
0.00034(V + 100)

(−1 + exp((V + 100)/4.4))
,

βq = 0.0000845 + 0.0005(V + 40)/(1− exp(−(V + 40)/6)),

αp = 0.0006 + 0.009/(1 + exp(−(V + 3.8)/9.71)),

βp = 0.000225(V + 40)/(−1 + exp((V + 40)/13.3)),

is = 12.5(exp((V − 30)/15)− 1),

Is = (0.95d+ 0.05)(0.95f + 0.05)is,

INa = 0.5m3h(V − 30),
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Ih = 0.4q(V + 25),

Ik = 0.7p(exp(0.0277(V + 90))− 1)/ exp(0.0277(V + 40)),

Il = 0.8(− exp(−(V + 60)/20) + 1),

C = 1.

Im = 1.0609 for Chapter 4, and 0 for Chapter 5.

A.3 Clock gene regulation model

The clock gene regulation model [95] used in Chapter 4 is given as

Ẋ = v1
K4

1

K4
1 + Z4

− v2
X

K2 +X
+ L(t),

Ẏ = k3X − v4
Y

K4 + Y
,

Ż = k5Y − v6
Z

K6 + Z
,

v1 = 0.7, v2 = 0.35, v4 = 0.35, v6 = 0.35,

K1 = 1, K2 = 1, K6 = 1, k3 = 0.7, k5 = 0.7.

A.4 Reduced Hodgkin-Huxley model

Here we give the reduced Hodgkin-Huxley model [133, 4, 108] used in Chapters 5,
and 6:

v̇ =
(
I − gNa(m∞(v))3(0.8− n)(v − vNa)− gKn4(v − vK)− gL(v − vL)

)
/c+ u(t),

ṅ = an(v)(1− n)− bn(v)n,

where v is the trans-membrane voltage, and n is the gating variable. I is the base-
line current, which we take as 6.69 µA/cm2, and π (x(t)) represents the applied control
current.

an(v) = 0.01(v + 55)/(1− exp(−(v + 55)/10)),

bn(v) = 0.125 exp(−(v + 65)/80),

am(v) = 0.1(v + 40)/(1− exp(−(v + 40)/10)),

bm(v) = 4 exp(−(v + 65)/18),

m∞(v) = am(v)/(am(v) + bm(v)),

c = 1, gL = 0.3, gNa = 120, vNa = 50

gK = 36 , vK = −77, vL = −54.4 I = 20.
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Numerical Methods

In this appendix, we give details on the numerical methods we used to compute the
Floquet multipliers, PRC, and IRC, and solve the Euler Lagrange equations and the full
model equations.

B.1 Computation of PRC

For the normal form of the Hopf bifurcation, we can compute the PRC and its deriva-
tive w.r.t. θ analytically, see, e.g., [18]. For computing the PRCs (and their derivatives
w.r.t. θ) of the YNI, thalamic neuron, and the clock gene regulation model, we use the
XPP package [44], which is widely used by the community working on nonlinear oscilla-
tors. This package solves the appropriate adjoint equation backward in time along the
periodic orbit to compute the PRC as a function of time. We scale the PRC computed
by this package by ω, as we consider PRC as Z(θ) = ∂θ

∂x
, whereas the computed PRC

from the XPP package is Z̃(t) = ∂t
∂x

. Note that the XPP computes the derivative of the

PRC w.r.t. time
(

˙̃Z(t) = ∂2t
∂x∂t

)
, which is numerically equivalent to its derivative w.r.t.

θ
(
Z ′(θ) = ∂2θ

∂x∂θ

)
. The XPP package gives the PRC and its derivative as a timeseries.

After appropriately scaling the time series, we write them as an analytical expression of θ
by approximating them as a finite Fourier series, to be used in the numerical computation
of the Euler-Lagrange equations.

