
UNIVERSITY OF CALIFORNIA
Santa Barbara

Information Propagation on Social Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

by

Michael J. Busch Jr.

Committee in Charge:

Professor Jeff Moehlis, Chair

Professor Francesco Bullo

Professor Igor Mezić
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Abstract

Information Propagation on Social Networks

Michael J. Busch Jr.

Many models of disease and rumor spreading phenomena average the behavior of

individuals in a population in order to obtain a coarse description of expected system

behavior. For these types of models, we determine how close the coarse population-level

approximation is to its corresponding agent-based system and discuss the accuracy of

the population-level approximation. We apply these theoretical results to real social

network data to see how well they describe the contagious nature of social phenomena.

Specifically, we consider hashtag adoption data collected from the Twitter social net-

work. To assimilate the Twitter data to a simple contagion model, we developed and

implemented statistical learning methods to construct an adaptive state estimator for

systems described by nonlinear stochastic differential equations.

We found that the static network structure alone is not sufficient for explaining hash-

tag adoption among users in the Twitter social network, and our result suggest that a

user-centric model would be more appropriate for this task. We propose a model for in-

dividual social media users, termed a genotype, which is a per-topic summary of a user’s

interest, activity and susceptibility to adopt new information. We show that the geno-

type framework is capable of accurately quantifying the adoption behavior of individual

users with respect to hashtag topics.
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Chapter 1

Introduction

We often speak about the latest YouTube video or cat meme as going viral, but it

is often overlooked how similar the sharing of social content, whether in real life or on

the internet, is to the sharing of an infectious disease among individuals in a population.

For both infectious diseases and social phenomena, each individual is a host who, in

general, carries a parcel of information and passes it on to others. Although the parcels

of information and transmission mechanisms may be different, transmission events in

both cases are constrained to occur only between those people who come in contact with

those who are infected/informed.

Fortunately with the recent emergence of massive on-line social networks, such as

Facebook and Twitter, there exist not only social platforms for information to be shared

across the globe, but also a well defined network structure on which this social information

spreads. Therefore, this manuscript will investigate the significance of the social network

structure on the sharing of social information in a population, and uses real data from

1



Chapter 1. Introduction

the Twitter social network to evaluate the efficacy of agent-based network models in

predicting the adoption of hashtags among the Twitter population.

Contagion models from epidemiology are introduced in Chapter 2 and applied to

agent-based contact networks. These contact networks can be studied using the tools

from the field of algebraic graph theory, and population-level comparisons can be made

with prior results in the literature, which rely on statistical mechanics. The main results

of Chapter 2 include a discussion of the specific case when the network results and the

statistical mechanics results are in exact agreement, and show how deviations from the

statistical mechanics results are attributed to the network structure.

The Twitter social network and real Twitter data are introduced in Chapter 3. For

simplicity we will focus our attention on population-wide user adoption behavior of hash-

tags, which are user generated tokens that begin with the # symbol. Since the Twitter so-

cial network is so large and contains only a subset of each individual’s full social network,

we also introduce the notion of backbone network structures in order to accommodate

these shortcomings of the available Twitter network structure.

In Chapter 4 and Chapter 5, we study the ability of the fine-grained network models

of Chapter 2 to explain the observed population-level hashtag adoption behavior in the

Twitter network. Specifically, in Chapter 4 we develop a method for estimating ensemble

statistics of a stochastic model from a single realization of time-series data. This method

is applied to the Twitter hashtag data in Chapter 5, and comparisons are made between

the Twitter data and the network models. The results of Chapter 5 point to some of

2



Chapter 1. Introduction

the shortcomings of the agent-based network models, and motivates the need for a more

descriptive social network user model.

A genetically inspired user model, called a social genotype is introduced and described

in Chapter 6 as a more descriptive social network user model. We demonstrate how this

genotype can be constructed, and show how it is invariant for each user. We show that

when used in conjunction with the Twitter backbone structures of Chapter 3, the Twitter

genotype of each user can accurately predict hashtag adoption at the topic-level.

Prior Publications

Much of the work contained in this manuscript is also contained in our earlier peer-

reviewed publications. Specifically, the content of Chapter 2 also appears in [2], while

the content of Chapter 3 and Chapter 6 also appears in [3] and [4]. Chapter 4 contains

material from [5], and the content of Chapter 5 is original to this manuscript. We have

obtained written copyright permission from the original publishers, and we have repro-

duced all figures and text in accordance with policy of both the University of California

and the original publishers.
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Chapter 2

Population and Network Models

Many different phenomena can generally be described as the exchange of information

between members of a population, such as the spread of rumors [6–9], ideas [10], computer

worms and viruses over the internet [11, 12], and most notably the spread of infectious

diseases [13–25]. These types of phenomena can be modelled at the population level, the

agent level, or somewhere in between. Moreover, the popular work on small-world [1] and

scale-free [26] networks have uncovered important structural details of typical populations

in these systems. Recent discoveries in the discipline of network science have motivated

a second look at how structural details of the population network influence the rate and

depth at which information spreads, and how agent-level interactions affect population-

level interactions [18–25]. Here, we continue along these lines and draw attention to novel

ways of quantitatively analyzing how network structure affects the spread of information

through a population.

Early descriptions of disease and rumor propagation approximate population level be-

havior by low dimensional ordinary differential equations (ODEs) [6,13–15,17]. However,

4



Chapter 2. Population and Network Models

it is difficult to include the network topology of the propagation medium in these low

dimensional models. A related issue is how local variations in behavior and connectivity

should be averaged, which is known as the problem of heterogeneity [17,21,27]. The low

dimensional models implicitly assume that every node in the network is connected to

every other node in the network equally [28]. Initial attempts at addressing this problem

include proportional mixing techniques, which focused on subdividing the population into

smaller homogeneous populations [16]. Recently, the inclusion of network topology has

been addressed using heterogeneous mean-field approaches that coarse-grain the set of

nodes into various degree classes that have similar dynamical properties [18,22–24,29,30].

These methods rely on statistical properties of the network rather than the global struc-

ture of the network as a whole, and become computationally costly as the system detail

is refined to the agent level.

In this chapter we shall analyze the spread of information between individuals for

simple contagion scenarios [31], and develop an agent-based propagation model that

is similar to the probabilistic discrete-time Markov chain studied in [32]. This agent-

based theoretical framework scales to subpopulations of any size [13] and has been shown

to generalize heterogeneous mean field approaches [32], where the subpopulations are

typically groups of nodes that have the same out-degree. The advantage to using an

agent-based theoretical framework is that it begins with the exact structure of the network

and determines the dynamics rather than incorporating the detailed network properties

into an already formulated coarse dynamic model, thus allowing one to accurately probe

5



Chapter 2. Population and Network Models

network effects at any scale. Hence, we seek to show that our agent-based contact model

is consistent with the well-known low dimensional mean-field logistic model, and discuss

the implications of using a low dimensional logistic model in place of the agent-based

contact model. Because it is popularly taken for granted that low dimensional models

are not accurate representations of agent-based systems [33], our approach will attempt

to rigorously quantify the differences between the two representations and uncover the

network topologies where the low dimensional and agent-based models may possibly

agree.

