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Abstract

Point-to-Point Control near Heteroclinic Orbits: Plant and
Controller Optimality Conditions

by

Brian Paden

In this thesis we consider the simultaneous optimization of the controller and

plant in a one degree-of-freedom system. In particular we are interested in optimal

trajectories between �xed points connected by heteroclinic orbits. We �nd that

designing the plant dynamics to have a heteroclinic connection between target

states enables low energy transfer between the states. We use a nested optimiza-

tion strategy to �nd the optimal plant dynamics and control e�ort to transition

between states. Additionally, we uncover plant optimality conditions which reduce

the complexity of the optimization.
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1 Introduction

The traditional practice for designing mechatronic systems is to �rst design the

structure, sensors, and actuators, followed by the design of the controller. This

design approach has been referred to as the sequential or single pass strategy

[14, 13, 3]. Numerous mathematical and computational tools exist for optimizing

these two subsystems independently [1, 11]. However, it was proven in [3] that

this approach does not necessarily satisfy the system level optimality conditions.

To solve the problem of �nding the optimal plant and controller, several strategies

have been proposed. These are classi�ed as iterative, nested, and simultaneous

optimization strategies [3]. The bene�t of these strategies is that they yield an

optimal system design, and they have subsequently found their way into a number

of engineering applications [4, 12, 9, 2].

In this thesis, we will consider the energy cost of holding the state of the

system at an initial stationary con�guration up to an initial time at which the

control will transfer the state to a �nal stationary con�guration where it will

remain inde�nitely. The problem is to choose the best plant dynamics within an

admissible design space so that the energy cost associated with the control task is

minimized. If it is possible to design the plant so that the initial and �nal states

are connected by a heteroclinic orbit [5] then without external disturbances there

will be no cost associated with holding the system at the initial and �nal states.

Then, with little e�ort from the controller, the plant dynamics will help to carry

the state between equilibria in �nite time.

Such a system has several useful applications, one of which is the electronic

control of internal combustion engine valves. Electronically actuated engine valves
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would enable the phase of the valve opening and closing events to be varied in

order to improve engine performance. Implementation of electronically controlled

engine valves has already been tested and has been shown to signi�cantly re-

duce emissions and increase fuel economy and power [6]. The drawback to many

of these systems is that they require prohibitive amounts of energy to operate,

which counteracts the improvements in e�ciency. This has inspired the use of

additional mechanisms coupled to the linear actuator that are intended to reduce

the power required to drive the engine valve [10]. The goal of this thesis is to

present optimality conditions useful for optimizing electromechanical systems for

high e�ciency point-to-point control.

In Section 2 we consider the optimal open loop control to swing around an

inverted pendulum to better understand the gains of actuating a system between

the �xed points of a heteroclinic orbit. Section 3 extends the problem to �nding the

optimal plant dynamics as well as the optimal control. For computing the system-

wide optimization we will use the nested optimization strategy. An inner loop will

optimize the control for each plant design we consider using optimal control theory.

The inner loop optimization is covered in Section 4. The outer loop numerically

optimizes the plant design by considering the optimal control for each �xed plant

design we consider. To reduce the computational expense of this optimization we

will derive optimality conditions of the optimal plant design. These conditions are

derived in Section 5. In Section 6, a versatile mechatronic system is introduced

that we optimize by applying the methods outlined. Conclusions and a discussion

of future research are given in Section 7.
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2 Heteroclinic Orbits and Energy E�cient Motion

Control

Here we will study the bene�ts of choosing a plant potential that connects two

target con�gurations with a heteroclinic orbit. Consider the problem of �nding

the minimum energy control torque u(t) to swing around an inverted pendulum

of unit mass. The dynamics will be given by

ẋ1 = x2, ẋ2 = −ω2
n sin(x1) + u(t). (2.1)

We want to solve for the minimum energy control e�ort connecting the initial

state, (x1(t0), x2(t0)) = (−π, 0), to the �nal state,(x1(tf ), x2(tf )) = (π, 0). We

consider the state to be in R2 as opposed to R× S1.
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Figure 2.1: A simple pendulum with a control torque u(t) swinging the pendulum
through a rotation of 2π between unstable equilibria.

We can make direct use of Pontryagin's minimum principle [1] to represent

necessary conditions of an optimal control in the form of a boundary value problem

(BVP). The cost functional we impose to �nd a minimum energy control is

J [u] =

ˆ tf

t0

[u(t)]2 dt. (2.2)

The Hamiltonian for this system and cost functional is

H(x1, x2, u, p1, p2) = u2 +

〈 p1

p2

 ,

 x2

−ω2
n sin(x1) + u

〉 , (2.3)

where p1 and p2 are the co-state variables. Then, using the canonical equations
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we derive the necessary conditions of the optimal control:

∂H

∂u
= 0,

∂H

∂p1
= ẋ1,

∂H

∂p2
= ẋ2,

∂H

∂x1
= −ṗ1,

∂H

∂x2
= −ṗ2, (2.4)

which yields:

ẋ1 = x2, ẋ2 = −ω2
n sin(x1)− p2/2,

ṗ1 = p2ω
2
n cos(x1), ṗ2 = −p1, u = −p2/2,

(x1(t0), x2(t0)) = (−π, 0), (x1(tf ), x2(tf )) = (π, 0).

