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Abstract

Characterizing the Edge of Chaos for Shear Flows

by

Lina Kim

The transition to turbulence in linearly stable shear flows is one of the most

intriguing and outstanding problems in classical physics. It is of fundamental

interest from a mathematical and physical perspective, since understanding the

mechanisms that trigger turbulence would give great insight into the nature of

turbulence and would provide a foundation for control of these flows. Turbulent

dynamics are readily observed at flow speeds where the laminar state remains

stable under infinitesimal perturbations. Moreover, for a smaller class of shear

flows, such as plane Couette flow and pipe flow, linear stability theory predicts that

the laminar state remains stable for all Reynolds numbers. However, numerical

simulations and experiments provide evidence that these flows exhibit turbulence

for sufficiently high Reynolds numbers and perturbations.

The accepted representation of the behaviors in state space postulated that the

stable laminar solution coexisted with the turbulent regime. Only recently, the

notion of a third, dynamically invariant region that might lie between the laminar
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and turbulent regions in state space has been suggested. In it, the dynamics would

differ from those observed in the laminar and turbulent regimes. This boundary,

called the edge of chaos, contains invariant solutions, the edge states which are

too weak to become turbulent and too strong to decay to the laminar state. The

edge of chaos separates trajectories that directly decay to the laminar state from

those that grow and become turbulent.

These edge states, which can be either dynamically simple or complex struc-

tures, are identified using an iterated edge tracking algorithm based on a bisection

method. This dissertation focuses on a dynamical systems analysis of the transi-

tion to turbulence in sinusoidal shear flow and plane Couette flow. For sinusoidal

shear flow, the edge of chaos is characterized for a low–dimensional model derived

via a Galerkin projection onto physically meaningful modes. The edge coincides

with the codimension–1 stable manifold of an unstable periodic orbit. For the

related system of plane Couette flow, direct numerical simulations of the Navier–

Stokes equations are performed to identify edge states for different flow domains.

For a particular range of flow geometries, multiple, non–symmetry related edge

states, which coexist in state space, were found. The characterization of the edge

of chaos will provide a greater understanding of the transition to turbulence in

turbulent shear flows.
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Chapter 1

Shear Flow Turbulence

“I am an old man now, and when I die and go to

heaven there are two matters on which I hope for

enlightenment. One is quantum electrodynamics,

and the other is the turbulent motion of fluids.

And about the former I am rather optimistic.”

–Horace Lamb, 1934

One of the greatest unsolved problems in classical physics is understanding the

nature of turbulence. In addition to being of fundamental interest, advancements

in this area of research could lead to the ability to control or produce turbulent

flows, which could result in dramatic improvements in the design, efficiency, and

performance of many technological systems. Certainly, much progress has been
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made in describing and understanding the nature of turbulence, but there is much

yet to learn.

Indeed, despite a century of vigorous efforts to develop a universal theory for

turbulence, theorists have yet to thoroughly describe this phenomenon. However,

notable progress was made in the first half of the 20th century, when both Richard-

son and Kolmogorov ventured to describe turbulence using statistical properties

of the flow [4, 42]. In particular, Richardson’s energy cascade theory for fully tur-

bulent flow established that the instabilities in the flow created large eddies which

then quickly evolved into smaller vortices due to inertial instabilities. Later, Kol-

mogorov developed the theory of self similarity in which very small eddies possess

nearly universal statistical characteristics.

An important related finding for turbulent shear flows is the law of the wall,

which characterizes the mean behavior of these flows as a function of the distance

from the wall [42]. In particular, the velocity profile in the inner layer (also referred

to as the constant stress region) varies linearly with the distance to the wall since

viscosity dominates the flow. The outer layer on the other hand is dominated

by Reynolds stresses, which results in an inviscid flow. The region between the

inner and outer layers is commonly referred to as the buffer or log layer, where

the viscous and Reynolds stresses are approximately equal in magnitude in this

region. The most important result from this study is the relationship between the
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turbulent scale and the Reynolds number.

The basis of such theoretical approaches to turbulence has been to implement

statistical methods to characterize the flow. Although it is generally agreed that

such methods have successfully described turbulent shear flows to some extent, it

does not satisfactorily describe the dynamic behavior of the flow. Thus, the focus

of this dissertation will be to further understand turbulence using a dynamical

systems approach. Specifically, the laminar–turbulent boundary of two shear flows

will be characterized in detail.

1.1 Motivation

Turbulence is a ubiquitous phenomenon that is observed in nature. It is gener-

ally characterized by irregular or unstable flow and can be regarded as a disarray

of scales where small structures intermix with larger ones. Whether it is used as

a method of enhancing certain properties of systems, such as mixing, or to con-

trol undesirable behavior, the manipulation of turbulence is a powerful tool that

can be used to for many systems. it has often been used to enhance the mixing

properties and/or the efficiency of systems which lack such dynamics. One of

the earliest references to the notion of turbulent flows was provided by Leonardo

da Vinci in the late 15th century when he made an attempt to study the flow of

displaced water. Da Vinci observed the different patterns that water made when

3



it flowed around obstacles.

The transition from laminar to turbulent flow in a pipe was pointed by Reynolds

in 1883. Pipe flow is a pressure–driven shear flow in a long and straight pipe of

circular cross section. In his experiment, he observed that the transition in pipe

flow between the two regimes (laminar and turbulent) was controlled by the di-

mensionless quantity Re = ud/ν, where u is the mean velocity of the flow, d is the

diameter of the pipe, and ν is the kinematic viscosity of the fluid. The remarkable

outcome of his experiments was that the transition spontaneously occurred at a

critical value of Re ∼ 2000 [46]. This result was intriguing because (1) he observed

that laminar flow was stable for Re up to approximately 13000; (2) no turbulence

was detected below this critical value; and (3) this critical value is very sensitive

to perturbations at the entrance of the pipe. Reynolds’s stunning findings have

remained a mystery ever since, and have motivated a community of scientists and

engineers to pursue efforts to further understand the transition to turbulence.

Pipe flow is in a class of shear flows which includes plane Couette flow and

sinusoidal shear flow. One outstanding characteristic of these flows is that they

exhibit simple geometries, but the way in which they become turbulent is still un-

known. The substantial interest in such flows derives from the fact that turbulence

develops despite linear stability of the laminar profile. Indeed, hydrodynamic sta-

bility theory predicts that the laminar state for these shear flows remains stable
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Figure 1.1: Sketch of Reynolds’s experiment (left) and the typical types of flows he observed
(right). (Figure obtained from [46])

for all Reynolds numbers [12]. This implies that for these flows, turbulence arises

abruptly rather than through a sequence of transitions from the laminar state to

more and more complicated behavior as some parameter value is increased. For

other shear flows such as plane Poiseuille flow and parallel shear flow, the lami-

nar state loses stability at a value of the Reynolds number higher than values for

which turbulence is found.

1.2 The Transition to Turbulence

The transition to turbulence in shear flows has been studied for a very long

time. This is mainly due to the fact that the transition from laminar to turbulent
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flow is complicated and not easily understood. The issue is not when turbulence

emerges in the flow, but rather why it appears and what mechanisms in the flow

trigger this phenomenon. Moreover, the transition process distinctively depends

on the geometry, parameters, and initial conditions of the flow, thus, there is

little hope in finding a single mechanism that drives the transition process in

these flows. Previous studies have hypothesized and suggested various routes by

which turbulence can be triggered in these flows, which include methods such

as studying various types of flow instabilities, analyzing coherent structures, and

developing reduced–order models. The following section will highlight some of

these important methods used to characterize the transition to turbulence.

The conventional method which is suggested to give a good understanding of

the transition process involves instabilities in the flow [47]. The principal idea

behind this is that predominant instabilities exponentially grow to excite subse-

quent instabilities that lead to the typical turbulent dynamics observed in many of

these flows. In essence, these small disturbances can grow in the linear regime to

a size where nonlinear effects become important in the flow and trigger secondary

disturbances which amplify to excite subsequent instabilities and breakdown of

the flow occurs. The general notion of the transition process can be described

for a boundary layer as follows [47]. The flow is initially dominated by streaks of

high and low speed fluid which are pulled away from the wall by disturbances via
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a lift–up process where nonlinear streamwise vortices are generated. Flows with

strong inflection points in the mean streamwise profile create additional instabili-

ties which grow exponentially and generate the dynamics necessary for turbulent

flow.

The transition to turbulence is a difficult problem and a comprehensive de-

scription of the process is yet to be described. For this reason, reduced–order

models have been developed in an attempt to describe the transition process and

unearth mechanisms that can trigger turbulence in these flows. For example,

low–dimensional models have been derived from Galerkin projection onto Fourier

modes for sinusoidal shear flow in [61, 62, 63, 13, 48, 33, 34], and models for plane

Couette flow have been derived using proper orthogonal decomposition by [36, 53].

The reduced–order models are not limited to ordinary differential equations; for

example, the Swift–Hohenberg system can be described by simpler partial differ-

ential equations as shown in [30, 29]. The goal is to use low–dimensional models,

composed of a set of ordinary differential equations, which provide a simplified

description of the dynamics of a complex system. Provided that a reduced–order

model successfully captures the behavior of the full system, a plethora of infor-

mation can be obtained about the dynamics of the system without significant

computational costs by using tools that are advantageous for reduced–order sys-

tems.
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One technique frequently used to derive such reduced–order models is proper

orthogonal decomposition [52]. This method captures the dominant components

of a complex system, such as the average energy in the system, from data ob-

tained from experiments or numerical simulations. Models derived using proper

orthogonal decomposition have also been studied for turbulent boundary layers [1],

channel flow [43], and transitional shear–layer flows [41]; see also the references

in [45]. Standard proper orthogonal decomposition analysis does not guarantee

the best model in terms of capturing the dynamics of the system [52]. This is due

to the fact that proper orthogonal decomposition produces sets of modes which

contain the most energy in the system, a quantity which may be a poor indicator

of the key structures participating in the dynamics of the flow. However, in the

last few years, many advances have been made in developing proper orthogonal

decomposition methods which look beyond the energy content of the system as a

measure of importance to the dynamics [24].

One topic of much debate in the development of these low–dimensional models

has been regarding on the mechanisms that play an important role in the transi-

tion to turbulence. In particular, Waleffe emphasized that the transition process

is governed by the dynamics of nonlinear self–sustained solutions rather than by

non–normal linear mechanisms [62]. He constructed a simple 4-dimensional non-

linear model which captured the dynamics of prominent components of the self-
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sustaining process observed in the full Navier–Stokes system. The self-sustaining

process, which was observed in direct numerical simulations of turbulent shear

flows, is a nonlinear process analyzed by Waleffe where the streamwise vortices

stimulate the formation of streaks that become unstable over time. The nonlin-

ear self–interaction of these unstable streak modes, in turn, generate streamwise-

dependent flow which allows for the streamwise vortices to regenerate and the

process to repeat. It has been argued that this self–sustaining process is a univer-

sal characteristic of shear flow turbulence [23, 63, 44, 25, 26].

Another class of low–dimensional models considered for studying the transition

process gives an emphasis on the non-normal growth of linear mechanisms in the

flow. Most notably, Baggett, Driscoll, and Trefethen developed a 3–dimensional

model which considers transient energy growth as a mechanism for triggering

nonlinear effects that lead to turbulence [2]. In particular, the nonlinear terms are

treated as a generic mixer where their purpose is to sustain the linear dynamics via

a bootstrapping method. While this method of describing the mechanism of the

transition process is different from Waleffe’s, it has been suggested that transient

energy growth provides a good basis for understanding the transition of turbulence

in flows where turbulence exists for parameter values where the laminar state is

stable; see e.g. [6, 57]. For a review of models emphasizing transient energy growth

arising from non-normality, see [3].
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Although a great deal of research has been dedicated to study the transition to

turbulence using low–dimensional techniques, it does not fully capture the physi-

cal quantities in the transition. In particular, these low–dimensional models have

not been able to identify critical mechanisms or structures that trigger turbulence

in shear flows. As a result, direct numerical simulations of the Navier–Stokes

equations have been used in order to better understand the transition to turbu-

lence. For turbulent shear flows, turbulence can be obtained by increasing the

amplitude of a perturbation about the laminar state, provided some critical value

of Reynolds number is exceeded. It has been suggested that the emergence of un-

stable steady states [37, 38, 39, 40, 8, 64, 65, 16, 67, 14, 26, 58, 59, 22] in various

flows can provide knowledge about the critical parameter values for which turbu-

lent behavior can be observed in a particular system. The governing equations

for these flows possess numerous branches of these unstable steady states that

arise from saddle–node bifurcations [37, 7, 48, 15], similar to the traveling wave

solutions found in pipe flow [16, 67]. In plane Couette flow, the “upper branch”

solution which arises in a saddle–node bifurcation and undergoes successive bi-

furcations has properties characteristic of turbulence while the “lower branch”

solution, which seems to remain intact, seems to be associated with the transition

to turbulence [66, 8, 65]. These unstable steady states are exact coherent struc-

tures which have stable and unstable manifolds that intertwine in state space. It
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has been hypothesized that this convolution, in which trajectories enter and exit,

allows for the turbulent dynamics observed in these shear flows. Despite the fact

that these coherent states have been found and studied, the explicit relationship

between these three-dimensional solutions and turbulence is still not known.

1.3 The Governing Equations for Fluid Flow

The equations governing fluid flow are known as the Navier-Stokes equations

and describe the conservation of mass and momentum of a fluid. They can be

derived by applying Newton’s second law to a small mass of fluid, with volume

δV , as it moves through a flow field, which gives:

(ρδV )
Dutot

Dt
= −(∇ptot)δV + (ρδV )fv + (ρδV )fb, (1.1)

where ρ is the fluid density, utot is the total velocity field, and ptot is the total

pressure. The viscous forces (per unit mass) fv arise from viscous stresses, and fb

is the net body force (per unit mass) in the flow. The total viscous force acting

on a volume of fluid and exerted in the ith direction is given by:

fi =
∑

j

∂τji

∂xj
, τij = ν

{

∂ui

∂xj
+

∂uj

∂xi

}

, (1.2)

where ν is the kinematic viscosity. Substituting (1.2) into (1.1), dividing by (ρδV ),

and simplifying gives:

Dutot

Dt
= −1

ρ
∇ptot + ν∇2utot + fb. (1.3)
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The rate of change of a property of the fluid mass as it moves around can be

obtained using the chain rule. For simplicity, consider the change in the density

of a fluid ρ(x, t) due to small spatial and temporal variations, δx = utot δt and δt,

respectively:

δρ = ρ(x + utot δt; t + δt)− ρ(x, t). (1.4)

Expanding (1.4) to first order in δt gives:

δρ = δt
∂ρ

∂t
+ uxδt

∂ρ

∂x
+ uyδt

∂ρ

∂y
+ uzδt

∂ρ

∂z
. (1.5)

Therefore, the change in density following a fluid particle is:

Dρ

Dt
=

δρ

δt
=

∂ρ

∂t
+ (utot · ∇)ρ. (1.6)

Similarly,

Dutot

Dt
=

∂utot

∂t
+ (utot · ∇)utot, (1.7)

so (1.3) can be rewritten as

∂utot

∂t
+ (utot · ∇)utot = −1

ρ
∇ptot + ν∇2utot + fb. (1.8)

The continuity equation, which captures the conservation of mass for a fluid, is

given by

∂ρ

∂t
+∇ · (ρutot) = 0. (1.9)

This study will exclusively consider incompressible fluids, that is, fluids for which
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Dρ/Dt = 0. As a result of this constraint, (1.9) and (1.8) can be written as

∇ · utot = 0, (1.10)

∂utot

∂t
+ (utot · ∇)utot = −1

ρ
∇ptot + ν∇2utot + fb, (1.11)

which are the equations governing the evolution of fluid flow.