Our findings rely on the implementation of algebraic graph theory, which has been

extensively applied to the analysis of static network structure [34], particularly since

adjacency matrices uniquely define a graph [34] and are computationally efficient math-

ematical structures [35]. From our agent-based approach to the study of information

propagation, we argue that new physical insight is gained by applying the tools of alge-

braic graph theory to the study of the dynamics on a network. Not only will adjacency

matrices allow us to rigorously attribute the size of fluctuations about the population-

level solutions to finite size effects, but they will simultaneously tell us what network

structures are necessary for our assumptions to hold. Furthermore, since the the mean-

field population model implicitly asserts a particular graph structure, i.e. a completely

connected graph, we will conclude our discussion by exploring how one can use a mean-

field solution for an agent-based system, which may have an arbitrary graph structure, to

assert parameter values of a corresponding coarse population model. We propose a novel

6
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way in which one can use these inferred parameter values as simple metrics for comparing

the graph-dependent propagation dynamics for a set of initially informed nodes.

To communicate these ideas, this chapter is organized as follows: in Section 2.1, a

coarse-grain model based on the scalar logistic equation is introduced. We present the

agent-based contact model in Section 2.2; this describes the probability of interaction

between nodes on the graph in terms of the exact network topology. Section 2.3 describes

how the models developed in Sections 2.1 and 2.2 intersect, which leads to a general result

for doubly stochastic networks and networks with interaction symmetry that is presented

in Section 2.4. The logistic behavior of example heterogeneous networks is discussed in

Section 2.5, and a summary of our findings is given in Section 2.6.

2.1 Logistic Population Model

For a given population of N agents, suppose each agent can only be a member of

one of two sets: the set of S-class individuals (susceptibles) or the set of I-class indi-

viduals (informeds). Agents can only go from being susceptible to being informed, and

once informed remain informed for all future time. If one were to only consider the

transfer events of information propagation, then the SI model is arguably the simplest

population-level model that corresponds with information communication mechanisms

between members. Including more complicated behavior by allowing members to leave

the I-class set, by either reentering the S-class or entering an R-class sub-population (re-

moved/forget), is unnecessary because these are behaviors that do not typically depend

7
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on network structure; it is not necessarily true that one’s neighbors’ forgetfulness or re-

covery will directly cause one to also forget or recover. For these reasons, we will simplify

our discussion by only considering SI dynamics.

The classic SI model [13, 15, 17] is expected to only be accurate for systems that

exhibit well-mixed behavior because it assumes that (i) the population size is fixed, and

(ii) the members within a set are indistinguishable from every other member in that set.

In discrete time, the rate of infection is proportional to the number of susceptibles and

informeds at the previous time step, as well as a transmission rate β, which we shall

generally treat as a time varying expression, βt [36]. By letting It be the proportion of

informed individuals in a population, the SI dynamics are described by the discrete scalar

difference equation:

It+h = It + hβtIt (1− It) , (2.1)

and the logistic function that solves this equation.

This model has the additional assumption that (iii) the time step h is small enough

such that only one informed agent contacts all of his neighbors during that time step.

As noted in [13], solutions to (2.1) are bounded on the unit interval for each initial value

on the unit interval only if the coefficient of the It (1− It) term, say α(t), is positive and

satisfies the condition

sup
t
α(t) ≤ 1. (2.2)

For (2.1), α(t) = hβt, and this implies that the step size of (2.1) must satisfy h ≤

1/ supt βt.

8
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2.2 Agent-Based Model

As an alternative, let us now consider a system of discrete agents that are able to

share information with each other. The communication pathways between agents can

be mapped as a graph G (V,E) of N total agents [28, 37], where each uniquely indexed

node i ∈ {1, . . . , N} ⊂ V of the graph represents a distinct agent, and a directed edge

(i, j) ∈ E connecting two nodes i and j indicates that it is possible for agent i to transmit

information to agent j. For example, in epidemiology an agent is a unique person and a

parcel of information may be an infectious disease [38], and in the blogosphere an agent

is a unique web user while a parcel of information may be a specific rumor about a

politician or celebrity [39].

We are interested in the probability that agent i is in possession of a specific parcel

of information at discrete time t, which we denote p
(i)
t . Furthermore, agent i is assumed

to communicate with a neighbor, say agent j with j 6= i, in such a way that there is a

nonzero probability aij that agent j successfully communicates a parcel of information to

agent i in a time period of h. In general, each aij is a time-varying expression since the

graph topology of a given social network is subject to change over long enough periods

of time. To keep our discussion simple, we adopt the common assumption that the

information of interest spreads through the network faster than significant changes to

the network are able to emerge.

Motivated by the mechanism of social media platforms such as Twitter and the Face-

book newsfeed, the magnitude of each aij for a given i is the probability that, in one

9
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time step, agent i will be contacted by one of his neighbors j. In this sense, the informed

agents broadcast the information to their neighbors. Thus, aij is said to be an element

of the weighted adjacency matrix A that uniquely defines the structure of the graph

G [37], and each aij ∈
{

[0, 1] : ∀ i ∈ {1, . . . , N} ,
∑N

j=1 aij = 1
}

. Any matrix that has

this property is said to be row stochastic.

Recent evidence suggests the probability that an information transfer event occurs is

also dependent on the nature of the information itself [39]. For instance, two agents of a

network may be in communication, but not necessarily sharing the type of information

that one would like to be tracking. Thus, the average probability that the desired infor-

mation is being transmitted during a given period of time h is given by hβt, where βt is

similar to the transmission rate defined for scalar logistic models. We remark that the

step size requirement (2.2) ensures the term hβt abides the probability axiom hβt ∈ [0, 1].

It shall be assumed that once an individual is informed (infected), he does not forget

(recover) or become silent (removed). Instead, we attribute any time varying effects of the

propagation dynamics to the nature of the information itself through the βt expression.

Given these conditions, the total probability of an arbitrary agent i becoming informed

at a given time step t+ h, denoted by p
(i)
t+h, is

p
(i)
t+h = p

(i)
t +

(
1− p(i)t

)( N∑
j=1

hβtaijp
(j)
t

)
. (2.3)

Hence, an agent is informed at time t + h if he is already informed by time t, or the

agent is not informed by time t and an informed neighbor successfully transmits the

information. The fact that the probability at the next time step only depends on the

10
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probability at the current time step indicates that the system of equations expressed by

(2.3) has the Markov property, and is referred to as a Markov chain [40]. We remark that

the diagonal elements aii of the weighted adjacency matrix are necessarily equal to zero.

If this were not the case, then a contradiction would occur because then an uninformed

agent would be able to spontaneously inform himself. In matrix notation, (2.3) becomes

pt+h = pt + hβt (I − diag {pt})Apt, (2.4)

where pt is a column vector whose indices correspond with the agent indices.