(2.5)

The case when ωn = 0 will be considered as a basis of comparison with various

values of ωn.

The shooting method in conjunction with the Nelder-Mead simplex method [7]

was implemented to solve equation (2.5) for t0 = 0 and tf = 10. ωn was varied in

equation (2.5) to demonstrate the bene�t of the heteroclinic orbit introduced by

the pendulum dynamics. Figure 2.2 illustrates the signi�cant reduction in control

e�ort as ωn is increased.
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Figure 2.2: As ωn is varied from the values 0, 0.1, 0.3, 0.5, and 1, one can see in (a) the

signi�cant reduction in control e�ort required for the point to point control. The e�ect on the

state trajectory can be seen in (b).

3 Problem Statement

It is clear that introducing a heteroclinic orbit connecting the target con�gurations

for point to point control reduces the energy cost. With this in mind we now

consider the simultaneous optimization of the plant and control.

Consider a system of the form

ẋ1 = x2, ẋ2 = αf(x1) + u(t), (3.1)

with α > 0. A trajectory produced under the in�uence of αf and u will be
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considered admissible if it satis�es (3.2):

(x1(t), x2(t)) = (x0, 0) ∀t ∈ [−∞, t0],

(x1(t), x2(t)) = (xf , 0) ∀t ∈ [tf ,∞].

(3.2)

That is, up to time t0 the state is held at (x0, 0). The control then transfers the

state to (xf , 0), where it must arrive by time tf . The state must then remain there

inde�nitely. We will assume without loss of generality that x0 < xf .

3.1 Conditions of an Admissible System Design

Here we de�ne the conditions on the control e�ort, u, and the plant dynamics,

f , for an admissible system design. We require that the control e�ort remain

bounded and piecewise continuous; Ω will denote the set of admissible controls for

which these conditions hold. We require f to satisfy the constraint (3.3) almost

everywhere.

g(x) ≤ ψ(f(x), f ′(x), ..., f (n)(x)) ≤ h(x). (3.3)

We say almost everywhere because it will only be required that f be n times

piecewise continuously di�erentiable, and f ′ be Lipschitz continuous (n must be

greater than 1). The functions g and h are continuous real valued functions

de�ned on [x0, xf ]. The function ψ is a continuous vector valued function from

Rn into R. The functions g, h and ψ, as well as the dimension, n, of ψ will

be determined by the particular application. Assume g(x) ≤ h(x) ∀x ∈ [x0, xf ]
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so that there may exist an admissible f . For each x ∈ [x0, xf ], ψ is evaluated at

(f(x), f ′(x), ..., f (n)(x)) and must satisfy (3.3). The construction of this constraint

is intended to capture a broad range of design constraints one might encounter.

For example, in mechanical systems there may be constraints on the rate at which

f changes in order to control dynamic loads or to satisfy geometric constraints. We

will de�ne the set F as the set of all f satisfying (3.3) with Lipschitz continuous

�rst derivative.

An ordered pair (f, u) ∈ F × Ω will be referred to as a system design, and

a system design will be called admissible if a solution to equation (3.1) passing

through (x0, 0) at t0 is an admissible state trajectory. The cost associated with

an admissible system design is

J [u, f ] =

ˆ ∞
−∞

[u(t)]2 dt. (3.4)

An admissible system design (f ∗, u∗) is optimal if J [u∗, f ∗] ≤ J [u, f ] for all ad-

missible system designs. The problem is to �nd the optimal system design.

3.2 Existence of a control with bounded cost

The existence of a bounded cost control e�ort when f(x0) = 0 and f(xf )= 0 is

easily proven by considering the following control e�ort. Let u(t) = −αf(x1(t))−

6(2t−t0−tf )(x0−xf )/(t0−tf )3 on [t0, tf ] and zero everywhere else. This gives rise

to an admissible state trajectory. In particular, the resulting cubic x1 trajectory

satis�es (3.2). This control is constructed by �rst calculating the admissible cubic

x1 trajectory. We evaluate αf(x1(t)) along this trajectory and choose the �rst
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term of u(t) to feedback linearize the system. For the second term of u we add

ẍ1 for the cubic trajectory to u. It is easy to see that the control will give rise to

the desired trajectory. f(x1) is bounded on [x0, xf ] which guarantees that u(t) is

bounded on [t0, tf ]. Since f(x0) = 0 and f(xf )= 0, u(t) = 0 for t /∈ [t0, tf ]. Then

u(t) is bounded, continuous, and is only nonzero on a closed interval. Thus, (3.4)

is bounded. By this construction we can always �nd a control e�ort with bounded

cost if f(x0) = 0 and f(xf )= 0.

