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Abstract

Coarse-Grained Analysis of Collective Motion in Animal Groups

by

Allison Kolpas

In this dissertation, we present a framework for the coarse, population-level analysis

of the collective motion of animal groups whose dynamics are described by models

at the individual-level.

For a one-dimensional model of self-organized group formation, we observe

stochasticity-induced switching between two metastable collective motion states.

We characterize the behavior of this system with a single dynamically meaningful

“coarse observable” whose dynamics are described by an effective Fokker-Planck

equation. This leads to the construction of an effective potential, which is used

to locate metastable states, determine their parametric dependence, and estimate

mean switching times between the states. Both empirical and automated, data-

driven techniques are used to find suitable coarse observables. For the empirical

observable, a “lifting” procedure is presented, which enables more efficient estima-

tion of the drift and diffusion terms in the Fokker-Planck equation through short

bursts of appropriately initialized simulations.

We then present a continuous-time model for two interacting agents with cou-

pled oscillator dynamics, and consider how to design interaction rules which si-
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multaneously stabilize different collective motion states. Variational methods are

used to determine the optimal input to the steering control of one of the agents

which leads to switching between these collective states. Existence and uniqueness

of the optimal input is proved, and a transition time symmetry between different

switching problems is identified.

Finally, we explore the relationship between spatial position and information

transfer in fish schools. We present a two-dimensional individual-based model for

fish schooling, and use a cross-correlation function to quantify how perturbations

in the headings of individual members affects the dynamics at the population-level.

We find that as schools become polarized, they respond more strongly and rapidly

to perturbations. Furthermore, individuals in the second quartile, as measured by

rank, induce the largest response and thus have more “control” over the group

motion.

Overall, the techniques and analysis described in this dissertation allow us to

gain a new level of understanding and quantification of biological self-organization

by bridging individual-based modeling with coarse, population-level analysis.
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Chapter 1

Introduction

1.1 Self-Organization

Many organisms move collectively in groups such as schools of fish, flocks of

birds, herds of wildebeest, and swarms of locusts [11, 62, 83, 85, 98, 101]. Often such

groups are self-organized, that is, the collective motion arises from local interactions

of individual agents with their neighbors, without any regard to a leader, template,

or other external cue [11]. The number of individuals involved in such collective

motion can be huge, from several hundred thousand wildebeests migrating on the

Serengeti plain to millions of Atlantic cod off the Newfoundland coast. Despite

these large numbers, the group can seem to move as a single organism, with all

individuals rapidly responding to their neighbors to maintain the collective motion.

Self-organized animal groups are believed to be maintained through simple pos-

itive and negative feedback mechanisms at the individual level such as behavioral
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matching (allelomimesis), repulsion, and attraction [8, 11, 57, 85]. The ability to

sense and communicate with one’s neighbors is crucial for group formation and

maintenance. For fish schooling, it is believed that vision and the lateral line,

an organ sensitive to changes in water pressure, are the main sensory systems in-

volved [85, 87]. Signalling is often an important communication tool. For example,

flocks of birds may use vocal cues to coordinate group motion [106], while chemical

signals are used by a variety of groups including colonies of ants [8] and cellular

slime molds [50].

Group living is often advantageous, allowing individuals to increase their har-

vesting efficiency [64, 85], better follow migration routes [18, 37], improve their

aerodynamic efficiency [65, 105], and avoid predation [23, 73]. However, the costs

and benefits of group membership are not evenly distributed among members [83].

For example, individuals located near the front of a fish school are more likely to

maximize their food uptake but may have a greater risk of predation [55]. For

birds flying in a Vee formation, the lead bird saves less energy than those trailing

behind [2].

Groups are capable of performing complex tasks not possible at the individual

level such as pattern formation, decision making, and information processing [8,

11, 21]. For example, schools of fish may display a variety of complex patterns

in response to a predator such as compression, hourglass, vacuole, fountain, or

flash expansion [84]. Ant colonies are capable of making decisions such as choosing

between food sources and nest sites as well as selecting the shortest path between
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them [8]. Animals traveling in polarized groups, such as fish schools and bird

flocks, act as an integrated array of sensors, capable of processing and transferring

information such as the location of resources or predators [17].

Animal groups can quickly and efficiently transition between different behav-

ioral patterns. These transitions could be due to changing behavioral rules, environ-

mental factors including introduction of predators, or stochastic effects. Different

collective behaviors serve different functions. For example, a school of fish might

be composed of individuals all approximately swimming in the same fixed direction

(e.g., to find food), later changing to a state in which individuals move in a swarm

(e.g., for food uptake).

It is of fundamental importance to understand how and why animal groups

change between different collective states and how individual decisions effect the

group dynamics. Questions of this nature arise in the control and prediction of

locust swarm outbreaks, management of over fishing, crowd and traffic control in

human populations, as well as the design and control of unmanned vehicles and

sensor networks.

1.2 Modeling

Many different types of mathematical models have been formulated to analyze

and predict the collective dynamics of self-organizing animal groups, see e.g., [3,

19, 25, 77, 90, 100, 102]. Such models can be classified into two main categories:

population-based and individual-based.
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Population-based or “Eulerian” formulations use partial differential equations

to model the dynamics of a group. In animal aggregation, the evolution of the

population density and velocity vector field are modeled as nonlinear partial dif-

ferential equations [100]. Population-based models are typically constructed a pri-

ori [24, 68, 100] since coarse-graining from individual-level formulations is diffi-

cult [99]. Analytical progress, such as the derivation of conditions for existence

and uniqueness of solutions as well as stability analysis, is often possible using the

theory of partial differential equations.

In individual-based “Lagrangian” formulations, the dynamics of each interacting

agent is prescribed. Individual-based formulations are used most often in modeling

animal aggregation because they provide a natural description of the system as

a set of interacting agents, can be more readily linked to experimental data, and

are quite flexible [7]. Individual-based models can be further classified into two

categories: continuous-time and discrete-time.

Continuous-time models of collective motion at the individual-level use coupled

ordinary or stochastic differential equations to describe the evolution of a group

of interacting self-propelled particles 1 in time. In some cases, equations for the

positions and velocities of the agents are formulated using Newton’s laws, where

individuals react to forces by accelerating [28, 69]. In other cases, models are

used which prescribe equations for the positions and headings of agents traveling

at constant speed so that they can maneuver by steering but not by speeding

1In the physics literature individuals are commonly referred to as “particles”, while in the
engineering community the term “agents” is commonly used.
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up or slowing down [82]. Some analytical progress has been made using mean-

field approximations [88], and when models are proposed as gradient systems [69]

or with coupled oscillator dynamics [95], however numerical simulations are more

commonly employed.

Discrete-time individual-based or agent-based models use update rules to simu-

late the movement of agents in discrete units of time [19, 43, 45, 91, 102]. Agent-

based models can incorporate biologically realistic behavioral responses and social

interactions that might be discontinuous (e.g., characterized by thresholds or if/then

rules) or stochastic in nature, support complex network topologies, and allow for

individual variability. Most importantly, they allow one to study the relationship

between adaptive behavior at the individual-level and emergent phenomena at the

population-level [36]. Most analysis of discrete-time individual-based models re-

lies on computationally expensive long-time equilibrium simulations which can be

difficult to interpret and analyze [3, 19, 43, 102].

1.3 Aims and Scope

In this dissertation, our aim is to develop mathematical and computational

methods for the analysis of the collective dynamics of animal groups described by

models at the individual-level. Both discrete and continuous-time models are pre-

sented and analyzed using coarse-grained computation and theory from stochastic

processes and dynamical systems. We focus our attention on understanding the

mechanisms of switching between different collective states, including the role of
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spatial position on information transfer.

In Chapters 2 and 3 we will show how repeated switching between distinct col-

lective states can occur entirely because of stochastic effects. Here we formulate

a one-dimensional individual-based model for self-organized group formation and

develop methods for efficient analysis of the population-level dynamics using coarse-

grained computation. The group behavior is characterized with a single observable

whose dynamics are described by an effective Fokker-Planck equation. Both em-

pirical (Chapter 2) and automated, data-driven (Chapter 3) techniques are used to

identify a suitable coarse observable. With this formalism, an effective potential

is constructed as a function of the coarse observable and used to perform coarse

bifurcation analysis, by locating metastable collective states and their parametric

dependence, and estimate mean switching times. Such an approach allows one

to quantify how collective behavior at the population-level emerges from simple

interaction laws at the individual-based level.

In Chapters 4 and 5 we will present a continuous-time kinetic model for two

interacting agents with coupled oscillator dynamics that is amenable to analysis.

In Chapter 4, we derive conditions for the existence of bistability between coherent

and incoherent motion. In the bistable regime, with the addition of noise, the

system exhibits switching between collective motion states. An effective potential

is derived analytically and the results are compared with estimates obtained using

the coarse-grained computational framework of Chapter 2. In Chapter 5, we will

solve for the optimal input to the heading control of one of the agents to induce

6



switching between the different collective states. We identify a transition time

symmetry between switching problems and prove the existence and uniqueness of

an optimal input.

For the one-dimensional schooling model developed in Chapters 2 and 3, we

note that transitions often begin with a stochastic change in the heading of an

individual at the edge of a school which then propagates throughout the rest of

the school. In Chapter 6, we explore the role of spatial position with respect

to information transfer for a two-dimensional individual-based schooling model.

Here, we identify the best “control” positions using a cross-correlation function

to measure the response of a school to internal perturbations in the heading of

individual members. Unlike the one-dimensional schooling model, we find that

individuals in the middle and not the edge propagate information most efficiently.
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Chapter 2

Coarse Analysis of

Stochasticity-Induced Switching

in an Individual-Based Schooling

Model

2.1 Introduction

One class of biologically motivated individual-based models for group forma-

tion, frequently used for schooling fish, abstracts animal behavior by placing zones

around individuals in which they respond to others through repulsion, alignment,

and/or attraction [3, 19, 20, 45, 84, 89, 93, 104]. In the three-dimensional model of

Couzin et al. [19], interactions take place within three concentric zones around an
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individual: a “zone of repulsion”, “zone of orientation”, and “zone of attraction”,

the latter two excluding a blind volume behind the individual for which neighbors

are undetectable. Stochasticity is included to account for imperfect sensing and

processing. For different values of the parameters (width of the behavioral zones),

long-time steady state computations revealed four different types of stable collec-

tive behaviors: swarm, torus (milling), dynamic parallel, and highly parallel; see

Figure 2.1. For certain values of the parameters, bistability was observed between

the dynamic parallel and the milling behaviors with hystersis, that is, the previous

history of the group behavioral pattern influences the collective behavior of the

group as parameters related to individual-level behaviors change.

In [19], stochasticity is incorporated by adding noise (with probability p = 1) at

each time step to an agent’s desired heading, determined by its interactions with

neighbors within the three zones. In practice, this is performed by drawing a new

direction of travel from a spherically wrapped normal distribution of small variance

centered about the agent’s desired heading. If instead noise is added to an agent’s

desired heading with probability p < 1 and drawn from a spherically wrapped nor-

mal distribution with relatively large variance, then for certain regions of parameter

space, multiple successive transitions between the torus and the dynamic parallel

state can occur; see Figure 2.2. Such “stochasticity-induced” switching demon-

strates a mechanism for which a school can change between different collective

states, without a need for a change in the quantitative features of the behavioral

rules of all of the individual members.
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In this chapter, we will study such stochasticity-induced transitions in a cor-

responding one-dimensional version of the individual-based schooling model. The

model exhibits repeated stochasticity-induced switching between two distinct or-

dered collective motion states, a mobile state, in which the school travels in the

positive or negative direction, and a stationary state, in which the dynamics are

driven by repulsion, and the school remains approximately stationary in time. This

switching is similar in nature, but different in detail, from results obtained using

other such models of group formation. In those cases, collective motion transitions

between symmetry-related states (e.g. between clockwise and counterclockwise mo-

tions for marching locusts constrained to a ring [10], or the “alternating flock”

in [79, 88]), stochastically-driven transitions between ordered and disordered states

mediated by clustering [43], mixed phase states at phase transition boundaries [35],

or transitions which do not occur repeatedly [28] were observed.

To analyze the dynamics of the one-dimensional schooling model, we will use

coarse-grained computation. Although the interactions among individuals are com-

plicated, the group’s collective behavior is quantifiable in a simple way. We char-

acterize this with a single coarse observable, A(t), a scalar variable which measures

the average distance to an agent’s nearest neighbor, quantifying the global structure

of the school. We show computational evidence to support that A(t) parameterizes

a one-dimensional, attracting, invariant slow manifold, which correlates with the

steady-state dynamics of the system. This, along with further numerical verifica-

tion of the statistical properties of A, suggests that A obeys an effective Langevin
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equation, or equivalently its probability distribution P (A) obeys an effective Fokker-

Planck (FP) equation, whose drift and diffusion coefficients are determined by the

short-time evolution of the first two moments of A. We locally estimate these co-

efficients by developing a lifting algorithm which enables efficient estimation of the

drift and diffusion terms through short bursts of appropriately initialized simula-

tions [51]. This framework allows us to construct an effective potential, thereby

enabling coarse bifurcation analysis and estimation of the mean residence times in

each collective state. Local estimation of the FP coefficients through the use of the

lifting algorithm allows us to perform such coarse analysis without the need for com-

putationally expensive “long-time” equilibrium simulations of the individual-based

model.

2.2 The Model

N agents with positions ci(t) and unit directions v̂i(t) = ±1, i = 1, . . . , N ,

move on the line with constant speed s. Every time step τ , individuals simulta-

neously determine their direction of travel by considering neighbors within three

non-overlapping zones, the zone of repulsion Zri(t) = (ci(t)− rr, ci(t) + rr), zone of

orientation Zoi(t) = (ci(t) − ro, ci(t) + ro) \ Zri(t), and zone of attraction Zai(t) =

(ci(t) − ra, ci(t) + ra) \ (Zri(t) ∪ Zoi(t)), where rr is the radius of repulsion, ro the

radius of orientation, and ra the radius of attraction. We denote the width of the

zone of orientation as ∆ro = ro − rr, and the width of the zone of attraction as

∆ra = ra − ro. See Figure 2.3 for a schematic diagram of these behavioral zones.
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Figure 2.3: Behavioral Zones for the 1D Model

These zones are used to define rules which are abstractions of the behavioral

tendencies seen in animals groups in nature, the first being that animals tend to

repel away from those that are too close, and the second that, if they are not so

repelled, they tend to align with and feel an attraction towards their neighbors [57,

85]. Specifically, if individual i finds other agents within its zone of repulsion, then

it orients its direction away from the average relative directions of those agents. Its

desired direction of travel in the next time step is given by

vi(t+ τ) = −
∑

cj(t)∈Zri (t)
i6=j

cj(t) − ci(t)

|cj(t) − ci(t)|
. (2.1)

This vector is normalized as v̂i(t+ τ) = vi(t+τ)
|vi(t+τ)|

, assuming vi(t+ τ) 6= 0. In the case

that vi(t + τ) = 0, agent i maintains its previous direction of travel as its desired

direction of travel, giving v̂i(t+ τ) = v̂i(t).

If individual i does not find agents within its zone of repulsion, it aligns its

direction toward an equally weighted combination of the average direction of itself

and those within its zone of orientation, oi(t), and the average relative direction of

those within its zone of attraction, ai(t). Its desired direction of travel in the next

time step is given by
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vi(t+ τ) = oi(t) + ai(t), (2.2)

where,

oi(t) =

v̂i(t) +
∑

cj(t)∈Zoi (t)

v̂j(t)

∣∣∣∣∣v̂i(t) +
∑

cj(t)∈Zoi (t)

v̂j(t)

∣∣∣∣∣

, ai(t) =

∑
cj(t)∈Zai (t)

cj(t)−ci(t)

|cj(t)−ci(t)|

∣∣∣∣∣
∑

cj(t)∈Zai (t)

cj(t)−ci(t)

|cj(t)−ci(t)|

∣∣∣∣∣

. (2.3)

The total contribution from orientation and alignment is then normalized as

v̂i(t+ τ) = vi(t+τ)
|vi(t+τ)|

, assuming vi(t+ τ) 6= 0. As before, if vi(t+ τ) = 0, then agent

i maintains its previous direction of travel. Stochastic effects are incorporated into

the model by changing the sign of agent i’s desired direction with probability p.

Finally, each agents’ position is updated simultaneously according to

ci(t+ τ) = ci(t) + sv̂i(t+ τ)τ. (2.4)

To begin a simulation, N individuals are placed randomly on the interval [−N
4
, N

4
]

with random directions, chosen so that each agent initially interacts with at least

one other agent.

In certain regions of parameter space, the model can display two metastable co-

hesive collective states which we call stationary and mobile. In the stationary state,

the individual dynamics are driven by repulsion. The school remains approximately

stationary in time as agents on average change their direction at each time step in

order to avoid neighbors to the right or left. We interpret this ordered stationary

state as a one-dimensional analog of circular milling behavior. In the mobile state,
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Figure 2.4: (a) Positions of N = 100 fish for a 104 step run, with parameters: s = 0.75,τ = 0.1,
rr = 1, ∆ro = 0.6, ∆ra = 1, p = 0.001, blue (resp., red) indicates an agent moving in the negative
(resp., positive) direction. (b) Corresponding time series plot of the coarse variable A(t), average
distance to nearest neighbor.
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the individual dynamics are driven by orientation and attraction, and the school

coherently travels in the positive or negative direction. This is the one-dimensional

analog of parallel motion. For certain values of the parameters we find “stick/slip”

behavior in which the school alternates at apparently random times between the

stationary and mobile state; such transitions arise from random fluctuations in

the directions of individuals because of the stochasticity in the model. See Figure

2.4(a). In what follows, we focus primarily on parameters for which both the sta-

tionary and mobile states are metastable and the probability of fragmentation of

more than a few individuals from the group is low.