Epidemic models of this form have been shown by Monte Carlo simulation to general-

ize both contact processes and reactive processes [32]. A contact process is a dynamical

process where each informed agent stochastically informs just one of his neighbors per

time step, while a reactive process is a dynamical process where at least one informed

agent stochastically informs all of his neighbors per time step. Hence, by construction,

we consider the dynamics of a reactive process.

Since we consider the dynamics of a reactive process, we constrain each S-class indi-

vidual to only interact with one of his neighbors at a time. This assumption is consistent

with the mechanics of simple contagions, and applies to situations where information is

broadcast, say a radio signal for example, and each susceptible individual can only “lis-

ten” to one broadcasting source at a time so that the communication events are mutually

exclusive. In contrast to equation (2) of [32], where elements of the weighted adjacency

matrix describe the probability of where a random walker on the network will go next,

11
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the elements of the weighted adjacency matrix in our system describe the probability

of where the random walker has come from. When comparing these two closely related

frameworks, equation (2.3) of this chapter can be recovered from equation (1) of [32] by

first swapping the index of the product, and then applying De Morgan’s law to obtain a

series representation.

2.3 Completely Connected Solution

Having introduced both a population-level model and an agent-based model inde-

pendently, one can rigorously construct the population-level dynamics directly from the

agent-level dynamics by asserting the “well-mixed” assumption that is implicit in the

population-level dynamics [28] presented in Section 2.1. In terms of graph topology,

we argue that well-mixedness of a population corresponds to a completely connected

graph. A graph is said to be completely connected if every node on the graph shares

an undirected edge with every other node on the graph [37], and a network of agents

on a completely connected graph is often considered to be “well-mixed” if every agent

communicates with every other agent equally [28]. A graph of this type is described as

being “homogeneous” because the local graph topology for each node is indistinguishable

from that of every other node. For a network of N agents, this implies that elements

of the weighted adjacency matrix for a completely connected graph have the following

12
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values

aij =


1

N−1 , i 6= j

0, i = j

.

We remark that a model in this framework, as stated, relies on the assumption that (i)

the population does not change, and (ii) the edge weights do not change. The regularity

of the adjacency matrix for the well-mixed case allows one to also find upper and lower

bounding functions to the solution of (2.4). Since the solution to (2.3) is positive and

monotonically increasing element-wise [13], taking the one norm is identical to summing

over all of the elements:

|pt+h|1 =
N∑
i=1

(
p
(i)
t + hβt

(
1− p(i)t

)(∑
j 6=i

1

N − 1
p
(j)
t

))

= |pt|1 + hβt |pt|1
(

1− |pt|1
N − 1

)
+

hβt
N − 1

|pt|22 . (2.5)

We note that the maximum possible informed population - also known as carrying ca-

pacity [14] - of the model (2.5) is N , rather than N − 1 as the resemblance of (2.5) to

the discrete logistic equation might falsely suggest.

It is now possible to compare the graph based solution of equation (2.4) to that

of the traditional Susceptible-Infected (SI) model for systems containing an arbitrary

number of agents. If the cardinality of the susceptible and infected populations are

random variables, then experimental evidence suggests that the scalar variables of the

low dimensional models represent the expected values for the sizes of those sets [13].
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For comparison, equation (2.5) can be normalized with respect to the total population

to obtain

xt+h = xt + hβtxt

(
1− N

N − 1
xt

)
+

hβt
N (N − 1)

|pt|22 , (2.6)

where xt = |pt|1 /N has the usual interpretation of being the expected probability that

an arbitrarily sampled agent is informed. Under this interpretation, one can think of

(2.6) as a mean-field description of the population. Another interpretation of xt is that

it represents the proportion of informed individuals in a population.

In the thermodynamic limit where the size of the system, N , approaches infinity, one

finds that

xt+h = xt + hβtxt (1− xt) . (2.7)

Hence, the dynamics of the SI model and the graph-based model are equivalent in the

thermodynamic limit. Given a population of size N , the solutions to the difference

equations (2.1) and (2.7) are equal when the initial concentration of (2.7) is taken to

be the proportion of initially informed individuals of (2.1). For finite homogeneous

populations, however, the solutions are closely bounded by the solutions to

xt+h = xt + hβt
N

N − 1
xt (1− xt) , and xt+h = xt + hβtxt

(
1− N

N − 1
xt

)
,

when the following step-size condition is met:

h ≤ N − 1

N + 1

1

supt βt
.

A proof of this claim is presented in the appendix A. Furthermore, when this step size

condition is met, solutions to the discrete logistic equation of a given initial point are
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bounded above by solutions with greater initial values and bounded below by solutions of

lesser initial values. Existence and uniqueness guarantee this feature for the continuous

model, but when comparing solutions to the discrete model, this is an important feature

for solutions to have because it allows one to know for certain that one solution dominates

another.

2.4 Logistic Approximation of Dynamics on Connected

Graphs

Ultimately, for a mean-field representation, one would like to find a simple scalar

equation that is a close approximation to (2.4), and determine what structural conditions

must exist to allow such a scalar reduction. By approaching this question from the point

of view of algebraic graph theory, we find that, for connected graphs, if A is either a

doubly stochastic or a symmetric adjacency matrix, then the largest singular value can

be used to find the closest rank-1 approximation to the original matrix in 2-norm, ‖·‖2.

Thus, by identifying the singular values of A, one can reduce the dimensionality of the

system to a simple scalar approximation to (2.4). In general, graph topologies that

permit doubly stochastic adjacency matrices are known to be contained in the family of

strongly connected graphs, and we refer the reader to [41] for a more detailed technical

discussion of this topic. The study of doubly stochastic systems is relevant for engineered

systems, where the graph topology is constructed to have this doubly stochastic property.
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The coordinated control of multi-agent systems [42] and the application of distributed

consensus algorithms [43], for example, are often constructed with doubly stochastic

communication topologies. Understanding the dynamics of robust information sharing

amongst multi-agent systems is presently an ongoing area of research.

Though there exist matrices that are both doubly stochastic and symmetric, it is

possible for a matrix to be doubly stochastic without being symmetric, or symmetric

without being doubly stochastic. The latter case is more likely to occur naturally, but

requires a relaxation of the row stochastic condition. Therefore, we will present the

results for doubly stochastic matrices, followed by the results for symmetric matrices.

We remark that the ability to utilize the matrix description of the network is critical for

performing the scalar reduction in both cases, and we shall first review some important

results from linear algebra that will be of use.

Suppose a given matrix A is symmetric, that is A = AT . For A ∈ RN×N and A = AT ,

it is known that there exists an orthogonal matrix W ∈ RN×N that diagonalizes A [44]:

A = WDW T , with D = diag {λ1, . . . , λN} , (2.8)

where λi ∈ R is the ith eigenvalue of A such that |λi| ≥ |λi+1|. Moreover, since the

singular values of A are the positive square roots of the eigenvalues of ATA, the result

(2.8) and the following imply that each singular value of A is the absolute value of an

eigenvalue of A:

ATA = A2 = WD2W T , such that D2 = diag
{
σ2
1, . . . , σ

2
n

}
16
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where σi is the ith largest singular value of A [44].