4 Optimality Conditions for the Control

Recall that in Section 2 we implemented classical optimal control techniques to

compute the minimum energy trajectory between the �xed points of a heteroclinic

orbit. Here we will apply the same techniques to (3.1) to represent the necessary

conditions of an optimal u on [t0, tf ] for a �xed αf in the form of a BVP. This

will allow us to �nd the optimal control for a �xed plant αf . This approach will

be used to run the inner loop of the system optimization.

To be clear, we are considering the dynamical system

ẋ1 = x2, ẋ2 = αf(x1) + u(t). (4.1)

with α > 0 and the cost functional

J [u] =

ˆ tf

t0

[u(t)]2 dt, (4.2)
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and boundary conditions

(x1(t0), x2(tf )) = (x0, 0), (x1(tf ), x2(tf )) = (xf , 0). (4.3)

The Hamiltonian for this system is then

H(x1, x2, u, p1, p2) = u2 +

〈 p1

p2

 ,

 x2

αf(x1) + u

〉 . (4.4)

From (2.4) we arrive at necessary conditions on an optimal u in the form of a

BVP:

ẋ1 = x2, ẋ2 = αf(x1)− p2/2,

ṗ1 = −αp2f ′(x1), ṗ2 = −p1, u = −p2/2,

(x1(t0), x2(t0)) = (x0, 0), (x1(tf ), x2(tf )) = (xf , 0).

(4.5)

4.1 Continuous dependence on parameters

It is shown in [8] that if there is a unique optimal control at a particular parameter

value α0, then the optimal control and state trajectory are di�erentiable with

respect to α at α0. Thus, they also depend continuously on α at α0. Then given

ε > 0 there exists α su�ciently close to α0 such that:

‖z(t, α)− z(t, α0)‖ < ε ∀t ∈ [t0, tf ], (4.6)
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where z = (x1, x2, p1, p2)
T .

4.2 Properties of the solution to (4.5) for small α

We now will point out an important property of the solution to (4.5). Let α = 0.

The solution, (x̃1, x̃2, p̃1, p̃2), to the system when α = 0 is easily solved and found

to be unique since (4.5) becomes linear. In particular we are interested in x̃2:

x̃2(t) =
6(t− t0)(tf − t)(xf − x0)

(tf − t0)3
. (4.7)

From (4.7) we see that x̃2(t) > 0 on (t0, tf ). From Section 4.1, solutions depend

continuously on α at α = 0. Then for any ε > 0 there exists a su�ciently small

|α| > 0 such that

|x2(t)− x̃2(t)| < ε ∀t ∈ [t0, tf ], (4.8)

where x2(t) satis�es (4.5). It follows that for α su�ciently small, x2(t) > 0

∀t ∈ (t0, tf ).

To prove the claim, suppose that there is no such α > 0. Then for all α > 0,

∃t∗ ∈ (t0, tf ) such that x2(t
∗) ≤ 0. From (4.7), x̃2(t

∗) > 0. Thus, for some ε > 0,

x̃2(t
∗) − x2(t

∗) = ε. This is a contradiction of (4.6). For the remainder of the

thesis we consider α to be small enough for this property to hold.

Next, x2(t) > 0 ∀t ∈ (t0, tf ) and ẋ1 = x2 implies that x1 is one-to-one on

[t0, tf ]. This is also proven by contradiction. Suppose that x1 is not one-to-

one on [t0, tf ]. Then there are two distinct points τ1 and τ2 in [t0, tf ] for which

x1(τ1) = x1(τ2) (assume without loss of generality that τ1 < τ2). Since x2 is
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continuous, x1 is di�erentiable. So by application of Rolle's Theorem [15] there

exists a time τ ∗ ∈ (τ1, τ2) ⊆ (t0, tf ) where ẋ1(τ
∗) = 0, and thus x2(τ

∗) = 0. This

is a contradiction of the previous observation that x2(t) > 0 ∀t ∈ (t0, tf ).

To demonstrate the monotonicity of the x1 trajectory solving (4.5), we consider

the minimum energy control for (2.5) with initial conditions (x1(t0), x2(t0)) =

(0, 0) instead of (x1(t0), x2(t0)) = (−π, 0) (i.e. the minimum energy pendulum

swing up problem). This problem is solved numerically using the same scheme as

in Section 2. By varying ωn we see that below some critical value, the x1 trajectory

is monotonic. Figure 4.1 shows how the state trajectory exhibits oscillations for

larger values of ωn.