1.4 Dynamical Systems Theory

Understanding the long term behavior of systems is often of interest, especially

when it pertains to studying turbulent shear flows. The behavior of such systems

can be analyzed using dynamical systems techniques. The following section will

provide a broad overview of some key elements of dynamical systems theory [21,

68] that will be used to analyze the Navier-Stokes equations.

Consider the following set of differential equations as a dynamical system

dx

dt
≡ ẋ = f(x; µ), (1.12)

where x ∈ R
n is a state of the system (1.12) at a given time t ∈ R. The system

depends on a set of parameters µ ∈ R
p such as the Reynolds number. The

dynamics are specified by the vector field f : R
n×R

p → R
n. Systems in the form

of (1.12) are commonly known as autonomous since the vector field does not have

an explicit time dependence.
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Solutions of differential equations depend on initial conditions and parameters.

For shear flows, it is very useful to study the explicit dependence of solutions on

parameters. In particular, it is of interest to determine any qualitative changes in

the system, for example, how the variation of the Reynolds number can influence

turbulence. The principal solutions that will be of interest in this study are

equilibria and periodic orbits.

1.4.1 Equilibria

An equilibrium point, also called a fixed point, is a solution of a dynamical

system that does not change in time. Such a solution for (1.12) is a point x ∈ R
n

such that f(x; µ) = 0. A stability analysis determines how neighboring solutions

behave. In particular, if all neighboring solutions decay to a given solution, then

that solution is said to be stable. In practice, there are two fundamental definitions

of stability for equilibrium points. If x(t) is a solution of (1.12), then x(t) is said

to be Lyapunov stable if for a given ǫ > 0, there exists δ = δ(ǫ) > 0 and some t0

such that for any other solution of (1.12) y(t)

|x(t)− y(t)| < δ =⇒ |x(t)− y(t)| < ǫ, ∀t > t0. (1.13)

This implies that solutions starting near x(t) at a given time will remain close to

x(t) for all future times.

A stronger definition of stability is asymptotic stability which holds when an
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equilibrium point is both Lyapunov stable and attracting. In particular, x(t) is

asymptotically stable if it is Lyapunov stable and for any other solution y(t) of

(1.12), there exists a constant δ > 0 such that

|x(t0)− y(t0)| < δ =⇒ lim
t→∞
|x(t)− y(t)| = 0. (1.14)

Hereafter, solutions that are asymptotically stable will simply be called stable.

The stability of the equilibrium xp can be calculated via a linearization of the

dynamical system about the equilibrium in the following manner. Letting x =

xp + y, substituting this into (1.12) and Taylor expanding about the equilibrium

point gives:

ẏ = Df(xp; µ)y +O(|y|2), (1.15)

where Df is the Jacobian matrix. The equilibrium xp is asymptotically stable if

and only if all the eigenvalues of the Jacobian have negative real parts; otherwise,

if any of the eigenvalues have positive real parts, then the equilibrium point is

unstable.

If the Jacobian Df(xp; µ) has ns (respectively, nu) eigenvalues with nega-

tive (respectively, positive) real part, then the equilibrium xp will have an ns–

dimensional stable (respectively, nu–dimensional unstable) manifold. This is an

invariant manifold which consists of all points in R
n which give trajectories that

asymptotically approach xp as t→∞ (respectively, t→ −∞).
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1.4.2 Periodic Orbits

Another important type of solution that will be studied in this dissertation is

a periodic orbit, which is a solution that repeats itself. More specifically, periodic

orbits are solutions for which

x(t) = x(t + T ), ∀t ∈ R, T > 0. (1.16)

For planar systems, the existence of periodic orbits can be established by using

methods such as index theory, Dulac’s criterion, the Poincaré-Bendixon Theorem,

etc. For higher dimensional systems, periodic orbits typically need to be found

numerically. The stability of a periodic orbit is determined by considering a

Poincaré map. Consider the vector field (1.12) and let the Poincaré section Σ be

an (n− 1)-dimensional surface transverse to the vector field. Then, the Poincaré

map P is the map which takes a point x0 to its first return to Σ. Now, suppose

that x0 lies on a periodic orbit with period T such that P (x0) = x0; such a fixed

point of the map P corresponds to a periodic orbit of the vector field (1.12).

Therefore, the stability of a periodic orbit is determined by the eigenvalues of

DP (x0). In particular, if all the eigenvalues of the Jacobian are in the unit circle,

then the periodic orbit is said to be stable; otherwise, it is unstable.

If DP (x0) has ns (respectively, nu) eigenvalues inside (respectively, outside) the

unit circle, then the periodic orbit which passes through x0 will have an (ns + 1)–

dimensional stable (respectively, (nu +1)–dimensional unstable) manifold. This is
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an invariant manifold which consists of all points in R
n which give trajectories that

asymptotically approach the periodic orbit as t→∞ (respectively, t→ −∞).

1.4.3 Invariant Manifolds

Invariant manifolds will play a critical role in the notion of a laminar–turbulent

boundary in turbulent shear flows. In particular, the manifolds of the invariant

structures embedded in the laminar–turbulent boundary will be important for

the dynamics in this boundary. In order to divide state space into two regions,

invariant solutions with a single unstable direction will be found such that its

codimension–11 stable manifold can separate trajectories which decay to the lam-

inar state without becoming turbulent from those which become turbulent. This

manifold will be referred to as the edge of chaos.

1.5 Scope of the Dissertation

This dissertation will focus on characterizing the edge of chaos for two similar

turbulent shear flows: sinusoidal shear flow and plane Couette flow. The linear

stability of the laminar state for these flows indicates that infinitesimal perturba-

tions will decay despite high Reynolds numbers. A dynamical systems approach

will be used in order to further understand the transition to turbulence and iden-

1Codimension is the number of directions normal to the manifold. A codimension–1 manifold
can be thought of as a surface dividing the infinite dimensional space of a dynamical system.
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tify the structures living in the border of the laminar and turbulent regimes.

Chapter 2 will introduce the notion of a laminar–turbulent boundary that

separates two qualitatively distinct regions in phase space. Trajectories near this

boundary visit near a subset in state space which is invariant under the flow

and attracting for initial conditions on this boundary. A method of finding this

boundary, which involves tracking the time evolutions of velocity fields, will be

discussed in detail. A literature review of the previous studies of such a boundary

will be given at the end of the chapter.

The laminar–turbulent boundary will be discussed in Chapter 3 for a nine-

dimensional model for sinusoidal shear flow. The sinusoidal shear flow model has

trajectories which either decay to the laminar state, become transiently chaotic

before decaying to the laminar state, or become transiently chaotic before moving

towards a nontrivial attractor. Due to the dimensionality of the system, a proba-

bilistic numerical scheme will be used to characterize the boundary. Furthermore,

the basins of attraction for the laminar and nontrivial attractor states will be

studied in order to characterize how they coexist in phase space.

In Chapter 4, the edge of chaos for plane Couette flow will be explored for

various ranges of Reynolds numbers and channel sizes. An iterated edge tracking

algorithm, based on a bisection method, will be used to identify structures in the

laminar–turbulent boundary. Properties of these structures, called edge states,
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will be classified in detail. Furthermore, the coexistence of multiple edge states

for a small range of channel sizes and Reynolds numbers will be discussed.

Finally, concluding remarks on the edge of chaos for turbulent shear flows will

be given in Chapter 5.
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Chapter 2

The Edge of Chaos

For turbulent shear flows, such as sinusoidal shear flow and plane Couette flow,

the linear stability of the laminar state indicates that even at high Reynolds num-

bers, sufficiently small perturbations to the laminar state will decay. Nevertheless,

turbulent dynamics are observed for these flows. Experimental and numerical

analysis presents strong evidence that the turbulent state coexists in state space

with the stable laminar state and has suggested that trajectories do not remain

turbulent forever. With the present scenario, it is conceivable to imagine that

there exists some border in state space that partitions initial conditions that lead

to decay to the laminar state without exhibiting turbulence from those that grow

and lead to turbulence. This chapter will address the notion of such a laminar–

turbulent boundary in shear flows as a hallmark for understanding the transition
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to turbulence. The nature of this boundary will be studied by observing the distri-

butions of turbulent lifetimes which measure the duration of the chaotic transient

associated with turbulence. The differing behavior of the lifetimes from smooth

variations to rapid fluctuations corresponding to a high sensitivity of initial con-

ditions suggests the name edge of chaos to describe the boundary separating the

two states. The dynamics on the edge of chaos will be studied and the structures

living in it will be discussed. Finally, a summary of previous studies of the edge

of chaos, conducted for similar shear flows, will be presented.

2.1 The Laminar–Turbulent Boundary

For a shear flow, an arbitrary initial condition can either lead to decay to

the laminar state without exhibiting turbulence or can lead to turbulence. Since

the laminar and turbulent states can coexist, this suggests that there may ex-

ist a boundary which separates these two regimes, such that initial conditions

on one side of this boundary will decay to the laminar state without exhibiting

turbulence and initial conditions starting on the other will lead to turbulence. If

such boundary exists, what would its nature and geometry be, simple or com-

plex? Figure 2.1 illustrates this concept and shows a 2–dimensional sketch of the

laminar–turbulent boundary in state space. In this visualization, the plane repre-

sents the infinite–dimensional state space. The laminar state is represented by a
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Laminar State

Laminar-Turbulent Boundary

Turbulence

Figure 2.1: 2–dimensional sketch of the laminar–turbulent boundary in state space.

circle to which infinitesimal perturbations monotonically decay. In a completely

different region of state space, there exists a turbulent state which is represented

by the gray area in Figure 2.1. It has been suggested that the turbulent dynamics

in linearly stable shear flows are generated by chaotic structures. Indeed, this

notion of the hyperbolic structure of the turbulent state has been ratified by the

discovery of unstable steady states which appear in saddle–node bifurcations in

flows such as plane Couette and pipe flow [37, 7, 48, 15, 16, 67]. The hyperbolic

structure, in particular, a chaotic saddle is characterized by positive Lyapunov

exponents and exhibits the long chaotic transients before decaying to equilibria

or periodic orbits [21], as observed in many of these shear flows.

The objective of this research is to try to identify the structures that compose
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the boundary which separates these two regimes where initial conditions lying on

this surface will neither decay to the laminar state nor grow and become turbulent.

Understanding this boundary may help to answer the century–old question of the

transition to turbulence in shear flows.

2.2 Geometry of the Boundary

In practice, the laminar–turbulent boundary can be studied by observing the

time evolution of velocity fields. Every initial condition gives a unique trajectory

that will either swing up to turbulence or decay to the laminar state without

exhibiting turbulence, see Figure 2.2. A straightforward measure which can be

used to find this boundary is to assign a lifetime to the perturbations, that is, the

time that it takes for a trajectory with a given initial condition to decay to within

some neighborhood of the laminar state [51, 49].

Generally, the lifetime of a perturbation increases as the Reynolds number

and/or the perturbation amplitude increases. When the amplitude of the per-

turbations to the laminar state is increased, there are changes between areas of

smooth variations of lifetimes, corresponding to trajectories directly decaying to

the laminar state, and areas with high fluctuations in lifetimes consistent with a

high sensitivity with respect to initial conditions [17]. Figure 2.3 shows a typi-

cal contrast of lifetimes for the low-dimensional model for sinusoidal shear flow
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Figure 2.2: Trajectories on either side of the laminar–turbulent boundary. When E is high, the
system is turbulent. E = 0 corresponds to the laminar state.

from [33]. The left panel shows the lifetime of perturbations as a function of the

scaling amplitude
√

E0, where E0 is the initial energy of a perturbation with fixed

shape with respect to the laminar state. The smooth regions, corresponding to

perturbations which quickly decay to the laminar state, are undoubtedly different

from regions with rapid fluctuations which are indicative of the sensitive nature

of the initial conditions. Alternatively, the lifetime of perturbations with fixed

shape as a function of Reynolds numbers is shown in the right panel of Figure 2.3.

The clear difference between the laminar region, corresponding to short lifetimes,

from the chaotic region where lifetimes reach the numerical limits is evident for

the three different scaling amplitudes shown. These lifetime studies can give an
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Figure 2.3: Turbulent lifetimes T for a low–dimensional model for sinusoidal shear flow. (Left)
At Re = 300, the lifetime of perturbations is plotted as a function of the scaling amplitude

√
E0,

where E0 is the initial energy of a perturbation, with fixed shaped, with respect to the laminar
state. The points clearly show the difference between smooth (up to 103

√
E0 ≈ 12) and rapidly

fluctuating (above 103
√

E0 ≈ 12) regions which gives an indication of when the turbulence
arises in the system. Similarly, (right) the lifetime as a function or Reynolds number for three
different values of scaling amplitudes (red circles)

√
E0 = 0.022 (black squares)

√
E0 = 0.01 (blue

triangles)
√

E0 = 0.0095 determines the critical Reynolds number needed to trigger turbulence
for that perturbation.

indication of the critical value of the perturbation amplitude needed to observe

turbulence in the system for a particular value of the Reynolds number. The na-

ture of the fluctuations in the lifetimes has led to the coining of the term edge of

chaos to describe the points lying on the boundary between smooth and rapidly

fluctuating regions [51].

A different lifetime study was conducted for this low–dimensional model for

sinusoidal shear flow in [32]. This model, which captures the key dynamics of tur-

bulent shear flows, demonstrates that the behavior of the perturbations is highly

sensitive to initial conditions. Figure 2.4 shows the lifetimes of perturbations for
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Figure 2.4: Lifetimes of perturbations for different initial energies and Reynolds numbers for a
low-dimensional model for sinusoidal shear flow. (From [32]).

a range of Reynolds numbers and initial energy where the transition is believed to

occur. The border between initial conditions that decay and grow is not smooth,

but rather fractal in nature.
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2.3 Dynamics on the Edge of Chaos

A point on the boundary of the laminar and turbulent regions is said to live

on the edge of chaos. It has been shown that points lying on the edge of chaos are

dynamically connected to edge states which are structures that are invariant under

the flow and attracting for initial conditions on the edge. They are only relative

attractors, since they are unstable under perturbations outside of the laminar–

turbulent boundary. The edge state is energetically distinct from the laminar and

turbulent states; the edge of chaos, which contains the edge state, is a subset of

state space and sustains its own dynamics.