Because of the close relationship between the eigenvalues and the singular values of

real symmetric matrices, the problem of identifying the largest singular value is equiv-

alent to the identification of the spectral radius, ρ(A). One can appeal to the Perron-

Frobenius theorem for row stochastic matrices to determine ρ(A) = 1 [37]. Denoting an

N -dimensional vector of ones by 1N , the row stochasticity of A implies that A1N = 1N

is an eigenvector of A with eigenvalue 1. The normalized eigenvector 1N/
√
N is then the

first column, w1, of W in (2.8). Thus,

σ1 = λ1 = 1, and w1 =
1√
N

1N . (2.9)

With the largest singular value and corresponding eigenvector identified, one is able to

determine the closest rank-1 approximation in matrix 2-norm to an arbitrary adjacency

matrix that is both doubly stochastic and symmetric. To see this, suppose A = AT ∈

RN×N and W is an orthogonal matrix that diagonalizes A as in (2.8). Then A can

equivalently be represented as the series

A =
n∑
i=1

λiwiw
T
i , (2.10)

where λi is the ith eigenvalue value of A and wi is the ith column of W . Furthermore, the

closest rank-k approximation to A in matrix 2-norm is X =
∑k

i=1 λiwiw
T
i , for 0 ≤ k ≤

rank (A). By recalling that the singular values of a symmetric matrix are the absolute

value of its eigenvalues, a more general proof of this statement is provided in [45], with
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the symmetry requirement relaxed and replacement of the Frobenius norm by the matrix

2-norm.

Using these properties of symmetric doubly stochastic matrices, one can rigorously

define how well the scalar logistic model approximates the graph-based model, as proved

in the appendix B. We now are able to define how well the scalar logistic model approx-

imates the graph-based model for a doubly stochastic connected network topology from

the following statement. Given a system of equations of the form (2.4) and defined on

a doubly stochastic connected network with a reachable population of n members, the

solution to the scalar logistic equation
xt+h = xt + hβtxt (1− xt)

x0 =
|p0|1
N

(2.11)

approximates the average value of the elements of pt to an accuracy of order hσ2.

When comparing this result to the direct solution of the completely connected case

(2.5), it comes as no coincidence that the second largest singular value for the completely

connected adjacency matrix is (N − 1)−1. To display this fact, equation (2.6) can be

written in the form

xt+h = xt + hβtxt (1− xt) +
hβt
N − 1

(
|pt|22
N
− x2t

)
.

We emphasize that the important feature of the network topology that produces this

result is that the weighted adjacency matrix is doubly stochastic.

The error terms in these equations define a bound on the magnitude of fluctuations

of mean-field solutions about the logistic solution at each step. The dependence of the
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error term on the structure of the adjacency matrix alludes to the notion of structural

convergence where the error converges to zero as the doubly stochastic or symmetric

graph essentially becomes more completely connected in the sense of its matrix 2-norm.

As a practical example, take an undirected cyclic graph of N nodes, where each node has

k neighbors and each edge has a weight of 1/k. The adjacency matrix of this system is

both doubly stochastic and circulant, and its second largest eigenvalue is given by [46]:

λ2 =
N−1∑
m=0

cme
−i2πm/N . (2.12)

Because the exponential terms of (2.12) are symmetric about the real axis, the sum

of imaginary terms is zero and the sum of real terms can be found by doubling the sum

of the real terms over the interval [0, π]. Since cm = 0 where edges do not exist and

cm = 1/k where they do, one looks at the sum of the real terms to obtain the lower

bound:

cos

(
π
k

N

)
≤ λ2. (2.13)

It is obvious that for fixed N , each edge added to the system by increasing k will make

the system more completely connected. As this system grows, however, the lower bound

λ2 shows that the mean-field solutions will certainly not converge to the logistic solutions

if the degree of each node does not increase at the same rate as the population.

Though one might perceive the double stochasticity requirement to be rather strict,

requiring interaction symmetry between agents is quite realistic. For information spread-

ing phenomena that involve direct one-on-one contact between members of a population,

say during the spread of diseases or computer viruses, the amount of time two members
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spend in an interaction is symmetric. When this amount of time is scaled by the to-

tal amount of time per period of interest, then one can conceivably obtain a symmetric

non-negative weighted adjacency matrix whose row sums are between zero and one. In

this case, the error term is defined by the largest singular value of the difference between

the given adjacency matrix and the lowest rank approximation (rank(A) = 1) of a row

stochastic matrix, denoted R1, and whose elements are all N−1. Similar to the procedure

used to obtain (2.11) from (2.4), one begins with

pt+h = pt + hβt (I− diag{pt}) (A+R1 −R1) pt (2.14)

to obtain

xt+h = xt + hβtxt (1− xt) +O (h ‖A−R1‖2) . (2.15)

For example, let us consider chain of linked nodes arranged in a line such that each

node has only two neighbors except for the nodes on the ends who each have just one

neighbor. The adjacency matrix of this system will only have have nonzero elements on its

upper diagonal, lower diagonal, or both. If symmetric interactions occur on this network,

then one can apply (2.15) to this system. In this case, suppose each and every interaction

takes place for the same proportion of a given time step, say h/2 so that each element

along the upper and lower diagonal is 1/2 and each row sum lies on the unit interval. As

defined in [46], the structures of A and (A−R1) are both banded Toeplitz matrices, which

are a class of matrices that asymptotically converge to their circulant analogs. Here, the

20



Chapter 2. Population and Network Models

linear chain of linked nodes yields a circulant system, say AC , by connecting the two

ends of the chain. Hence, one can generally argue that for large chains of linked nodes,

the results of (2.12) and (2.13) indicate that the mean-field solution for this system does

not converge to a logistic solution in the thermodynamic limit. For even small linked

chains of agents, such as N = 10, one finds that AC is a sufficient approximation of A for

logistic dynamics since ‖A−R1‖2 − ‖AC −R1‖2 ≤ 1.5× 10−3, and ‖A−R1‖2 = 0.9995

indicates that the mean-field behavior of the linear chain is not expected to be logistic.