2.2.1 Coarse Observable

Through simulations we are led to hypothesize that the dynamics of the model

can be suitably characterized by a single coarse observable A(t), the average nearest

neighbor distance

A(t) =
1

N

N∑

i=1

min
i6=j

|cj(t) − ci(t)|. (2.5)

This variable has been previously used in fish schooling models as a measure of

the global structure of the school [45]. A(t) can distinguish between the stationary

and mobile states as long as the school is not fragmented into subgroups displaying

different collective dynamics. When the system is in the stationary state, typically

A(t) < rr (repulsion driven), and when the system is in the mobile state, typically

A(t) > rr (orientation and attraction driven). Thus A(t) seems to capture the

collective behavior of the school. See Figure 2.4(b). In Chapter 3 we will discuss
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an automated, computer-assisted approach for the generation of appropriate coarse

observables.

2.2.2 Computational Observations

For our simulations, we fix N = 100, s = 0.75, τ = 0.1, rr = 1, ∆ra = 1, p =

0.001, and let ∆ro vary. For each value of ∆ro studied, data was taken from 100 runs

lasting 104 steps. For ∆ro sufficiently small, the school remains in the stationary

state for the duration of a simulation. As ∆ro is increased to approximately 0.14,

the school exhibits stick/slip behavior in which it transitions at apparently random

times between the stationary state and the mobile state. Transitions between these

states typically begin with a stochastic change in direction of an agent at the edge

of the school, which then “propagates” through the rest of the school, cf. [79, 88].

For ∆ro > 1.08, the school remains in the mobile state for the entire duration of

the simulations.

Observing the steady-state probability distributions for various values of the

parameter ∆ro, shown in the first column of Figure 2.5, one can see the signature

of the transitions between the stationary and mobile state. The probability distri-

bution peaks at approximately A = w1 ≡ rr − sτ , corresponding to the stationary

state, and at approximately A = w2 ≡ rr +sτ , corresponding to the mobile state, a

distance of approximately 2sτ from the stationary state. This may be rationalized

by considering the dynamics of the stationary state, which is characterized by each

agent typically changing its direction at every single time step to avoid its neigh-
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Figure 2.5: Probability distribution functions Ps(A) (left panel) and effective potentials U(A)
(right panel) for 100 trials, 104 steps/trial, N = 100, rr = 1, ∆ra = 1, s = 0.75, τ = 0.1,
p = 0.001, (a) ∆ro = 0.6, (b) ∆ro = 1, (c) ∆ro = 1.1.
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bor to the right or left, with A remaining nearly constant. Thus, one expects the

individuals to be spaced approximately at alternating distances of d1 and d2 where

d1 < rr and d2 ≈ d1 + 2sτ > rr. When the group exhibits a transition from the

stationary state to the mobile state, the distance d2 “propagates” throughout the

school so that A ≈ d2 in the mobile state.

In our simulations we find that the locations of the peaks of the stationary

probability distribution depend somewhat on the details of the initial positions of

the agents. This is a straightforward consequence of an important property of the

model: in determining the desired direction of a given agent at the next time step,

the only positional information used is which (if any) zone the other agents are in.

Thus, agents can be moved slightly without changing their zones and hence with

no change to the dynamics, but with a change to the value of A. These “neutrally

stable” states have consequences for our lifting procedure described in Section 2.5.1.

2.3 Macroscopic Description

We assume that the system dynamics at the macroscopic level may be suitably

characterized by our single coarse variable A(t). We therefore consider describ-

ing the dynamics of A with an effective Langevin equation, or equivalently its

probability distribution P (A, t) with an effective Fokker-Planck (FP), or forward

Kolmogorov equation, cf. [40, 44, 54]:

∂P (A, t)

∂t
= − ∂

∂A

[
D(1)(A)P (A, t)

]
+

∂2

∂A2

[
D(2)(A)P (A, t)

]
, (2.6)
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where D(1)(A) is the drift coefficient and D(2)(A) > 0 is the diffusion coefficient [13,

30, 92]. As derived in Appendix A, the drift D(1)(A) and diffusion term D(2)(A)

are related to the short time evolution of the first two moments by

D(1)(A0) =
∂〈A(t;A0)〉

∂t

∣∣∣∣
t=0

, D(2)(A0) =
1

2

∂Var(t;A0)

∂t

∣∣∣∣
t=0

, (2.7)

where A(t;A0) denotes a trajectory initialized at A0 at t = 0, angular brackets

denote ensemble averaging over different realizations of the trajectory, and Var(A)

denotes the variance of A for such an ensemble. The FP equation is equivalent to

the Itô stochastic differential equation

dA = D(1)(A)dt+
√

2D(2)(A)dW, (2.8)

with W (t) a Wiener process [30]. In the limit D(2)(A) = 0, (2.8) describes the deter-

ministic motion of A subject to the effective potential U0(A) = −
∫ A
−∞

D(1)(A′)dA′+

const.

In general, an effective potential U(A) can be obtained from the stationary

probability distribution function Ps(A) which satisfies the steady state (∂/∂t = 0)

FP equation. Defining

Ps(A) ∼ exp (−U(A)), (2.9)

it follows that U(A) satisfies

U(A) = log(D(2)(A)) −
∫ A

−∞

D(1)(A′)

D(2)(A′)
dA′ + const. (2.10)

When D(2)(A) = const., this corresponds to Brownian motion of A subject to an

effective potential proportional to U0(A).
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We will verify numerically that the assumptions inherent in using an effective

Langevin and thus an effective FP equation are valid in Section 2.3.1. Expression

(2.7) relates the drift and diffusion terms of the Fokker-Planck equation (2.6) to

short-time statistical measures of the evolution of the coarse variable A initialized at

a given value A0. Techniques for consistently initializing a system at a given value

of a coarse variable have been developed as part of the equation-free computational

methodology [51]. These techniques will be discussed in more detail in Section 2.5.

Once the effective FP equation is constructed, one may estimate global properties

of the system such as the effective potential U(A) and transition rates between its

metastable states. We first estimate the effective potential by compiling data from

long-time simulations in Section 2.4. We then take advantage of formula (2.7) by

developing a lifting procedure in Section 2.5.1. We use this lifting procedure to

perform short bursts of appropriately initialized simulations that can be used to

locally estimate coefficients in the effective Fokker-Planck equation.

2.3.1 Numerical Model Validation

We verify with numerical experiments that the assumptions of the effective

Langevin equation are indeed satisfied for our coarse variable A(t). If A(t) satisfies

an effective Langevin equation (2.8), then its solution can be approximated to first

order using the explicit Euler-Marayama method as [53]

A(t) ≈ A(t0) +D(1)(A(t0))(t− t0) +
√

2D(2)(A(t0))(W (t) −W (t0)), (2.11)
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where W (t) is a Wiener process with W (t) −W (t0) ∼ N(0, t − t0). This means

that over a short time interval, the solution to the Fokker-Planck equation, given

an initial delta distribution at A(t0) = A0, will be approximately Gaussian with

mean A0 +D(1)(A0)(t− t0) and finite variance 2D(2)(A0)(t− t0). To verify this, we

locate all appearances of A = A0 (within an error tolerance) in an ensemble of 100

runs of length 104 steps. We then select these instances to form an approximate

delta distribution at A0 and track its evolution over a short time step. We find that

for short times, the resulting distributions are approximately Gaussian with mean

close to A0 and relatively small variance. Some results are shown in Figure 2.6(a)

for A0 = 0.95 and are typical for all values of A0.

Second, when modeling with an effective Fokker-Planck equation, it is assumed

that the stochastic process is Markovian, or equivalently, the forcing term in the

effective Langevin equation is white noise. It suffices to verify that the derivative

of the fluctuation of A(t) about its mean,

Λ(t) ≡ d(A(t) − 〈A(t)〉)
dt

, (2.12)

has practically zero-correlation time [54]. We thus compute the (normalized) au-

tocorrelation function of Λ(t) to verify this assumption. The time derivative in

equation (2.12) is estimated using forward differences. We find that the autocorre-

lation function of Λ(t) is practically zero for t 6= 0 and therefore conclude that our

assumption that the process is Markovian is a valid one. Some results are shown

in Figure 2.6(b) for an initial A0 = 0.95 and are typical for all values of A0.
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Figure 2.6: (a) Probability density function P (A(t;A0)) for A0 = 0.95, t = 1. Every appearance
of A0 (within an error tolerance) in an ensemble of 100, 104 step simulations was recorded and its
subsequent values saved over one time step. The probability density function was computed with
an ensemble of 314 different data points. The red line shows the fit to a normal distribution. (b)
(Normalized) autocorrelation function C(t) computed for A0 = 0.95 over a time interval of 500
steps. Both results are typical for all values of A0.
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2.4 Effective Potential: Long-Time Simulations

One may construct the effective potential in terms of the coarse variable A

from long-time simulation data in one of two ways. The simplest approach is to

obtain a steady-state probability distribution function Ps(A) directly from long-

time simulation statistics and then use the relation U(A) = − log(Ps(A)) + const

to estimate the effective potential. This method is used in Figure 2.5 in which

the probability distributions and corresponding effective potentials are shown for

∆ro = 0.6, 1.0, 1.1. In each case, a database was obtained from one hundred 104

step simulations, with the first 1000 steps discarded. As one can see from the

figure, for ∆ro = 0.6, the model has two metastable states, the stationary state at

A ≈ 0.925 and the mobile state at A ≈ 1.055. The school exhibits stochasticity-

induced switching between these states, spending more time in the stationary than

in the mobile state on average. For ∆ro = 1.0, the model has the same two

metastable states, but spends more time in the mobile than the stationary state

on average. While, for ∆ro = 1.1, the school spends its time in the mobile state

for the duration of a simulation. This suggests there is a coarse bifurcation, or a

qualitative change in the collective dynamics of the system, as the parameter ∆ro

is varied. The precise parametric dependencies of the system on the parameter ∆ro

will be investigated in Section 2.7 by locating the local maximum and minima of

the effective potential.

Alternatively, one may estimate the effective potential by compiling enough

statistics from a long-time simulation database to estimate the drift and diffusion
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terms using (2.7). More specifically, A is discretized over a grid of values that

appear in the database: A0 = 0.88+mk, m = 0.005 (mesh size), k = 0, 1, . . . , 42 for

∆r0 = 0.6. Then, for each A0 over the grid,D(1)(A0) andD(2)(A0) are approximated

using (2.7) as follows. Every appearance of A0 (within a certain error tolerance)

as well as its subsequent values over a short fixed time interval of length t = 10

steps are saved. The ensemble mean 〈A(t;A0)〉 and variance Var(t;A0) are then

estimated by averaging over these short trajectories. The drift (resp., diffusion)

term, D(1)(A0) (resp., D(2)(A0)), are estimated by computing the slope of the linear

regression of 〈A(t;A0)〉 (resp., Var(t;A0)). Better fitting techniques like maximum

likelihood estimation [1] could be used to estimate these quantities, but the method

described above was found to be sufficient. Finally, the integral in expression (2.10)

is numerically approximated using rectangles and the effective potential U(A) is

estimated over the grid of A values using expression (2.10).

Figure 2.7 shows for ∆ro = 0.6, estimates of the drift, diffusion, and effective

potential as a function of A, the latter of which was estimated using both ap-

proaches. The drift term, D(1)(A), is close to zero at the local minima (wells)

(e.g., ∆ro = 0.925, 1.055) and at our estimation for the local maximum (i.e.,

∆ro = 0.995). The drift term is positive near the left of each well and nega-

tive near the right of each well. Thus, there is an effective force pushing A towards

the local minima of the effective potential which are the stable steady-states of

the corresponding deterministic system and away from the local maximum (saddle

point) which is an unstable steady-state of the corresponding deterministic system.
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Figure 2.7: Estimate of D(1)(A), D(2)(A), and U(A) for ∆ro = 0.6 using long-time simulation
data. (a) Estimation of D(1)(A), (b) Estimation of D(2)(A), and (c) Estimation of U(A) using
(black) U(A) = − log(Ps(A)) and (red) equation (2.10).
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The effective potential obtained using the second approach agrees quite well

with that obtained using the first approach, which confirms that A is a dynami-

cally meaningful observable. Both methods, however, do not offer any computa-

tional savings since we had to compile data from sufficiently extensive temporal

simulations (an “equilibrium run”), which takes approximately 10 hours for 100,

104 step trials running with Matlab on a standard workstation. Instead, one can

use the lifting procedure of the “equation-free” methodology of Kevrekidis and

coworkers [51] to estimate D(1)(A) and D(2)(A) by using appropriately initialized

short-time integrations of the individual based model.

2.5 Effective Potential: Short-Time Simulations

Recently, Kevrekidis et al. [51] have developed an “equation-free” computa-

tional framework for extracting population-level information from individual-based

models; the term “equation-free” arises because the population-level equations are

not explicitly known. The approach relies on the assumption that the system state

variables can be decomposed into a subset of fast variables and a low-dimensional

subset of slow variables, which parameterize an attracting invariant slow manifold.

If a simulation is appropriately initialized at a prescribed value of the slow variables,

say X0, then after a short time, once all of the fast variables have equilibriated, one

will in effect sample the slow manifold at X0. This framework can be used to effi-

ciently estimate on demand (without long-time simulation) the drift and diffusion

terms in the effective FP equation [44, 54].
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Note that one does not need to have knowledge of the slow and fast variables to

use the “equation-free” framework. It suffices to identify a set of coarse observables

that parameterize the slow manifold. However, if the hyperplane corresponding to

these observables is not approximately orthogonal to the fast flow, then integrating

the system to the slow manifold may significantly change the initial value of the

observables, especially when initial conditions are far from the slow manifold [32].

As an example, consider the planar system

u̇ =
1

ǫ
v − 1, (2.13)

v̇ =
1

ǫ
v + 1

with 0 < ǫ≪ 1. Making the coordinate transformation x = (u−v)/2, y = (u+v)/2,

system (2.14) reduces to singular perturbation form:

ẋ = −1, (2.14)

ǫẏ = x− y

where x is the “slow variable” and y is the “fast variable”. Solutions starting off the

slow manifold x = y quickly approach it, keeping approximately the same initial

value of the slow variable x. In (u, v) coordinates, one may treat u as a coarse

observable, with the slow manifold being parameterized by the equation v = 0. In

this case, however, the initial u−value changes significantly as trajectories collapse

down to the slow manifold. See Figure 2.8. If a simulation is initialized in (u, v)

coordinates at say, (0, v0) for some v0 > 0, then after a short time it will arrive

on the slow manifold but far from the value of the coarse observable u = 0 it was
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initialized at.

y uv

x

Figure 2.8: Trajectories approach the slow manifold x = y. In (x, y) coordinates, solutions
maintain their initial x−value as they approach the slow manifold, while in (u, v) coordinates
they do not.

In order to put the equation-free coarse-grained computational framework to use

for the schooling model, one must identify an appropriate set of coarse observables,

and develop a lifting algorithm, that is, a method for constructing fine scale states

“consistent with” the prescribed value of the coarse observables that are “mature”,

that is, close to the slow manifold. We discuss both aspects of this with regards to

the fish schooling model below.

As discussed in section 2.2.1, we found A to be an appropriate coarse observable.

Although A(t) distinguishes between the two collective states the school displays,

one might also consider using the average heading of all individuals within the
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school, group polarization, as a coarse observable. More formally we define group

polarization as

S(t) =
1

N

∣∣∣∣∣

N∑

i=1

vi(t)

∣∣∣∣∣ . (2.15)

S(t) has been used in many fish schooling models as a measure of school struc-

ture [19, 45]. When S(t) ≈ 1, the school is mobile and when S(t) ≈ 0, the school is

stationary. Thus S(t) seems to be another good candidate for a coarse observable.

In Figure 2.9 we show the long-term dynamics of the system in the (A, S) plane.

The data collapses on an approximately one-dimensional manifold, which justifies

our selection of A as a coarse observable. Here, data was taken from an ensemble of

five 104 step simulations after steady-state was reached (≈ 103 steps) for ∆ro = 0.6.
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Figure 2.9: (Black) Computational evidence for a slow manifold in the A, S plane. Data was taken
from an ensemble of 5, 104 step simulations after steady state was reached (approx. 1000 steps)
for ∆ro = 0.6. (Red) Sample trajectories are initialized using the lifting algorithm described in
Section 2.5.1 and evolve for 15 steps. After a short time, trajectories approach an apparent slow
manifold. Arrows show the direction of increasing time.
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In addition, we find that under appropriate conditions, S(t) becomes slaved

under the dynamics of the system to A(t). Recall that when the school is in

the stationary state, the dynamics are driven by repulsion and the directions are

updated according to rule (2.1). In this case, if individuals are placed a repulsion

distance away from their nearest neighbors, then no matter how their directions

are initialized, after just one time step, the directions will settle to the appropriate

values. This is because rule (2.1) is entirely based on positional information. Note

that it is important to place individuals greater than a repulsion distance away from

their second nearest neighbors so that the repulsion contributions do not balance

out.

If however, individuals are placed in the mobile state and given random direc-

tions, a large separation of time scales no longer persists. After a relatively short

time, the system finds itself on the “slow manifold”, but far from the value of A

for which it was initialized at. This is because rule (2.2) mixes both positional

(attraction) and directional (orientation) information. One may apply techniques

to constrain the dynamics of the system in order to arrive on the “slow manifold”

at the appropriate value of A0 [32, 70]. Instead, we find that simply initializing the

directions to be all the same, i.e, taking S = 1, puts the system sufficiently close

to the slow manifold when initializing A in the mobile state.

For intermediate values of A, portions of the school obey rule (2.1), while other

portions obey (2.2). Since heading information is not taken into account when the

dynamics are repulsion driven (2.1), we are free to initialize headings as we desire
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without changing the dynamics. We therefore simply initialize all individuals with

the same direction, i.e., we take S = 1. By initializing with S = 1, the time scale

of approach to the “slow manifold” is comparable for the entire school whether

members are obeying rule (2.1) or rule (2.2).