The notion of an edge of chaos is that it separates laminar dynamics from

turbulent behavior in state space. In order for this to occur, the invariant state

that trajectories restricted to the edge approach and which are embedded in the

edge must have only one unstable direction. Figure 2.5 sketches the dynamics

on and around the edge of chaos. Trajectories starting on the edge of chaos are

dynamically attracted to the edge state whose stable manifold forms the edge.

Trajectories in the neighborhood of (but not on) the edge will tend towards the

edge state but are pulled away to the laminar or turbulent state by the one–

dimensional unstable manifold of the edge state. This scenario then allows the

codimension–1 stable manifold of the edge state to separate trajectories which

directly decay to the laminar state from those that become transiently chaotic.

27



Transient Chaos

Direct Decay

Figure 2.5: A sketch of the dynamics associated with the edge of chaos. Trajectories starting
on the edge, represented by squares, are dynamically attracted to the edge state (center circle)
whose codimension–1 stable manifold forms the edge of chaos. Neighboring trajectories, rep-
resented by circles, will tend towards the edge state but will be pulled away by the unstable
manifold of the edge state.

2.4 Previous Studies of the Edge of Chaos

The edge of chaos has been been characterized for several low–dimensional

models and full direct numerical simulations of shear flows. The collective results

suggest that the edge of chaos for these flows can be composed of simple structures,

such as equilibria, or complex states, such as traveling waves and relative periodic

orbits. Most of these boundaries have been found by means of calculating the

lifetime of velocity fields or by employing a bisection method to bracket a state in

between the laminar and turbulent regimes. The following presents a literature

review of the results obtained for finding the edge of chaos for parallel shear, pipe,

and plane Couette flows.
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2.4.1 Parallel Shear Flow

In [51], the edge of chaos was studied for a low-dimensional model for parallel

shear flow, where incompressible fluid is confined by no–slip parallel walls which

are a distance d apart. This nine-dimensional model was derived via a Galerkin

projection for parallel shear flow [48]. Trajectories in this system either decay

directly to the laminar state or become transiently chaotic. The edge was nu-

merically tracked by bisecting between points1 on a one–dimensional curve which

connects the laminar and turbulent states. The distance between these points is

incrementally reduced to approximate the edge points that lie in between them.

It was found that for moderately small Reynolds numbers (Re < 402), the edge

is a smooth surface which coincides with the stable manifold of a symmetric pair

of periodic orbits. As the Reynolds number is increased, within this range, the

periodic orbits undergo bifurcations where old orbits gain additional unstable di-

rections and new ones emerge from the bifurcation point with only one unstable

direction.

For this system, the pair of symmetric periodic orbits associated with the edge

of chaos is unique for this range of Reynolds numbers, that is, for every Reynolds

number, there is at most one pair of such periodic orbits present in phase space.

1A point near the laminar state origin and a second point near the chaotic saddle are used
in the bisection algorithm and straddle the edge point. The points are chosen to be below and
above the threshold value based on a maximization problem, which is a different method from
what is used in Chapters 3 and 4.
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The edge is then formed by the union of the stable manifolds of this symmetric pair

of periodic orbits. At Re ≈ 402, no new periodic orbits with an eight-dimensional

stable manifold appear from bifurcations. Instead, for Re > 402, trajectories on

the edge of chaos are no longer asymptotically periodic, but rather chaotic, and

trajectories on the edge are dynamically attracted to a high-dimensional fractal

object in the form of a relative attractor. This analysis suggests that for a given

Reynolds number, all edge points are contained on the stable manifold of an

invariant structure that lives in between the laminar and turbulent domains in

state space.

2.4.2 Pipe Flow

Direct numerical simulation of the Navier–Stokes equations was used to iden-

tify the edge of chaos in pipe flow [49] using the techniques developed in [51]. Pipe

flow is a type of shear flow in which incompressible fluid is driven by pressure in

a perfectly circular and infinitely long pipe. In particular, a lifetime study was

used to track the dynamics on the edge of chaos for pipe flow. To find the edge,

a bisection algorithm was implemented to obtain a pair of initial conditions on

either side of the edge. To ensure that the edge state was tracked, successive

refinements determined new pairs of trajectories near the boundary. It was found

that the edge state for this system was attracting for initial conditions restricted
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in the edge, but repelling for initial conditions perpendicular to it. In addition,

the edge state is chaotic and remains the edge state for a wide range of Reynolds

numbers. Moreover, the dynamics of the edge state, which was dominated by

streaks and streamwise vortices, remained qualitatively unchanged.

2.4.3 Plane Couette Flow

Plane Couette flow is the flow of an incompressible fluid which is confined

between two infinitely parallel plates moving in opposite directions at constant

and equal velocities. Recent studies of the edge of chaos in plane Couette flow

for the fully–resolved Navier–Stokes equations has revealed that trajectories in

the neighborhood of the laminar–turbulent boundary approach invariant states

such as hyperbolic fixed points, traveling waves, or periodic orbits [50, 31]. An

iterated edge tracking algorithm, based on a simple bisection algorithm, was used

by [50] to track the transition boundary for a flow domain that is 4π units long,

2π units wide, and 2 units high at a Reynolds number of Re = 400. It was found

that trajectories in the neighborhood of the edge visit near one of three states.

However, upon calculating the number of unstable directions for each state, it

was confirmed that only one of those states had a codimension–1 stable manifold.

Since the other states have stable manifolds with codimension higher than one,

they cannot by themselves divide state space into two regions. Therefore, the
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state with the single unstable direction is the edge state that is associated with

the edge of chaos.

This study was extended for a wide range of flow domains and it was found that

edge states can be classified as fixed points or traveling waves depending on the

geometry of the flow [31]. In all cases, it was found that streaks are the dominant

structures in these edge states. For channel lengths greater than 8π units, the

trajectories on the edge converged to invariant states which were more complex

in structure. The highlight of this investigation was the discovery of spatially

localized2 edge states for the plane Couette system. In particular, for domains

with a width of 2π units and length longer than 32π units, the edge state localizes

and exponentially decays in the streamwise direction. Spanwise localization of

edge states was also observed for wide channels with domains greater than 8π

units. It was found that when the edge state is localized, the shape of the edge

state is not dependent on the size of the flow domain, being localized both in the

streamwise and spanwise directions. However, the edge tracking algorithm never

converged to simple structures in this range of computational domains suggesting

that trajectories near the edge visit near complex invariant states such as a chaotic

saddle.

A related study considered the properties of unstable states for plane Cou-

2The localization of an edge state refers to the confinement of streaks within the flow domain
such that there exists a laminar region alongside the streaks.
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ette flow which undergo a saddle–node bifurcation, as mentioned in §1.1. One of

these, the “upper branch”, which is subject to subsequent bifurcations as Reynolds

number increases, has been associated with the turbulent state since it captures

dominant statistics of turbulent shear flows [66, 55]. The “lower branch”, on the

other hand, does not bifurcate and appears to only have one unstable direction.

This finding suggests that these lower–branch states are associated with a bound-

ary that separates the basins of attraction of the laminar and turbulent states,

which allows for a strong correlation of this lower branch to the transition to

turbulence [65, 63].

Chapter 4 will extend the studies of [31, 50] by examining the coexistence of

multiple edge states in a small range of flow domains for plane Couette flow. A

detailed description of the iterated edge tracking algorithm will be presented along

with a discussion on methods used to classify these edge states.
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Chapter 3

The Edge of Chaos for a

Low–Dimensional Model

In this chapter, the laminar-tubulent boundary of a low–dimensional model

for sinusoidal shear flow is characterized. This flow, in which incompressible fluid

is driven by a time–independent sinusoidal body force in the streamwise direction

between two free slip walls, is modeled as a nine–dimensional ordinary differential

equation by projecting the full Navier–Stokes equations onto a set of physically

meaningful modes. The model has a stable laminar state for all Reynolds numbers,

but the decay to it can proceed in two qualitatively different ways – direct and

through transient chaos. Two numerical schemes are implemented in this analy-

sis, a systematic and probabilistic one, to detect and characterize the boundary
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between initial conditions exhibiting one versus the other type of decay. Further-

more, for 330 < Re < 515, there exists an additional stable attractor which is

associated with sustained turbulent behavior. A probabilistic study is used to

characterize the basin of attraction for that attractor. Finally, they way in which

the basins of attraction for the laminar and turbulent states relate to each other in

the phase space is discussed. The results from this chapter were published in [28].

3.1 A Low–Dimensional Model for Sinusoidal

Shear Flow

In the following, consider sinusoidal shear flow which represents a nontrivial

shear flow in which incompressible fluid between two free–slip walls experiences a

time-independent streamwise sinusoidal body force, see Figure 3.1. A coordinate

system such that the x–axis is parallel to the walls, the y–axis is perpendicular to

the wall, and the z–axis is perpendicular to both x and y is chosen for this flow.

Note that x, y, and z respectively correspond to the streamwise, wall–normal, and

spanwise directions. Although it is difficult to obtain experimentally, sinusoidal

shear flow is amenable to analytical treatment, unlike other shear flows, and it

is hoped that the knowledge gained from studying this flow can make important

contributions to understanding other relevant turbulent shear flows such as plane
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Figure 3.1: Geometry of sinusoidal shear flow where incompressible fluid between two free–slip
walls is driven by a time–independent sinusoidal body force in the streamwise direction.

Couette flow, pipe flow, plane Poiseuille flow, and boundary layer flows.

Sinusoidal shear flow, whose geometry resembles that of plane Couette flow,

obeys the the non–dimensional equations

∂u

∂t
= −(u · ∇)u−∇p +

1

Re
∇2u + F(y), (3.1)

∇ · u = 0, (3.2)

where Re is the Reynolds number, defined as

Re = U0d/2ν, (3.3)

where U0 is the characteristic velocity obtained from the laminar velocity which

arises from the sinusoidal body force given by

F(y) =

√
2π2

4Re
sin

(πy

2

)

êx. (3.4)

This time independent body force results in the following laminar profile

U(y) = (
√

2 sin(πy/2), 0, 0), (3.5)
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which is linearly stable for all Re [12]. The free–slip boundary conditions are given

by

uy = 0,
∂ux

∂y
=

∂uz

∂y
= 0, (3.6)

which are imposed at y = ±1, and the flow is assumed periodic in the stream-

wise (x) and spanwise (z) directions, with lengths Lx and Lz, respectively; see

Figure 3.1.

3.1.1 Prominent Modes

In the following, the laminar–turbulent boundary of a nine-dimensional model

for sinusoidal shear flow of [33] (see also [34]) will be studied and characterized.

The low–dimensional model was derived via Galerkin projection of (3.1) onto

important flow structures as follows. The velocity is expanded as

u(x, t) =

9
∑

j=1

aj(t)uj(x), (3.7)

where the amplitudes aj are real, and the modes uj are orthogonal under the stan-

dard inner product. This model generalizes the eight–mode model of [63], which

includes modes describing the basic mean velocity profile, streamwise vortices,

streaks, and instabilities of streaks. The main improvement for the nine–mode

model is the inclusion of a mode which represents the lowest order modification

of the laminar profile (3.5) and as a result of this adjustment, the other modes

from the eight–mode model are modified slightly so that they can couple to this
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new mode. The modes for this nine–dimensional model are the basic profile

u1 =

















√
2 sin(πy/2)

0

0

















, (3.8)

representing a streamwise flow with the shape of the laminar profile. The streaks

are given by:

u2 =

















4√
3
cos2(πy/2) cos(γz)

0

0

















, (3.9)

that is, spanwise variations in the streamwise velocity, and

u3 =
2

√

4γ2 + π2

















0

2γ cos(πy/2) cos(γz)

π sin(πy/2) sin(γz)

















, (3.10)

represents a pair of streamwise vortices. The spanwise flow is represented by the

following two modes

u4 =

















0

0

4√
3
cos(αx) cos2(πy/2)

















, (3.11)

u5 =

















0

0

2 sin(αx) sin(πy/2)

















. (3.12)
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There are also two normal vortex modes

u6 =
4
√

2
√

3(α2 + γ2)

















−γ cos(αx) cos2(πy/2) sin(γz)

0

α sin(αx) cos2(πy/2) cos(γz)

















, (3.13)

u7 =
2
√

2
√

α2 + γ2

















γ sin(αx) sin(πy/2) sin(γz)

0

α cos(αx) sin(πy/2) cos(γz)

















, (3.14)

and a fully–three dimensional mode

u8 =
2
√

2
√

(α2 + γ2)(4α2 + 4γ2 + π2)

















πα sin(αx) sin(πy/2) sin(γz)

2(α2 + γ2) cos(αx) cos(πy/2) sin(γz)

−πγ cos(αx) sin(πy/2) cos(γz)

















.

(3.15)

The modification to the laminar mean flow profile is represented by

u9 =

















√
2 sin(3πy/2)

0

0

















. (3.16)

3.1.2 Amplitude Equations

The interactions between these nine modes sufficiently sustain the dynamics

needed to maintain the fluctuations in a non-periodic fashion as expected for a

turbulent shear flow [33]. Inserting (3.7) into (3.1) and projecting, a set of nine
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coupled, nonlinear ordinary differential equations is obtained given by

da1

dt
=

β2

Re
− β2

Re
a1 −

√

3

2

βγ

καβγ
a6a8 +

√

3

2

βγ

κβγ
a2a3, (3.17)

da2

dt
= −

(

4β2

3
+ γ2

)

a2

Re
+

5
√

2

3
√

3

γ2

καγ
a4a6 −

γ2

√
6καγ

a5a7

− αβγ√
6καγκαβγ

a5a8 −
√

3

2

βγ

κβγ
(a1a3 + a3a9), (3.18)

da3

dt
= − β2 + γ2

Re
a3 +

2√
6

αβγ

καγκβγ

(a4a7 + a5a6)

+
β2(3α2 + γ2)− 3γ2(α2 + γ2)√

6καγκβγκαβγ

a4a8, (3.19)

da4

dt
= − 3α2 + 4β2

3Re
a4 −

α√
6
(a1a5 + a5a9)−

10

3
√

6

α2

καγ
a2a6

−
√

3

2

αβγ

κα γκβγ
a3a7 −

√

3

2

α2β2

καγκβγκαβγ
a3a8, (3.20)

da5

dt
= − α2 + β2

Re
a5 +

α√
6
(a1a4 + a4a9) +

α2

√
6καγ

a2a7

− αβγ√
6καγκαβγ

a2a8 +
2√
6

αβγ

καγκβγ

a3a6, (3.21)

da6

dt
= − 3α2 + 4β2 + 3γ2

3Re
a6 +

α√
6
(a1a7 + a7a9) +

10

3
√

6

α2 − γ2

καγ

a2a4

− 2

√

2

3

αβγ

καγκβγ

a3a5 +

√

2

3

βγ

καβγ

(a1a8 + a8a9), (3.22)

da7

dt
= − α2 + β2 + γ2

Re
a7 −

α√
6
(a1a6 + a6a9) +

1√
6

γ2 − α2

καγ

a2a5

+
1√
6

αβγ

καγκβγ
a3a4, (3.23)
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da8

dt
= − α2 + β2 + γ2

Re
a8 +

γ2(3α2 − β2 + 3γ2)√
6καγκβγκαβγ

a3a4

+
2√
6

αβγ

καγκαβγ

a2a5, (3.24)

da9

dt
= −9β2

Re
a9 −

√

3

2

βγ

καβγ
a6a8 +

√

3

2

βγ

κβγ
a2a3, (3.25)

where

καγ =
√

α2 + γ2, κβγ =
√

β2 + γ2, καβγ =
√

α2 + β2 + γ2. (3.26)

In the following, we define the spatial wavenumbers as:

α =
2π

Lx
, β =

π

2
, γ =

2π

Lz
. (3.27)

3.1.3 Dynamics of the Model

The transition to turbulence for this nine–mode model is subcritical which

means that it is possible to get turbulent–like behavior at values of Reynolds

numbers for which the laminar state is stable. Furthermore, the distributions of

turbulent lifetimes, which indicates the duration of turbulence before decay to

the laminar state, are exponential, in agreement with observations in many shear

flows [33]. For this system, the energy in the system is taken to be the fluctuation

energy with respect to the laminar profile, and is defined as

E ≡ (1− a1)
2 +

9
∑

i=2

a2
i . (3.28)
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The modes (3.8–3.16) have been normalized so that the energy contained in a given

mode is simply the amplitude of the mode squared. As found in [34], the sym-

metry properties of the system are such that a = (a1, a2, a3, a4, a5, a6, a7, a8, a9) is

equivariant under translation symmetries which make up the group

{Id, TLx/2, TLz/2, TLx/2,Lz/2}, (3.29)

where

TLx/2 · a = (a1, a2, a3,−a4,−a5,−a6,−a7,−a8, a9), (3.30)

TLz/2 · a = (a1,−a2,−a3, a4, a5,−a6,−a7,−a8, a9). (3.31)

These group elements respectively correspond to the identity element, translation

by Lx/2 in the streamwise direction, translation by Lz/2 in the spanwise direction,

and the composition of both such translations.