2.5 Mean-Field Behavior of Heterogeneous Networks

Thus far we have discussed the accuracy of logistic mean-field solutions as approxi-

mations to actual solutions of information propagation on the network. Conversely, an

important question to address is how well the logistic solution approximates mean-field

behavior for arbitrary heterogeneous networks that perhaps do not have doubly stochas-

tic or symmetric edge weights, or whose structure is not defined algebraically. How can

one analyze the influence of a network’s structural properties on the dynamics that occur

on the network? One approach to answering this question involves comparing the pa-

rameters that describe the graph structure to the parameters that describe the dynamics

on the the graph. For the parameters used to describe the SI type dynamics, one can

choose the transmission rate and the initial value of a scalar logistic approximation to

the ensemble average of mean-field solutions.
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Since a discrete logistic solution of (2.1) is determined by the transmission rate βt and

an initial condition that depends on population size, one should be able to deduce a βt and

initial value for a given time series that resembles a discrete logistic solution. Once these

are known, one can infer a corresponding homogeneous network whose mean population

behavior produces an almost identical logistic solution. Therefore, if the mean behavior

of a heterogeneous network is known, then one can describe similar system dynamics

in terms of a homogeneous network by fitting a discrete logistic solution to the mean

heterogeneous solution. Here, the error of the approximation is defined as the 2-norm of

the difference between the heterogeneous solution data points and points of the discrete

logistic approximation for the first 100 time steps.

The mean behavior of a realization where only one agent is informed depends on

the size of the reachable set for that initially informed agent. In general, the reachable

set is the union of the reachable sets of all initially informed individuals. Thus, when

comparing the mean behavior for different initially informed node sets, one should be

sure that their reachable sets are of the same size. It is often useful to identify a set

of strongly connected nodes since each node contained in a strongly connected set must

necessarily have the same reachable set of nodes [37]. To keep comparisons simple, one

can compute the mean population behavior with respect to time when only one node is

initially informed, and repeat this computation for each node in the strongly connected

set. We explore this idea for a graph topology defined by a naturally occurring scale-free
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graph, a family of Watts-Strogatz graphs, and a family of linked sub-graphs where each

sub-graph is itself a Watts-Strogatz graph.

2.5.1 Scale-free graph example

Here, we begin with a graph topology defined by a network of Wikipedia administrator

voters [47], an example of a naturally occurring directed social network with uncorrelated

degree distributions. The in-degree distribution is approximately power law distributed

prob(k) = 0.293 ∗ k−1.357, and the sample correlation coefficient between in-degree and

out-degree is γ = 0.387. Here, the sample correlation coefficient γ between two finite

data sets, say x and y, is calculated according to [48]:

γ =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2
, (2.16)

where x̄ and ȳ represent the mean values of the x and y data sets, respectively.

In the context of information propagation, suppose agents i and j are neighbors. If

i votes for j, then this indicates a directed relationship where we know i at least pays

attention to j. In this sense, information is understood to flow from j to i and indicates

the presence of a directed edge (j, i). For this study we compared the realizations for each

node in the largest set {VSC} defined as the set of strongly connected nodes that contains

the node of greatest out-degree. The set {VSC} contains 1300 nodes and a reachable set

of 5158 nodes.

Denoting ki as the number of edges directed towards agent i, each node is assumed

to follow his in-neighbors equally such that each edge directed towards agent i has the
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value 1/ki, which shall be referred to as the unbiased weighting scheme. Using the

unbiased weighting scheme allows our study to focus on network structure by controlling

for edge weight. The dynamics were simulated according to (2.4) for the Wikipedia voting

adjacency matrix, and the results are shown in Figures 2.1 and 2.2. The realizations were

generated using β = 1, to control for transmission rate, and the average probability of

being informed was calculated over the entire reachable set at each time step for 100

steps with h = 0.99. For each node in {VSC}, a realization was computed where the

given node has an initial probability of 1 and all other nodes have initial probabilities of

0.

(a) (b)

Figure 2.1: For each node contained in {VSC}, data was simulated according to (2.4),
where each given node is the only one initially informed. A discrete logistic solution
was then fit to each initial node’s mean-field solution. (a) and (b) depict the optimal
parameter values that minimize the 2-norm difference between the original mean-field
solution and the approximate logistic solution for each initial node, and plotted with
respect to the initial node’s out-degree (k). The logistic approximations have a mean 2-
norm difference of 0.0326 with a 0.0024 standard deviation, and range of [0.0277, 0.0413].
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Figure 2.2: Logistic approximation of the ensemble over all realizations for the set {VSC}.
The approximation has βH = 0.4801, NH = 340, and a 2-norm error of 0.0624.

Since the transmission rate used to generate each realization was a constant value, we

took it as an assumption that the best fit scalar logistic approximation is generated by an

unknown constant transmission rate, β. Given the mean behavior of each heterogeneous

realization, we first identified the best fit transmission rate (βH) using a least squares

method because β is linear with respect to the dynamics at each time step. We then

identified the optimal initial condition using an iterative process. By assuming also

that only one individual is initially informed, one can deduce an effective homogeneous

population size (NH) from the initial value of the logistic fit since the initial value is the

inverse of the homogeneous population size in this case.

The closest approximate logistic dynamics are depicted in Figure 2.1 in terms of the

βH and NH parameter values for the set {VSC}. The mean-field solutions have βH values

that appear to be rather consistent regardless of the initial node’s out-degree, as shown in

Figure 2.1a, while Figure 2.1b suggests that the values of NH depend logarithmically on

initial node out-degree. Figure 2.2 shows how well a discrete logistic solution describes the
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ensemble average of population mean-field solutions for the set {VSC}. The best fit logistic

approximations have 2-norm errors that lie outside the range of 2-norm errors for their

individual mean-field solutions, (i.e. 0.0624 /∈ [0.0277, 0.0413]). Hence, each individual

mean-field solution is closer to having discrete logistic behavior than the expected average

behavior of the whole system.

By approximating mean-field solutions on an arbitrary network by that of a homoge-

neous network, one can interpret the homogeneous network size NH as being a descriptor

of the ease with which information can spread through the network. This argument is

particularly convincing in cases when the values of βH are essentially the same over all

mean-field solutions, because then the bounding of solutions depends only on the initial

values, and thus NH , when the step-size condition is met, as discussed in the appendix A.

When only one node is initially informed, large homogeneous networks will naturally take

longer for information to diffuse through than relatively smaller homogeneous networks.

Therefore, one can compare a given node’s effect on the the network to that of other

nodes of the network. For the unbiased weighting scheme, these results do not contradict

the findings of [8,18] since faster rates of information diffusion in our model are correlated

with higher out-degree of the initially informed node. The correlation value between an

initial node’s log10(kout) and its log10(NH) is γ = −0.9001.
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2.5.2 Watts-Strogatz Graphs

One can control for structural effects on the dynamics caused by the average degree

of nodes on a network by analyzing a family of networks originally studied by Watts and

Strogatz [1], where a regular undirected graph is constructed such that each node has

the same degree and a subset of the edges are “rewired” according to a given rewiring

probability. We generated, for each rewiring probability (prob(RW )), a set of 20 Watts-

Strogatz (WS) graphs of 1000 nodes and average degree of 20. Each graph was given

an unbiased edge weighting scheme, and the mean-field solutions were generated with a

transmission rate of β = 1. The logistic solutions were approximated following the proce-

dure described in Section 2.5.1 for which each node is initially informed with probability

1 and all else zero. For a set of rewiring probabilities ranging from prob(RW ) = 0 to

prob(RW ) = 1, the average graph structural parameters are shown in Figure 2.3a, while

the average homogeneous approximation parameters are shown in Figures 2.3b and 2.3c.