Because of the “neutrally stable” states mentioned in Section 2.2.2, to equili-

brate to the desired slow manifold we must take care when placing agents at a given

value of A0. From these computations, we found that the distribution of distances

between individuals in the stick/slip state is bimodel, with peaks at w1 = rr − sτ ,

w2 = rr + sτ , a distance of 2sτ from each other. We use this information in our

lifting algorithm to place individuals at a given A0.

2.5.1 Lifting Algorithm

The procedure to initialize the positions and directions of N individuals with a

given average distance to nearest neighbors, A0, is as follows:

1. Calculate proportions p1 and p2 of distances w1 and w2 so that p1w1 +p2w2 =

A0. If A0 < w1, set w1 = A0 and if A0 > w2, set w2 = A0.

2. Draw the appropriate proportion p1 and p2 of distances to first nearest neigh-

bors from tight Gaussian distributions centered at w1 and w2. Place them

randomly in the vector d1.

3. Draw distances to second nearest neighbors from a tight Gaussian distribution

centered at w2. Place them randomly in the vector d2.
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4. Start the first agent at some position c1 on the line. Place the second agent

at position c2 = c1 + d1(1). Place the third agent at position c3 = c2 + d2(1).

Place the fourth agent at position c4 = c3 +d1(2). Continue this process until

there are N agents positioned.

5. Let vi = 1, ∀ i.

To validate this procedure we consider the coarse dynamics in the (A, S) plane;

see Figure 2.9. Our lifting algorithm initializes the population with S = 1, and

the time scale of approach to the slow manifold is comparable whether A0 > rr or

A0 < rr. The quick relaxation to the slow manifold for Ao < rr occurs because rule

(2.1) causes the agents to try to immediately move away from each other.

2.5.2 Results

One may proceed to estimate the drift and diffusion coefficients as described

in Section 2.4 and obtain an estimate for the effective potential. More specifically,

for each A0 over the mesh, an ensemble of 1000 simulations was initialized at A0

using the lifting procedure and then integrated for a short 50 time steps. The drift

D(1)(A) (resp., diffusion D(2)(A)) terms were then estimated after waiting a short

healing time of 15 steps by computing the slope of the linear regression of the mean

(resp., variance) of the simulation statistics over the time interval [15, 45]. Finally,

the effective potential U(A) was estimated using equation (2.10). The effective

potential obtained using the short-time simulation statistics is in good agreement

with that obtained from long-time simulation statistics and requires approximately
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a factor of 5 less computation. See Figure 2.10 for a comparison of the effective

potentials. The procedure does not approximate the depth of the mobile well

as accurately as that of the stationary well. Additional degrees of freedom may

therefore be required for full characterization, degrees whose time scales are not

well separated from A(t).
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Figure 2.10: Estimates of the effective potential U(A) for the system when ∆ro = 0.6. The
effective potential was estimated (black) using a long-time simulation database and the relation
U(A) = − log(Ps(A)) and (green) using the lifting procedure to initialize short-bursts of simulation
and estimating D(1)(A), D(2)(A), and U(A) using equations (2.7) and (2.10).
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2.6 Mean Residence Times

Now that we have associated the dynamics of our system with an effective

potential, we may ask how long the system on average stays in either the stationary

or mobile state. We first compute the mean residence times in the stationary

and mobile state by taking data from an ensemble of long-time simulations and

averaging over the time spent in each well. For the parameter ∆ro = 0.6 these

times were found to be 994 for the stationary well and 509 for the mobile well. The

distribution of times is exponential as predicted from Kramers theory [30, 41]; see

Figure 2.11.
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Figure 2.11: Probability distribution of residence times in the stationary well (blue) and mobile
well (red) for ∆ro = 0.6. The probability distributions were formed by estimating the times spent
in each well over a period of 104 steps in an ensemble of 100 runs.

We can use Kramers Formula (see the derivation in Appendix B) to estimate

36



the mean residence times in each well. If D(2)(X) is relatively small, the average

time T spent in a well located at X = Xmin is approximated by [30]

T ≈ 2π exp (∆U)

D
√

−U ′′(Xmin)U ′′(Xmax)
, (2.16)

whereX = Xmax is the location of the local maximum (saddle point) of the potential

U , Xmin is the location of the local minimum, D = 1
2

(
D(2)(Xmax) +D(2)(Xmin)

)
,

and ∆U = U(Xmax) − U(Xmin).

For ∆ro = 0.6 the mean residence times were estimated to be T = 1060 for the

stationary well and T = 505 for the mobile well. A central difference approximation

was used to estimate the derivatives in (2.16). These times are quite close to the

empirically estimated times calculated from long-time steady state runs. The lifting

procedure produced average residence times of approximately 640 for the left well

and 217 for the right well for ∆ro = 0.6. These times are a bit smaller than

the residence times estimated from long-time simulation data. The ratio of times

r = 640/217 ≈ 2.95 is larger than the ratio estimated from long-time data which is

approximately r = 994/509 ≈ 1.95. This is consistent with the fact that the depth

of the second well of the potential obtained from the lifting procedure is not as

large as the depth obtained by using long-time simulation data and indicates that

additional coordinates may be needed for full specification.
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2.7 Coarse Bifurcation Diagrams

To study the dependence of the behavior of the system on parameters, the

critical points of the effective potential were followed as ∆ro was varied. This is a

useful practical analog of deterministic bifurcation diagrams for this stochastic case.

The minima of the effective potential correspond to points on the stable branch of

the bifurcation diagram and the maxima correspond to points on the unstable

branch. To filter the spurious minima and maxima which may arise due to school

fragmentation, we perform a quadratic fit of the effective potential between the

two prominent wells. The coarse bifurcation diagrams obtained using estimates of

the effective potential formed from both long- and appropriately initialized short-

time simulation statistics are shown in Figure 2.12. The diagrams compare well

quantitatively and qualitatively with each other. Two saddle node bifurcations

are found at approximately ∆ro = 0.14 and ∆ro = 1.09 and the system appears

bistable for values of ∆ro within this range.

2.8 Conclusion

The individual-based stochastic model of self-organizing group formation ana-

lyzed in this chapter shows that animal groups can switch between qualitatively

different collective motion states due entirely to stochastic effects. In particular,

changes to behavioral rules or the environment are not necessary for such transi-

tions to occur. This mechanism relies on the presence of at least two metastable
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Figure 2.12: Coarse-grained bifurcation diagram showing the critical points of the effective po-
tential as ∆ro is varied. The minima of the effective potential correspond to the stable branch
(dot, plus) and the maxima correspond to the unstable branch (circle, diamond). (Black) An
ensemble of 100, 104 step runs is used to estimate the stationary probability distribution Ps(A)
and the corresponding effective potential U(A) = − log(Ps(A)). (Green) The lifting procedure is
used to initialize short bursts of simulations to estimate the drift and diffusion terms in the FP
equation. In both cases, the unstable solutions were located by performing a quadratic fit of the
data between the two wells and then locating the maxima of the fit.
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collective motion states, and stochasticity of appropriate type and strength to allow

transitions to occur.

Because the stochasticity that leads to switching is imposed at the level of indi-

viduals, this analysis suggests that random decisions by a small number of individ-

uals can change an entire population’s collective behavior, in particular when these

individuals are near the edge of the school. This complements recent simulations

for a related model which indicate that a small number of informed individuals can

influence group dynamics [18]. One can imagine that a combination of these effects

might also be important: for example, a small number of individuals might spot a

predator and quickly, randomly change their directions, an “informed stochastic-

ity”, which leads to a change in the entire group’s motion, which could allow all

individuals to escape (cf. [46]). In Chapter 6, we will investigate the relationship

between spatial position and information transfer in two-dimensional schools.

We have developed a useful coarse-grained, computer-assisted framework for the

analysis of such stochasticity-induced switching. We characterize switching at the

macroscopic level with a single coarse observable A(t), average distance to nearest

neighbor, whose dynamics are described by an effective Fokker-Planck equation.

The construction of effective potentials from long- as well as short-time simula-

tion statistics allows us to locate metastable collective states, and their parametric

dependence, as well as estimate mean residence times. The use of appropriately

initialized short-time simulation statistics, made possible with the lifting algorithm,

allows us to obtain estimates of mean residence times without having to observe
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them from long-time simulation data. This allows us to gain a priori estimates

of the length of time a school will display a particular collective behavior before

transitioning into another. This is especially useful when such times are too large

to practically estimate from long-time equilibrium simulations.
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Chapter 3

Coarse Analysis of Collective

Motion with Different

Communication Mechanisms

3.1 Introduction

In the schooling model studied in Chapter 2, it was assumed that individuals

are able to communicate with all neighbors within their behavioral zones, regard-

less if they are ahead or behind of them, or facing towards or away from them.

For many animal groups, however, it is realistic to assume that individuals may

only receive some signals unidirectionally [86, 97, 106]. This might be due to many

factors including their physiology, behavioral preferences, or environmental condi-

tions [26, 63]. Most organisms, for example, have a limited field of vision, and
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neighbors in their “blind spot” are visually undetectable. In the presence of preda-

tors, birds may use directional sound cues to prevent receivers other than the ad-

dressee from obtaining information [106]. As in [25], for which different animal

communication mechanisms were explored for a one-dimensional hyperbolic partial

differential equation model for group formation, here we compare the effects of a

change in the communication protocol on the individual-based schooling model.

More specifically, we consider the case that individuals receive repulsion and at-

traction signals omnidirectionally but only orient with those facing towards them

(this is called mechanism M1 in [25]). In this chapter, we demonstrate how this

signalling constraint affects the properties of collective motion.

The average distance to the nearest neighbor was used as a coarse variable in

Chapter 2 to characterize the collective behavior of the school. This was shown to

be a dynamically meaningful observable through computational experiments to test

possible candidate observables. However, as pointed out in Chapter 2, the value of

this coarse variable can depend on details of the positions of the individuals which

do not affect the dynamics; this is a consequence of the fact that the only positional

information used to determine the dynamics for a given individual is which zone

other individuals are in, and can be viewed as a “neutral stability” property of

solutions to the model.

In the present chapter, we will instead use an automated data-driven technique

for generating coordinates that correlate with the collective behavior of the school.

First, we will construct the normalized graph Laplacian by interpreting a sample
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simulation dataset as a graph whose connection strengths are given by a Gaussian

kernel [6]. Using the framework developed in [14], we then construct “diffusion

map” coordinates from the eigenvectors of this matrix and use them to provide

a geometrically meaningful lower-dimensional representation of the dataset. The

advantage of using such an approach over more classical methods such as principal

component analysis is that it is nonlinear and preserves local data structures [48].

Further motivation for using diffusion maps as reaction coordinates for stochastic

dynamical systems can be found in [72]. The diffusion map framework allows us

to find a low dimensional representation of the dynamics of the schooling model.

Specifically, we will show that a single diffusion map coordinate is, in our case,

sufficient to characterize the dynamics. This coordinate also overcomes the “neutral

stability” issue which arose for the coarse variable used in Chapter 2. We will

compute a probability distribution as a function of this coordinate. An effective

potential is formed from this probability distribution and used to locate metastable

states, their parametric dependencies, and estimate mean residence times as in

Chapter 2. Coarse bifurcation diagrams are constructed for each of the models

and compared to quantify the effects of the signalling constraint on the collective

dynamics.

3.2 The Model

We consider the same one-dimensional individual-based model schooling model

that was studied in Chapter 2, which incorporates a tendency for each agent to align
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its position and orientation with an appropriate average of its neighbors’ positions

and orientations, plus a tendency for each agent to avoid collisions. In this model,

agents are able to communicate with all neighbors within their behavioral zones,

regardless of their relative positions or orientations. Here, we consider a constrained

signalling model, for which agents receive repulsion and attraction signals omnidi-

rectionally but are only able to align with those in their zone of orientation that are

facing towards them. In this case, the summation index in the orientation contri-

bution oi(t) in equation (2.3) is changed to {cj(t) ∈ Zoi(t) | vj(t)
cj(t)−ci(t)

|cj(t)−ci(t)|
= −1}.

For the parameters studied in Chapter 2, namely N = 100, s = 0.75, τ = 0.1,

rr = 1, 0.1 < ∆ro < 1.3, ∆ra = 1, p = 0.001, we observe that both models, each

with a different communication rule, can display the two metastable collective states

described in Chapter 2, a “stationary state”, in which the dynamics are driven by

repulsion, and a “mobile state”, in which the school is aligned and travels in the

positive or negative direction. Both models exhibit stochasticity-induced switching

between the stationary and mobile state for certain values of the parameters. For

the signal constrained model, the mobile state only exists for higher values of ∆ro;

a detailed bifurcation analysis will be performed later in the chapter to quantify

this more precisely.
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3.3 Diffusion maps: data-driven detection of coarse

observables

3.3.1 Background

For many complex biological systems, it is often quite difficult to identify ap-

propriate coarse variables, “observables”, or “reaction-coordinates” that correlate

with the population-level behavior of the system and capture its geometric struc-

ture. In addition, often such systems have many degrees of freedom and it is

useful to explore methods for reducing their dimensionality. Here we summa-

rize a data-mining technique for obtaining a low-dimensional representation of a

high-dimensional dataset [14, 71, 72], and show how it can be applied to find an

appropriate coarse observable for our schooling models. This technique has been

successfully applied to models in systems biology and neuroscience [27, 59].

3.3.2 Diffusion Map Theory

Suppose {X(i)}mi=1 is a finite dataset with each X(i) ∈ R
N . A random walk

may be defined on the graph of the dataset as follows [71]. Points in the dataset

correspond to nodes of a graph with connection strength given by a Gaussian kernel.

(In [14], anisotropic kernels formed from renormalizing the Gaussian kernel were

also explored.) Applying the graph Laplacian normalization [6] to the kernel, one

may form a Markov (row stochastic) matrix M . With this framework, one can

quantify the similarity between datapoints, the “diffusion distance”, by comparing
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the probability distributions of random walks starting at the nodes of the graph.

A “diffusion map”, which maps datapoints to their eigencomponents in diffusion

map space, is constructed from the first k eigenvectors of M . It was proved in [71]

that diffusion distance is equal to Euclidean distance in diffusion map space. Thus,

datapoints that are close together in diffusion distance are mapped to points close

together in Euclidean distance. In addition, if M has a spectral gap, it was shown

that a k < N dimensional approximation is optimal under a certain mean squared

error criterion.

Asymptotic analysis has also shown that for datasets sampled from an under-

lying probability distribution, written in Boltzmann form as p(x) = e−U(X), in the

limit that the sample size m→ ∞ and the standard deviation of the kernel σ → 0,

the random walk on the graph converges to a diffusion process which can be de-

scribed by a Fokker-Planck equation [71]. Different normalizations of the Gaussian

kernel were shown to produce different differential operators [72]. In particular, for

the isotropic Gaussian kernel, the eigenvalues and eigenvectors of M are discrete

approximations to the eigenvalues and eigenfunctions of the Fokker-Planck operator

with potential 2U(X). In the case that U(X) (and thus 2U(X)) has two wells sep-

arated by a large barrier (i.e., the dataset has two well-separated clusters), then the

diffusion map approach can identify a single coarse observable, the first non-trivial

(second principal) eigenvector, whose components parametrize the dataset.
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3.3.3 Diffusion Map Coordinates and Nyström extension

We now review the procedure for computing diffusion map coordinates for a

dataset, including the use of the Nyström extension to obtain diffusion map coor-

dinates for points outside the dataset. (See [59] for an example of this approach

applied to a neural field model.) Let {X(i) ∈ R
N}mi=1 be a finite dataset with dis-

tance measure d : R
N × R

N → R. For our model, this corresponds to snapshots

of the school taken from a representative steady state simulation. Next, define the

Gaussian kernel K(X(i), X(j)) = exp{−[d(X(i), X(j))]2/σ2} and its corresponding

matrix representation Ki,j = K(X(i), X(j)). Let Di,i =
∑m

j=1Ki,j be the diagonal

matrix formed from the row sums of K. Then, the Markov (row stochastic) matrix

M = D−1K defines a random walk on a graph whose nodes correspond to the points

in the dataset. The entries Mi,j can be interpreted as representing the probability

of transition from X(i) to X(j) in the time ∆t = σ [71].

Define the symmetric matrix Ms = D1/2MD−1/2. Note that M is related to Ms

through a similarity transformation, so they share the same eigenvalues. Since Ms is

symmetric, it is diagonalizable, and its eigenvectors {Ψj}mj=1 form an orthonormal

basis of R
m. Let {λj}mj=1 be the corresponding (real) eigenvalues of Ms and M .

Then the eigenvectors {Φj}mj=1 of M are related to those of Ms by the relation

Φj = D−1/2Ψj. For σ large enough, all points are connected (M is strictly positive)

and it follows from the Perron-Frobenious Theorem [66] that λ1 = 1 is a unique

eigenvalue with corresponding eigenvector Φ1 = [1, 1, . . .] and 1 > λ2 ≥ λ3 ≥ λ4 ≥

48



. . . λm ≥ 0. The diffusion map f : R
N → R

k is defined as

f : X(i) → (Φ
(i)
2 ,Φ

(i)
3 , . . .Φ

(i)
k+1), (3.1)

where an appropriate k is chosen based on the spectral gap. Here k is the number

of non-trivial eigenvalues clustered near one with all additional eigenvalues close

to zero. The notation Φ
(i)
k represents the ith component of the kth eigenvector.

In practice, we compute the eigenvalues and eigenvectors of Ms and then use the

relation Φj = D−1/2Ψj to find the eigenvectors of M .