As mentioned before, the geometry of sinusoidal shear flow is very similar to

that of plane Couette flow, the only difference being that the fluid in sinusoidal

shear flow is driven by a sinusoidal body force and has free–slip boundary con-

ditions. This greatly simplifies the derivation of the model with respect to plane

Couette flow by allowing the modes u1, . . . ,u9 to be written in terms of trigono-

metric functions. Nevertheless, this nine–dimensional model exhibits turbulent–

like dynamics observed in other shear flows. Therefore to validate the model, a

turbulent statistics analysis of the system is performed.
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Figure 3.2 compares statistics of fluctuations from the laminar state for the

stable periodic orbit of the nine–dimensional model with turbulent direct numer-

ical simulation data for plane Couette flow from [53], both at Re = 400 with

channel lengths Lx = 1.75π and Lz = 1.2π. Note that for the related system

of plane Couette flow, these parameters correspond to the minimal flow unit, the

smallest domain which is found numerically to sustain turbulence [23]. In general,

the trend is the same in terms of the location of the peaks for the wall–normal

root mean square fluctuations
√

〈v′2〉 and the Reynolds stress 〈u′v′〉. However,

for the nine–dimensional model, the stress term is smaller by an order of mag-

nitude. On the other hand, note that the streamwise and spanwise root mean

square fluctuations differ more substantially for the two flows. These results are

not surprising since the two flows have distinct boundary conditions: no-slip and

free-slip for plane Couette flow and sinusoidal shear flow, respectively. Neverthe-

less, the agreement in these quantities, and the work by [33] supports the idea

that this nine–mode model is a good representation and captures essential be-

haviors of typical shear flows. Therefore, it is hoped that the knowledge gained

from studying the edge of chaos for sinusoidal shear flow will be relevant to the

laminar–turbulent boundary dynamics for other shear flows.
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Figure 3.2: Comparisons of the turbulent statistics for the nine–dimensional model for sinusoidal
shear flow (solid) and plane Couette flow taken from direct numerical simulation data from [53].

3.2 Finding the Edge of Chaos

The edge of chaos is the boundary which separates transiently chaotic from

non–chaotic behavior and contains a set of solutions which neither decay nor

become chaotic. For this low–dimensional model, the edge of chaos is found

using a systematic bisection method which is similar to the method used for a

different shear flow model in [51]; see Figure 3.3. The edge tracking algorithm

starts out with a randomly chosen initial condition. The initial condition is then

systematically updated along a one–dimensional curve in phase space, near the

laminar state fixed point. This means that all the initial values of the amplitude

are kept constant except for one, which is used as a parameter in the bisection

method. The algorithm has been written so that it looks for two things: if the

trajectory directly decays to the laminar state, then the algorithm takes an initial
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condition on the curve further away from the laminar state, and conversely, if

the trajectory shows transient chaos, it takes an initial condition on the curve

closer to the laminar state. The points further/closer to the laminar state fixed

point, contained to a one–dimensional curve, are typically found by varying one

of the amplitudes aj
1. By refining the initial conditions via a bisection rule, the

algorithm finds trajectories that neither decay nor show transient chaos. The goal

is to find objects which lie on the boundary of these behaviors. It is important to

note that one of the benefits of this algorithm is that it does not have to start with

a particular type of initial condition, that is, the algorithm can find the edge of

chaos when starting with an initial condition which either decays directly to the

laminar state or shows chaotic behavior. Moreover, a simple bisection method for

finding the laminar–turbulent boundary suffices because there is a clear distinction

between chaotic and non-chaotic trajectories, therefore, it is not necessary to use

a more sophisticated algorithm to find the edge in this system.

3.3 The Edge of Chaos for Sinusoidal Shear Flow

For this system, the laminar state is stable for all Reynolds numbers and

corresponds to the asymptotically stable fixed point at a1 = 1, a2 = · · · = a9 = 0.

1The choice of amplitude is not important in this algorithm since the edge of chaos can be
found by bisecting in any direction. In particular, the chaotic and non-chaotic behavior of the
system is clearly distinguishable in all the modes of the model.
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aj

Edge of chaos

ic4

(Transient chaos)

(Direct decay)

ic1

ic3

ic2

Figure 3.3: Schematic diagram of the edge tracking algorithm for sinusoidal shear flow showing a
boundary in phase space separating initial conditions which exhibit direct decay and transiently
chaotic behavior. Initial conditions icn are systematically updated along a one–dimensional
curve aj to find trajectories near the edge of chaos. Initial conditions on one side of the edge
will (red) become transiently chaotic while initial conditions on the other side (blue) will decay
directly to the laminar state. The edge–tracking algorithm will find trajectories (purple) which
neither decay nor grow and follow the edge.

In particular, for Re . 335 and 515 . Re < 1000, this fixed point is the global

attractor for this model which implies that all trajectories will eventually end up

at the laminar state fixed point. Initial conditions for this range of Re exhibit

two distinct behaviors: (1) direct laminarization or (2) a chaotic transient before

decaying to the laminar state. This behavior coincides with the situation for

the low–dimensional model considered in [51]. Figure 3.4 shows the evolution of

amplitude a4, corresponding to a spanwise flow mode, as a function of time at

Re = 300 for two initial conditions near the laminar state, which in this figure

corresponds to a4 = 0. The top panel corresponds to a trajectory which visits

an unstable periodic orbit before decaying to the laminar state, and the bottom

panel corresponds to a trajectory which comes near the same periodic orbit and
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Figure 3.4: Transient and decay dynamics exhibited by the nine-dimensional model for Re . 335
and 515 . Re ≤ 1000. The time evolution for the amplitude of the fourth mode a4 showing
qualitatively different behaviors for two nearby initial conditions at Re = 300. The initial
conditions for the two trajectories were kept constant with the exception of a4(0), which only
differ from each other by a quantity of order 10−15.

undergoes transient chaotic dynamics before laminarization. For this example, the

stable manifold of the unstable periodic orbit separates initial conditions which

directly laminarize from those which are transiently chaotic, therefore, this orbit

determines the edge of chaos.

3.3.1 The Chaotic Transient State

The transient chaotic state in this system is associated with a chaotic saddle

near which trajectories stay for a finite time before escaping. The duration of

the chaotic transient is very sensitive to initial conditions and Reynolds numbers,
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indeed, a one–dimensional perturbation of order 10−15 can give vastly different

transient times. As indicated in §2.2, this behavior is indicative of the fractal

nature of the lifetimes [33, 32, 51], but the overall trend is that the duration of

the transient increases with Re. A schematic diagram of the dynamics around

the edge of chaos for this nine–dimensional model is shown in Figure 3.5. The

unstable periodic orbit associated with the edge of chaos coexists with the asymp-

totically stable laminar state fixed point and the chaotic saddle in phase space.

This periodic orbit has a codimension–1 stable manifold and acts as the surface

which separates the chaotic and directly decaying dynamics in phase space. The

unstable manifold of the unstable periodic orbit either directs trajectories, like

those labelled a in the figure, to the laminar state or shoots them up, like in the

case of b, so that it visits near the chaotic saddle before decaying to the laminar

state.

3.3.2 Characteristics of the Unstable Periodic Orbit As-

sociated with the Edge of Chaos

The unstable periodic orbit associated with the edge of chaos, which is visited

by the type of trajectories described above for this system, is show in Figures 3.6

and 3.7. Using AUTO [11], it was numerically verified that this periodic orbit

has only one unstable direction. Its eight–dimensional stable manifold separates
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b

Figure 3.5: A schematic diagram of the dynamics of the nine–dimensional model in the neigh-
borhood of the edge of chaos. The unstable periodic orbit (UPO) has an unstable manifold Wu

loc

and an eight–dimensional stable manifold W s
loc and forms the edge of chaos. For Re . 335 and

515 . Re < 1000, the only attractor in the system is the laminar state fixed point and initial
conditions either (a) decay directly to the laminar state (see top panel of Figure 3.4) or (b) be-
come transiently chaotic before decaying to the laminar state (see bottom panel of Figure 3.4).
For 335 . Re . 515, initial conditions may tend towards a nontrivial attractor as in (c) and the
third panel of Figure 3.10.

initial conditions that exhibit transiently chaotic behavior from those which di-

rectly decay to the laminar state, and forms the edge of chaos. This unstable

orbit remains as the periodic orbit associated with the edge of chaos, as was con-

firmed by finding the edge for different values of the Reynolds number using the

bisection method described in §3.2. Furthermore, it was verified that the edge

tracking algorithm used for this model consistently converges to the same peri-

odic orbit regardless of the initial condition used to begin the bisection algorithm

and the direction that is chosen for the one–dimensional curve which intersects

49



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a8

a7 a4

a3

Figure 3.6: The unstable periodic orbit associated with the edge of chaos for Re = 400 with
period T = 13.60 in two different projections.

its manifold. Note that for Re . 250, the only periodic orbits with smaller mean

perturbation energy arise in a bifurcation from this periodic orbit branch. For

Re & 250, this periodic orbit has the smallest mean perturbation energy of all the

periodic orbits found for this system [33, 34].

An important observation from Figure 3.7 is the difference between the group

of modes representing the instability in the streaks and the three-dimensional flow

SA : {a4, a5, a6, a7, a8} from the group of modes corresponding to the basic profile,

streamwise vortices and streaks SB : {a1, a2, a3, a9}. In particular, the peak–to–

peak amplitudes for the modes in group SA are approximately 50 − 2500 times

larger than the peak–to–peak amplitudes of the modes in group SB. However,

the streak mode, corresponding to a2, has a peak–to–peak amplitude which is

comparable to those of the modes in SA. Moreover, the period of the modes in
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Figure 3.7: Time series for the amplitudes of the unstable periodic orbit in Figure 3.6 over one
period.
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group SB are twice that of the modes in group SA. This result implies that the

dynamics of the unstable periodic orbit associated with the edge of chaos are

dominated by the streak and streak instability modes.

A scaling analysis was conducted using AUTO [11] for various components of

the unstable periodic orbit associated with the edge of chaos. This was achieved

by calculating the average values of the energy, streak, and streamwise vortex

amplitudes; see Figure 3.8. The average energy, streak and streamwise vortex

modes scale as Re−2, Re−1, Re−2, respectively. These scalings are different from

comparable results found in [66] which finds that for the lower branch state for

plane Couette flow, the amplitudes of the streaks and streamwise vortices scale

as Re0, Re−1, respectively. The difference in the scaling may be due to the fact

that the boundary conditions for plane Couette flow and sinusoidal shear flow are

different. However, the ratio between the scalings of the vortices and streaks is the

same, i.e. 〈a3〉
〈a2〉 ∼ Re−1 for these flows. This indicates that for both plane Couette

flow and the nine–dimensional model for sinusoidal shear flow, the streamwise

vortices become relatively weaker with increasing Re.

As mentioned in §3.1.3 and noted in [34], the low–dimensional model for

sinusoidal shear flow is equivariant [19, 35] with respect to the group D2 ≡

{Id, TLx/2, TLz/2, TLx/2,Lz/2}. The action of TLx/2 on the unstable periodic orbit

associated with the edge of chaos gives a time shift of half of a period; thus, this
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Figure 3.8: The average values of the energy, streaks a2, and streamwise vortices a3 of the
unstable periodic orbit associated with the edge of chaos as a function of Re. (left) The average
energy of the unstable periodic orbit (solid) scales as Re−2 (dashed). (right) A scaling analysis
shows that 〈a2〉 (upper solid curve) scales as Re−1 (upper dashed line) while 〈a3〉 (lower solid
curve) scales as Re−2 (lower dashed line)

periodic orbit is (setwise) invariant under TLx/2. The action of TLz/2 on this pe-

riodic orbit gives a distinct, symmetry-related unstable periodic orbit, which is

also (setwise) invariant under TLx/2. The periodic orbit obtained by the action of

TLx/2,Lz/2 on the original unstable periodic orbit is related to the latter one by a

time shift of half a period. Thus, there are two symmetry-related unstable peri-

odic solutions, each with its own eight-dimensional stable manifold which forms

an edge of chaos. By uniqueness of solutions backwards in time, these stable

manifolds cannot intersect.
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3.4 Probabilistic Analysis of the Edge of Chaos

The current study involves a nine–dimensional model with an eight–dimensional

edge of chaos. Thus, a complete characterization of the laminar–turbulent bound-

ary is not possible. A more practical way to study and describe the edge is by

considering a probabilistic approach. The objective is to calculate the probability

that an initial condition with a given energy will lead to chaotic behavior. In

particular, sets of roughly 2000 uniformly distributed initial conditions with the

same energy are drawn from the surface of a nine–dimensional hypersphere. The

radius of the hypersphere corresponds to the square–root of the initial energy in

the system, which ranges from E(0) = 5× 10−5 to 5× 10−3.