B.2 Computation of Floquet multipliers

Once the PRC has been computed, we choose an arbitrary point on the periodic orbit
as θ = 0, and approximate the isochron Γ0 as an n−1 dimensional hyperplane orthogonal
to the PRC at that point. To compute the Jacobian DF , we compute xjΓ (as defined
beneath equation (2.14) in the main text) for a large j, for a number of initial conditions
x0 spread out on the isochron. Eigenvector decomposition of DF gives us the Floquet
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multipliers of the periodic orbit and the corresponding Floquet exponents ki. Note that
for planar systems, the nontrivial Floquet exponent can be directly computed from the
divergence of the vector field as [52]

k =

∫ T
0
∇ · F (xγ(t))dt

T
. (B.1)

B.3 Two point BVP with Newton Iteration

We calculate the IRC and solve the Euler-Lagrange equations as a two point boundary
value problem using Newton iteration in Chapter 4, which we briefly summarize here.
Consider a general two point boundary value problem

ẏ = f(t, y), y ∈ Rn, 0 ≤ t ≤ b, (B.2)

with the linear boundary condition

B0y(0) +Bby(b) = a, B0, Bb ∈ Rn×n.

To solve such a boundary value problem, we integrate equation (B.13) with the initial
guess c = y(0), and calculate the function g(c):

g(c) = B0c+Bby(b)− a,

where y(b) is the solution at time b with the initial condition c. If we had chosen the
correct initial condition c, g(c) would be 0. Based on the current guess cν , and the g(cν)
value, we choose the next initial condition by the Newton Iteration as

cν+1 = cν −
(
∂g

∂c

∣∣∣∣
cν

)−1

g(cν). (B.3)

We compute the Jacobian J = ∂g
∂c

∣∣
cν

numerically as

Ji =
g+ − g−

2ε
,

where

g+ = g (cν + eiε) ,

g− = g (cν − eiε) ,

Ji is the ith column of J , ε is a small number, and ei is a column vector with 1 in the ith

position and 0 elsewhere.
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B.3.1 Computation of IRC

To calculate the IRC, we first compute and save the periodic solution xγ(t) using
Matlab’s ODE solver ode45 with a relative error tolerance of 3e − 12, and an absolute
error tolerance of 1e− 15. The next step is to solve the adjoint equation

İ =
(
kiI −DF (xγ(t))T

)
I, 0 ≤ t ≤ T,

with periodic boundary conditions

I(0) = I(T ).

We choose an initial guess I(0), and integrate the adjoint equation using Matlab’s ODE
solver ode45 with a relative error tolerance of 3e− 12, and an absolute error tolerance of
1e− 15. For Newton iteration, we take

cν = I(0), (B.4)

g(cν) = I︸︷︷︸
B0

I(0)− I︸︷︷︸
Bb

I(T ),

⇒ g(cν) = I(0)− I(T ), (B.5)

∂g

∂c

∣∣∣∣
cν

= I − J, (B.6)

where I is the identity matrix, and J is the Jacobian matrix

J =
∂I(T )

∂I(0)
,

which we compute numerically. We use equations (B.4) - (B.6) together with equation
(B.14) to compute the next initial condition. Once a periodic solution is obtained, the
computed IRC is scaled by the normalization condition ∇x0ψi · vi = 1 [30]. Its derivative
w.r.t. θ is obtained numerically by a central difference scheme

I ′(θi) =
I(θi+1)− I(θi−1)

θi+1 − θi−1

.

The obtained IRC and its derivative w.r.t. θ are written as analytical expressions of θ
by a finite Fourier series approximation, which is used in the computation of the Euler-
Lagrange equations.