We now discuss how to compute the diffusion map coordinates for points out-

side of our dataset. By definition, the eigenvectors Ψj of Ms satisfy the following

equation

Ψ
(k)
j =

1

λj

m∑

i=1

Ms(X
(k), X(i))Ψ

(i)
j . (3.2)

Here Ms = D−1/2KD−1/2, so that the component

(Ms)k,i ≡ Ms(X
(k), X(i)) =

K(X(k), X(i))√∑m
j=1K(X(k), X(j))

∑m
j=1K(X(i), X(j))

. (3.3)

The eigenvectors Φj of M satisfy

Φ
(k)
j =

1√
Dk,k

Ψ
(k)
j =

1√∑m
j=1K(X(k), X(j))

Ψ
(k)
j . (3.4)

We can extend these formulas for a point X(new) outside the dataset using the

Nyström extension [5] as follows:

Ψ
(new)
j =

1

λj

m∑

i=1

M̃s(X
(new), X(i))Ψ

(i)
j , (3.5)
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where

M̃s(X
(new), X(i)) =

K(X(new), X(i))√∑m
j=1K(X(new), X(j))

∑m
j=1K(X(i), X(j))

(3.6)

=
1

m

K(X(new), X(i))√
〈K(X(new), X(j)〉〈K(X(i), X(j)〉

, (3.7)

and 〈·〉 denotes expectation. New datapoints in the Φ coordinates are related by

the equation

Φ
(new)
j =

1√∑m
j=1K(X(new), X(j))

Ψ
(new)
j . (3.8)

An eigendecomposition is typically performed from a sample database and the

Nyström extension is used to efficiently compute the diffusion map coordinates for

points outside of the database. It is worth noting that the Nyström extension can

be quite successful in interpolating new points, but can quickly and spectacularly

fail when extrapolating beyond the original database. A discussion of this can be

found in [58].

3.4 Distance measure for the Schooling Model

In order to form a Markov matrix whose leading eigenvectors provide a reduced

set of coarse observables for our dataset, we must first define a distance measure

between schools. We choose the one described below which leads to useful diffusion

map coordinates.

Let N be the size of a school and di,j denote the Euclidean distance between

fish i and j. In the following, we will assume that members of a given school
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have been sorted by position in increasing order from left to right. Two schools

are considered “close” in distance if they are composed of members exhibiting the

same behavioral responses at the same ordering index within the school (modulo

the left-right reflection symmetry). To account for the the fact that the behavioral

zones elicit the same response for a range of distances, we first replace distances

di,i+1, i = 1, . . .N − 1 between subsequent individuals as follows:

di,i+1 →





rr, di,i+1 ≤ rr

ro, rr < di,i+1 ≤ ro

ra, ro < di,i+1 ≤ ra

ra + δ, di,i+1 > ra

That is, immediate neighbors within the repulsion (resp., orientation, attrac-

tion) zone are moved a fixed distance rr (resp., ro, ra) apart. Agents that are

spaced a distance di,i+1 > ra apart, who do not feel any social forces, are moved a

fixed distance ra + δ from one another. The precise value of δ is not important; in

the following we take δ = rr. After replacing distances, the schools are shifted so

that the center of mass is at the origin.

After this rearrangement, let xi and yi, i = 1, . . .N , be the positions of indi-

viduals in schools X and Y , respectively. The distance d(X, Y ) between schools X

and Y is defined as

d(X, Y ) = min(d1, d2),
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where

d1 =

√√√√
N∑

i=1

(xi − yi)2, d2 =

√√√√
N∑

i=1

(xi − (−yN+1−i))2.

Here d1 and d2 are the Euclidean distances between vectors in R
N whose compo-

nents are the (one-dimensional) coordinates of the sorted positions of the individuals

within the school. Note that we take min(d1, d2) to take into account the reflection

symmetry.

3.5 Diffusion Map Coordinates for the Schooling

Model

Starting with this measure of distance, we can form a Markov matrix from

long-simulation data of the model and compute diffusion map coordinates. First

we show some results from a dataset created by sampling every 8 time units a 104

step run (after initial transients have passed) of the original fish schooling model

withN = 100, rr = 1, ∆r0 = 0.6, ∆ra = 1, and σ = 40 for the diffusion kernel. Note

that the Gaussian kernel acts as a nonlinear transformation on distances between

points in the dataset. The variance of the kernel, σ, should be chosen so that

points close by (in the same well) are at a distance close to one, while points that

are far away (in different wells) are at a distance close to zero and thus effectively

disconnected from the graph of the dataset. For the distance measure chosen in

Section 3.4, “far away” is on the order of 90 units, while “close by” is on the order of

5 units. This narrows the range of possible values for σ. In practice, different values
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of σ were tested, and the spectral gap was used as an indicator of an appropriate

choice. See Appendix C for an example which compares the effects of varying σ

and relates the diffusion map procedure to principal component analysis. Figure 3.1

shows a space-time plot of the school as well as its low-dimensional representation

in terms of the second principal eigenvector Φ
(i)
2 . In Figure 3.2 we show that the

data collapse on an approximately one-dimensional manifold (projected here on

the (Φ
(i)
2 ,Φ

(i)
3 ) plane). Simulation points in the (Φ

(i)
2 ,Φ

(i)
3 ) coordinates are colored

according to their associated value of the empirical coordinate used in Chapter 2:

A(t) =
1

N

N∑

i=1

min
j
j 6=i

|cj(t) − ci(t)|, (3.9)

the average distance to nearest neighbor. When A is large (red), the school is in the

“mobile” state, and when A is small (blue), the school is in the “stationary” state.

Since the manifold is approximately one-dimensional and there is a large gap in the

eigenvalue spectrum, we appear justified in keeping the first nontrivial eigenvector

as our coarse observable. The first panel of Figure 3.3 shows the dataset in the two

coordinates Φ
(i)
2 and A.

The second panel of Figure 3.3 shows why the observable A is less useful than

the diffusion map coordinates. This dataset was obtained by running a 104 step

simulation of the schooling model with the same parameters as above but with a

slightly different initial population density. Like the previous dataset, the school

is transitioning between the stationary and mobile state, however A takes values

in the range [0.98, 1.13] instead of [0.92, 1.07]. This is a consequence of the model,

which specifies rules of motion based on distances within a zone, allowing the school
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Figure 3.1: Positions of N = 100 agents (after transient) for a 104 step run of the original schooling
model with parameters s = 0.75, τ = 0.1, rr = 1, ∆ro = 0.6, ∆ra = 1.0, p = 0.001, red (resp.,
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neighbor. Inset: Plot of the first few eigenvalues. Since there is a spectral gap, we are justified in

keeping Φ
(i)
2 as a single observable for the system.
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to exhibit the same dynamics at a range of distances between neighbors. Our new

distance measure avoids this problem by replacing the range of distances which

yield the same response in the model by a single distance. As can be seen from

Figure 3.3, the diffusion map coordinate Φ
(i)
2 , obtained on this new dataset by using

the Nyström extension, gives values in the same range as the previous dataset.

1000 3000 5000 7000 9000
0.8

1

1.2

i

A

−0.05

0

0.05

Φ
(i)
2

1000 3000 5000 7000 9000
0.8

1

1.2

i

A

1000 3000 5000 7000 9000
−0.05

0

0.05

Φ
(i)
2

Figure 3.3: Left Panel: Representation of the first dataset in A (black) and Φ
(i)
2 (gray) coordinates.

Right Panel: Representation of the second dataset, a simulation with slightly different initial

population density, in A (black) and Φ
(i)
2 (gray) coordinates. The coordinate Φ

(i)
2 is a more useful

coordinate than A, which may take on a range of values when the school is in the same collective
state.

In some cases, a school may fragment into subgroups displaying the same or

different dynamics. As in Chapter 2, such fragmented states will not be included

in the coarse analysis of the dynamics of the schooling models. Clearly, multiple

coordinates are necessary to successfully describe fragmentation and will be the

subject of future work.
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3.6 Estimating the Effective Potential and Mean

Residence Times

As discussed in Chapter 2, we may construct an effective potential in terms of the

coarse observable X = Φ2 from long-time simulation data in one of two ways. The

simplest approach is to form a probability distribution function Ps(X) from long-

time simulation statistics and then use the relation U(X) = − log(Ps(X)) + const.

This method is used in Figure 3.4, in which the probability distribution functions

and corresponding effective potentials for the original and signal constrained school-

ing model are compared for ∆ro = 0.2. In each case, a database was formed from

one hundred 104 step simulations, with the first 1000 transient steps discarded. As

one can see from the figure, for ∆ro = 0.2, the original model has two metastable

states, the stationary state at Φ2 ≈ −0.018 and the mobile state at Φ2 ≈ 0.042.

The school exhibits stochasticity-induced switching between these states, spending

more time in the stationary than in the mobile state on average. For this same

parameter value, the signal constrained schooling model has only one stable state

at Φ2 = −0.018, remaining in the stationary state for the entire duration of the

simulations. For larger values of ∆ro, the signal constrained model does exhibit

switching between the stationary and mobile state. It therefore appears that the

signalling constraint prevents the mobile state from existing below a certain thresh-

old of the parameter ∆ro. We will investigate the precise parametric dependencies

in the next section.
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Figure 3.4: Probability distributions and corresponding effective potentials for the original and
signal constrained schooling model with ∆ro = 0.2.
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Alternatively, one may construct an effective potential by assuming that the

observable X = Φ2 obeys an effective Langevin equation, or equivalently its prob-

ability distribution P (X) obeys an effective Fokker-Planck equation. As described

in Chapter 2, the effective potential U(X) satisfies

U(X) = log(D(2)(X)) −
∫ X

−∞

D(1)(X ′)

D(2)(X ′)
dX ′ + const., (3.10)

where the drift and diffusion terms are related to the short time evolution of the

first two moments as

D(1)(X0) =
∂〈X(t;X0)〉

∂t

∣∣∣∣
t=0

, D(2)(X0) =
1

2

∂Var(t;X0)

∂t

∣∣∣∣
t=0

. (3.11)

One may estimate the effective potential by compiling enough statistics from long-

time simulation data to estimate the drift and diffusion terms using (3.11). Here,

we discretize X = Φ2 over a grid of values in the range [−0.019, 0.043] with a

uniform mesh of size 10−3. Once the drift and diffusion terms are estimated, U(X)

is estimated by numerically approximating the integral in equation (3.10).

Figure 3.5 shows the drift, diffusion, and effective potential as a function of

Φ2, the latter obtained using both estimation approaches for the original schooling

model with ∆ro = 0.6. The effective potential formed using equation (3.11) agrees

very well with that obtained using the relation U(X) = − log(Ps(X))+const, which

supports our choice of X = Φ2.

With U(X) and D(2)(X) computed using the second approach, we may estimate

the mean residence times in each well using Kramers formula (2.16) as in Chapter

2. For ∆ro = 0.6, the mean residence times were estimated to be T = 850 for
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dataset. Bottom: Estimates of the effective potential, using U(Φ2) = − log(Ps(Φ2)) + const.
(solid gray) and estimating the drift and diffusion terms and using equation (2.10) (black dots).
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the leftmost well and T = 321 for the well on the right. The second derivatives in

equation (2.16) were estimated using a centered difference approximation. These

estimated times compare well to the mean residence times observed directly from

the simulation ensemble database in Chapter 2, which gave times of approximately

T1 = 1026 and T2 = 507 for ∆ro = 0.6. This lends further support that X = Φ2 is

an appropriate dynamic observable for the schooling model.

3.7 Coarse Bifurcation Diagrams

We investigate the dependencies of the schooling model on the parameter ∆ro,

the width of the zone of orientation, by tracking the critical points of the corre-

sponding effective potentials. As discussed in Chapter 2, we associate minima of

the effective potential with stable fixed points and 1-D maxima (more generally,

saddle points) with unstable fixed points. With this association, we may form a

coarse bifurcation diagram by locating the critical points of the effective potential

as the parameter ∆ro is varied.

As we discussed in Section 3.5, school fragmentation occurs with some prob-

ability in many of our simulations. Thus, some of the effective potentials (and

associated probability distribution functions) have multiple valleys (peaks) for val-

ues of ∆ro within the bistable range. These metastable states are associated with

the fragmentation of the group into noncoordinated subgroups and are typically

quite small in comparison to the coordinated wells. As in Chapter 2, to filter out

such spurious states, we perform a quadratic fit of the effective potential between
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the stationary and mobile wells. This allows us to estimate the saddle point of the

effective potential, and thus obtain a good approximation of the unstable branch

of the bifurcation diagram. See Figure 3.6 for plots of the bifurcation diagrams for

the original and signal constrained schooling model.

For the original schooling model, two saddle node bifurcations are found at

∆r0 ≈ 0.12 and ∆ro ≈ 1.1 and the system is bistable for ∆ro within this range.

The diagram compares well qualitatively with the one constructed in Chapter 2

with the empirical observable A. For the signal constrained model, we also find

two saddle node bifurcations, but they are located at ∆ro ≈ 0.85 and ∆ro ≈ 1.2.

Thus, it seems that the signalling constraint effectively prevents the mobile state

from existing below ∆ro = 0.85, and the parameter range for which the original

model is bistable is effectively shortened.

We can understand the effect of the signalling constraint as follows. The para-

metric range of existence (and stability) of the stationary state is virtually the same

for both models. This is not surprising since this state is driven by repulsion events,

which are unaffected by the signalling constraint. On the other hand, a larger ∆ro

is necessary to get enough interactions when the signalling constraint is present to

“hold together” the mobile state.

3.8 Conclusion

We studied the effects of a signalling constraint on an individual-based model of

self-organizing group formation using a coarse analysis framework. This involved
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the selection of a coarse variable by defining a diffusion process on the graph of a

sample dataset formed from a representative steady-state simulation. The eigen-

vectors of the graph Laplacian were used to construct “diffusion-map” coordinates

which provide a geometrically meaningful low-dimensional representation of the

dataset. The first nontrivial (second principal) eigenvector provided a sufficient

representation of the dataset, so we used it as a coarse observable. This facilitated

the computation of coarse bifurcation diagrams, which showed that the signalling

constraint reduces the region over which there is bistability between the stationary

and mobile collective motion states. Overall, our results suggest that the diffusion

map framework is a promising new approach for understanding collective motion

for fish schooling models.

Our approach complements the one used in Chapter 2. The main difference

is that in Chapter 2 we used the average distance to nearest neighbor as a coarse

variable to characterize the collective behavior of the school. This was shown to

be a dynamically meaningful observable through computational experiments to

test possible candidate observables. In this paper, we instead used an automated

data-driven technique for generating the coarse variable. Although it is difficult

to interpret this coarse variable physically, we were able to use it to construct

effective potentials and calculate bifurcation behavior. In addition, our approach

overcomes the “neutral stability” issue that arose for the coarse observable used in

Chapter 2. We also note that in Chapter 2 we developed a “lifting” procedure which

initializes the individual-based model with a particular value of the coarse variable
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and allowed more efficient population-level analysis. The necessity for lifting (and

the associated difficulties) did not arise in the computations presented here.

The framework developed in Chapters 2 and 3 provides a useful, computer-

assisted approach for the analysis of emergent phenomena in individual-based mod-

els for collective motion. Most analysis of individual-based models in the field of

group formation has relied on costly long-time simulations, which has limited the

number of individuals that can be simulated as well as the types of analysis that can

be realistically done [84]. This approach allows one to achieve a new level of under-

standing and quantification of biological self-organization by bridging individual-

based modeling with coarse, population-level analysis. A challenge for extending

this framework to two- or three-dimensional schools is the development of an ap-

propriate measure for the distance between two schools, which perhaps would have

to take into account the positions and velocities of all individuals. This would allow

the computation of diffusion map coordinates which could aid in a similar analysis

of stochasticity-induced switching between the milling and parallel motion states

as was reported in Figure 2.2 of Chapter 2.
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Chapter 4

Bistability in a Model for

Collective Motion with Coupled

Oscillator Dynamics

4.1 Introduction

In Chapters 2 and 3 we showed for a discrete-time individual-based schooling

model, transitions between qualitatively different collective motion states can oc-

cur entirely due to stochastic effects. In particular, changing behavioral rules or

environmental factors, including the introduction of predators, are not necessary

for such transitions to occur. Such stochasticity-induced transitions require the

presence of at least two metastable collective states and noise of appropriate type

and strength.
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In this Chapter, we will consider how to design interaction rules that simultane-

ously stabilize different collective motion states for a continuous-time kinetic model

of collective motion with coupled oscillator dynamics. Such models have recently

been developed in the engineering literature for applications such as formation con-

trol of unmanned vehicles and spacecraft [49, 95, 96], cooperative robotics [12],

and sensor networks [15]. Much of this work has been devoted to developing

interaction rules which allow a population to robustly operate in a particular

collective motion state, perhaps with or without centralized coordination, see,

e.g. [22, 31, 47, 49, 60, 78, 82, 96].

Here, we will instead consider how to design interaction rules which simulta-

neously stabilize different collective motion states. For simplicity, we consider the

motion of two agents, and restrict our study to the phase dynamics, treating the

agents as a system of coupled oscillators. We reduce the dynamics to a single coarse

observable, the phase difference, and find a class of interaction rules that simultane-

ously stabilize parallel (zero phase-difference) and anti-parallel (π phase difference)

motion. With the addition of Gaussian white noise of appropriate strength, the

system exhibits stochasticity-induced switching between such states. The effects of

the noise on the dynamics of the system will be explored numerically by estimating

an effective potential and mean residence times using a coarse-grained, computer

assisted framework. Such estimates compare favorably with those obtained from

long-time steady state computations as well as analytically derived results.
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4.2 The Model

We consider a model which was recently presented in [49, 95, 96] in which each

agent is modeled as a point particle travelling at unit speed and interacts with other

agents through steering control uk:

ṙk = eiθk , θ̇k = uk(r, θ), k = 1, 2, . . .N. (4.1)

Here rk = xk + iyk gives the position of agent k in the (x, y) plane and the angle θk

gives its orientation relative to the x axis. The function uk is the steering control

for agent k. When uk = 0, θk remains constant, so that agent k moves in a straight

line.