To generate a set of uniformly distributed random samples on a n–dimensional

sphere, let

x1 = r cos(φ1),

x2 = r sin(φ1) cos(φ2),

...
...

xn−1 = r sin(φ1) · · · sin(φn−2) cos(φn−1),

xn = r sin(φ1) · · · sin(φn−2) sin(φn−1), (3.32)

where φ1, · · · , φn−2 take the values between 0 and π, φn−1 takes values between 0
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and 2π, and r is the radius of the sphere whose equation is

x2
1 + · · ·+ x2

n−1 + x2
n = r2. (3.33)

Let P (φ1, · · · , φn−1) be a probability distribution function defined on the surface

Ω of the sphere. For a uniform distribution, this is a constant determined by the

normalization condition

∫

Ω

P (φ1, · · · , φn−1)dΩ = 1, (3.34)

where

dΩ =
n−1
∏

j=1

sinn−j−1(φj)dφj (3.35)

is the element of area. Then, P is split into the product of distributions Pj so

that

P (φ1, · · · , φn−1)dΩ = P1(φ1)dφ1 · · ·Pn−1(φn−1)dφn−1 (3.36)

giving

Pj(φj) = cj sinn−j−1(φj), j = 1, · · · , n− 1. (3.37)

The constants cj are determined from the normalization conditions

∫ π

0

Pj(φj)dφj = 1 j = 1, · · · , n− 2, (3.38)

∫ 2π

0

Pn−1(φn−1)dφn−1 = 1, (3.39)

which guarantees that (3.34) will be satisfied. In order to obtain a sample of

such a probability distribution function, the fundamental transformation law of
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probabilities is utilized to obtain

Pj(φj) =

∣

∣

∣

∣

dωj

dφj

∣

∣

∣

∣

. (3.40)

For a particular sample ωj, this can be inverted numerically to give the corre-

sponding value of φj which may be used to construct the initial conditions xj ; see

Appendix A for more details.

Integrating these initial conditions for a sufficiently long time will determine

whether or not they lead to a solution which exhibits chaotic behavior. Note

that as Re increases, the time it takes for trajectories to reach the chaotic saddle

(associated with transient chaos) also increases, so the integration time is increased

as appropriate. For this analysis, the amplitude of the basic mode a1 is tracked

as the indicator of chaotic behavior in the system. The laminar state corresponds

to a1 = 1 whose value is significantly different from the value of the amplitude in

the chaotic saddle, (a1 . 0.5). Thus, determining whether a trajectory becomes

chaotic is manageable by monitoring whether a1 crosses the threshold a1 = 0.5.

Figure 3.9 shows that the probability of transient chaos increases with Reynolds

number and perturbation amplitude. These probability curves agree well with the

average value of the energy of the unstable periodic orbit associated with the edge

of chaos. In particular, Figure 3.9 shows the average energy drawn as a thick

black curve, superimposed on the contour plot. The fact that the energy is in the

96 − 97% range demonstrates the high level of agreement between probabilistic
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Figure 3.9: The probability of transient chaos as a function of Re and initial perturbation
energy. The contour lines represent probability increments of 10% with the upper contour being
the 90% curve. The thick black curve represents the average energy in the unstable periodic
orbit associated with the edge of chaos.

and the Reynolds number scaling analysis performed for the unstable periodic

orbit associated with the edge of chaos.

3.5 Basin Boundary of the Nontrivial Attractor

A stable nontrivial attractor coexists with the laminar state fixed point, unsta-

ble periodic orbit, and chaotic saddle in phase space for 335 . Re . 515. The at-

tractor captures signatures of the self–sustaining process elucidated in [61, 62, 63],

as shown in [34]. For this reason, the nontrivial attractor is associated with the

sustained turbulence in this study. Figure 3.10 shows the time series evolution of
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the amplitude a4, corresponding to a spanwise flow mode, for an initial condition

near the laminar state fixed point for Re = 400. Recall that the laminar state

for this amplitude corresponds to a4 = 0. In this figure, the system again vis-

its near the same unstable periodic orbit found in Figure 3.4 but for a different

value of the Reynolds number. The last panel shows the additional qualitative

behavior the system undergoes, transient chaotic behavior before it enters the

neighborhood of the nontrivial attractor. These dynamics correspond to the ini-

tial condition labelled c in Figure 3.5. Note that the initial conditions which give

transient chaos before decaying to the laminar state are extremely close to those

which tend towards the nontrivial attractor. It is necessary to emphasize that

this observation is indicative of the sensitive nature of the initial conditions in the

basin of attraction of the nontrivial attractor.

Table 3.1 shows that the attractor can be chaotic, periodic, or quasiperiodic,

depending on the Reynolds number, and in all these cases the attractor explores

similar regions of phase space as shown in Figures 3.11 and 3.12. At Re ≈ 515,

the nontrivial attractor undergoes a crisis [20], and for higher Reynolds numbers it

ceases to exist. This is apparently due to the boundary of the basin of attraction

of the attractor colliding with one of the many unstable periodic orbits for this

model, cf. [34]. This implies that all trajectories beyond this critical Reynolds

number will eventually decay to the laminar state; however, they can display
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Figure 3.10: Time evolution of the amplitude a4 for the nine-dimensional model for 335 . Re .

515. In this range of Re, an additional qualitatively different behavior from Figure 3.4 is shown
in the lower panel but for Re = 400. These behaviors, which are analogous to those shown in
Figure 3.4, occur for initial conditions which differ in a4 by a quantity of order 10−15.

transient chaos before this decay. The situation for 515 . Re < 1000 is thus

similar that of Re . 335 and to the situation for a different low–dimensional

model considered in [51].

Type of attractor Reynolds number

Chaotic 335 . Re . 355
Periodic 355 . Re . 508
Quasiperiodic 508 . Re . 515
None Re < 335 and Re > 515

Table 3.1: Classification of the nontrivial attractor as a function of Re.

Figure 3.13 shows the probability that perturbations of a given initial energy

lead to the nontrivial attractor for 335 ≤ Re ≤ 515. The first sharp contour
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Figure 3.11: Examples of nontrivial attractors found for 335 . Re . 515, including (left) chaotic
behavior at Re = 345, (center) a stable periodic orbit at Re = 400, and (right) a quasi-periodic
attractor at Re = 510.

line indicates a 10% probability of reaching the nontrivial attractor, and the last

contour line corresponds to a 60% probability. Below Re ≈ 335, there is no

nontrivial attractor, and all trajectories approach the laminar state fixed point.

A numerical scaling analysis shows that each of the contour lines in Figure 3.13

scale as

E(0) = c(Re−Rec)
σ, (3.41)

where c is a constant whose value for this fit is always 5× 10−3. This fit has two

important parameters: Rec which is the Reynolds number to which the probability

contours asymptotically tend, and σ which is the scaling factor for each curve. The

values of the critical Reynolds number and scaling factor for the corresponding

probability curves is given in Table 3.2. The values of the scaling factor σ are

comparable to the turbulent threshold exponent for other shear flows, such as

plane Couette flow and plane Poiseuille flow; see e.g. [57, 6].
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Figure 3.12: Bifurcation diagram showing the instantaneous value of a1 whenever the trajectory
pierces the Poincaré section defined by a2 = 0 with ȧ2 < 0. This plot is generated by adia-
batically changing the value of Re, omitting transients. For 335 . Re . 355, the attractor is
chaotic, for 355 . Re . 508 the attractor is a stable periodic orbit, and for 508 . Re . 515 the
attractor is quasiperiodic. For more detail for 335 ≤ Re ≤ 360, see Figure 21 of [34].

The relationship between the edge of chaos and the basin boundary is shown

in Figure 3.14, at Re = 400. This figure shows that the stable manifold of the

unstable periodic orbit associated with the edge of chaos smoothly and sharply

separates (gray) direct decay to the laminar state from (red and blue) transient

chaotic behavior. This is in contrast to the basin structure between initial con-

ditions which lead to the laminar state fixed point or the nontrivial attractor,

as seen in the red and blue speckled region of the figure. The basin boundary

between these two behaviors, as shown in Figure 3.14, is not smooth like the edge

of chaos, but rather fractal in nature. The fact that trajectories can come back
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Probability Critical Reynolds number Scaling factor
curve (Rec) (σ)

10 349 -1.6
20 357 -1.3
30 362 -0.85
40 380 -0.73
50 405 -0.65
60 450 -0.55

Table 3.2: Reynolds number scalings for probability of transient chaos curves.

to the laminar state after a chaotic transient is surprising. A possible explana-

tion is that the stable manifold of the unstable periodic orbit could be a closed,

non-orientable surface with neither an inside or an outside.

3.6 Discussion

The edge of chaos for a nine-dimensional model for sinusoidal shear flow was

characterized as the eight–dimensional stable manifold of an unstable periodic

orbit. Its one unstable direction is associated with the separation into regions in

phase space where trajectories either decay to the laminar state or exhibit chaotic

behavior. Since a complete classification of the laminar–turbulent boundary was

not feasible, due to its high dimensionality, a probabilistic analysis of the edge of

chaos was conducted. The analysis revealed how the probability of transient chaos

increases with Reynolds number and perturbation amplitude. Furthermore, the

scaling analysis for average energy content in the unstable periodic orbit showed
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Figure 3.13: The probability of reaching the nontrivial attractor associated with sustained
turbulence as a function of Re and initial perturbation energy.

good agreement with the probabilistic analysis performed for the edge of chaos.

For 335 . Re . 515, the sustained turbulence state is associated with a non-

trivial attractor, which may be a chaotic, periodic, or quasiperiodic attractor,

depending on the value of the Reynolds number. It was found that the basin

boundary of the nontrivial attractor is not relatively smooth like the edge of

chaos, but it showed signs of a fractal nature. For 515 . Re < 1000, the non-

trivial attractor ceases to exist and the stable manifold of the unstable periodic

orbit associated with the edge of chaos separates initial conditions which exhibit

transiently chaotic behavior from those which directly decay to the laminar state

fixed point.

In light of the interesting results obtained from this analysis, it would be

63



3.5 3.55 3.6
−3.6

−3.55

−3.5

3.55 3.555 3.56
−3.56

−3.555

−3.55

3 3.2 3.4 3.6 3.8 4
−4

−3.8

−3.6

−3.4

−3.2

−3

103 a2(0)

103 a3(0)

Figure 3.14: A two–dimensional visualization of the edge of chaos showing the basin boundary
of the nontrivial attractor. Three different initial conditions are shown: (gray) direct decay to
the laminar state, (red) transient chaos before decay, and (blue) nontrivial attractor after some
transient chaos. The left panels show successive magnifications.

appealing to characterize the edge of chaos for other low–dimensional models for

turbulent shear flows. In particular, for reduced–order models such as sinusoidal

shear flow and parallel shear flow, the edge state is nontrivial (i.e. not a fixed

point) and/or chaotic in nature. Therefore, characterizing the edge of chaos for

low–dimensional models for plane Couette flow, such as those derived in [36, 53],

can reveal whether or not the complexity of the invariant structures embedded in

the edge of chaos is a result of the reduction in dimensionality of these systems

or simply a feature of the nature of the flow, such as for pipe flow.
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Chapter 4

The Laminar–Turbulent

Boundary in Plane Couette Flow

The edge of chaos for plane Couette flow will be studied and described in this

chapter. This boundary contains solutions, called edge states, which are too weak

to become turbulent and too strong to laminarize. To identify the edge states,

an iterated edge tracking algorithm is used which is based on a simple bisection

method that starts with two initial conditions chosen by scaling a turbulent field

such that one becomes turbulent and the other decays to the laminar state without

exhibiting turbulence. The tracking algorithm is implemented for several refine-

ments until a trajectory which neither becomes turbulent or laminarizes is found.

Edge states for various channel sizes will be characterized and their dynamics will
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Figure 4.1: Geometry of plane Couette flow. For this flow, incompressible viscous fluid is driven
by two infinitely parallel no–slip plates moving at constants speeds in opposite directions.

be compared to edge states for other shear flows. Additionally, for a small range of

channel sizes, trajectories in the neighborhood of the laminar–turbulent boundary

can converge to one of two edge states whose stability properties will be described

in the following.

4.1 Plane Couette Flow

Plane Couette flow confines an incompressible viscous fluid between two in-

finitely parallel rigid walls which are moving at a constant speed but in opposite

direction; see Figure 4.1. At low Reynolds numbers, the flow is laminar with a

linear velocity profile between the walls. Unlike other shear flows, such as Taylor-

Couette flow and plane Poiseuille flow, plane Couette flow has a laminar profile

which is stable for all Reynolds numbers, as was observed in sinusoidal shear flow.

Regardless of this constraint, turbulence is observed for this flow both numerically

and in experiments.

66



In the following, the coordinate system is chosen such that the x–axis is the

direction in which the walls move, the y–axis is perpendicular to the walls, and the

z–axis is both orthogonal to the x-axis and parallel to the wall. Like for sinusoidal

shear flow, x, y, and z correspond to the streamwise, wall-normal, and spanwise

directions, respectively. The components of the velocity of the fluid are utot(x) =

[u, v, w](x, y, z). Plane Couette flow is governed by the Navier–Stokes equations,

given in §1.3. This system of differential equations can be nondimensionalized

using a velocity scale U0 and a length scale d which are defined as the velocity

of the plates and half the distance between the two plates, respectively. The

present length and velocity scales induce the time scale t = d/U0 and results in

the following definition of the Reynolds number:

Re =
U0d

ν
. (4.1)

After nondimensionalization, the plates are located at y = ±1 and move with

velocity U0 = ±êx.

In the following, the dynamics of the deviation u from the laminar profile will

be considered. Therefore, the total velocity of the fluid is replaced by

utot = u + yêx, (4.2)
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and the Navier–Stokes equations take the form

∂u

∂t
+ y

∂u

∂t
+ vêx + (u · ∇)u = −∇p +

1

Re
∇2u, (4.3)

∇ · u = 0. (4.4)

For the laminar state, the pressure is constant, so here p represents the pressure

field of the perturbation. The boundary conditions for this flow are the no–slip

conditions applied to each wall, thus, giving:

u(x,±1, z) = 0, (4.5)

and periodic boundary conditions in the streamwise and spanwise directions,

u(x, y, z) = u(x + Lx, y, z), u(x, y, z) = u(x, y, z + Lz), (4.6)

where Lx and Lz are the nondimensionalized lengths in their respective directions

and have associated wavenumbers α and γ such that

Lx =
2π

α
, Lz =

2π

γ
. (4.7)

4.1.1 Symmetries of Plane Couette Flow

In practice, understanding the symmetries of a dynamical system can be very

beneficial since it can substantially simplify the problem. Moreover, the considera-

tion of the symmetries of differential equations can lead to a greater understanding
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of the system. The governing equations for plane Couette flow (4.3) are invariant

under the following symmetries:

σx[u, v, w](x, y, z) = [−u,−v, w](−x,−y, z), (4.8)

σz[u, v, w](x, y, z) = [u, v,−w](x, y,−z), (4.9)

σx,z[u, v, x](x, y, z) = [−u,−v,−w](−x,−y,−z), (4.10)

corresponding to a rotation by π about the z-axis, a reflection of u about z, and a

point reflection of the flow about the origin, respectively. The flow is also invariant

under continuous translations in x and z

τx,lx [u, v, w](x, y, z) = [u, v, w](x + lx, y, z), (4.11)

τz,lz [u, v, w](x, y, z) = [u, v, w](x, y, z + lz). (4.12)

Most equilibria and periodic solutions of plane Couette flow are invariant under

shift-rotate and shift-reflect symmetries which generate the dihedral (D2) sym-

metric group

S = {e, τxσz , τxzσx, τzσx,z},

τx = (Lx/2, 0), τz = (0, Lz/2), τxz = (Lx/2, Lz/2),

which was first introduced by [37, 8].
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4.2 Numerical Analysis

The solutions of plane Couette flow will be computed by direct numerical sim-

ulations of the Navier–Stokes equations. Direct numerical simulation is an ideal

choice since it allows for the ability to solve the full system and it does not require

one to provide additional assumptions about the flow. The numerical analysis

in this chapter has been completed using channelflow [18]. Written by John F.