0

0

5

Figure 4.1: Minimum energy trajectories for the �xed time pendulum swing up
problem. Solutions are computed for ω2

n equal to 0.5, 1, 2, and 4.

The purpose of this example is to demonstrate that the perturbation parameter

(ωn in this case) may be quite large before the optimal x1 trajectory loses its

monotonicity. Additionally, if we refer back to Figure 2.2 for the pendulum swing

12



around problem, we see that for all values of ωn considered, x1 was monotonic.

5 Optimality Conditions for the Plant

With a procedure to optimize the inner loop (control) of the nested optimization

we now consider the optimization of the plant. For each plant design considered

we must numerically solve a BVP to �nd the optimal control e�ort for that plant

design. Thus evaluating the cost of a particular plant design is computation-

ally expensive. For this reason the plant dynamics must be optimized e�ciently.

Theorem 5 will provide optimality conditions for an optimal plant design. The

following Lemmas are needed for the proof of Theorem 5.

Lemma 1. If a pair (f ∗, u∗) is optimal, then f ∗(x0) = 0 and f ∗(xf ) = 0; and if

no such plant design is admissible, then all designs have unbounded cost.

Proof. Suppose f ∗(x0) 6= 0 (An analogous argument holds for f ∗(xf ) 6= 0). Then

u(t) = −f(x0) ∀t ∈ (−∞, t0) so that the cost (4.7) is unbounded. This is a

contradiction since we have already established the existence of a bounded cost

solution when there is an admissible design with f ∗(x0) = 0 and f ∗(xf ) = 0.

Lemma 2. Suppose u∗ is an optimal control for the system. Then there is no

interval (τ1, τ2) ⊆ (t0, tf ) where u
∗(t) = 0 for all t ∈ (τ1, τ2).

13



Proof. Suppose there exists a time interval (τ1, τ2) where u
∗(t) = 0 for t ∈ (τ1, τ2).

Then u̇∗(t) = 0 for t ∈ (τ1, τ2) as well. Since u∗ = −p2/2 , then p2(t) = 0 and

ṗ2(t) = 0 for t ∈ (τ1, τ2). From equation (4.5) it follows that p1(t) = 0 and

ṗ1(t) = 0 for t ∈ (τ1, τ2), the costates will be zero for all t > τ1. Then the motion

of the system for t > τ1 is governed by

ẋ1 = x2, ẋ2 = αf(x1). (5.1)

From Lemma 1 and (5.1) the terminal state (xf , 0) will be a �xed point of the

system. Recall that x1(t) is one-to-one on [t0, tf ] and x(tf ) = xf . So for t ∈ (τ1, τ2)

, x1(t) 6= xf . Then x1(t) cannot reach the �xed point at xf in �nite time. Hence,

such a control would lead to an inadmissible trajectory.

Lemma 3. If u ∈ Ω, φ ∈ Cn(t0, tf ) and 〈u, ϕ〉L2[t0,tf ]
> 0, then for all ε ∈(

−2〈u,φ〉
‖φ‖2 , 0

)
, ‖u+ εφ‖L2[t0,tf ]

<‖u‖L2[t0,tf ]
(If 〈u, φ〉 < 0 then the statement is in-

stead true for ε ∈
(

0, −2〈u,φ〉‖φ‖2

)
).

Proof. For brevity the subscript L2[t0, tf ] will be dropped from norms and inner

products for the remainder of this calculation.

‖u+ εφ‖2 = 〈u+ εφ, u+ εφ〉

= 〈u, u〉+ 2 〈u, εφ〉+ 〈εφ, εφ〉

14



= ‖u‖2 + 2ε 〈u, φ〉+ ε2 ‖φ‖2 .

Notice that the right hand side of the equation is quadratic in ε. The quadratic

equation 0 = 2ε 〈u, φ〉 + ε2 ‖φ‖2 is convex with zeros at ε = −2〈u,φ〉
‖φ‖2 and ε = 0.

Without loss of generality, assume that 〈u, φ〉 > 0. Then 0 > 2ε 〈u, φ〉 + ε2 ‖φ‖2

for all ε greater than −2〈u,φ〉‖φ‖2 and less than 0. Then we conclude that

‖u+ εφ‖2 < ‖u‖2 ∀ε ∈
(
−2 〈u, φ〉
‖φ‖2

, 0

)
.

De�nition 4. The norm ‖·‖† acts on the function space Cn[x0, xf ] and is de�ned:

‖f‖† ≡ max
{

max {|f(x)|} , ...,max
{∣∣f (n)(x)

∣∣}} ∀x ∈ [x0, xf ]

Theorem 5. If (f ∗, u∗) are the optimal design, then for all x ∈ [x0, xf ], the

constraint (3.3) is active.