In [95], different control laws were presented to stabilize and switch between

different collective motion patterns, including rectilinear motion of all agents in

the same or different directions, and circular formations with agents at the same

location or spread evenly around the circle. Steering control was split into spacing

and orientation terms uk = uspack (r, θ)+uorik (θ), with the latter benefitting from the

well-developed theory of coupled oscillators [4, 9]. In [81] it was demonstrated for

N = 2 agents that steering control can be chosen to stabilize both rectilinear and

circular collective motions at the same control parameter values. This arises due

to the interplay between the spacing and orientation components of the steering

control law.

Here, we show that for N = 2 agents a different kind of bistability, in which

both parallel and anti-parallel motions are stable, can be achieved for (4.1) solely
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through the choice of the coupling function for the control of the phase dynamics.

We consider steering control laws of the form

θ̇1 = ω +Kf(θ2 − θ1) ≡ u0
1,

θ̇2 = ω +Kf(θ1 − θ2) ≡ u0
2. (4.2)

Borrowing the terminology of coupled oscillators, we refer to ω as the natural

oscillator frequency, K as the coupling strength, and f as the coupling function,

which is 2π-periodic. Setting ψ = θ1 − θ2, (4.2) yields

ψ̇ = K(f(−ψ) − f(ψ)) ≡ Kg(ψ). (4.3)

In the context of coarse-grained computation, we may think of ψ as a coarse ob-

servable since it describes the collective behavior of the oscillators. For example,

when ψ = 0, the oscillators are in phase, while when ψ = π, the oscillators are π

out of phase, which is referred to as the splay state.

4.2.1 Fixed Points and Stability

We now make some general comments regarding the stability properties of (4.3).

Note that g(ψ) is an odd function since g(−ψ) = f(ψ) − f(−ψ) = −g(ψ). Phase-

locked solutions, for which θ1−θ2 remains constant for all time, correspond to fixed

points ψp of (4.3). The asymptotic stability of a phase-locked solution is determined

as follows: if Kg′(ψp) < 0 then it is stable, and if Kg′(ψp) > 0 then it is unstable.

Unless otherwise stated, in the following we take K > 0.
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For any coupling function f one finds that

g(0) = f(0) − f(0) = 0, (4.4)

and

g(π) = f(−π) − f(π) = f(π) − f(π) = 0. (4.5)

Thus ψ = 0 and ψ = π are always fixed points of (4.3). The solution ψ = 0

corresponds to the two agents always having the same instantaneous orientations,

and following the notation of [4, 9] will be referred to as the S2 state because such

solutions are invariant under the permutation symmetry (θ1, θ2) → (θ2, θ1).
1 The

solution ψ = π corresponds to the agents always having orientations which differ by

π radians, and will be called the Z2 state because such solutions are invariant under

the symmetry (θ1, θ2) → (θ2 +π, θ1+π).2 Other fixed points of (4.3), corresponding

to phase-locked solutions with the instantaneous orientation of the agents being an

angle not equal to 0 or π, are also possible, but are not guaranteed to exist for

all coupling functions [4, 9]. Such solutions are called S1 × S1 states, and are not

invariant under any nontrivial symmetries.

As discussed in [96], the relationship between the phase-locked states and the

motion of agents which obey (4.1) is as follows:

i) For θ̇1 = θ̇2 = 0, the S2 state corresponds to the agents moving in straight lines

parallel to each other.

1Sn is the n! element permutation group on n elements.
2Zn is the cyclic group with n elements.
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ii) For θ̇1 = θ̇2 6= 0, the S2 state corresponds to the agents moving in circles with

velocities always pointing in the same direction.

iii) For θ̇1 = θ̇2 = 0, the Z2 state corresponds to the agents moving in straight lines

anti-parallel to each other.

iv) For θ̇1 = θ̇2 6= 0, the Z2 state corresponds to the agents moving in circles with

velocities always pointing in opposite directions.

The S1 × S1 solutions have similar interpretations:

v) For θ̇1 = θ̇2 = 0, the S1 × S1 state corresponds to the agents moving in straight

lines neither parallel nor anti-parallel to each other.

vi) For θ̇1 = θ̇2 6= 0, the S1 × S1 state corresponds to the agents moving in circles

with velocities not pointing in either the same nor in opposite directions.

See Figure 4.1 for illustrations of each of these cases.

4.2.2 Coupling Function and Bistability

For bistability of the phase-locked states S2 (ψ = 0) and Z2 (ψ = π), both

g′(0) < 0 and g′(π) < 0. Since g is a 2π-periodic odd function, we may write it as
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Figure 4.1: Phase-locked motion of N = 2 agents obeying equations (4.1). (i) S2 state with
θ̇1 = θ̇2 = 0, (ii) S2 state with θ̇1 = θ̇2 6= 0, (iii) Z2 state with θ̇1 = θ̇2 = 0, (iv) Z2 state with
θ̇1 = θ̇2 6= 0, (v) S1 × S1 state with θ̇1 = θ̇2 = 0, (vi) S1 × S1 state with θ̇1 = θ̇2 6= 0.
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a Fourier series:

g(ψ) =
∞∑

n=1

an sin(nψ). (4.6)

Thus, the following conditions must be satisfied for bistability:

g′(0) =

∞∑

n=1

nan < 0, g′(π) =

∞∑

n=1

(−1)nnan < 0. (4.7)

From these conditions, one may readily see that for bistability of the S2 and Z2

states, g must include even harmonics. (If g only includes odd harmonics, then

g′(π) = −g′(0), and so conditions (4.7) cannot be simultaneously satisfied.)

As an example, suppose we take the coupling function

f(θ) = A sin θ +B sin 2θ, (4.8)

so that

g(ψ) = −2A sinψ − 2B sin 2ψ. (4.9)

Fixed points of (4.3) are the zeros of (4.9), namely ψ = 0, ψ = π, and

ψ±
S1×S1

≡ ± cos−1

(
− A

2B

)
, (4.10)

with the latter only existing when |A/(2B)| ≤ 1. Using

g′(0) = −2A− 4B, (4.11)

g′(π) = 2A− 4B, (4.12)

g′(ψ±
S1×S1

) = 4B −A2/B, (4.13)

we obtain the existence and stability results summarized in Figure 4.2. In particu-

lar, there are regions of parameter space (A,B) for which only the S2, Z2, or S1×S1
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state is stable. Furthermore, by choosing B > −A/2 and B > A/2, both the S2

and Z2 states are stable.

B

A

B = A/2

B = −A/2

S2 stable

Z2 stable

S2 unstable

Z2 unstable

S2 unstable

Z2 stable Z2 unstable

S2 stable

S1 × S1 unstable

S1 × S1 stable

Figure 4.2: Existence and stability of the S2, Z2 and S1 × S1 states in the (A,B) plane for the
phase control law with coupling function given by (4.8). If B > −A/2 and B > A/2 then both
the S2 and Z2 states are stable.

Before proceeding, it is instructive to consider how g changes for this example

as A is held constant and B is increased. From Figure 4.3 we see that the curve

B = A/2 corresponds to a pitchfork bifurcation [38] of the Z2 state, in which two

symmetry-related S1×S1 states are born. (We note that the S1×S1 states form the

boundaries of the basins of attraction of the S2 and Z2 states: see Figure 4.3(iii).)

Similarly, the curve B = −A/2 corresponds to a pitchfork bifurcation of the S2
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Figure 4.3: Pitchfork bifurcation of the Z2 state as A is held constant and B is increased for the
phase control law with coupling function given by (4.8). In this example, A = 2 and (i) B = 0 (ii)
B = 1, and (iii) B = 2. The S2 state corresponds to ψ = 0, the Z2 state corresponds to ψ = π,
and the S1 × S1 state corresponds to ψ = cos−1(−1/2). For (iii), the basin of attraction for the
Z2 symmetric state is indicated by the arrows; the complement to this, excluding the S1 × S1

states, is the basin of attraction for the S2 state.
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state.

Finally, we note that results for B = 0 (i.e., f(θ) = A sin(θ)) have been con-

sidered in detail in the work of Sepulchre, Paley, and Leonard (e.g. [81, 95]), not

just for two agents, but for an arbitrary number. For the case of two agents,

g(ψ) = −2A sin(ψ) with g′(0) = −2A and g′(π) = 2A = −g′(0). Thus, it is not

possible to choose A so that both g′(0) < 0 and g′(π) < 0. In this case, only the S2

or the Z2 state is stable, and one can switch their stability by letting the coupling

constant K → −K.

4.3 Stochasticity-Induced Switching

In the case that the S2 and Z2 state coexist, noise can induce switching be-

tween the two states. Here we consider the dynamics of such stochasticity-induced

switching by adding Gaussian white noise to equations (4.2):

θ̇1 = ω +Kf(θ2 − θ1) + λ1ξ1(t),

θ̇2 = ω +Kf(θ1 − θ2) + λ2ξ2(t). (4.14)

We choose f(θ) = A sin(θ) + B sin(2θ) which was shown in Section 4.2.2 to be

bistable for A and B satisfying B > −A/2 and B > A/2. Here ξ1(t) and ξ2(t)

are uncorrelated Gaussian white noise signals with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 =

δijδ(t− t′), and λ1 and λ2 are noise strengths.
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4.3.1 Coarse Analysis

Choosing the coarse observable ψ = θ1 − θ2, it follows that

ψ̇ = Kg(ψ) + λξ(t), (4.15)

with g(ψ) = f(−ψ) − f(ψ) = −2A sin(ψ) − 2B sin(2ψ), unit variance white noise

ξ(t), with noise strength λ =
√
λ2

1 + λ2
2. One may rewrite equation (4.15) as

dψ = g(ψ)dt+ λdW, (4.16)

where W (t) is a Wiener process. This is a one-dimensional Langevin equation

with potential U0(ψ) defined so that U ′
0(ψ) = −g(ψ). The statistical behavior of

equation (4.16) is determined by the Fokker-Planck equation [30]:

∂P (ψ, t)

∂t
= − ∂

∂ψ
[g(ψ)P (ψ, t)] +

λ2

2

∂2

∂ψ2
[P (ψ, t)] , (4.17)

where P (ψ, t) is the probability density function with P (ψ, t0|ψ0, t0) = δ(ψ − ψ0).

We impose periodic boundary conditions over the 2π-periodic interval (a, b) for

solutions to equations (4.16) and (4.17). The stationary solution Ps(ψ) is found by

solving (4.17) with ∂/∂t = 0:

g(ψ)Ps(ψ) − λ2

2

∂

∂ψ
[Ps(ψ)] = J, (4.18)

where J is the constant probability current. This can be easily integrated over (a, b)

to give

Ps(ψ) = Ps(a)G(ψ) − 2J

λ2
G(ψ)

∫ ψ

a

dψ′

G(ψ′)
, (4.19)

where

G(ψ) = exp

(
2

λ2

∫ ψ

a

g(ψ′)dψ′

)
. (4.20)
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Imposing periodic boundary conditions over the interval (a, b), Ps(a) = Ps(b), and

since g is 2π-periodic over (a, b), G(a) = G(b). It follows that J = 0 so that

Ps(ψ) = Ne
−2U0(ψ)

λ2 , (4.21)

where U0(ψ) = −
∫ ψ
a
g(ψ′)dψ′ and N is a normalization constant such that

∫ b
a
Ps(ψ)dψ = 1.

In the case that the S2 and Z2 states coexist, then the corresponding U0(ψ)

is a double well potential with minima at ψ = 0 and ψ = π corresponding to

the S2 and Z2 collective states, respectively. With the Fokker-Planck or Langevin

formalism, one may view the dynamics of the variable ψ as governed by the effective

potential U(ψ) = 2U0(ψ)/λ2, with the noise term inducing transitions between the

two metastable collective states, located at the minima of the wells.

4.3.2 Numerical Simulations

We simulate equations (4.14) with A = 1, B = 5, and λ2 = 2, using the Euler-

Marayama method for stochastic differential equations [42]. See Figure 4.4 for a

sample trajectory initialized at (θ1, θ2) = (π, 0) plotted as a function of the coarse

observable ψ(t) = θ1(t)− θ2(t). Here we use periodic boundary conditions over the

2π−periodic interval (a, b) = (− cos−1(−1/10),− cos−1(−1/10) + 2π) enclosing the

stable fixed points ψ = 0, π and unstable fixed point ψ = cos−1(−1/10). As you

can see from the figure, the system exhibits noise-induced transitions between the

two metastable states S2 (ψ = 0) and Z2 (ψ = π). See Figure 4.6 for a plot of the

effective potential U(ψ) = U0(ψ) = −2 cos(ψ) − 5 cos(2ψ) over this interval. The
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Figure 4.4: Sample trajectory in ψ coordinates for equations (4.2) simulated with Euler-Marayama
method with a stepsize of ∆t = 0.02 and initial condition (θ1, θ2) = (π, 0).
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stable fixed points, ψ = 0 and ψ = π, are located at the minima of U(ψ) and the

unstable fixed point, ψ = arccos(−1/10), is the local maxima of U(ψ).

4.3.3 Coarse-Grained Computation

We now demonstrate how coarse-grained computation can be used to quantify

the collective dynamics of the two agent system in terms of the coarse variable

ψ = θ1 − θ2, using only simulations of the individual-based oscillator equations

(4.14). Since equations at both the fine and coarse level are explicitly known,

we compare analytical expressions for U(ψ), D(1)(ψ) and D(2)(ψ) with numerical

estimates.

For the moment, lets suppose that we do not have population-level equations

for ψ, i.e., equation (4.16) or its equivalent Fokker-Planck form (4.17). We may

still, however, estimate the effective potential U(ψ) if we make the assumption that

ψ satisfies a generalized Fokker-Planck equation of the form

∂P (ψ, t)

∂t
= − ∂

∂ψ

[
D(1)(ψ)P (ψ, t)

]
+

∂

∂ψ2

[
D(2)(ψ)P (ψ, t)

]
, (4.22)

where D(1)(ψ) is the drift coefficient and D(2)(ψ) > 0 is the diffusion coefficient,

which are related to the first two moments of ψ as

D(1)(ψ0) =
∂〈ψ(t;ψ0)〉

∂t

∣∣∣∣
t=0

, D(2)(ψ0) =
1

2

∂Var(t;ψ0)

∂t

∣∣∣∣
t=0

, (4.23)

where ψ(t;ψ0) denotes a trajectory at t = 0 initialized at ψ0, angular brackets

denotes averaging over different realizations of the trajectory, and Var(ψ) denotes
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the variance of ψ for such an ensemble. Assuming

Ps(ψ) ∼ exp (−U(ψ)) (4.24)

at steady state, it follows that the effective potential U(ψ) satisfies

U(ψ) = log(D(2)(ψ)) −
∫ ψ

a

D(1)(ψ′)

D(2)(ψ′)
dψ′ + const. (4.25)

We may use expressions (4.24) and (4.25) to estimate U(ψ) two different ways.

The simplest approach is to compile statistics from long-time simulation data,

and then use expression (4.24) to estimate U(ψ) from Ps(ψ). To do so, one must

integrate the individual oscillator equations (4.14) and then restrict from fine to

coarse to gain a representation in terms of the coarse variable ψ. Here, restriction

is performed simply using the definition of ψ as ψ = θ1 − θ2.

An alternative, more efficient approach, is to estimate the drift D(1)(ψ) and

diffusion D(2)(ψ) terms and then use equation (4.25) to estimate U(ψ). This may

be done as follows. First, discretize ψ over a mesh of values. To lift from coarse to

fine, i.e., initialize ψ at a given ψ0, set (θ1, θ2) = (ψ0, 0) as an initial condition in

equations (4.14). Note that lifting is a one to many mapping and thus the choice

of lifting operation is not unique. With the prescribed lifting procedure, one may

integrate ensembles of trajectories with the same initial condition ψ = ψ0 over

a short time interval (there is no “healing time” since ψ is the only macroscopic

variable) and then estimate the rate of change of the mean (resp., variance) by

taking the slope of the linear regression of 〈ψ(t;ψ0)〉 (resp., Var(t;ψ0)), using the

restriction operation to obtain the coarse representation in terms of ψ. Once the
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drift and diffusion terms are estimated over the mesh of ψ values, the integral

in expression (4.25) may be numerically approximated to estimate the effective

potential U(ψ).

For the coupling function and noise studied in section 4.3.2, an ensemble of 1000

simulations was performed for each ψ0 over a grid of mesh 0.05 to estimate the drift

and diffusion terms. Analytical expressions for the drift term D(1)(ψ) = g(ψ) =

−2 sin(ψ) − 10 sin(2ψ), the diffusion term D(2)(ψ) = λ2/2 = 1, and the effective

potential U(ψ) = −2 cos(ψ)−5 cos(2ψ) compare well with the numerical estimates.

See Figures 4.5 and 4.6 for more details.
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D(2)(ψ)

Figure 4.5: Top: (Solid) Drift term in the Fokker-Planck equation D(1)(ψ) = g(ψ) = −2 sin(ψ)−
10 sin(2ψ). (Dots) Estimate of the drift term in the Fokker-Planck equation using ensembles of
appropriately initialized short-time simulations. Bottom: (Solid) Diffusion term in the Fokker-
Planck equation D(2) = 1. (Dots) Estimate of the diffusion term in the Fokker-Planck equation
using ensembles of appropriately initialized short-time simulations
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Figure 4.6: (Solid) U(ψ) = −2 cos(ψ) − 5 cos(2ψ) on the 2π periodic interval (a, b) =
(− cos−1(−1/10),− cos−1(−1/10) + 2π). (Dots) Drift and Diffusion terms were estimated by
initializing ensembles of short-time simulations with a given ψ = ψ0 by taking (θ1, θ2) = (ψ0, 0)
as an initial condition in equations (4.14). The effective potential U(ψ) was then estimated using
equation (4.25).
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4.4 Conclusion

For a continuous-time kinetic model of two agents moving in the plane with

unit speed, we have shown that bistability between different collective states can

be achieved solely through the choice of the coupling function for the control of

the phase dynamics. These collective states are the S2 symmetric state, in which

agents instantaneously have the same orientations, and the Z2 symmetric state, in

which agents instantaneously have opposite orientations. Depending on the natural

oscillator frequency associated with the phase control, in these states the agents

could either be moving in straight lines or in circles.