Gibson, the channelflow library conveniently provides a method of performing di-

rect spectral simulations of the incompressible Navier–Stokes equations for various

types of turbulent shear flows. The simulations for this research have been car-

ried out in the QSR Linux Cluster of the California NanoSystems Institute high

computing facility with Hewlett–Packard at UC Santa Barbara and the MARC

Linux Cluster of the Hochschulrechenzentrum in Marburg, Germany.

4.2.1 Numerical Discretization and Resolution

In channeflow, the solutions are represented by a spectral discretization in

the spatial directions [5]. For the system of equations and boundary conditions

(4.3–4.5), a Fourier representation in a rectangular grid for the streamwise and

spanwise directions is used due to the periodic boundary conditions imposed in
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these directions. The velocity field is then expanded as

u(x, t) =
∑

l,n

ûl,n(y, t)e2πi(lx/Lx+nz/Lz). (4.13)

The representation in the wall–normal direction is slightly more complicated due

to the non–periodicity of the boundary condition. To account for the no–slip

boundary condition, a staggered grid is used in the wall–normal direction. This

allows for the velocity to be represented by discrete Chebyshev polynomials in the

y–direction

û(y, t) =

Ny
∑

m

ũl,n(t)Tm(y). (4.14)

In this scheme, the pressure field is evaluated in between every velocity point and

can be represented as

P̂ (y, t) =

Ny−1
∑

m

P̃l,n(t)Tm(y). (4.15)

For (4.13–4.15), the symbols (∧,∼) respectively represent quantities rescaled in

Fourier space and the wall–normal direction.

Channelflow offers two time–integration schemes that treat the linear terms

implicitly and the nonlinear term explicitly. The first combines the Crank–

Nicolson scheme (for the viscous and pressure terms) with a second–order Adams–

Bashworth scheme (for the nonlinear term); see [5] for details. The second scheme,

set as default, is a 3rd–order Runge Kutta semi–implicit scheme which employs

a corrector step, called tau correction, to the solution in the discretized form;

see [54] for details.
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Choosing the correct numerical resolution is critical for turbulent shear flows

because it is important to capture the dynamics of the edge and turbulent states as

accurately as computationally possible. For this analysis, streamwise and span-

wise resolutions of Nx = 16Lx/π, Nz = 16Lz/π were chosen. The wall–normal

resolution was fixed at Ny = 16.5Ly = 33. For a channel domain of 4π units

long, 2π units wide, and 2 units high, this corresponds to a 64× 33× 32 compu-

tational grid. These resolutions are similar to those used to calculate edge states

in [31, 50]. The resolution was refined for the Newton search and Arnoldi iteration

algorithms to 32× 49× 64, which was verified both numerically and visually for

accuracy with a slightly coarser grid.

4.2.2 The Edge Tracking Algorithm

An iterated edge tracking algorithm was implemented to find the edge of chaos

for plane Couette flow. Typical trajectories observed in this flow exhibit either

direct decay or transiently chaotic behaviors. The stable laminar state fixed point

coexists in state space with the turbulent state and a third object which corre-

sponds to an invariant structure that maintains its own dynamics. Trajectories

starting in the stable manifold of this invariant structure will neither decay to the

laminar state or grow and become turbulent.

This edge tracking algorithm, which is similar in structure to those used in
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Chapter 3 and in [51, 49, 31], traces out the dynamics on the laminar–turbulent

boundary. Every point lying on the edge of chaos in principle can be identified

with this iterated method. The algorithm was written such that it does not require

an a priori knowledge of what the invariant structure embedded in the edge has

to be. In essence, the purpose of the edge tracking algorithm is to approximate a

trajectory that neither decays to the laminar state or grows to become turbulent.

This is achieved by adjusting the velocity fields by a scaling parameter.

Figure 4.2 shows a schematic of the iterated edge tracking algorithm. The

algorithm starts with a turbulent initial condition ut which is obtained from an

arbitrary turbulent simulation. The initial condition is connected to the laminar

state ul with a scaling parameter λ such that

uλ = ul + λ(ut − ul). (4.16)

When λ = 0, uλ = ul and as λ is gradually increased to 1, the distance from the

laminar state is also increased. Initial conditions will subsequently come closer

to the turbulent domain and when λ = 1 they will meet up with the initial

turbulent trajectory uλ = ut. The perturbation velocity field u = ut − ul is

the difference between the laminar and turbulent velocity fields. It is important

to point out that only the perturbed velocity field is scaled. This is done to

ensure that only trajectories living in between the laminar and turbulent domains

are monitored and to avoid numerical instabilities. Bisecting in λ between a
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Figure 4.2: A schematic representation of the edge tracking algorithm. A turbulent initial
condition is rescaled and a bisection method calculates a pair of trajectories where one grows
and becomes turbulent and the other decays and laminarizes. In between the two trajectories
is one that neither decays or becomes turbulent corresponding to the edge trajectory (dashed
line). Successive iterations minimize the distance between the pair of trajectories.

growing and decaying trajectory makes it possible to focus on the one that lives in

between for a substantial amount of time. The edge-tracking algorithm monitors

the energy, which is the L2–norm of the velocity field, defined as

E ≡ ||u||2 =

[

1

LxLyLz

∫ Lx

0

∫ 1

−1

∫ Lz

0

u · u dx dy dz

]1/2

. (4.17)

The L2–norm corresponds to the amplitude fluctuation of the velocity field. As

shown in Figure 4.3, the energy of decaying and growing trajectories are measur-

ably distinguishable from one another, thus, tracking the energy of the velocity

field is convenient.

To minimize extraneous computational time, energy bounds and temporal

bounds are imposed. The lower energy bound Elow has a value that is very close
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Figure 4.3: One iteration of the edge tracking tracking algorithm showing the energy of trajec-
tories as a function of time. Decaying and growing trajectories are explicitly distinguishable by
the evolution of the energy E.

to the energy of the laminar state El = 0. For this analysis, lower bounds of

Elow ∈ [0.1, 0.15] are chosen1. The upper energy bound Ehigh requires added con-

sideration since for different flow domains and Reynolds numbers, the turbulent

state may have different energy values. For this reason, a sample turbulent simu-

lation for different parameter values is performed to determine an adequate value

of the upper energy bound. Occasionally, a trajectory might have a long excursion

where it neither decays, grows, nor converges to the boundary, therefore a tempo-

ral bound of T = 3000 units is implemented to terminate the current simulation

1Generally, the value of Elow depends on the flow domain and Reynolds numbers. The energy
of the edge trajectory can be close or far away from the laminar state, therefore an appropriate
value of the lower energy bound must be chosen to keep performance of the algorithm at an
optimum and conserve computational time.
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and start a new one with a rescaled initial condition.

Each iteration of the algorithm finds a pair of trajectories on either side of

the edge via a bisection method. The first iteration always begins with a scaling

factor value of λ = 0.5, corresponding to (λl, λh) = (0, 1), where λl, λh are the

low and high scaling factors respectively corresponding to decaying and growing

trajectories. After each trajectory is calculated, based on the current λ, (λl, λh)

are updated accordingly. If the trajectory becomes turbulent, then the algorithm

bisects down with the laminar state and if the trajectory decays, the algorithm

bisects up with the turbulent state; see Table 4.1 for example scaling factor cal-

culations. The iteration is stopped when the initial separation of the two ap-

proximating trajectories δλ is sufficiently small. The smaller the value of δλ is,

the closer the trajectories will be able to approximate an intermediate trajectory

and consequently spend more time near the edge state. However, the separation

between the approximate trajectories increases over time, therefore, the bisection

is repeated when δλ is of the order 10−8 for several iterations, or refinements, until

a solution that neither decays or becomes turbulent is found. For an alternate

and detailed description of the edge tracking algorithm, see Appendix B.

On a technical level, the way the new pair of trajectories is found involves

starting a new iteration with an initial condition corresponding to the velocity

field one-third of the way up the previous turbulent trajectory. The one-third

76



Scaling factors Trajectory New scaling factors

λh = 1
λl = 0

}

⇒ λ = 0.5
decaying −→

{

λh = 1
λl = λ = 0.5

growing −→
{

λh = λ = 0.5
λl = 0

λh = 0.5
λl = 0.3

}

⇒ λ = 0.4
decaying −→

{

λh = 0.5
λl = λ = 0.4

growing −→
{

λh = λ = 0.4
λl = 0.3

Table 4.1: Examples of scaling factor calculations.

principle approximately corresponds to 180 time units and it is comparable to

temporal refinement bounds of other edge-tracking algorithms. For successive it-

erations, the initial turbulent and laminar scaling factors are reset to λh = 1 and

λl = 0.95. The choice of λh = 1 is obvious since the initial condition that is

chosen for the new iteration comes from a turbulent trajectory. The choice for λl

however is less clear. It is critical to chose appropriate scaling bounds, otherwise,

the loss of critical computation time is likely to occur since the algorithm would

be calculating trajectories which are too far apart from one another and more

importantly, too far from the edge trajectory. Note that the separation ampli-

tude to the initial conditions of the previous iteration are very small, this means

that the algorithm has been able to focus on a very specific region of the space.

Moreover, after the first iteration, most of the approximate trajectory is smooth,

corresponding to the damping of fluctuations of the velocity field. With this in
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mind, a lower scaling bound of λl = 0.95 is chosen.2 Figure 4.4 shows five refine-

ments of the edge tracking algorithm. The solid lines correspond to trajectories

that grow and become turbulent while the dashed lines show trajectories which

decay to the laminar state. Every refinement gets initial conditions which have

trajectories which come closer to the edge state, thus, approximate edge trajecto-

ries maintain approximately constant energy longer with every refinement. The

segments of these approximate trajectories can then be concatenated to construct

the edge trajectory.

4.2.3 Finding Eigenvalues

Calculating the eigenvalue spectra will be an important step in identifying edge

states. Computing the stability of solutions will require the linearization of (4.3),

but the size of the state space makes any direct analysis of such magnitude unfea-

sible.3 One method of alleviating this issue is by projecting the high-dimensional

problem into a lower-dimensional Krylov subspace [56]. A power iteration calcu-

lates the Krylov sequence given by the set of vectors b, Ab, A2b, . . . , for a given

a matrix A ∈ R
m×m and an arbitrary initial vector b ∈ R

m. The nth Krylov

subspace Kn(A; b) ⊂ R
m is the linear subspace spanned by large groups of these

2Other edge tracking algorithms, such as the one in [31], use tighter scaling bounds. For this
investigation, a slightly larger initial separation amplitude is used to ensure that the correct
trajectory is being calculated. Note that this conservative bound does not substantially increase
computation times.

3The mathematics and notations of the following iterative methods will be based on [56].
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Figure 4.4: Trajectories near the edge of chaos approximated by the edge tracking algorithm
after 5 refinements. The solid lines correspond to trajectories which grow and become turbulent
and the dashed lines correspond to decaying trajectories. The arrows indicate new iterations
of the algorithm. As expected, edge trajectories are longer as the number of iterations increase
since the approximate trajectories undergo increasingly sharper refinements.

vector and is defined as

Kn(A; b) = {b, Ab, A2b, . . . , An−1b}. (4.18)

Working in the projected subspace, it is now possible to compute the eigenval-

ues and eigenvectors of matrix A by means of an Arnoldi iteration. The algorithm

utilizes a Gram–Schmidt iteration to approximate eigenvalues of A by computing

the eigenvalues of Hessenberg matrices. In detail, by projecting A onto an or-

thonormal basis for the Krylov subspace, the eigenvalues of A can be estimated
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by reducing the matrix into Hessenberg form

H = Q†AQ, (4.19)

where Q is a sequence of orthonormal vectors which span the Krylov subspace.

The eigenvectors of H (analogous to A) can be efficiently calculated using QR

iteration. The Arnoldi algorithm is thus useful for high dimensional systems since

it converges to eigenvalues with large real parts first. This means that the total

number of Arnoldi iterations is always significantly smaller than the dimension of

the full system. Arnoldi iteration is ideal for the purposes of this investigation

since the objective is to find states which have only one large real eigenvalue,

corresponding to an edge state. The code for the Arnoldi algorithm for finding

eigenvalues is included in the channelflow library.

4.2.4 Searching for Invariant Structures

The invariant solutions of the governing equations for plane Couette flow (4.3)

will be solved using a Newton–hookstep GMRES algorithm. The algorithm, avail-

able in the channelflow library, can find invariant solutions such as fixed points,

traveling waves, periodic orbit, and relative periodic orbits. The following discus-

sion will provide a brief overview of this iteration method. Consider the system

F (u) = 0 with exact solution u∗. An initial guess u which is near the exact solu-

tion u∗ can be obtain from the edge tracking algorithm. Letting u = u∗ + du and
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linearizing the system to first order about this solution gives

DF (u)du = −F (u), (4.20)

and yields a better approximation of the zeros of the linear system. New guesses

can be iterated using the following expression DF (un)(u− un) = −F (un), where

un is the calculated solution corresponding to the nth iteration. The number of

iterations depends on the goodness of an initial guess and are typically terminated

when the value F (u) is small.

The accuracy of the Newton algorithm is conditional on the near proximity of

the initial guesses to the solution. To remedy this problem, an upper limit to the

step size du is imposed. This idea is based on [10, 58] where a trust region on the

search is implemented

||u− un||2 ≤ δ. (4.21)

So, the trust region δ determines the validity of the linearization about un. There-

fore, the Newton-hookstep algorithm finds solutions to the minimization of (4.20)

subject to the constraint (4.21).

The high dimensionality of the system (and solutions) make finding invariant

structures in the full state space impractical. Therefore, a generalized minimal

residuals (GMRES) iterative method is used to solve the Newton equations. In

essence, the GMRES algorithm solves the system of equations Ax = b in the

Krylov subspace. The idea is to approximate the exact solution x∗ = A−1b by the
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vector xn ∈ Kn that minimizes the residual

||rn|| = ||b− Axn||. (4.22)

A QR decomposition of the matrix A, projected onto Kn, requires that the least

squares problem be solve for the vector y

||AQny − b|| = minimum. (4.23)

This Newton–hookstep algorithm can also find traveling waves, periodic orbits,

and relative periodic orbits. For this study, the Newton search algorithm will be

limited to finding equilibria. For further information on how the Newton–hookstep

finds other types of solutions, see [18].