Proof. The proof is by contradiction. Suppose that (f ∗, u∗) are the optimal design,

and that at some point p ∈ [x0, xf ], (3.3) is not active. Then by the continuity

of ψ there exists a closed interval [a, b] containing the point p such that, h(x1) <

ψ(f(x1), f
′(x1), ..., f

n(x1)) < g(x1)∀x1 ∈ [a, b]. Again making use of the continuity

of ψ there exists a δ > 0 such that for all x1 ∈ [a, b], h(x1) < ψ(f(x1)± ε, f ′(x1)±

ε, ..., fn(x1) ± ε) < g(x1) (by ±ε we mean the ball in Rn of radius ε, centered

15



at (f(x1), f
′(x1), ..., f

n(x1)) in the ∞-norm). Consider any φ ∈ Cn[a, b] where

φ(x) = 0 for x1 /∈ (a, b). Then for δ satisfying 0 < δ ≤ ε/ ‖φ‖† , h(x) < C(f(x1)±

δφ(x1), f
′(x1)± δφ′(x1), ..., fn(x1)± δφn(x1)) < g(x1) ∀x1 ∈ [a, b].

Now suppose we wanted to maintain the same trajectory as in the optimal

design with the plant design perturbed by δφ. Then the control e�ort must be

modi�ed to account for the change in the plant design. That is,

αf ∗(x∗1(t)) + u∗(t) = αf ∗(x∗1(t)) + δαφ(x∗1(t)) + u∗(t) + η(t),

⇒ η(t) = −δαφ(x∗1(t)).

Since x1(t) is one-to-one on [t0, tf ] it is not di�cult to construct φ so that

〈u∗(t), αφ(x∗1(t))〉L2(t0,tf )
6= 0. For example, one could choose φ to satisfy

sgn (φ(x∗1(t))) = sgn (u∗(t)) while x1(t) is on the interval (a, b). De�ne ta and tb

by x∗1(ta) = a, x∗1(tb) = b. From Lemma 2 u(t) 6= 0 for all t on [ta, tb]. It then

follows from the construction of φ and the properties of u that u∗(t)φ(x∗1(t)) > 0

on [ta, tb] which implies 〈u∗(t), αφ(x∗1(t))〉L2(t0,tf )
> 0. Now applying Lemma 3 we

know that we can �nd ε ≤ δ/ ‖φ‖† such that ‖u∗ − εαφ‖L2(t0,tf )
< ‖u∗‖L2(t0,tf )

and

thus, ‖u∗ + η‖L2(t0,tf )
< ‖u∗‖L2(t0,tf )

. Then there exists a perturbation from our

optimal plant design with a lower cost control. This is a contradiction, and hence

the constraints on f must always be active.

It immediately follows from the proof of Theorem 5 that if the plant has no

constraints other than a Lipschitz continuous �rst derivative, then an optimal

system design does not exist.
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The optimality conditions proven in Theorem 5 reduce the computational ex-

pense of optimizing the plant design by restricting the optimization to a subset

of F . The subset of the plant design space F where the optimality conditions are

satis�ed will be denoted F̃ .

6 Applications to Mechatronics

Here we describe a simple linear actuation system whose dynamics can be chosen

from a large design space. This example illustrates the ideas presented in this

thesis.

6.1 Description of the device

Consider the mechatronic system shown in Figure 6.1 for linear actuation of a

mass between two con�gurations.
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Figure 6.1: An actuator provides the control force to the system while the cam
assembly provides the desired nonlinear dynamics. The center two pivots allow the
cam follower to track the cam pro�le while the outer pivots are linked together (not
shown) so the distance between the two is �xed. This design feature prevents radial
loads from being transmitted to the drive shaft as a result of small di�erences in
spring rate of the two springs.

A conventional linear actuator provides a control force directly to the mass

through a rigid connection. Coupled in parallel to the actuator is a cam and

spring mechanism intended to project a force in the direction of motion that

assists the control by appropriate design of the cam. The cam is �xed to the shaft

that drives the mass. The cam followers are preloaded against the cam by coil

springs and their motion is constrained so that they can only move normal to
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the motion of the mass. We will assume the cam followers are frictionless and of

negligible mass.

6.2 Equations of motion

The displacement x1 shown in Figure 6.1 measures the con�guration of the system.

The state of the system can be described by the ordered pair (x1, x2) where x1

gives the con�guration and x2 the velocity. It will be assumed that the mass of the

payload is much larger than the mass of any other moving parts. The mechanism

provides a force f(x1) on the mass that depends on the con�guration. The linear

actuator provides the control force u(t) on the mass. The resulting equations of

motion are then

ẋ1 = x2, ẋ2 = f(x1) + u(t). (6.1)

Now we will calculate how the choice of cam will a�ect the dynamics and

derive the design constraints. Let k be the combined spring constant of the springs

providing force to the cam followers. Let H(x1) be the displacement of the center

of each cam follower away from the rigid shaft with respect to the con�guration.