B.3.2 Solving Euler-Lagrange equations

For Euler Lagrange equations based on augmented phase reduction, we set the bound-
ary conditions as θ(0) = 0, θ(T1) = 2π, ψ(0) = 0, ψ(T1) = 0. We can write this as a
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two point boundary value problem with the function g as

g(c) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

B0


θ(0)
ψ(0)
λ1(0)
λ2(0)


︸ ︷︷ ︸

c

+


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


︸ ︷︷ ︸

Bb


θ(T1)
ψ(T1)
λ1(T1)
λ2(T1)

−


0
0

2π
0

 ,

⇒ g(c) =


0
0

θ(T1)− 2π
ψ(T1)− 0

 .
Since θ(0), and ψ(0) are fixed by our problem, g can be influenced by changing λ1(0) and
λ2(0) only. So we get the following matrices for Newton Iteration:

cν =

[
λ1(0)
λ2(0)

]
, (B.7)

g(cν) =

[
θ(T1)− 2π
ψ(T1)

]
, (B.8)

∂g

∂c

∣∣∣∣
cν

=

[
∂θ(T1)
∂λ1(0)

∂θ(T1)
∂λ2(0)

∂ψ(T1)
∂λ1(0)

∂ψ(T1)
∂λ2(0)

]
. (B.9)

In a similar way, we get the following matrices for Euler-Lagrange equations based on
standard phase reduction:

cν = λ1(0), (B.10)

g(cν) = θ(T1)− 2π, (B.11)

∂g

∂c

∣∣∣∣
cν

=
∂θ(T1)

∂λ1(0)
. (B.12)

All the integrations are done with Matlab ODE solver ode45 with relative error tolerance
≤ 1e− 10 and absolute error tolerance ≤ 1e− 10.

B.4 Two point BVP with modified Newton Iteration

We solve the Euler-Lagrange equations as a two point boundary value problem using
a modified Newton iteration method, which we briefly summarize. Consider a general
two point boundary value problem

ẏ = f(t, y), y ∈ Rn, 0 ≤ t ≤ τ, (B.13)
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with the linear boundary condition

B0y(0) +Bτy(τ) = a, B0, Bτ ∈ Rn×n.

To solve such a boundary value problem, we integrate equation (B.13) with the initial
guess c = y(0), and calculate the function g(c):

g(c) = B0c+Bτy(τ)− a,

where y(τ) is the solution at time τ with the initial condition c. If we had chosen the
correct initial condition c, g(c) would be 0. Based on the current guess cν , and the
g(cν) value, we choose the next initial condition by the modified Newton Iteration as an
element-wise update

cν+1
i = cνi −

(
∂gi
∂ci

∣∣∣∣
cν

)−1

gi(c
ν), for i = 1, . . . , n (B.14)

where gi, and cνi represent the ith element of vectors g, and cν respectively. We compute

the derivative Jii = ∂gi
∂ci

∣∣∣
cν

numerically as

Jii =
g+
i − g−i

2ε
,

where

g+
i = gi (c

ν + eiε) ,

g−i = gi (c
ν − eiε) ,

ε is a small number, and ei is a column vector with 1 in the ith position and 0 elsewhere.

B.4.1 Solving Euler-Lagrange equations

For the Euler-Lagrange equations devised in Section 5.7, Ak(0), and Bk(0) are fixed
by the initial distribution, so the only way to control the distribution is by choosing
appropriate values of λkA(0) and λkB(0). Thus our BVP can be reduced to 2N − 2
dimensions even though the Euler-Lagrange equations are 4N − 4 dimensional. The ith

element of the vector c is taken as

ci =

{
λkA(0), for i = k = 1, . . . , N − 1
λkB(0), for i = k +N − 1 = N, . . . , 2N − 2.
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The ith element of the vector g(c) for i = k = 1, . . . , N − 1 is taken as

gi(c) = Ak(0) + Ak(τ)− 1

π

∫ 2π

0

(ρ(θ, 0) + ρf (θ, τ)) cos(kθ)dθ,

and, for i = k +N − 1 = N, . . . , 2N − 2,

gi(c) = Bk(0) +Bk(τ)− 1

π

∫ 2π

0

(ρ(θ, 0) + ρf (θ, τ)) sin(kθ)dθ.

The derivative Jii is given as

∂gi
∂ci

=

{
∂Ak(τ)
∂λkA(0)

, for i = k = 1, . . . , N − 1
∂Bk(τ)
∂λkB(0)

, for i = k +N − 1 = N, . . . , 2N − 2.

This information is used in equation (B.14) to iteratively find the appropriate value of
the vector c.
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