4.3 The Lx = 4π and Lz = 2π Domain

The edge of chaos for the flow domain [Lx, Ly, Lz] = [4π, 2, 2π] will be charac-

terized in this section. This domain, which has been considered in many previous

studies of plane Couette flow [37, 8, 48, 36, 65], corresponds to a domain size

where steady state solutions appear at the lowest Reynolds number. It is also the

domain for which the edge of chaos has been studied [50, 31], thus, this study will

function as a validation of the algorithms and techniques described in the previous

section. The laminar–turbulent study for this domain size will be carried out at

Re = 400 with a computational grid of 64 × 33 × 32. Figure 4.5 shows typical
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results from the edge tracking algorithm for different initial conditions. Generally,

the edge tracking algorithm does a very good job with approximating trajectories.

Though it will not converge all initial conditions, it has a high rate of convergence

which can be reached at approximately 600 time units on a fast run.

Starting with different ut’s, for this flow domain, the edge tracking algorithm

converged to trajectories which visited close to one of the two distinct equilibria.

Despite the fact that the ut’s are topologically distinct, that is, the initial condi-

tions will converge to different states, the algorithm was successful in calculating

trajectories with constant energies; see the top panels of Figures 4.6 and 4.7. The

final state, which is extracted after five refinements, is significantly smoother than

the initial state but looks different for each trajectory; see the second panels of

Figures 4.6 and 4.7. Mainly, the state with a higher energy has a single pair of

rolls, and the other has two pairs of rolls confined in the domain. The difference in

the energies is expected, since physically, it takes more energy to sustain a single

pair of rolls in such a large domain.

The Newton–hookstep algorithm of §4.2.4 is implemented to calculate invariant

solutions of the Navier–Stokes equations for this domain, where the final states

(shown as red dots in the bottom left panels of Figures 4.6 and 4.7) are used as

initial guesses for the algorithm. As expected, for both these states, the Newton

algorithm converged to fixed points. The eigenvalue spectra for each of these fixed
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Figure 4.5: Typical edge trajectories for the Lx = 4π and Lz = 2π plane Couette flow domain
calculated with the edge-tracking algorithm.
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Figure 4.6: The edge state in the Lx = 4π and Lz = 2π domain. (Top) the initial condition
used in the edge tracking algorithm is qualitatively distinct from the converged state (middle)
from the Newton algorithm. (Bottom left) the energy traces extracted from the edge tracking
algorithm where the red dot corresponds to the final state used as an initial guess in the Newton
algorithm. (Bottom right) the single positive real eigenvalue in the eigenvalue spectra confirms
that this state is indeed the edge state for this flow domain.
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Figure 4.7: An invariant state in the Lx = 4π and Lz = 2π domain. (Top) the initial condition
used in this analysis is topologically different from the initial condition in Figure 4.6. (Middle) a
Newton search converged to a state with a single pair of rolls. (Bottom right) The edge tracking
algorithm shows a smooth approximate trajectory, nevertheless, the eigenvalue spectra (bottom
left) confirms that this state cannot be the edge state since it has 4 positive eigenvalues.
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points is calculated to determine their stability. Figures 4.6 and 4.7) show that the

4–roll solution only has one positive real eigenvalue while the 2–roll solution has a

total of 4 unstable directions. Each solution also has a pair of neutral eigenvalues

which arise from the symmetry with respect to periodic shifts in the streamwise

and spanwise directions [50]. The results from this stability analysis determined

that the 2–roll solution cannot be an edge state since its stable manifold cannot

divide state space. The 4–roll solution, on the other hand, has only one unstable

direction and its stable manifold is codimension–1. Thus, the 4–roll solution is

the edge state for this flow domain, and it’s stable manifold forms the edge of

chaos.

On the numerical side, the energy of the 4–roll edge state is Eedge = 0.1956.

The edge state is invariant under a τz,1/2 translation symmetry. The 4–roll edge

state and 2–roll solution found in this analysis are the equivalent to the (0.5, 2) and

(0.5, 1) states found by [50]. The third state (1, 2) calculated by [50] was not found

in this analysis which is likely due to the properties of this state. This state has 5

unstable directions, only one more than the 2–roll state. However, the magnitude

of the positive eigenvalues of the (1, 2) state are considerably larger than that

of the 2–roll state. The instability of the state makes it hard for trajectories to

come near it and its strong unstable manifolds quickly drive it them away from

the state. Nonetheless, the fact that two of the same states were found validates
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the edge tracking algorithm for this investigation.

The fact that the edge tracking algorithm approximates and converges to other

invariant states raises the question of how these structures coexist with the edge

state. It has been hypothesized that the invariant states may be embedded in the

edge of chaos where trajectories near this state tend towards it before they are

pulled away to a different direction by one of its unstable manifolds. Figure 4.8

illustrates this scenario, where the invariant state, such as the one found for this

domain, lies in the manifold spanned by the stable manifold of the edge state.

These states themselves govern their own dynamics, which are similar to those

of the edge state, but cannot by themselves separate initial conditions which

grow and become turbulent from those which decay to the laminar state without

exhibiting turbulent behavior.

4.4 The Lx = 4π and Lz = 4π Domain

Ultimately, it is of interest to study the dynamics of the edge state as the

size of the flow domain and Reynolds number is varied. The motivation for this

analysis is to determine if the size and shape of the edge state is dependent on the

geometry of the flow domain. For example, if the width or the domain is doubled,

does the edge state gain a respective number of rolls or does it simply contain a

set of larger modes? This also raises the question of the energetic properties of
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Figure 4.8: Invariant states (red circle) embedded in the edge of chaos may have more than one
unstable direction.

the edge states, that is, at what domain size do edge states with uniform energy

cease to exist?

In this section, the width of the channel in §4.3 is doubled to identify the

edge states in a square domain. The edge of chaos analysis is performed for

[Lx, Ly, Lz] = [4π, 2, 4π] on a 64 × 33 × 64 computational grid.4 For this flow

domain, the edge tracking algorithm converges to a state with 6 streaks, which

is an additional pair of rolls than what is observed in a channel half the width.

Indeed, Newton algorithm converged to the state shown in Figure 4.9 which is

invariant under a τz,1/3 translation symmetry. The Arnoldi algorithm confirmed

that this state has only one unstable direction, therefore, it is the edge state for

4This domain size was also studied in [31]
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this flow domain. The energy of this 6–roll edge state is Eedge = 0.2134.

4.5 Multiple Edge States

Previous studies of the laminar–turbulent boundary in turbulent shear flows

have shown that the dynamics on the edge of chaos are dominated by a single

invariant structure which is embedded in the edge. It was shown in §4.3 that

the edge-tracking algorithm converges to two equilibria. However, upon closer

examination, only one of the two equilibrium points corresponds to the edge state.

The fact that the algorithm is capable to converge to more than one state raises

the question of whether or not the dynamics of the state space can support a

scenario where multiple edge states coexist. If so, do they connect and together

create a global boundary? Enclose the laminar or turbulent states? Or live in

completely different regions of state space and maintain their own dynamics?

Along these lines, an interesting observation from the results in §4.3-4.4 is

that the structure of the edge state goes from a 4–roll to a 6–roll solution as

Lz : 2π → 4π. Here, the goal is to determine when the 4–roll edge state ceases to

exist and the 6–roll edge state emerges. To determine how the edge states change

in topology, the edge states and their corresponding stability properties for this

range of domain sizes is calculated. A Newton algorithm will be used to follow

the edge state from §4.3 by systematically increasing the width of the domain.
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Figure 4.9: (Top) An arbitrary turbulent initial condition used to initiate the edge tracking
algorithm for the Lx = 4π and Lz = 4π flow domain. (Middle) The edge state obtained from
the Newton algorithm. (Bottom left) the approximate edge trajectory obtained from the edge
tracking algorithm after 5 refinements. (Right) the eigenvalue spectra for the converged state
shows that it is indeed the edge state.
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Figure 4.10: Eigenvalue analysis for Re = 400, Lx = 4π, and variable channel width Lz. (left)
The real part of the largest eigenvalues for the 4–roll (red squares) and the 6–roll (blue triangles)
edge states obtained from following the states using the Newton algorithm. (right) The real part
of the second largest eigenvalues determines when the state is no longer an edge state.

Similarly, the edge state from §4.4 will be followed down to a domain width of

Lz = 2π. An Arnoldi algorithm will track the number of unstable directions for

these states.5

Figure 4.10 shows the two largest eigenvalues of the edge states calculated for

different channel sizes. The real part of largest eigenvalues for the 4– and 6–roll

edge states are positive for this range of channel widths. On the other hand, the

real part of the second largest non–trivial eigenvalue changes in sign at different

values of the channel width. In particular, between the values Lz ∈ [2.625π, 3.75π]

the second largest eigenvalues of the two states is negative, which implies that the

4– and 6– roll solutions are edge states are the same time. To examine how the two

5Note that some edge states in this range of Lz and their respective stability properties were
calculated using the edge tracking algorithm as a validation of the results.
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edge states coexist in state space, the edge tracking algorithm will be implemented

for Re = 400 and a flow domain of [Lx, Ly, Lz] = [4π, 2, 3.5π], which corresponds

to a 64× 33× 56 computational grid.

At Lz = 3.5π, the edge tracking algorithm converges to one of two states.

The first is physically similar in structure to the invariant state for the Lx =

4π and Lz = 2π domain; see Figure 4.11. The edge state is invariant under a

τz,1/2 translation symmetry, which generates a Z2 symmetry, and the energy is

Eedge = 0.2534. The eigenvalue spectra for this edge state contains more complex

eigenvalues than the edge state in the Lx = 4π and Lz = 2π.

The second converged state from the edge tracking algorithm is one that re-

sembles that of §4.4. Figure 4.12 shows the initial and final states from the edge

tracking algorithm. Note that the initial conditions used to extract the 4– and

6–roll solutions from the edge tracking algorithm are different. A stability anal-

ysis of this state confirms that this 6–roll solution is indeed an edge state. The

energy of the state is Eedge = 0.2028 and it is invariant under a τz,1/3 translation

symmetry, which generates a Z3 symmetry.

The edge states for different values of the Reynolds number were calculated for

this flow domain using the Newton algorithm using the edge states in Figures 4.11

and 4.12 as initial guesses. For both edge states, the energy increases as the

Reynolds number decreases; see Figure 4.13. At approximately Re = 235, the
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Figure 4.11: The 4–roll edge state in the Lx = 4π and Lz = 3.5π domain. The converged edge
state is very similar in structure to the invariant state in the Lx = 4π and Lz = 2π domain, but
the energy traces and eigenvalue spectra differ considerably.
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Figure 4.12: The 6–roll edge state in the Lx = 4π and Lz = 3.5π domain. The converged edge
state is very similar in structure to the edge state in the Lx = 4π and Lz = 4π domain, but the
energy traces and eigenvalue spectra show different behaviors.
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Figure 4.13: Edge states for variable Reynolds number in the Lx = 4π and Lz = 3.5π domain.
The blue and red curves correspond to the edge state with 4–rolls and 6–rolls, respectively.

4–roll edge state undergoes a bifurcation and gains additional unstable directions.

A similar behavior is observed for the 6–roll edge state but for a lower Reynolds

number. The upper branches of these curves can be calculated in a similar manner.

4.5.1 Approximate Connections Between Edge States

The edge of chaos analysis was restricted to the invariant symmetry subspaces

where each edge state lives. As expected, the results showed that trajectories in

the invariant subspaces either decay to the laminar state or grow and tend towards

turbulence with the corresponding symmetry. Indeed, the symmetry subspaces

only contained one single edge state whose codimension–1 stable manifold forms
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Figure 4.14: An approximate edge trajectory which comes near the 4–roll edge state (blue box)
and converges to the 6–roll edge state (red box) after some time.

the edge of chaos.

However, the edge tracking algorithm analysis in the full space revealed some-

thing unexpected. The algorithm approximated trajectories that came near one

edge state and later converge to another. Figure 4.14 shows such a trajectory

which visits near the 4–roll edge state, then leaves and goes through a long ex-

cursion before converging to the 6–roll state. This behavior was not unique, and

in fact, was observed for multiple initializations of the edge tracking algorithm.

This suggests that there might be a single trajectory which connects the two edge

states.

To verify that the trajectory in Figure 4.14 does indeed visit near the neigh-
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borhood of the two edge states, a Newton search was performed for a sample of

velocity fields in the boxes shown in the figure. The results revealed that the tra-

jectories corresponding to the initial states do in fact converge to different fixed

points. Furthermore, the Arnoldi algorithm confirmed that these solutions are

indeed edge states.

Figure 4.15 shows another edge trajectory which was approximated by the

edge tracking algorithm. The behavior of the trajectory is different from that of

Figure 4.14, and in fact the time that it takes for this trajectory to go between

the two states is very short. The edge tracking algorithm is initialized with a

turbulent initial condition which is scaled down via a bisection method at t = 0.

Between t = 25 and t = 100 time units, the trajectory is in the neighborhood

of the 4–roll solution. The trajectory then makes its way down and comes near

the 6–roll solution and remains there during between the interval t = 170 and

t = 270. Recall that the energy of the 4– and 6–roll solutions for this flow

domain are Eedge,4 = 0.2534 and Eedge,6 = 0.2028. A Newton algorithm was

used to determine whether any of the initial states in the time frame do indeed

converge to invariant solutions. At t = 51, the Newton algorithm converged to

a 4–roll state and the eigenvalue spectrum confirmed that this is the edge state

from Figure 4.11. Similarly, at t = 226, the edge tracking algorithm converged to

the 6-roll edge state from Figure 4.12. This implies that the time that it takes
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Figure 4.15: (Left) An approximate edge trajectory which comes near both edge trajectories
before converging to the 6–roll edge state. (Right) The bold blue and red lines indicates the
path the approximated trajectory takes to enter and exit edge trajectories. (Left) Initial guesses
used in the Newton algorithm which resulted in convergence to edge states.

for this trajectory to travel from neighborhood of one state to a neighborhood of

the other is approximately T = 175 time units. Thus, since evidence shows that

approximate trajectories come near one state and end up converging to another

after some time, the dynamics of the state space can be sketched using Figure 4.16.

In this scenario, initial conditions in red and blue squares are in the full space. As

time evolves, they come near one of the edge states but get pulled away by the

unstable manifolds before converging to one of two edge states.

An alternative interpretation of these observations would involve a non–trivial

solution that would be in both of the symmetry invariant subspaces. For ex-

ample, trajectories can enter and exit the Z2 and Z3 symmetry subspaces via a

saddle which is invariant under a τz,1/6 translation symmetry, corresponding to a
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Figure 4.16: A sketch of the dynamics in state space where multiple edge states coexist. For Re =
400, Lx = 4π and Lz =∈ [2.625π, 3.75π], the 4–roll and 6–roll edge states exist in their respective
symmetry invariant subspaces. Trajectories starting in the Z2 (respectively Z3) subspace will
either decay to the laminar state or become turbulent. Initial conditions in the full space (red
and blue squares) may result in trajectories which come close to one edge state before converging
to the other.