We have demonstrated how the coarse-grained equation-free computational frame-

work can be used to quantify the collective dynamics of the two agent system in

terms of the coarse variable ψ = θ1 − θ2. Since equations at both the coarse and

fine level are explicitly known, this system provides a nice “test of concept” for

equation-free numerical methods. Analytical expressions for the drift and diffusion

terms in the Fokker-Planck equation compare well with estimates obtained using

appropriately initialized short-time simulations of the fine-scale equations.
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Chapter 5

Optimal Switching between

Coexisting Collective Motion

States

5.1 Introduction

As shown in Chapter 4, for the coupled oscillator model for collective motion,

it is possible to choose a coupling function so that both the S2 and Z2 phase-locked

states are stable. In this chapter, we show in such a situation how the steering

control for one of the agents can be modified to optimally switch from one of these

states to the other. Existence and uniqueness of the optimal input is proven and

a transition time symmetry between switching problems identified. The properties

of the optimal inputs are interpreted by considering the phase-space geometry of
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the Euler-Lagrange equations associated with the optimization. We illustrate the

results with a coupling function chosen such that the S2 and Z2 states are bistable.

5.2 Optimal Switching

Consider two agents with steering control laws given by

θ̇1 = ω +Kf(θ2 − θ1) + I(t) ≡ u1, (5.1)

θ̇2 = ω +Kf(θ1 − θ2) ≡ u0
2. (5.2)

We will show how to find the input I(t) which takes the system from the stable S2

state at t = 0 to the stable Z2 state at a specified time t = t1 and minimizes the

L2 norm of the input

G[I(t)] ≡
∫ t1

0

[I(t)]2dt. (5.3)

(Similarly, we consider optimal switching from the Z2 state to the S2 state.) The

L2 norm has been suggested in a slightly different context [49] as an appropriate

measure for steering “energy” (defined as the L2 norm of steering control) which

is an important quantity to minimize when designing steering laws for unmanned

aerial vehicle applications. For our purposes, this norm has the desirable property

that smaller inputs are considered to be better. A similar approach, however, could

be done for other appropriate cost functions of the input I(t).

Letting ψ = θ1 − θ2 as before, (5.1,5.2) become

ψ̇ = K(f(−ψ) − f(ψ)) + I(t) ≡ Kg(ψ) + I(t). (5.4)
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Next, we apply calculus of variations to minimize [29]

C[I(t)] =

∫ t1

0

{
[I(t)]2 + λ

(
dψ

dt
−Kg(ψ) − I(t)

)}

︸ ︷︷ ︸
P [I(t)]

dt, (5.5)

with λ being the Lagrange multiplier associated with requiring that the dynamics

satisfy (5.4). The associated Euler-Lagrange equations are

∂P

∂I
=

d

dt

(
∂P

∂İ

)
,

∂P

∂λ
=

d

dt

(
∂P

∂λ̇

)
,

∂P

∂ψ
=

d

dt

(
∂P

∂ψ̇

)
,

giving

I(t) = λ(t)/2, (5.6)

dψ

dt
= Kg(ψ) + I(t) = Kg(ψ) + λ/2, (5.7)

dλ

dt
= −Kλg′(ψ). (5.8)

To find the optimal I(t) to switch from the S2 state to the Z2 state, (5.7) and (5.8)

need to be solved subject to the conditions ψ(0) = 0, ψ(t1) = π. Similarly, to find

the optimal I(t) to switch from the S2 state to the Z2 state, (5.7) and (5.8) need

to be solved subject to the conditions ψ(0) = π, ψ(t1) = 2π. This requires that we

find the appropriate initial condition λ(0) ≡ λ0, which can be done with numerical

methods such as the shooting method. The solution (ψ(t), λ(t)) using this initial

condition can then be used in (5.6) to give the optimal input I(t).

Before solving the Euler-Lagrange equations for a specific example, we give some

useful general results. First, equations (5.7,5.8) have the symmetry property that

if (ψ(t), λ(t)) is a solution, then so is (−ψ(t),−λ(t)). This follows from the fact

that g(−ψ) = −g(ψ). Since such trajectories are related by symmetry, we associate
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them with each other below. Second, the Hamiltonian function

H(ψ, λ) = Kλg(ψ) + λ2/4 (5.9)

is conserved on trajectories for the Euler-Lagrange equations (5.7,5.8), as can be

readily verified. This Hamiltonian was obtained using the Legendre transforma-

tion [33]. We will be interested in trajectories with ψ = 0 or ψ = π at t = 0.

Since g(0) = g(π) = 0, the relationship between λ0 and the initial value of the

Hamiltonian, H0, is

H0 = λ2
0/4. (5.10)

The fact that there are two possible values of λ0 for a given value of H0 follows

from the reflection symmetry mentioned above. In the following, without loss of

generality we consider solutions that always have λ0 > 0.

Furthermore, equations (5.7,5.8) have two classes of fixed points (ψp, λp). Those

in the first class satisfy λp = 0 and g(ψp) = 0, and since the eigenvalues of the

Jacobian evaluated at these fixed points are ±Kg′(ψp) they are saddles. From

(5.9), the stable and unstable manifolds of these fixed points lie on the curves

λ = 0 and λ/4 + Kg(ψ) = 0. The other class of fixed points satisfy g′(ψp) = 0

and Kg(ψp) + λp/2 = 0. The eigenvalues of the Jacobian evaluated at these fixed

points are ±K
√
g(ψp)g′′(ψp), so that when g(ψp) and g′′(ψp) have opposite signs,

they are centers.
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5.3 Existence and Uniqueness of I(t)

The techniques from [67] can be modified as follows to show the existence and

uniqueness (modulo symmetries) of an optimal I(t) for any positive t1. Let’s assume

that we are interested in the trajectory of (5.7,5.8) which goes from ψ = 0 to ψ = π

in the time t1 with λ0 > 0; a similar argument holds for the trajectory which goes

from ψ = π to ψ = 2π with λ0 > 0.

Lemma 5.3.1. dψ/dt is always strictly positive for trajectories of (5.7,5.8) with

ψ(0) = 0, ψ(t1) = π, and λ0 > 0.

Proof. Consider a trajectory (ψ, λ) for 0 ≤ t ≤ t1 which solves (5.7,5.8) with

ψ(0) = 0, ψ(t1) = π, and λ0 > 0. It follows from (5.7) that dψ/dt = λ0/2 > 0 at

t = 0. Suppose by contradiction that dψ/dt < 0 for some time t̄ with 0 < t̄ < t1.

Since any trajectory in the phase plane cannot be self-intersecting, there must be a

value of ψ for which there are three different values for λ. However, the trajectory

must be a level set of H , which is quadratic in λ and hence can only have at

most two different values for a given ψ. This is a contradiction and so the lemma

follows.

Proposition 5.3.1. There exists a unique optimal input I(t) for any positive t1

(modulo symmetry related solutions).

Proof. It follows from (5.9) that trajectories satisfy λ2/4 + Kg(ψ)λ − H0 = 0.

Solving for λ, we find that λ = 2
[
−Kg(ψ) +

√
[Kg(ψ)]2 +H0

]
. Here we take

the ’+’ solution since from Lemma 5.3.1, dψ/dt = λ/2 + Kg(ψ) > 0. Then, the
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transition time t1 from the S2 to the Z2 state may be written as

t1 =

∫ t1

0

dt =

∫ π

0

dψ

Kg(ψ) + λ
2

=

∫ π

0

dψ√
[Kg(ψ)]2 +H0

. (5.11)

Therefore,

∂t1
∂H0

= −1

2

∫ π

0

dψ

([Kg(ψ)]2 +H0)3/2
< 0. (5.12)

Thus t1 decreases monotonically as H0 increases. Recalling that H0 = λ2
0/4, we

see that t1 decreases monotonically with λ0 > 0. By choosing λ0 large, we get

a solution with arbitrarily small t1, and by choosing λ0 so that the denominator

of (5.11) becomes arbitrarily small, we get a solution with arbitrarily large t1.

5.4 Transition Time Symmetry

In Section 5.3 we showed the existence and uniqueness of an optimal input I(t)

to switch from the S2 state to the Z2 state in time t1. This required that we find

an appropriate initial condition (ψ(0) = 0, λ(0) = a) so that ψ(t1) = π. Similarly,

there also exists a unique I(t) to switch from the Z2 state to the S2 state in time

t2. Here we must find an appropriate initial condition (ψ(0) = π, λ(0) = b) so that

ψ(t2) = 2π. We now demonstrate a useful relationship between these switching

problems.

Proposition 5.4.1. If λ(0) = a, then λ(t1) = a. Furthermore, t1 = t2 whenever

a = b.

Proof. Recall that H , as defined in (5.9), is conserved for trajectories of (5.7,5.8).

Thus, for the trajectory with initial condition (ψ, λ) = (0, a), at time t1 we have
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H(π, λ(t1)) = (λ(t1))
2/4 = H(0, a) = a2/4 ≡ Ha. This implies that λ(t1) = a.

Now, let Hb ≡ H(π, b). The transition time t1 from S2 to Z2 and t2 from Z2 to S2

is

t1 =

∫ π

0

dψ√
[Kg(ψ)]2 +Ha

, t2 =

∫ 2π

π

dψ√
[Kg(ψ)]2 +Hb

.

Since g is a 2π−periodic odd function, g(2π−ψ) = g(−ψ) = −g(ψ), (g(2π−ψ))2 =

g(ψ)2. Thus, letting φ = 2π − ψ,

t2 = −
∫ 0

π

dφ√
[Kg(2π − φ)]2 +Hb

=

∫ π

0

dφ√
[Kg(φ)]2 +Hb

.

Therefore, if Ha = Hb, or equivalently a = b, then t1 = t2.

5.5 Example

We now illustrate how this optimal switching method is used for the coupling

function (4.8) with A = B = 1, which gives stable S2 and Z2 solutions (see Figure

4.2). In this case, g(ψ) = −2 sin(ψ)− 2 sin(2ψ). For definiteness, other parameters

in the steering control laws are taken to be K = ω = 1. (Note that the optimal

I(t) is independent of ω.)

To find the optimal I(t) to switch from the S2 state to the Z2 state (or from

the Z2 state to the S2 state), the boundary value problem (5.7) and (5.8) with

boundary conditions ψ(0) = 0, ψ(t1) = π (resp., ψ(0) = π, ψ(t2) = 2π) needs to be

solved. The shooting method was used to compute the necessary initial value for λ,

which is then used to obtain the optimal input I(t) = λ(t)/2. Figures 5.1 and 5.2

show the optimal input I for a range of times t1 and t2 with scaled time axis. As
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Figure 5.1: Optimal input I(t) for a variety of transition times t = 0.6, 0.8, 1, 1.2, 1.4 from the S2

state to the Z2 state.
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Figure 5.2: Optimal input I(t) for a variety of transition times t = 0.6, 0.8, 1, 1.2, 1.4 from the Z2

state to the S2 state.
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we showed in Proposition 5.4.1, λ0 and therefore I0 are the same when t1 = t2. In

Figures 5.3 and 5.4, we show sample trajectories in phase space for ψ(0) = 0 and

ψ(0) = π. As expected, in order to obtain switching for large times the trajectories

remain close to the stable and unstable manifolds of the fixed points with λ = 0

and ψ = 0, ψ = cos−1(−1/2), ψ = π, and ψ = 2π.
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Figure 5.3: Sample trajectories in the (ψ, λ) plane transitioning from the S2 state (ψ = 0) to the
Z2 state (ψ = π) in time t = 0.6, 1.2. As t increases, trajectories approach the stable and unstable
manifolds of the fixed points ψ = 0, ψ = arccos(−1/2), ψ = π.

One may follow the trajectories of the agents by integrating equation (4.1) with

steering control given by equations (5.1,5.2). Figure 5.5 shows sample trajectories

for agents optimally switching from the S2 to the Z2 state in time t1 = 0.6. Both

agents are initially placed at the origin (x, y) = (0, 0) with θ1 = θ2 = 0 (ψ = 0), so

that each agent has initial velocity vector ṙ1 = ṙ2 = (1, 0). After the appropriate
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Figure 5.4: Sample trajectories in the (ψ, λ) plane transitioning from the Z2 state (ψ = 0π) to
the S2 state (ψ = 2π) in time t = 0.6, 1.2. As t increases, trajectories approach the stable and
unstable manifolds of the fixed points ψ = π, ψ = 2 arccos(−1/2), ψ = 2π.
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transition time t1, the input I(t) is turned off so that agents remain in the Z2 state,

following circular paths of radius 1 (since ω = 1) with constant phase difference

ψ = π. Figure 5.6 shows sample trajectories for agents switching from the Z2 to

the S2 state in time t2 = 0.6. As in the previous case, agents are initially placed

at the origin (x, y) = (0, 0), but with θ1 = π and θ2 = 0 so that ψ = π. After time

t2 = 0.6, the input I(t) is turned off and agents remain in the S2 state, following

circular paths of radius 1 (since ω = 1) with the same phase.

Because we are using only phase control, in general the agents will end up

tracing different circles after the optimal input I(t) is turned off.
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Figure 5.5: Sample path of agents in the (x, y) plane for optimal switching from the S2 state
(ψ = 0) to the Z2 state (ψ = π) in time t = 0.6. Both agents start at the origin at t=0 with
θ1 = θ2 = 0 (ψ = 0) and end at t = 0.6 with ψ = π. After t = 0.6, agents follow circular paths of
radius 1 (since ω = 1) with constant phase difference of ψ = π.
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Figure 5.6: Sample path of agents in the (x, y) plane for optimal switching from the Z2 state
(ψ = π) to the S2 state (ψ = 0) in time t = 0.6. Both agents start at the origin at t=0 with
θ1 = π, θ2 = 0 (ψ = π) and end at t = 0.6 with ψ = 0. After t = 0.6, agents follow circular paths
of radius 1 (since ω = 1) with constant phase difference of ψ = 0.
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5.6 Conclusion

Variational methods were used to determine the optimal input to the steering

control of one of the agents which leads to switching between two collective states,

an “in phase” (S2) and a “splay” (Z2) state. Here optimality refers to minimiza-

tion of the square-integral measure of the input. For any given time interval of

switching, such an optimal input was shown to exist and to be unique, provided

symmetry-related solutions are associated. Furthermore, a transition time symme-

try was identified which relates the optimal inputs for transitions from the S2 to

the Z2 symmetric state to the optimal inputs for transitions from the Z2 to the

S2 symmetric state. Finally, the properties of optimal inputs were interpreted by

considering the phase space geometry of the Euler-Lagrange equations associated

with the optimization.

We have considered optimal inputs which lead to switching over a specified time

interval. Such switching has a nice robustness property: if the input simply puts

the system into the basin of attraction of the desired state, the system’s natural

dynamics will lead to an asymptotic approach to the desired state. Provided noise

and uncertainties in model parameters are not too large, one thus expects that the

inputs considered in this chapter will robustly lead to successful switching, although

not exactly in the desired amount of time.

Many biological models of collective motion show that animal groups do not

necessarily change their behavioral rules to switch between collective states, see,

e.g., Chapters 2 and 3. The model studied in this Chapter demonstrates a robust
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mechanism for which a member of a school can induce switching between states,

without a change to the basic rules of motion, or the knowledge of the rest of the

members of the school.

We hope that the techniques used in this Chapter can be extended to other

collective motion systems which display bistability, including bistability between

other states and systems composed of a larger number of agents. In particular, using

the expressions for the eigenvalues of globally coupled oscillator systems derived

in [4, 9], it is possible to choose coupling functions such that the SN and ZN

states are bistable. Also, for N ≥ 3 agents it is possible to have periodic orbits in

the steering control subsystem stably coexisting with phase-locked solutions [52].

Optimal switching between coexisting stable states for such N agent systems would

lead to higher dimensional optimization problems which could be numerically solved

with gradient methods.
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Chapter 6

Spatial Position and Information

Transfer in a Schooling Model

6.1 Introduction

For the one-dimensional individual-based schooling model studied in Chapter

2, we found that groups may stochastically switch between two ordered collective

states. Such switching typically begins with a change in the heading of an indi-

vidual near the edge of the school which then “propagates” throughout the entire

school. In this Chapter, we investigate the relationship between spatial position

and information transfer for a two-dimensional individual-based schooling model.

We begin by introducing the schooling model and then analyze the steady-state

dynamics using a few coarse-observables. For efficiency, simulations are performed

in parallel on a programmable graphics processing unit. Finally, we use a cross-
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correlation function to measure the average response of a school to perturbations in

the headings of individual members. We relate the length and strength of response

to the spatial positions of the individuals perturbed. Our results show that leaders,

i.e., individuals at the front of the school, do not necessarily propagate information

most efficiently. This significantly changes current assumptions regarding the costs

and benefits of spatial positions in animal groups.

6.2 The Model

We consider a two-dimensional individual-based model for schooling fish in

which interactions take place within two behavioral zones. This type of model was

considered in [18] with an informed leader. Here we assume there is no informed

leader, so that the group is self-organizing, and explore the effects of different

weights of orientation and attraction response on the schooling behavior.

In the model, groups are composed of N individuals with positions pi(t) ∈ R
2

and unit directions v̂i(t) ∈ R
2. Individuals travel at constant speed s and have

finite maximum turning rate θ. Every time step τ , individuals simultaneously

determine a new direction of travel by considering neighbors within two behavioral

zones. The first zone, a “zone of repulsion”, is represented by a circle of radius

rr centered about the individual. Individuals repel away from agents within their

zone of repulsion. The second zone, a “zone of orientation and attraction”, is

represented by an annulus of inner radius rr and outer radius rp = rr + ∆rp about

the individual, excluding a blind area behind the individual, defined as a circular
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sector with interior angle (2π−η) for which neighbors are undetectable. Individuals

align with and are attracted towards neighbors within their zone of orientation and

attraction.