It is noted that the trends of L and C in Figure 2.3a suggest the presence of small-world

structures logarithmically centered about prob(RW ) = 0.1, where the ratio of C to L is

greatest [1].

Figure 2.3c shows that the accuracy of the homogeneous approximation improves

as the graph becomes more random. It is also noted that both βH and NH increase

as prob(RW ) increases. The increase in NH caused by an increase in prob(RW ) seems

counterintuitive because one would ordinarily expect a network of shorter average path

length to seem smaller from the perspective of the information diffusing on the network.
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(a) (b)

(c)

Figure 2.3: Similar to the original study conducted by Watts and Strogatz [1], 20 WS
graphs of size NWS = 1000 were generated and their graph parameters were averaged
at each rewiring probability. (a) WS graph structure in terms of the average clustering
coefficient (C) and average characteristic path lengths (L) over all nodes, as defined in
Section C of the appendix. Both C and L are normalized with respect to their values
for zero rewiring probability. (b) Average time steps for mean-field solutions of (2.4) to
reach x = 0.99. (c) Average transmission rate (βH), homogeneous population size (NH),
and 2-norm homogeneous approximation error. NH is normalized with respect to the
population size of the original WS network.
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Parameter Correlation
βH -0.9178
NH -0.8478
C 0.6304
L 0.9876

Table 2.1: Correlation coefficients calculated according to equation (2.16) over the spec-

trum of rewiring probabilities, relating the average parameters in the left column to the

average number of steps needed for mean-field solutions to reach x = 0.99.

However, the value of βH also increases along with prob(RW ), which likely counteracts

this effect. It is also noted that the result of equation (2.13) for regular graphs indicates

an order of accuracy that is proportional to cos (π(20)/(1000)) for this case. The average

homogeneous approximation errors of the scale-free graph of Section 2.5.1 is an order of

magnitude smaller than those of the family of WS graphs, even though the population

size of the scale-free graph is almost an order of magnitude larger. It is observed that

the average error decreases with the value of k/N = 0.02 held constant during these

simulations, which indicates that the mean-field behavior of random graphs is in this

sense relatively more logistic than that of regular graphs. Here, we shall adopt the

〈·〉 notation to denote the average value of a given parameter over all nodes at a fixed

rewiring probability.

To determine which types of networks spread information the fastest, one can compare

the average time it takes the system to reach 99% information saturation (i.e., 〈x〉 = 0.99)

since in some cases it is possible to only reach 100% saturation in infinite time. The

number of time steps needed for the system to reach 99% information saturation is
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depicted in Figure 2.3b. As Table 2.1 suggests, the characteristic path length is a strong

indicator of the rate at which information is able to diffuse through a WS network, while

βH has more of an effect on time needed to reach saturation than NH . It is noted that the

least amount of time needed to reach 99% saturation occurs for the set of graphs having

rewiring probability prob(RW ) = 1 (random graphs), and occurs in 8 fewer time steps

on average than graphs of prob(RW ) = 0.1 (small world graphs). This suggests that

random networks spread information faster than small world graphs when controlling for

average node degree.

2.5.3 Chain of Watts-Strogatz Graphs

To extend the analysis of WS graphs, suppose a network is constructed as a sequence

of WS networks such that only one undirected edge connects two neighboring WS sub-

networks, as depicted in Figure 2.4a. Applying the homogeneous approximation to this

type of system allows comparison to both WS graphs and chain graphs on the macro

scale, while also being able to probe the behavior of individual nodes, such as those that

connect the distinct WS subgraphs, on the local scale.

For the chain of WS graphs, the average graph structural parameters are shown in

Figure 2.5a, while the average homogeneous approximation parameters are shown in

Figure 2.5b. Although the trend of C in Figure 2.5a for the chain of WS graphs is almost

identical to that of Figure 2.3a for a single WS graph, there is a noticeable difference

in the trends of L among Figures 2.3a and 2.5a with respect to prob(RW ). One might
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(a) (b)

(c) (d)

Figure 2.4: (a) Chain of 10 WS graphs with 100 nodes each are linked together with
one edge connecting each WS graph. The nodes are labeled left to right, and alternating
top to bottom, with increasing index. (b) Average C with respect to individual node
index. (c) Average NH with respect to individual node index. (d) Average βH with
respect to individual node index. In (b), (c), and (d) the dashed line represents data for
prob(RW ) = 0, and the solid line represents data for prob(RW ) = 1.
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(a) (b)

Figure 2.5: Similar to the original study conducted by Watts and Strogatz [1], 20 chains
of ten WS graphs of size NWS = 100 were generated and their graph parameters were
averaged at each rewiring probability (prob(RW )). (a) WS graph structure in terms of
the average clustering coefficient (C) and average characteristic path lengths (L) over all
nodes. Both C and L are normalized with respect to their values for prob(RW ) = 0.
(b) Average transmission rate (βH), homogeneous population size (NH), and average 2-
norm error. NH is normalized with respect to the population size of the constituent WS
networks.

hypothesize that the discrepancy of L between the two systems can be attributed to

the fact that each WS sub-graph of the WS graph chain has 100 members instead of

1000. However, the identical behavior of C for the two systems suggests that the chain

structure of the WS sub-graphs has a more significant impact on L with respect to

prob(RW ) since rewirings were not allowed to occur between each WS sub-graph. When

the average homogeneous approximation parameters are compared, one finds that the

data of Figure 2.5b show trends that oppose those of Figure 2.3c: Figure 2.5b shows an

increasing error and barely decreasing βH and NH as prob(RW ) increases. The reason for

the opposing trend in the average homogeneous data for the chain of WS graphs versus

the single large WS graph is that the WS sub-graphs are linked as a sequential chain.
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(a) (b)

Figure 2.6: (a) Average correlation values between C and L, and βH for the chain of WS
graphs. (b) Average correlation values between C and L, and NH for the chain of WS
graphs.

As rewiring probability approaches prob(RW ) = 1, each WS sub-graph becomes better

mixed and appears to behave more as one entity since information diffuses fastest on the

single WS network level, as shown in Figure 2.3b. While the WS sub-graphs become

more mixed, the increase in homogeneous approximation error is likely explained by the

fact that chains of nodes do not produce logistic mean-field solutions, as discussed in

Section 2.4.

Figure 2.6 shows that the average clustering coefficient is weakly correlated with both

βH and NH , while the characteristic path length is somewhat correlated with βH over

all rewiring probabilities and becomes more correlated with NH as rewiring probability

increases. As the characteristic path length decreases, the negative correlation with

both βH and NH indicates that the information not only diffuses faster, but through

an effectively larger network. Hence, the structural effects that cause an increase in βH
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values offset those that cause a decrease in NH , and results in an average of 76 time steps

to reach 99% of saturation for each rewiring probability. In this case, one can interpret

the networks as being equally capable of diffusing information.