Note that the mechanism is symmetric, so each of the cam followers will be of

equal distance from the shaft at any particular con�guration. Let H(x0) = 0

(recall that x0 is one of the target con�gurations described in Section 3). Let r be

the radius of the cam follower, and let p(s) describe the cam pro�le with respect

to the contact location s. By examining Figure 6.2 it is clear that s is not always

equal to x1. However, it is not di�cult to compute p(s) given H(x1) and vice

versa, so it is su�cient to design the mechanism in terms of H(x1) and compute
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p(s) for the manufacture of the cams.

Figure 6.2: The cam pro�le, p(s), and the cam follower path, H(x1), are dis-
tinguished. By varying the contact angle a component of the contact force is
projected in the direction of motion x1.

We can now compute the force that this setup produces in the direction of

motion. A simple calculation yields f(x1) = k(H(x1) + δ0)H
′(x1), where δ0 is

the de�ection of the spring at the initial con�guration. We will assume that

δ0 � H(x1) throughout the interval [x0, x1] so that k(H(x1)+δ0) is approximately

a constant F0:

f(x1) = F0H
′(x1). (6.2)

The results are unchanged without this assumption, but the calculations become

tedious. Note that the curvature of the cam follower path is given by

κ(x1) = H ′′(x1)/
(

1 + [H ′(x1)]
2
)3/2

. (6.3)

In reference to Figure 6.3, we see that the minimum curvature of the path taken by
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the cam follower is −1/r at a corner in the cam pro�le. The maximum curvature

of ∞ takes place as the curvature of the cam equals the curvature of the follower.

To control impact and Hertzian contact stress the constraints are modi�ed by

adding a tolerance, ε > 0. The constraint on curvature is then

−1/(r + ε) ≤ κ(x1) ≤ 1/ε. (6.4)

We can now express the constraint on the the curvature of the cam follower path in

terms of the force projected in the direction of motion. Combining equation (6.3)

and equation (6.4), the constraint on curvature in terms of the cam follower path

is
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Figure 6.3: An illustration of the limitations on the cam follower path's curvature.
As the cam follower passes over a corner, it attains its minimum curvature. Al-
ternatively, as the cam pro�le's curvature becomes equal to the curvature of the
cam follower, the curvature of the cam follower's path becomes unbounded.

− 1

r + ε
≤ H ′′(x1)(

1 + [H ′(x1)]
2
)3/2 ≤ 1

ε
. (6.5)

Substitution of equation (6.2) yields

− F0

r + ε
≤ f ′(x1)(

1 +
(

f(x1)
F0

)2)3/2
≤ F0

ε
. (6.6)

Observe that this constraint takes the form of equation (3.3). Additionally, to

apply the results of the previous section to this problem, for f(x1) satisfying (6.6)

to be an admissible plant design we also require that f ′(x1) be Lipschitz. Without
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this restriction, H(x1) could be chosen to have �xed curvature (think of a circular

arc). This would be admissible but f(x1) could grow unbounded on the interval

[x0, xf ]. This would lead to unbounded contact stress between the cam surface

and cam follower. Requiring Lipschitz continuity eliminates this possibility.

6.3 Control objective

The control objective is to maintain the state (x1, x2) = (x0, 0) on (−∞, t0). Then

on [t0, tf ] the control must transfer the state to (x1, x2) = (xf , 0). The control

then holds the system at (xf , 0) on (tf ,∞). The goal is to design f(x1) and u(t)

subject to the constraints so that this task is completed while minimizing the

energy cost.

6.4 Applying the plant optimality conditions

The following calculation uses Lemma 1 to �nd a condition on the curvature of

the cam follower path:

ˆ xf

x0

H ′′(x1)(
1 + [H ′(x1)]

2
)3/2 dx1 = H ′(xf )√

1 + [H ′(xf )]
2
− H ′(x0)√

1 + [H ′(x0)]
2
. (6.7)

Making a substitution from (6.2) we have

ˆ xf

x0

H ′′(x1)(
1 + [H ′(x1)]

2
)3/2 dx1 = f(xf )/F0√

1 + [f(xf )/F0]
2
− f(x0)/F0√

1 + [f(x0)/F0]
2
. (6.8)
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Then applying Lemma 1 we have

ˆ xf

x0

H ′′(x1)

(1 +H ′(x1)2)
3/2

dx1 = 0. (6.9)

This is a useful constraint to place on the design space.

Next, Theorem 5 with (6.6) implies

f ′(x1)√(
1 +

(
f(x1)
F0

)2)3
= − F0

r + ε
or

f ′(x1)√(
1 +

(
f(x1)
F0

)2)3
=
F0

ε
∀x ∈ [x0, xf ].

(6.10)

An equivalent way to express this condition is to express it in terms of the curva-

ture of the cam follower path.