These zones are used to define the following behavioral rules of motion. If

individual i finds agents within its zone of repulsion, then it orients its direction

away from the average relative directions of those agents. Its desired direction of

travel in the next time step is given by the sum

vi(t+ τ) = −
∑

j 6=i

pj(t) − pi(t)

|pj(t) − pi(t)|
. (6.1)

The desired direction of travel of agent i is normalized as v̂i(t + τ) = vi(t+τ)
|vi(t+τ)|

,

assuming vi(t + τ) 6= 0. If vi(t + τ) = 0, then agent i maintains its previous

direction of travel as its desired direction of travel, giving v̂i(t+ τ) = v̂i(t).

If individual i does not find agents within its zone of repulsion, then it aligns

with (by averaging the directions of travel of itself and its neighbors) and feels an

attraction towards (by orienting itself towards the average relative directions of)

agents within its zone of orientation and attraction. Its desired direction of travel

is given by the weighted sum of two terms:

vi(t+ τ) = ωa
ai(t)

|ai(t)|
+ ωo

oi(t)

|oi(t)|
, (6.2)

where ωo and ωa are the weightings of the orientation and attraction terms respec-

tively, and

ai(t) =
∑

j 6=i

pj(t) − pi(t)

|pj(t) − pi(t)|
, oi(t) =

∑

j

v̂j(t). (6.3)
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The desired direction of travel of agent i is normalized as v̂i(t + τ) = vi(t+τ)
|vi(t+τ)|

,

assuming vi(t + τ) 6= 0. As before, if vi(t + τ) = 0, then agent i maintains its

previous direction of travel as its desired direction of travel.

We denote r = ωo/ωa as the ratio of orientation and attraction tendencies.

For r < 1 (ωa > ωo), individuals are more interested in attraction towards their

neighbors than orientation with them. For r = 1, orientation and attraction influ-

ences are weighted equally (ωo = ωa). For r > 1 (ωo > ωa), individuals are more

interested in orientation with their neighbors than attraction towards them.

Noise effects are incorporated into the model by rotating agent i’s desired di-

rection v̂i(t+ τ) by an angle drawn from a circularly wrapped normal distribution

with mean 0 and standard deviation σ. Also, since individuals can only turn θτ

radians in one timestep, if the angle between v̂i(t) and v̂i(t+ τ) is greater than θτ ,

individuals do not achieve their desired direction, and instead rotate θτ towards it.

Finally, each agent’s position is updated simultaneously as

pi(t+ τ) = pi(t) + sv̂i(t+ τ)τ i = 1, . . . N. (6.4)

To begin a simulation, individuals are placed in a bounded region with randomized

positions and directions of travel. The simulation is run 3000 time steps until the

schooling behavior has reached steady-state.

To accurately determine the statistical properties of the collective motion of fish

whose dynamics are described by such a model, many steady-state simulations are

required. Simulations of the individual-based model can be quite costly and can

benefit from parallel processing. In the model, each agent updates its direction
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of travel based on the positions and directions of travel of all other agents. This

computation can be performed in parallel across individuals within a single realiza-

tion. In addition, replicate steady-state simulations can be performed in parallel

across realizations. Both are data-parallel computations in which the same instruc-

tions are executed on multiple data elements in parallel. We used a programmable

Graphics Processing Unit (GPU) to perform simulations of the model in parallel.

For further information, see Appendix D.

6.3 Observables

Two observables are used to measure the structure of the schools: elongation

and polarization. Group elongation is computed by forming the smallest bounding

box that contains the school and taking the ratio of the length of the axis of

the bounding box aligned with group motion to the axis perpendicular to group

motion [18]. When a school is equally wide as it is long, E(t) = 1. For our steady-

state schooling simulations typically E ≥ 1. Polarization,

P (t) =
1

N

∣∣∣∣∣

N∑

i=1

v̂i(t)

∣∣∣∣∣ , (6.5)

measures the degree of group alignment. If all individuals within a school adopt the

same heading, P (t) = 1, while if their headings balance out, P (t) = 0. Thus, P (t)

takes values in the range [0, 1]. To obtain statistics regarding the group structure for

a given size set of parameters, 1000 steady-state simulations (with different initial

conditions) were run on the GPU for 3000 time steps. The average group elongation
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and polarization were recorded as well as the probability of group fragmentation.

A group is defined to be fragmented when it is composed of two or more non-

interacting subgroups.

In addition to these observables, we measure a schools directional memory with

an average heading autocorrelation function. Specifically, define the average group

heading as

v̂av =
N∑

i=1

v̂i/

∣∣∣∣∣

N∑

i=1

v̂i

∣∣∣∣∣ . (6.6)

Then, the average heading autocorrelation function is defined as

A(t) = 〈v̂av(t) · v̂av(0)〉, (6.7)

where 〈·〉 denotes an ensemble average over replicate simulations. Note that v̂av(0)

refers to the initial average heading of a steady-state school which has already

been simulated for 3000 time steps. The average heading autocorrelation function

measures the correlation of the schools initial heading with its current heading as

a function of time. At time t = 0, A(t) = 〈v̂av(0) · v̂av(0)〉 = 1. As t increases, A(t)

typically decreases towards zero as the school “forgets” its direction of travel.

6.4 Simulation Statistics

We fix rr = 1, ∆rp = 6, η ≈ 6.1 radians (350 degrees), s = 1/sec, τ = 0.2 sec,

σ = 0.01, and θ ≈ 2 radians (115 degrees). We consider schools of size N ∈ [10, 150]

and explore the effects of varying r = ωo/ωa, the ratio of orientation to attraction

weights. For r near zero, individuals weight attraction much more than orienta-
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tion, and swarming behavior persists. Groups are cohesive with low polarization

and elongation that is close to 1 (groups are as wide as they are long). As r is

increased, orientation influences become stronger and groups become increasingly

more polarized. For r just past 1, groups become more elongated along their prin-

ciple axis of motion. Elongation reaches a maximum when orientation weightings

are approximately twice that of attraction weightings (r ≈ 2) and then decreases.

Figure 6.1 shows the average group polarization, average group elongation, and

probability of group fragmentation statistics for schools of size N = 25, 50, 100, 150

averaged over 1000 replicates at steady-state.

For N small, the probability of fragmentation is nearly zero for all ratios r con-

sidered. This is due to the fact that when N is small, the size of the interaction

zones is large in comparison to the size of the school, and thus the probability that

an individual (or group of individuals) will lose all interaction with the school and

fragment is extremely low. For larger size schools, the probability of fragmentation

is nearly zero when r < 1 (ωa > ωo). When r ≥ 1, the probability of fragmentation

is non-zero. It is interesting to note that the probability of fragmentation is not

simply a monotonically increasing function of r. For schools of size N = 100, for

example, for r just past 1, there is a relatively rapid increase in the probability of

fragmentation, reaching a peak probability of 0.28 at r = 1.4. In this parameter

regime, schools are more than twice as long as they are wide and are not highly

polarized. Fragmentation seems to take place as a pinching process from a narrow

point in a school. When such a weak point exists, and polarization is not extremely
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Figure 6.1: Average group polarization, elongation, and probability of fragmentation as a function
of r, the ratio of orientation to attraction weightings, for schools of size N = 25, 50, 100, 150 for the
local zone-based schooling model. For schools of size N = 25, 50, the probability of fragmentation
is zero for all values of r.
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high, the school may fragment into subgroups, each adopting different average di-

rections of travel. For larger r, the probability of fragmentation naturally increases

as individuals weight attraction to their neighbors much less than alignment. See

Figure 6.2 for examples of fragmentation when r = ωo/ωa = 1.25, 64. For all values

of r, the probability of fragmentation increases with simulation time.
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Figure 6.2: (Left panel) Illustration of fragmentation for ∆rp = 5, r = ωo/ωa = 64. Snapshots of
a school at time (a) t=10, (b) t=30, and (c) t=200. (Right panel) Illustration of fragmentation
for ∆rp = 6, r = ωo/ωa = 1.25. Snapshots of a school at time (d) t=2740, (e) t=2760, and (f)
t=2770.
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Figure 6.3 shows the average heading autocorrelation functions for r = 4, 16, 64

averaged over 1000 different steady-state schools for t = 104 steps. The autocorre-

lation functions seem to decay exponentially with time, i.e., as e−λt. This is charac-

teristic of an Orenstein-Uhlenbeck process. Thus, we can think of the variable vav(t)

as a stochastic variable with autocorrelation time 1/λ. For r = 4, 16, the autocor-

relation functions fit well to exponentials with characteristic times 1/λ ≈ 596, 1196.

Thus, as schools become more polarized, they retain memory of their average head-

ings for longer times. For r = 64, the autocorrelation function does not fit well

to a single exponential. This is most likely due to the fact that the probability of

fragmentation when r = 64 is non-zero (nearly 8 percent at t = 3000) and increases

as a function of simulation time.
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Figure 6.3: Average heading autocorrelation functions for the schooling model with r = 4, 16, 64
averaged over 1000 replicates for 104 time steps.
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6.5 Spatial Position and Information Transfer

In this section, we measure the response of a school to internal perturbations

with a cross-correlation function and relate this to the location of the perturbation.

We begin by ranking individuals within a school. Define the center of mass of the

school as pav = 1
N

∑N
i=1 pi. As in [18], for each steady-state school, individuals

are ranked according to their signed distance to the plane through pav with normal

direction v̂av. It follows that individuals near the front of the school have rank close

to 1, while individuals near the back of the school have rank close to N .

6.5.1 Perturbing a Single Individual

We rotate the heading of a single individual of rank i in a steady-state school

by 90 degrees counterclockwise (with respect to their initial heading) and measure

the correlation of the average heading of the school with the perturbed heading of

the individual as a function of time. More specifically, define the cross-correlation

function C(t, i) as

C(t, i) = 〈v̂av(t) · v̂ip(0)〉 = 〈cos(θ)〉, (6.8)

where 〈·〉 denotes an ensemble average over replicate simulations, v̂ip is the perturbed

heading of a fish of rank i, and θ is the angle between v̂av(t) and v̂ip(0). C(t, i) is

a measure of the sensitivity of a school to perturbations of individual members

located at rank i within a school. Note that C takes values in the range [−1, 1] and

by definition C(0, i) = 0. When C > 0, the schools heading has on average adjusted

to be closer to the heading of the perturbed individual (positive correlation), while
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when C < 0, the schools heading has on average adjusted to be further away from

the heading of the perturbed individual (negative correlation).

In the following, we consider schools of size N = 100, and consider r in the range

[0.25, 64]. To measure the sensitivity of a school to perturbations as a function of

location, we divide the school into four quartiles: front (rank 1− 25), front-middle

(rank 26 − 50), middle-back (rank 51 − 75) and back (rank 76 − 100). We then

compute the mean response to perturbations in each of the four quartiles, C(t),

by averaging over individuals of rank in the range [j, j + k] where k = 24 and

j = 1, 26, 51, 76.

The right panel of Figure 6.4 shows for schools of size N = 100 with r = 4

(P ≈ 0.91, E ≈ 2.3), r = 16 (P ≈ 0.98, E ≈ 1.5), and r = 64 (P ≈ 1.0, E ≈ 1.5),

the average response to an internal perturbation C(t). The correlation functions

were averaged over 1000 replicates in each of the four quartiles. The left panel of

the figure shows sample schools prior to the perturbation colored according to rank.

In all cases, there seem to be multiple time scales of information transfer and

loss as measured by the cross-correlation function C(t). On the fast time scale,

lasting approximately 10-20 timesteps (2-4 seconds real time), the school’s average

heading rapidly becomes more correlated with the initial heading of the perturbed

individual. This corresponds to a first burst of information transfer.

Over longer time scales, there are secondary responses. For r = 4, the secondary

response has almost as large an impact on the heading of the school as the initial

and varies strongly with the location of the perturbation. For the middle quartiles
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Figure 6.4: Left panel: N = 100 member schools simulated using the local zone model with (a)
r = 4 (P ≈ 0.91, E ≈ 2.3), (b) r = 16 (P ≈ 0.98, E ≈ 1.5), and (c) r = 64 (P ≈ 1.0, E ≈ 1.5),
all colored according to rank. Right panel: Cross-correlation functions C(t) averaged over 1000
replicates in each of the four quartiles.
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(2nd and 3rd), the secondary response appears to be information transfer at a

slower rate, while for the front and back quartiles, it seems to be information loss.

For r = 16, after the initial burst of information transfer, C(t) does not make any

large gains or losses. For the middle quartiles, there is a small rise in correlation,

while for the front and back quartiles there is a small decline in correlation. For

r = 64, after the initial burst of information transfer, one can see a visible trend

in information loss. Since schools naturally lose memory of their average direction

of travel (as measured by the autocorrelation functions in section 6.4), we suspect

the visible trend in information loss for r = 64 is due to noise effects, and not a

secondary burst of response.

In Figure 6.5, the peak correlation Cmax is plotted as a function of r for each

of the four quartiles. Since Cmax is an increasing function of r, we may conclude

that as schools become more polarized, they respond more strongly to internal

perturbations. Thus, by changing local behavioral tendencies (adjusting r), schools

can tune themselves to be more or less sensitive to fluctuations. Individuals in

the front-middle region (2nd quartile) induce the greatest response for all values

of r considered. Individuals in the 1st and 3rd quartiles induce the next greatest

response, with individuals in the 3rd quartile typically inducing a larger response.

Not surprisingly, members in the 4th quartile at the rear of the school have the

least effect.

It is assumed that among the benefits of adopting a frontal position, such as

increased food consumption [56], is the ability to lead, i.e., to have more control
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Figure 6.5: Peak correlation Cmax as a function of r for each of the four quartiles. Schools
respond more strongly to perturbations from the 1st quartile. For all four quartiles, Cmax is an
increasing function of r. Thus, schools that are more polarized respond more strongly to internal
perturbations.

over the collective motion of the group. Our results show that individuals in the

very front of the school do not necessarily transfer information most efficiently or

have more “control” over group motion. Thus, the optimal position for leadership

may not be a front, “lead” position, as previously assumed. There is evidence to

support that individuals on the edges of a school may have an increased risk of

predation since they are the first to run into danger [16]. Our results put into

new perspective the benefits and drawbacks of adopting particular spatial positions

within a school.
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6.5.2 Perturbing Multiple Individuals

We now measure the response of a school to perturbations in the headings of

multiple individuals. We consider spatially and temporally correlated perturbations

(individuals from the same quartile at the same time) and just temporally correlated

perturbations (individuals at the same time). We measure the response of the school

to perturbations (rotation by 90 degrees counterclockwise) in the heading of two

members with the cross-correlation function

C(t, ij) = 〈v̂av(t) · v̂ijp (0)〉, (6.9)

where v̂ijp (0) denotes the average perturbed heading of individual i and j. The

response of a school to perturbations in the headings of more than two members is

defined in a similar manner.

Figure 6.6 shows for r = 64, the response of a school to spatially and temporally

correlated perturbations of up to six members in the 2nd quartile. The form of

response is quite similar: a rapid initial increase in correlation followed by a decay

due to noise effects. The peak correlation Cmax seems to saturate as the number

of perturbed individuals increases. In addition, the time in which the heading

cross-correlation function reaches its peak value Cmax increases.

In general, for all four quartiles, we find that when individuals are located in

the same quartile and perturbed at the same time (spatial-temporal), the peak

correlation Cmax saturates with the number of perturbed individuals; see Figure

6.7. In other words, the rate of response seems to decrease with the number of

individuals perturbed. On the same figure, the peak correlation for temporally (and
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Figure 6.6: Cross-correlation functions measure the response of the school to spatially and tem-
porally correlated perturbations in the headings of 1-6 members in the 2nd quartile of a school
with r = 64.

not spatially) correlated perturbations is shown. Here, the peak correlation Cmax

increases almost linearly with the number of perturbed individuals. In addition, we

find that the overall response of a school to multiple simultaneous perturbations is

larger when individuals are not spatially correlated. This is most likely due to the

fact that individuals that are not correlated in space can cover more of the social

network and thus more effectively influence a greater number of individuals.

6.6 Conclusion

We considered a two-dimensional individual-based model for fish schooling which

incorporates a tendency for each fish to align its position and orientation with an

appropriate average of its neighbors’ positions and orientations, plus a tendency for
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each fish to avoid collisions. We explored the effects of different weights of orienta-

tion and attraction response on the schooling behavior. We find that as the ratio of

orientation to attraction weights increases, schools become more highly polarized.

We also note that when groups are highly elongated but not highly polarized, the

probability of fragmentation increases.