The expected mean-field solutions are actually quite similar in performance to each

other for this type of system since the collection of ensemble averages of the mean-field

solutions over the spectrum of rewiring probabilities have an average 2-norm error of

0.0624. Compared to the error of the homogeneous approximation to mean-field solutions,

which has an average value of 0.2778 in 2-norm, as deduced from the data of Figure 2.5b,

the homogeneous approximation is still sensitive enough to detect subtle features in the

mean-field solutions despite how non-logistic the mean-field solutions are.

At the individual node level, Figure 2.4b shows the characteristic path lengths at each

end of the rewiring probability spectrum, along with their corresponding index labels.

At this level of detail, it is easy to see the effects that the sub-graph connecting nodes

have on the dynamics relative to their global location on the graph. By comparing Figure

2.4b to 2.4c and 2.4d one is able to observe how the characteristic path length of each

node is reflected by its effective homogeneous network size and effective transmission rate,

respectively. Figure 2.4c shows how the sub-graph connecting nodes perceive the smallest

effective homogeneous networks, while those towards the center of the network perceive

the largest effective homogeneous networks of all. When this observation is compared

to the average characteristic path length of each node, as observed in Figure 2.4b, one
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finds this observation to, again, be a counterintuitive result that can be explained by the

opposing effect of βH as seen in Figure 2.4d.

2.6 Conclusions

By focusing our attention on SI dynamics, we have shown the importance of applying

algebraic graph theory to dynamic processes in a simple information spreading context,

and the new physical insight it is able to provide to information spreading phenomena.

In contrast to the application of approximate parameter distributions to the dynamic

equations, such as power-law degree distributions, adjacency matrices preserve the exact

global structure of a weighted network. Here, we were able to also use adjacency matrices

to rigorously attribute the size of fluctuations about the population-level solutions to the

structural similarity between a given graph and a completely connected graph. In the

case of completely connected graphs, the fluctuations were found to be attributed to

finite size effects.

Specifically, we have constructively shown that the agent-based and scalar logistic

models are in exact agreement for the completely connected case in the limit as the num-

ber of agents in the system approaches infinity, as conjectured previously in the different

research communities. For homogeneous systems consisting of a finite number of agents,

the singular values of the graph adjacency matrix produce the closest logistic approxi-

mation to the completely connected agent-based dynamics. This result was extended to

connected networks that are doubly stochastic or with symmetric interactions so that
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systems of this type can generally be approximated by the discrete logistic equation.

Although double stochasticity is typically only relevant to engineered systems, we have

seen that our analytic methods are applicable to naturally occurring systems since prop-

agation mechanisms with interaction symmetry are quite common. We also discussed

how one can analyze the logistic behavior of arbitrary heterogeneous network topologies.

Moreover, by analyzing average population behavior, we found that there are in-

stances when solutions to heterogeneous dynamics of one set of parameter values appear

to be well approximated homogeneous dynamics for a different set of parameter values.

If the entire network structure and set of parameter values are known, an implication of

being able to use homogeneous systems to approximate heterogeneous systems is that

it provides a standard way of comparing the dynamics of two heterogeneous systems.

In general, the logistic behavior of any two homogeneous networks can be compared

to each other. To avoid results that may be misleading, however, we advocate only

comparing networks of the same size when making network versus network comparisons

and comparing nodes with the same size reachable sets when making node versus node

comparisons.

In regards to the inverse problem of using observable system behavior to infer graph

features, coarse descriptions, such as mean-field behavior, are likely to not contain enough

detail to distinguish one graph topology from another. Caution should be exercised when

observing similar mean-field behavior of different logistic dynamical systems because

uniqueness properties relating mean-field behavior to heterogeneous graph structure have
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yet to be established, particularly if they have different weighting schemes. Just as there

can be two completely different graph structures that produce the exact same mean-field

behavior, there could also be two identical graph structures of different weighting schemes

that could exhibit different mean-field behaviors.
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Population behavior on topic
backbones

Suppose now that in addition to having a static network structure, we also have

time series data on parcels of information that are propagating on this network. As

discussed in Chapter 2, when analyzing the effect of network structure on the spread

of information, we first want to find the irreducible subnetwork on which our parcel of

information exists. We can then extract the population-level behavior of this parcel, and

quantify the fluctuations about the mean-field population behavior.

In this chapter we introduce a large data set of user contributed posts to the Twitter

social network, which contains approximately 467 million posts among 42 million users.

We also define topic backbone structures of the network that are able to capture the

network’s cascade edges (edges where an adoption event is observed), yet each have

multiple orders of magnitude fewer nodes than the full network. The topic backbones are

tenable in size and implicitly capture the core connected component of the network, thus
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SNAP (users=42M,tweets=467M)
Topic Hashtags Users Uses/HT
Business 27 20k 1,155
Celebrities 32 26k 1,009
Politics 485 349k 2,020
Sci/Tech 33 415k 6,889
Sports 98 76k 3,274

Table 3.1: Statistics of the SNAP data set.

allowing us to begin applying the tools developed in Chapter 2 to real social network

data.

3.1 Datasets

We chose Twitter to analyze user behavior via our genotype model since Twitter has

millions of active users and messages have a known source, audience, time stamp and

content. Similar analysis can be performed in other social media networks with a known

follower structure and knowledge of the shared content (memes, URLs or buzz-words) in

time.

3.1.1 Twitter follower structure and messages

We use a large dataset from Twitter, SNAP [49], which includes a 20% sample of

all tweets from June to December 2009 and contains 467 million posts. The complete

follower structure [50] for the Twitter social network structure during this time frame is

based on the complete follower crawl of Kwak et al. [50], and includes over 42 million
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Twitter users and over 1.47 billion edges. The SNAP data set’s statistics are summarized

in Table 3.1 with sample sets of hashtag topics.

3.1.2 Grouping hashtags into topics

A hashtag is a user generated token, usually written as a string of characters following

a pound sign (“#”), that annotates a message and allows users to participate in global

discussions [51]. While hashtags present a concise vocabulary to annotate content, they

are free-text user-defined entities. Hence, we need to group them into topics in order

to summarize network behavior at the topic level, which will help reduce the massive

Twitter network to a few relevant reachable sets. The intention here is to eventually

apply the agent-based network model to the Twitter network, which can only be done

if the Twitter network is reduced to a scale that is both computationally tractable, and

contains all of the relevant transmission edges for each hashtag topic set.

In this work we assume each hashtag belongs to exactly one topic*, while in a more

general framework disseminated hashtags (or URLs, memes, etc.) can be “softly” as-

signed to more than one topic. We work with five general topics: Sports, Politics,

Celebrities, Business and Science/Technology. We obtain a set of 100 hashtag annota-

tions from a recent work by Romero and colleagues [52], further augmented by a set of

curated business-related hashtags [53]. We combine this initial set of annotated hashtags

with a larger set based on text classification.The set of manually curated hashtags from

*With limited exception, as noted in Appendix D
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previous work is modest compared to the size of content disseminated in a large system

like Twitter. Hence, sparsity of each hashtag usage is a limiting factor in characterizing

topic-specific behavior.