κ(x) = − 1

r + ε
or κ(x) =

1

ε
∀x ∈ [x0, xf ]. (6.11)

Now since κ(x) is limited to two values for this problem, (6.9) can then be written

in the form ˆ xf

x0

κ(x)dx = a

(
1

ε

)
− b

(
1

ε+ r

)
= 0, (6.12)

where a and b describe the total length in x1 that have κ(x1) = 1/ε and κ(x1) =

− 1
ε+r

, respectively. Next we can solve for a and b using

a+ b = xf − x0. (6.13)

Combining (6.12) and (6.13) yields

a = ε
(xf − x0)
r + 2ε

, b = (xf − x0)− ε
(xf − x0)
r + 2ε

. (6.14)
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6.5 A hypothesis

We now make the hypothesis that an optimal plant will connect the target states

with a heteroclinic orbit, and that the variation in potential energy of the plant

across [x0, xf ] will be maximized. This hypothesis is based on the observations

in Section 2 that when a heteroclinic orbit was introduced between the target

states (via the pendulum potential), the energy cost associated with the point-to-

point control decreased. Moreover, the cost continued to decrease as the change

in potential energy across [−π, π] was increased. In the context of this example

we will now show that a heteroclinic orbit will connect (x0, 0) and (xf , 0) if and

only if the following constraints are satis�ed:

0 = H(x0) = H(xf ) = H ′(x0) = H ′(xf ),

H ′′(x0) > 0, H ′′(xf ) < 0.

(6.15)

If 0 = H(x0) = H(xf ) the potential energy of the spring is the same at (x0, 0) and

(xf , 0), and thus the total energy is the same. Then if 0 = H ′(x0) = H ′(xf ), (x0, 0)

and (xf , 0) will be �xed points of equal total energy. Lastly, if H ′′(x0) > 0 and

H ′′(xf ) < 0 then (x0, 0) and (xf , 0) will be saddle points. Since the plant dynamics

conserve the total mechanical energy (without the in�uence of the control), (x0, 0)

and (xf , 0) will be connected by a heteroclinic orbit. Conversely, suppose that any

one of the conditions in (6.15) is not satis�ed. Then one of the following will occur:

at least one target state will not be unstable, or at least one target state will not

be an equilibrium of the plant, or the target states will not be on the same level

set of the conserved quantity (mechanical energy).

25



Now consider the follower curvature satisfying the plant optimality conditions

and that connects the target states with a heteroclinic orbit:

κ(x1) =


− 1
r+ε

1
ε

− 1
r+ε

∀x1 ∈
[
x0,

xf−x0
2
− ε(xf−x0)

2(r+2ε)

)
∀x1 ∈

[
xf−x0

2
− ε(xf−x0)

2(r+2ε)
,
xf−x0

2
+

ε(xf−x0)
2(r+2ε)

]
∀x1 ∈

(
xf−x0

2
+

ε(xf−x0)
2(r+2ε)

, xf

]
This is the unique plant design satisfying both the optimality conditions and the

hypothesis. This is understood most easily by examining Figure 6.5 and 6.6.

Without a proof of the hypotheses, numerical methods are implemented to

validate the optimality of the plant design.

6.6 Numerical validation of optimal plant design

When the set F̃ , de�ned in Section 5, is considered we see that κ(x1) is not

necessarily continuous. There can be any number of discontinuities in κ(x1) on

[x0, xf ]. To numerically validate the optimality of the design in Section 6.5 we

will approximate κ(x1) as having �nitely many discontinuities. We will further

approximate the design space by describing κ(x1) in the following way: κ(x1)

will have M square pulses of equal length a
M
, and there can be no overlap of the

square pulses. This �nite dimensional approximation to the design space F̃ will be

denoted F̃M . An example of an admissible curvature, κ ∈ F̃M , is shown in Figure

6.4. The location of each pulse will be described by the design variable yi.
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Figure 6.4: An example of κ(x) in the approximation to the design space where
the resulting plant would be admissible and satisfy the necessary conditions given
in Lemma 1 and Theorem 5.

The constraint that the pulses can have no overlap can be expressed as:

gi(y) ≡ yi − yi+1 +
a

M
≤ 0 i = 0, 1, 2, ...,M − 1. (6.16)
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The vector y in (6.16) is the M − tuple of values yi. The problem has now been

approximated by a �nite dimensional one.

To validate the candidate plant design the following numerical experiment was

conducted to check the Karush-Kuhn-Tucker (KKT) condition [11], which is an

optimality condition that is frequently used in constrained optimization problems.

6.7 Numerical results

Table 1 shows the values chosen for the numerical experiment.

x0 xf t0 tf F0 ε r mass M

0 1 0 1.5 1 0.1 0.8 1 5

Table 1: The numerical values chosen for the optimization problem.