Z6 symmetry subspace. This scenario was tested in two distinct ways: by pertur-

bation analysis and by spectral analysis. To determine whether the edge states

are connected in this way, perturbations of the form

up = ue + ǫuu (4.24)

were studied, where ue corresponds to the velocity field of the edge state, ǫ is

the strength of the perturbation, and uu is the velocity field corresponding to

the unstable eigenfunction. Figure 4.17 shows typical trajectories calculated for
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Figure 4.17: Energy traces of perturbations about the unstable manifolds of the edge states
for Re = 400, Lx = 4π, and Lz = 3.5π. For perturbation strengths of order 10−10 result
in trajectories which spend a long time near the edge before decaying to the laminar state or
becoming turbulent.

perturbations strengths of the order 10−10 where the blue and red dashed lines

respectively correspond to constant energy lines of the 4– and 6–roll edge states.

The trajectories initially follow the edge states and after some time, the separation

between the perturbations and edge state increases. The results show that trajec-

tories starting on one edge state do not simply connect to the second one, instead,

trajectories directly decay to the laminar state or become turbulent. This con-

firms that the unstable manifold cannot take trajectories outside of the symmetry

invariant subspace.

This can also be checked in a different way. The direct numerical simulation

generates a finite number of velocity fields between 4– and 6–roll edge states found

in Figure 4.15. Although, no a priori assumption is made about the symmetries
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in these velocity fields, there may be one which exists near the Z6 symmetry

invariant subspace. A spectral analysis was conducted for this set of velocity fields

by calculating their Fourier coefficients. If a velocity field is in the Z6 symmetry

invariant subspace, then the total energy of the modes obeying that symmetry

should equal to the total energy of all Fourier modes. The analysis found that

there are no velocity fields between the visits near the the two edge states which

are in the neighborhood of the Z6 symmetry invariant subspace.

Therefore, the perturbation and spectral analyses suggest that indeed, the first

interpretation of the behavior of the trajectory is valid. This implies that trajec-

tories which come near one edge state, then get pulled away and tend towards

the second edge state need initial conditions which are not in the invariant sym-

metry subspaces of the edge states but rather start in the full space. Moreover,

since the 4– and 6–roll states are symmetric in that a translation by 2 rolls maps

the state into itself, then the unstable manifolds of each edge state will remain

in their respective symmetry subspaces. This scenario will absolutely extinguish

any possible direct connections between the edge states. However, approximate

connection between these states are certainly plausible as was presented in this

section.
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4.6 Long Flow Domains

The edge states and coherent structures found in pipe flow are dynamically

non-trivial. The domain sizes considered thus far for plane Couette flow contain

edge states that are much simpler. However, the nature of the edge state may be

dependent on the size of the domain. In this analysis the edge of chaos will be

characterized for long channels at Re = 400 to determine if edge states can be

found in geometries which resemble long pipes and to find a correlation between

the physical characteristics of the edge state with the size of the domain.

The edge tracking algorithm was implemented for the Lx = 8π and Lz = 2π

flow domain which corresponds to a 128 × 33 × 32 computational grid. The

algorithm converged to a state with a single pair of rolls, which was confirmed with

a Newton algorithm; see Figure 4.18. The energy in the state is Eedge = 0.2431.

The length of the previous domain was doubled such that the edge of chaos can

be studied for a channel size of Lx = 16π and Lz = 2π. Unlike the small domains,

the edge tracking algorithm approximated trajectories with periodic behaviors;

see Figure 4.19. The algorithm tracked a trajectory which is not dynamically

simple. Nevertheless, the Newton method was able to converge to an equilibrium

point which was determined to only have one unstable direction. A symmetry

analysis showed that the edge state is invariant under a τx,1/2 operation. The

edge state itself looks a lot like the one found in the previous geometry, and in
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Figure 4.18: The 2–roll edge state in the Lx = 8π and Lz = 2π domain.
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fact, the energy of the state is Eedge = 0.2431 which is the same value found in

a channel half its length. The symmetry properties of this state could suggest

that if the edge state in the Lx = 8π were to be concatenated to itself to create

a longer channel, it may be same state that has been found for this geometry. If

it is so, then this would generate some exciting ideas about the existence of edge

states for long domains. In particular, it would be interesting to determine if the

geometry of the flow domain has any influence on the type of edge states that can

be found.

4.7 Discussion

The edge of chaos was characterized for various flow domains of plane Cou-

ette flow. The results from the analysis of the Lx = 4π, Lz = 2π domain con-

firmed that the edge tracking algorithm is indeed valid in finding approximate

edge trajectories. An iterated Newton–hookstep method was implemented to find

invariant solutions near the edge and an Arnoldi iteration was used to calculate

the stability properties of those states. The edge states for this flow have a single

unstable direction, thus, their codimension–1 stable manifolds form the boundary

that separate initial conditions which decay to the laminar state without exhibit-

ing turbulence from those which become turbulent in their flow domain. It was

found that the shape of the edge state is not linearly related to the size of the
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channel. The edge state in the Lx = 4π, Lz = 2π flow domain had 4 streaks while

the edge state in a domain double this width had 6 streaks. This behavior was

also observed for variable channel lengths, the edge state in a Lx = 8π, Lz = 2π

had only 2 streaks. A catalogue of the edge states found for this study can be

found in Appendix C.

For a specific range of channel widths, multiple edge states were observed. In

particular, for Re = 400, Lx = 4π, and Lz ∈ [2.625π, 3.75π], trajectories calcu-

lated by the edge tracking algorithm converged to either a 4–roll or 6–roll edge

state which are invariant under different translation symmetries. Approximate

edge trajectories which came near both edge states were also found. To explore

possible connections between the edge states, a perturbation analysis and spec-

tral analysis was performed. The results from this study revealed that there is

no direct connection between the edge states, and moreover, they exist in their

own symmetry invariant subspaces. Therefore, initial conditions which start in

the full space can have trajectories which visit near both states multiple times

before finally converging to one.
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Chapter 5

Conclusions

The transition to turbulence in shear flows is still not well understood. Al-

though great advances have been made in this area of research, a quantitatively

rigorous description of the transition from laminar to turbulent flow has not been

developed. Stability analysis reveals that for flows such as sinusoidal shear flow

and plane Couette flow, the laminar state is stable for all values of the Reynolds

number, yet turbulence is observed in these flows. Thus, transition to turbulence

in these flows is not triggered by linear instabilities of the laminar profile but rather

by a different mechanism. Triggering turbulence in these flows requires that ini-

tial perturbations and Reynolds numbers be higher than some critical value. It

has been suggested that an indication of these critical values can be obtained

by monitoring the emergence of exact coherent structures which can sustain the
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turbulent dynamics observed in these flows.

In an effort to further understand the transition to turbulence in shear flows,

the edge of chaos was characterized for a low–dimensional model for sinusoidal

shear flow and the direct numerical simulation of the Navier–Stokes equations

for plane Couette flow. The edge of chaos, is the boundary that separates state

space into two distinct regions such that trajectories on one side decay to the

laminar state without exhibiting turbulence and trajectories on the other grow

and become turbulent. Trajectories which neither decay or grow will move around

an intermediate region between laminar and turbulent behaviors. Furthermore,

trajectories near the edge of chaos will tend towards the edge state. Understanding

the dynamics on the edge of chaos may give key insight on the transition process.

The edge of chaos for a low–dimensional model for sinusoidal shear flow was

identified as the 8–dimensional stable manifold of an unstable periodic orbit. Ini-

tial conditions starting on one side of this boundary decayed directly to the stable

laminar state while initial conditions on the other side exhibited transiently chaotic

behavior. For a special range of Reynolds numbers, the dynamics of the system

included a nontrivial attractor which was associated as sustained turbulence and

captures the self–sustaining process identified by Waleffe.

For the related system of plane Couette flow, the edge of chaos for the full

Navier–Stokes equations was characterized for various flow domains. An iterated
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edge tracking algorithm based on a bisection method was implemented to find

invariant solutions in a region where perturbations are too strong to decay or too

weak to become turbulent. It was found that for most channel sizes, the edge state

is a dynamically trivial object. For a small range of channel widths, coexisting edge

states were found. Although the edge states exist in separate symmetry invariant

subspaces, trajectories which visited the neighborhood of each edge state were

found. A perturbative and spectral analysis determined that there are no direct

connections between these edge states.

5.1 Outlook

The edge of chaos has been characterized for several shear flows, and the

results obtained from these studies have shed light on a possible mechanism for

the transition from laminar to turbulent flow. The analysis of low–dimensional

models have greatly helped in understanding the dynamics in the neighborhood

of the edge. Recently, the edge of chaos was characterized for a two–dimensional

map whose dynamics resemble those found for other shear flows such as pipe flow

and plane Couette flow [60]. The advantage of working in smaller dimensions is

that it allows for a geometric description of the structure of the edge of chaos,

which is unfeasible for higher dimensional systems. Along these lines, it would be

of interest to study the edge of chaos for other turbulent shear flows. In particular,
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preliminary analysis of the 9–uncoupled–mode model of [53] shows that the edge

state in the minimal flow unit domain is dynamically non–trivial. The goal would

be to characterize the edge of chaos for various channel sizes and compare the

edge states obtained from this study to those found for the full system.

Ultimately, the goal is to extend this study to other flows such as boundary

layer flows and plane Poiseuille flow. In particular, the geometry of plane Poiseuille

flow resembles that of flows such as plane Couette and sinusoidal shear but the

laminar profile is parabolic, which is characteristic of pipe flow. Since so much

research has already been invested in pipe and plane Couette flow, it would be

nice to see how the edge states from plane Poiseuille flow measure up to the edge

states found in those flows. For this flow, turbulent dynamics have been observed

at low Reynolds numbers, where the laminar state is stable [27]. Starting out

with the minimal flow unit for this flow, the edge of chaos can be characterized for

various channel sizes and Reynolds numbers. Moreover, a study of the existence

of the edge state in relation to the stability of the laminar profile would be very

interesting since it would help enhance the current understanding of the transition

to turbulence for flows with primary instabilities in the flow.

The edge of chaos analysis can be extended to areas of research beyond the

transition problem. For example, edge states may be important components for

controlling turbulence. In particular, designing controllers to alter the behavior
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of trajectories near the edge state might be more efficient than trying to change

the behavior around other solutions such as the laminar state. Also, these tech-

niques can be applied to other systems besides fluid flows which have more than

one qualitatively distinct behaviors, such as large–scale interconnected systems,

biological systems, and other chaotic systems.
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Appendix A

Uniform Distribution of Initial

Conditions for an n–Dimensional

Sphere

The following procedure generates a set of uniformly distributed random sam-

ples on an n–dimensional sphere based on the method described in §3.4. As an

example, consider a nine–dimensional system where a set of uniformly distributed
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initial conditions is given by:

x1 = r cos(φ1),

x2 = r sin(φ1) cos(φ2),

...
...

x8 = r sin(φ1) sin(φ2) · · · sin(φ7) cos(φ8),

x9 = r sin(φ1) sin(φ2) · · · sin(φ8) sin(φ9). (A.1)

P (φ1, φ2, · · · , φ9) is the probability distribution function defined on the surface

of the nine–dimensional sphere which is constant with respect to a uniform dis-

tribution. The function can represented as a product of distributions such that

individual functions P (φj) can be readily calculated. For example, for n = 9

P (φ1) = c1 sin7(φ1)

⇒
∫ π

0

P (φ1)dφ1 = c1

∫ π

0

sin7(φ1) = 1

c1 =
35

32

⇒ P (φ1) =
35

32
sin7(φ1). (A.2)

Taking advantage of the transformation law of probabilities

|Pj(φj)dφj| = |Pu(ωj)dωj| (A.3)

123



where Pu(ωj) = 1 is the uniform distribution on [0, 1], a sample of these probability

distribution functions is given by

Pj(φj) =

∣

∣

∣

∣

dωj

dφj

∣

∣

∣

∣

. (A.4)

For example, for n = 5,

dω1

dφ1
=

3

4
sin3(φ1)

ω1(φ1) =

∫

dω1 =

∫

3

4
sin3(φ1)dφ1 (A.5)

=
3

4

[

−3

4
cos(φ1) +

1

12
cos(3φ1)

]

+ const.

Since ω1(0) = 0 and ω1(π) = 1, const. = 1
2
. Therefore

ω1(φ1) =
3

4

[

−3

4
cos(φ1) +

1

12
cos(3φ1)

]

+
1

2
. (A.6)

Inverting these samples numerically will give a corresponding value of φ1. A

similar procedure is performed to calculate the remaining φ’s, which may be used

to construct the set of initial conditions xj .
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Appendix B

Approximating Edge Trajectories

Using an Edge Tracking

Algorithm

The edge tracking algorithm for plane Couette flow finds approximate tra-

jectories that neither decay to the laminar state nor grow to become turbulent.

Figure B.1 shows a detailed flow chart of the edge tracking algorithm. Starting

with an arbitrary turbulent initial condition, the algorithm employs a bisection

method to find two trajectories on either side of the edge. By monitoring the en-

ergy of the perturbations, the algorithm automatically rescales initial conditions

in the laminar and turbulent regions such that their corresponding trajectories
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remain very close to one another and bracket the edge state. When the differ-

ence between the trajectories reaches some threshold, the edge tracking algorithm

choses a new pair of initial conditions between the turbulent trajectory and the

laminar state. Successive iterations of the edge tracking algorithm can piece to-

gether an approximate trajectory near the edge of chaos.
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Figure B.1: Edge tracking algorithm flowchart.
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Appendix C

A Summary of States found in

Plane Couette Flow

The following table shows a summary of the edge states found in plane Couette

flow for Re = 400. All of the edge states in the given domain have been classified

as equilibria. All solutions have a shift–rotate symmetry σx,z along with the

symmetry indicated in the table. The first panel corresponds to the midplane

velocity field of the edge states where the vectors and colors respectively represent

the velocities in and perpendicular to the plane.
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Flow Domain Comp. Grid Energy
Symmetry

(Lx, Ly, Lz) (Nx ×Ny ×Nz) (L2–norm)

0 6.283
0

12.566

(4π, 2, 2π) 64× 33× 32 0.1956 τz,1/2

0 10.995
0

12.566

(4π, 2, 3.5π) 64× 33× 56 0.2534 τz,1/2

0 10.995
0

12.566

(4π, 2, 3.5π) 64× 33× 56 0.2028 τz,1/3

0 12.566
0

12.566

(4π, 2, 4π) 64× 33× 64 0.2134 τz,1/3

0 6.283
0

25.132

(8π, 2, 2π) 128× 33× 32 0.2431 –

0 6.283
0

50.265

(16π, 2, 2π) 256× 33× 32 0.2431 τx,1/2

Table C.1: Classification of edge states in plane Couette flow
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