We used a cross-correlation function to measure the response of a school to per-

turbations in the headings of individual members. We find that there are multiple

time scales associated with information transfer and loss. In the fast time scale,

information is transfered in approximately 2-4 seconds. As schools become more

highly polarized, they respond more strongly to internal perturbations. Overall,

we find that individuals in the 2nd quartile induce the greatest response. Thus,

individuals located in front of the school are not necessarily in the best position in

terms of control and leadership of the school. In the future, we hope to compare the

results with data from laboratory experiments on schooling fish already underway.
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Appendix A

Derivation of the Fokker-Planck

Equation

In this section, we outline a derivation of the Fokker-Planck equation and equa-

tions for the drift and diffusion terms. To begin the derivation, we first make

some assumptions regarding the properties of the stochastic process. Suppose

{X(t) : t ≥ 0} is a one-dimensional stochastic process with t1 > t2 > t3. We use

P (X1, t1;X2, t2) to denote the joint probability distribution, i.e., the probability

that X(t1) = X1 and X(t2) = X2, and P (X1, t1 | X2, t2) to denote the conditional

(or transition) probability distribution, i.e., the probability that X(t1) = X1 given

that X(t2) = X2, defined as P (X1, t1;X2, t2) = P (X1, t1 | X2, t2)P (X2, t2). We

further assume X(t) is a Markov process, namely,

P (X1, t1 | X2, t2;X3, t3) = P (X1, t1 | X2, t2).
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For any continuous state Markov process, the following Chapman-Kolmogorov

equation is satisfied [30, 92]:

P (X1, t1 | X3, t3) =

∫
P (X1, t1 | X2, t2)P (X2, t2 | X3, t3)dX2. (A.1)

Finally, we will also assume X(t) is time homogeneous:

P (X1, t1 + s;X2, t2 + s) = P (X1, t1;X2, t2),

so that X is invariant with respect to a shift in time. For simplicity of notation,

we use P (X1, t1 − t2 | X2) ≡ P (X1, t1 | X2, t2).

We may now derive the Fokker-Planck equation from the Chapman-Kolmogorov

identity (A.1) as follows [13]. Consider

∫ ∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY,

where h(Y ) is any smooth function with compact support. Writing

∂P (Y, t | X)

∂t
= lim

∆t→0

P (Y, t+ ∆t | X) − P (Y, t | X)

∆t
,

and interchanging the limit with the integral, it follows that

∫ ∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY = lim

∆t→0

∫ ∞

−∞

h(Y )

[
P (Y, t+ ∆t | X) − P (Y, t | X)

∆t

]
dY.

(A.2)

Applying the Chapman-Kolmogorov identity (A.1), the right hand side of expres-

sion (A.2) can be written as

lim
∆t→0

1

∆t

[∫ ∞

−∞

h(Y )

∫ ∞

−∞

P (Y,∆t | Z)P (Z, t | X)dZdY −
∫ ∞

−∞

h(Y )P (Y, t | X)dY

]
.

(A.3)
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Interchanging the limits of integration in the first term of (A.3), letting Y → Z in

the second term, and using the identity
∫∞

−∞
P (Y,∆t | Z)dY = 1, we have

lim
∆t→0

1

∆t

[∫ ∞

−∞

P (Z, t | X)

∫ ∞

−∞

P (Y,∆t | Z) (h(Y ) − h(Z)) dY dZ

]
.

Taylor expanding h(Y ) about Z gives

lim
∆t→0

1

∆t

[∫ ∞

−∞

P (Z, t | X)

∫ ∞

−∞

P (Y,∆t | Z)
∞∑

n=1

h(n)(Z)
(Y − Z)n

n!
dY dZ

]
.

Defining the jump moments as

D(n)(Z) =
1

n!
lim

∆t→0

1

∆t

∫ ∞

−∞

(Y − Z)nP (Y,∆t | Z)dY, (A.4)

it follows that

∫ ∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY =

∫ ∞

−∞

P (Z, t | X)
∞∑

n=1

D(n)(Z)h(n)(Z)dZ. (A.5)

Integrating each term on the right hand side of (A.5) by parts n times and using

the assumptions on h, after moving terms to the left hand side, it follows that

∫ ∞

−∞

h(Z)

(
∂P (Z, t | X)

∂t
−

∞∑

n=1

(
− ∂

∂Z

)n [
D(n)(Z)P (Z, t | X)

]
)
dZ = 0.

Now, since h is an arbitrary function, it is necessary that

∂P (Z, t | X)

∂t
=

∞∑

n=1

(
− ∂

∂Z

)n [
D(n)(Z)P (Z, t | X)

]
. (A.6)

We define the probability distribution function P (X, t) of X(t) as the solution of

equation (A.6) with initial condition given by a δ-distribution at X0 at t = 0. In

this case, P (X, t) ≡ P (X, t | X0, 0) and we may write equation (A.6) as

∂P (X, t)

∂t
=

∞∑

n=1

(
− ∂

∂X

)n [
D(n)(X)P (X, t)

]
, (A.7)
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and equation (A.4) as

D(n)(X0) =
1

n!
lim

∆t→0

1

∆t
〈[X(t+ ∆t) −X(t)]n〉|t=0 . (A.8)

Equation (A.7) is referred to as the Kramers-Moyal expansion. The Fokker-Planck

equation is a special case of the Kramers-Moyal expansion (A.7) for whichD(n)(X) =

0 for n > 2. Such a condition holds when the stochastic process X(t) has continuous

sample paths and is satisfied, for example, when X obeys a stochastic differential

equation with Gaussian white noise.

It easily follows from (A.8) that for n = 1, the drift term may be written as

D(1)(X0) =
∂〈X(t;X0)〉

∂t

∣∣∣∣
t=0

, (A.9)

where X(t;X0) denotes a trajectory initialized at X0 at t = 0 and angular brackets

denote ensemble averaging over different realizations of the trajectory. We now

show how the diffusion term D(2)(X) can be written as

D(2)(X0) =
1

2

∂Var(t;X0)

∂t

∣∣∣∣
t=0

, (A.10)

where Var(t;X0) denotes the variance of an ensemble of trajectories initialized at

X0 at t = 0. Letting n = 2 in (A.8) we have

D(X0) =
1

2
lim

∆t→0

1

∆t
〈[X(∆t) −X(0)]2〉

=
1

2
lim

∆t→0

〈X(∆t)2〉 − 2X(0)〈X(∆t)〉 +X(0)2

∆t
.

Expanding 〈X(t)〉 about t = 0, we may write 〈X(∆t)〉 = X(0)+C1∆t+C2∆t
2+ . . .
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so that

D(X0) =
1

2
lim

∆t→0

〈X(∆t)2〉 − 2X(0)[X(0) + C1∆t+ C2∆t
2 + . . .] +X(0)2

∆t

=
1

2
lim

∆t→0

〈X(∆t)2〉 −X(0)2 − 2X(0)[C1∆t+ C2∆t
2 + . . .]

∆t

=
1

2
lim

∆t→0

〈X(∆t)2〉 −X(0)2 − 2X(0)C1∆t+O(∆t2)

∆t
.

Expression (A.10) can be written as

D(X0) =
1

2
lim

∆t→0

〈[X(∆t) − 〈X(∆t)〉]2〉
∆t

=
1

2
lim

∆t→0

〈X(∆t)2〉 − 〈X(∆t)〉2
∆t

=
1

2
lim

∆t→0

〈X(∆t)2〉 − (X(0) + C1∆t+ C2∆t
2 + . . .)2

∆t

=
1

2
lim

∆t→0

〈X(∆t)2〉 −X(0)2 − 2X(0)C1∆t+O(∆t2)

∆t
.

Therefore, expressions (A.10) and (A.8) with n = 2 are equivalent in the limit

∆t→ 0.
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Appendix B

Derivation of Mean Residence

Times and Kramers Formula

Using the backward Fokker-Planck equation, one may derive expressions for the

mean escape time from each well of a bistable potential. Suppose X(t) has value

X at time t = 0 where X ∈ (a, b). Then, the probability that X(t) is in (a, b) at

time t is given by

F (t;X) =

∫ b

a

P (X ′, t|X, 0)dX ′. (B.1)

If T is the time X(t) first leaves the interval (a, b), then F (t;X) = Prob(T ≥ t);

this holds for reflecting or absorbing boundary conditions at a and b, as will be

used below. For a stationary process, the backward FP equation may be written

as [30]

∂

∂t
P (X ′, t|X, 0) = D(1)(X)

∂

∂X
P (X ′, t|X, 0) +D(2)(X)

∂2

∂X2
P (X ′, t|X, 0), (B.2)
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with boundary conditions P (X ′, 0|X, 0) = δ(X−X ′). It then follows that F satisfies

the equation

∂

∂t
F (t;X) = D(1)(X)

∂

∂X
F (t;X) +D(2)(X)

∂2

∂X2
F (t;X), (B.3)

with boundary conditions

F (0;X) =





1 : a ≤ X ≤ b

0 : elsewhere.

The cumulative distribution function of the random variable T is given by

Prob(T < t) = 1 − Prob(T ≥ t) = 1 − F(t; X). Thus, the probability density

function of T is given by −dF
dt

and the mean first passage time 〈T 〉 is given by

〈T 〉 = −
∫ ∞

0

tdF (t;X) = −
∫ ∞

0

t∂tF (t;X)dt. (B.4)

After integrating equation (B.4) by parts, it follows that

T (X) ≡ 〈T 〉 =

∫ ∞

0

F (t;X)dt. (B.5)

Finally, after integrating equation (B.3) over the interval (0,∞) one finds that T (X)

satisfies the following differential equation:

dT

dX
D(1)(X) +

d2T

dX2
D(2)(X) = −1. (B.6)

Now, suppose the left well is located at X1 with barrier at X∗. Then, to find the

mean time spent in the left well, we must solve equation (B.6) for T where a = −∞

is a reflecting boundary and b = X∗ is an absorbing boundary. This means that

∂XF (t;−∞) = 0 and F (t;X∗) = 0 which gives the following conditions on T,

T ′(−∞) = 0, T (X∗) = 0. (B.7)
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Solving equation (B.6) with conditions (B.7) gives the following equation for the

mean time spent in the left well:

T (X1 → X∗) =

∫ X∗

X1

dY eG(Y )

∫ Y

−∞

dZ
e−G(Z)

D(2)(Z)
, (B.8)

where

G(X) = −
∫ X

−∞

dX ′D
(1)(X ′)

D(2)(X ′)
. (B.9)

G is related to the effective potential in equation (2.10) as U(X) = log(D(2)(X)) +

G(X) + const. A similar expression for the mean time spent in the right well,

located at X2, is given by

T (X2 → X∗) =

∫ X2

X∗

dY eG(Y )

∫ ∞

Y

dZ
e−G(Z)

D(2)(Z)
. (B.10)

We may estimate the mean residence time T (X1 → X∗) for constant D(2)(X) =

D as follows. First, since G(X) = U(X) + const., we rewrite expression (B.8) as

T (X1 → X∗) =
1

D

∫ X∗

X1

dY eU(Y )

∫ Y

−∞

dZe−U(Z), (B.11)

where

U(X) = − 1

D

∫ X

−∞

dX ′D(1)(X ′) + const. = U0(X)/D + const. (B.12)

Now, if ∆U0 = U0(X
∗)−U0(X1) is much larger than D, then we may approximate

(B.11) as

T (X1 → X∗) =
1

D

{∫ X∗

−∞

dZe−U(Z)

}∫ X∗

X1

dY eU(Y ), (B.13)

where the inner integral in (B.11) has been replaced by the expression in brackets.

We can further estimate the mean residence time by Taylor expanding U(X) near
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X1 as

U(X) ≃ U(X1) +
U ′′(X1)

2
(X −X1)

2, (B.14)

and near X∗ as

U(X) ≃ U(X∗) − |U ′′(X∗)|
2

(X −X∗)2. (B.15)

Then, we may approximate the first integral as

∫ X∗

−∞

dZe−U(Z) ≈
∫ ∞

−∞

dZ exp

{
−U(X1) −

U ′′(X1)

2
(Z −X1)

2

}
(B.16)

=

√
2π√

U ′′(X1)
e−U(X1), (B.17)

and the second integral as

∫ X∗

X1

dY eU(Y ) ≈
∫ ∞

−∞

dY exp

{
U(X∗) − |U ′′(X∗)|

2
(Y −X∗)2

}
(B.18)

=

√
2π√

|U ′′(X∗)|
eU(X∗). (B.19)

It follows from (B.17) and (B.19) that the mean residence time T (X1 → X∗) may

be approximated as

T (X1 → X∗) ≈ 2πe∆U

D
√
U ′′(X1)|U ′′(X∗)|

, (B.20)

where ∆U = U(X∗) − U(X1). Expression (B.20) is commonly known as Kramer’s

formula and is a classical formula of reaction rate theory in chemistry. A similar

expression holds for T (X2 → X∗). If D(2)(X) is not constant, we can use the

approximation D(2)(X) ≈ D̄ = 1
2
(D(2)(X∗) +D(2)(X1)) in [X1, X

∗] to replace D in

formula (B.20).
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Appendix C

Diffusion Maps and Principal

Component Analysis

The diffusion map approach can be thought of as a nonlinear extension of prin-

cipal component analysis (PCA) [48, 94]. In PCA, analysis of a dataset is based

on the assumption of linearity. A sample dataset is re-expressed through a linear

transformation in terms of a new orthogonal basis which optimally captures the

variance in the dataset. The first few modes give a low-dimensional representation

of the dataset. However, due to this linearity assumption, PCA may not always

find an optimal (in terms of low-dimensionality) representation of the dataset. For

example, consider as in Figure C.1, two Gaussian clouds in the plane drawn from

normal distributions centered at (−1, 0) and (1, 0) with standard deviation σc = 0.4

in both cases. For this dataset, PCA finds the optimal basis to be e1 = [1, 0] and

e2 = [0, 1]. In Figure C.2, the projection of the dataset onto the first basis vec-
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tor is plotted, which in this example is equivalent to plotting the x-coordinates of

the datapoints. As one can see from the left panel of the figure, the first modal

coordinates do not give a sharp parametrization of the dataset which distinguishes

between the two cloud clusters.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Two Gaussian Clouds

Figure C.1: Dataset sampled from two normal distributions centered at (−1, 0) and (1, 0) with
standard deviation σc = 0.4 in each case.

In contrast, using the diffusion map approach, with Gaussian kernel of a suf-

ficiently small variance σ2, we can capture the bimodal structure of the dataset

with a single coordinate. In the right panel of Figure C.2, the sorted components

of the first non-trivial eigenvector obtained from the diffusion map procedure with

σ = 0.4 and σ = 1.2 are plotted. The parameter σ controls the connection strength

of the graph of the dataset. As one can see from the figure, for σ = 1.2 the

parametrization of the dataset looks similar to that of PCA, while for σ = 0.4, the

first non-trivial eigenvector is approximately constant in each cloud with a sharp
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transition between them. This is due to the fact that for σ sufficiently small, the

two clouds are effectively disconnected in the graph of the dataset and are therefore

quite far away in diffusion distance. Thus, if σ2 is chosen to be of the same order

as the variance σ2
c of the dataset, the diffusion map approach is able to capture the

bimodal structure with a single coordinate.
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σ = 1.2
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Figure C.2: Left panel: The sorted projection of the Gaussian cloud dataset onto the first mode
obtained using Principal Component Analysis. Right panel: The sorted components of the first
non-trivial eigenvector obtained from the diffusion map procedure with σ = 0.4 (gray) and σ = 1.2
(black).
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Appendix D

Parallel Simulation on a GPU

A Graphics Processing Unit (GPU) is an inexpensive yet powerful alternative to

a cluster for parallel simulations. Its architecture is very well suited to simulations

of the individual-based schooling model. Parallel computation on general-purpose

GPUs (GPGPU) has become an active research area with a wide range of scientific

applications including fluid dynamics, cellular automata, particle systems, and neu-

ral networks [34, 39, 80]. Previous generation GPUs have required computations

to be recast into a graphics applications programming interface such as OpenGL,

which has made programming GPUs for non-graphics applications a significant

challenge. In 2007, NVIDIA [75] released a Compute Unified Device Architecture

(CUDA), a new hardware and software architecture for issuing and managing data-

parallel computations on the GPU [74]. The CUDA API is an extension of the C

programming language, which results in a minimal learning curve for beginners to

access the low-level hardware.
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To perform parallel simulations of the two-dimensional schooling model de-

scribed in Chapter 6, we used a CUDA-enabled NVIDIA GeForce 8800GTX chip

with 768 MB RAM installed on a host workstation with Intel Pentium 3.00 GHz

CPU and 3.50GB of RAM with physical address extension. The chip has 128

stream processors, divided into 16 clusters of multiprocessors with eight streaming

processors per multiprocessor. The eight processors in each multiprocessor share

16K shared memory, bringing data closer to the arithmetic logic unit (ALU). The

global memory adjacent to the GPU chip is much larger, but has a much higher la-

tency than the on-chip shared memory. It takes about 400-600 clock cycles to read

or write to the global memory vs. 4 clock cycles to access the shared memory. The

GPU is still a specialized device. It can only support single-precision operations

and is only very efficient for applications with high computation per memory ac-

cess and single instruction multiple data computation [103]. To efficiently make use

of the GPU’s computational resources, one must maximize the number of threads

running in parallel, while keeping the limited shared memory size into account. By

a thread, we mean an executable task on a set of data. Although it is not difficult

to migrate code to a GPU, a careful study and implementation is necessary for

good performance.

We programmed the GPU to perform multiple steady-state simulations of the

schooling model, parallelizing within a single realization and across multiple real-

izations. To effectively use the GPU, we make as much use of the on-chip shared

memory as possible. For parallelization within a realization, there is a limit to
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the number of fish that can be stored in shared memory. We thus perform behav-

ioral influence computations in parallel for n fish at a time, where the school is

divided into m groups of n individuals. In addition to parallel processing within a

single realization, multiple independent replicate simulations are performed in par-

allel. Whenever a thread is waiting to access the device memory (e.g., to load the

current position and heading of agent i), another thread is running on the ALUs

(e.g., to compute the desired heading of agent j). Thus, memory access latency is

not a problem. To generate random numbers, which are needed to generate ini-

tial conditions and to add noise to our calculations at each step, we employed a

modified version of Eric Mills’ multi-threaded C implementation of the Mersenne

Twister (MT) algorithm [76]. For more details on the parallel implementation of

the schooling model, see [61].

We observed speedups of 230-240 times for our parallelized code running on

the GPU over the corresponding sequential simulation on the host workstation. It

takes only a few minutes to perform 1000 steady-state simulations (lasting 3000

steps) of the model for schools of size N = 100 over a mesh of 25 different values

of the parameter r. The corresponding serial simulation on the CPU takes almost

an entire day to complete.
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