To compute the cost of a candidate plant design the optimal control e�ort for

that particular plant was computed by solving (4.5) numerically using a shooting

method with the Nelder-Mead simplex method to �nd boundary conditions for

the co-state variables. Next the control e�ort generated by the solution is used to

calculate the cost of the design according to the cost functional (3.4).

In order to check the KKT condition it is necessary to numerically compute the

gradient of the cost functional with respect to the parameters of the approximated

plant design space. The approach taken is to use a central di�erence approxima-

tion to �nd the derivative of the cost in the direction of each design variable. For

this experiment the dimension of the approximated design space is �ve.
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∂J
∂y1

∂J
∂y2

∂J
∂y3

∂J
∂y4

∂J
∂y5

0.0650 0.0875 0.0350 0.1175 -1.0875

Table 2: Central di�erence approximation for the gradient of the cost functional
evaluated at the candidate solution.

Clearly by the construction of this candidate solution all constraints of (6.16)

are active so the KKT conditions can be expressed as

∂J
∂yi

+
∑M−1

j=1 λj
∂gj
∂xi

= 0 i = 1, 2, ...,M,

λj > 0 j = 1, 2, ...,M − 1.
(6.17)

If we de�ne G as

G =



∂g1
∂x1

∂g2
∂x1

· · · ∂gM−1

∂x1

∂g1
∂x2

∂g2
∂x2

...
. . .

∂g1
∂xM

∂gM−1

∂xM


, (6.18)

then (6.17) can be written as

Gλ = ∇J. (6.19)

We can then solve for λ:

λ =
(
GTG

)−1
GT∇J. (6.20)

Combining the numerical values from table 2 into (6.20), the solution for λ is

λ = [0.2215 .4655 0.6570 0.9310].

Since all values of λ are greater than zero, the KKT conditions are satis�ed. The

numerical results suggest that the proposed plant design along with a control
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satisfying (4.5) will indeed yield the optimal system design. Figure 6.5 plots the

curvature of this design.

x0 a b xf

min

0

max

Figure 6.5: Plot of optimal cam curvature satisfying the KKT conditions. a

indicates the location x =
xf−x0

2
− ε(xf−x0)

2(r+2ε)
and b indicates the location x =

xf−x0
2

+
ε(xf−x0)
2(r+2ε)

.

The resulting cam, plotted in Figure 6.6, illustrates how the constraints de-

scribed in Figure 6.3 are active throughout the cam followers path. It is clear by

examining Figure 6.6 that the optimal cam design is the one which attains the

greatest decrease in spring de�ection between the target states while satisfying

the optimality conditions. Equivalently, this is the design which maximizes the

change from potential to kinetic energy during a switch.
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Figure 6.6: An illustration of the optimal cam follower path. The dotted and
dashed line show the cam follower path at maximum and minimum curvature re-
spectively. Arrow (a) indicates the cam pro�le for the corresponding cam follower
path. Arrow (b) indicates the system con�guration determined by the center of
the cam follower, while arrow (c) indicates the contact location of the cam follower
with the cam surface for the illustrated con�guration.

Without any in�uence from the control, the state trajectories would lie on the

level sets of the plant Hamiltonian. In Figure 6.7 we see how the optimal control

gives rise to a trajectory makes use of the plant dynamics to execute the control

objective.
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Figure 6.7: The optimal state trajectory (in bold) is plotted over the level sets of
the Hamiltonian (mechanical energy) of the optimal plant design to demonstrate
how the optimal trajectory tends to follow the natural motion of the plant.

7 Discussion and Conclusions

System optimization plays an important role in improving the performance of ex-

isting technologies. While the sequential design method can produce satisfactory

system performance, it is not guaranteed to yield an optimal system design. In

this thesis we considered a nested optimization strategy to simultaneously opti-

mize the plant and control, where each was an element of an in�nite dimensional

space. This presented a computationally expensive optimization even with just a

one degree-of-freedom system.

The primary result of this thesis was to present necessary conditions of an

optimal system design to reduce the complexity of the numerical optimization.
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We began by studying point-to-point control of a plant with pendulum dynamics.

It was shown numerically that by increasing the natural frequency, the energy cost

of actuating the system between unstable equilibria decreased. This provided the

intuition that a mass can be actuated between two con�gurations with less energy

when the two con�gurations are connected by a hetereoclinic orbit.

Then we considered the problem of optimizing the plant and control within

in�nite dimensional spaces and found that a system optimality condition was that

the optimal plant could not lie on the interior of the design space. This result was

applied to optimize an electromechanical system with minimal numerical investi-

gation.

While the necessary conditions presented are applicable to many simultaneous

plant and controller design problems, they are limited to problems where the plant

and controller are both in an in�nite dimensional space. As a next step we may be

able to extend these results to �nite dimensional problems under some additional

assumptions. Another point of further research would be to generalize the results

to systems with n degrees-of-freedom, and m constraints of the form of (3.3).
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