To increase the number of considered hashtags, we adopt a systematic approach for

annotating hashtags based on URLs within the tweets. To associate tweets with topics,

we treat user-generated hashtags as tokens that carry topical identity, similar to previous

studies [52]. Users include hashtags to annotate (topically) their tweets and to participate

in a specific community discussion [49]. Adopting the appropriate hashtag for a message

ensures better chances of surfacing the content in search as well as attracting the attention

of interested followers.

We pair non-annotated hashtags with web URLs, based on co-occurrence within posts.

We extract relevant text content from each URL destination (most commonly news ar-

ticles from foxnews.com, cnn.com, bbc.co.uk) and build a corpus of texts related to each

hashtag. We then classify the URL texts in one of our 5 topics using the MALLET [54]

text classification framework trained for our topics of interest. In order to train the

MALLET topic classifier we use annotated text from two widely used topic-annotated

text collections: the 20 newsgroups dataset [55] and the News Space [56]. Additional

ground-truth text collections can be used for wider topic coverage and to improve the

accuracy.

As a result, we get a frequency distribution of topic classification for frequent (as-

sociated with at least 5 tweets) hashtags. The topic annotation of the hashtag is the
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Figure 3.1: Overlap among topic influence and corresponding follower subnetworks (in
SNAP). Each network is represented as a node, with every topic represented by an
influence (encircled in the middle) and a follower network. Node sizes are proportional
to the size of the network (ranging from 120k for Celebrities to 42m for Politics Follower).
Edge width is proportional to the Jaccard similarity of the networks (ranging from 10−3

inter-topic edges to 10−1 between corresponding influence-follower networks).

topic of highest frequency. The number of hashtags and their usage statistics in our final

topic-annotated set are presented in Table 3.1 (columns Users and Uses/HT), and the

specific hashtags used in this study are contained in Appendix D.

3.2 Topic-specific influence backbones

Directed Twitter links do not necessarily represent friendship ties but sometimes

merely interest in the information produced by the followee. This leads to a denser link

structure than in traditional social networks. As such, a follower network provides a

middle ground between traditional broadcast media distribution (some nodes represent

42



Chapter 3. Population behavior on topic backbones

media outlets with millions of followers) and a more personal information exchange.

Recent research has demonstrated that many follower links are actually reciprocal [57],

suggesting that a significant portion of the network actually corresponds to personal

friendship ties. On the other hand, there are a number of extremely high fan-out nodes

corresponding to media outlets, companies and prominent public figures. As a result,

it is difficult to judge how individual influence propagates in the network by simply

observing the network structure on its own. Instead this task requires understanding of

the behavior of nodes.

With regards to population-level dynamic behavior on a network, the spread of in-

formation on a network has been primarily explored using models adopted from epi-

demiology [17, 33], and have been applied to describe propagation rates of memes (i.e.,

Twitter hashtags) in social media [58]. We adopt these methods of analysis to evaluate

the population-level topic behavior on influence networks, and assume a simple contagion

model as the underlying propagation process in our data sets.

By observing the behavior of agents (adoption, reposting, etc.) one can reveal the

underlying backbones along which topic-specific information is disseminated. In this sec-

tion, we study the propagation of hashtags within Twitter to identify topical influence

backbones — sub-networks that correspond to the dynamic user behavior. We superim-

pose the latter over the static follower structure and perform a thorough comparative

analysis to understand their differences in terms of structure and population-level user

behavior.
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3.2.1 Influence backbone definition and structure

An influence edge ei(u, v) connects a followee u who has adopted at least one hashtag

h within a topic Ti before the corresponding follower v. Hence, the influence network

Ni(U,Ei) for topic Ti is a subnetwork of the follower network N(U,E) (including the same

set of nodes U and a subset of the follower edges Ei ∈ E). To measure the importance

of each edge, we weight the edges of the influence network by the number of hashtags

adopted by the followee after the corresponding follower, and within the same topic.

According to the notation defined in Chapter2, the Twitter network N(U,E) represents

a graph G(V,E). Each user on the Twitter network represents a vertex (node) on the

graph such that U = V .

First, we seek to understand the differences between the influence backbones and the

static follower network. Figure 3.1 presents the overlap among influence backbones and

their corresponding follower network. For this comparison, we augment an influence net-

work with all follower edges among the same nodes to obtain the corresponding follower

network. In the figure, each network is represented by a node whose size is proportional

to the network size (in edges). Connection width is proportional to the Jaccard Simi-

larity (JS) (measured as the relative overlap |Ei
⋂
Ej|/|Ei

⋃
Ej|) of the edge sets of the

networks. The Jaccard similarity for influence and follower networks varies between 0.16

for Sports to 0.3 for Celebrities. The influence networks across topics do not have high

overlap (JS values not exceeding 0.01), with the exception of Sci/Tech and Politics with

JS = 0.07. This may be explained partially by the fact that these are the largest influ-
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Figure 3.2: Out- and In-Degree distributions for the Follower and Influence networks for
Sports for the SNAP dataset.

ence networks (5 and 11 million edges respectively). Another reason could be that there

are some “expert” nodes who are influential and active in both topics.

The degree distributions of influence and follower networks within a topic maintain

a similar shape. Figure 3.2 shows the in- and out-degree distributions for the Sports

networks in the SNAP dataset. The most dramatic change in the distributions is for

small degrees with almost one magnitude increase of the nodes of in-degree 1. Users

who retain only a few influencers tend to have a variable number of followees, hence the

in-degree distribution decreases for the whole range of degrees.

Beyond network sizes and overlap, we also quantify the structural differences of the

influence backbone in terms of connected components. A strongly connected component

(SCC) is a set of nodes with directed paths among every pair, while in a weakly connected

component (WCC) connectivity via edges regardless of their direction is sufficient. Fig-
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ure 3.3 compares the sizes of the largest SCC and WCC in the topic-specific networks as

a fraction of the whole network size. When ignoring the direction (i.e. considering WCC),

both the influence and follower structures have a single large component amounting to

about 99% of the network. The communities that are active within a topic are connected,

showing a network effect in the spread of hashtags, as opposed to multiple disjoint groups

which would suggest a more network-agnostic adoption. When, however, one takes direc-

tion into consideration (SCC bars in Figure 3.3), the size of the SCC reduces drastically in

the influence backbones. Less directed cycles remain in the influence backbone, resulting

in a structure that is close to a directed acyclic graph with designated root sources (first

adopters), middlemen (transmitters) and leaf consumers. The reduction in the size of

the SCC is most drastic in the Celebrities topic, indicative of a more explicit traditional

media structure: sources (celebrity outlets or profiles) with a large audience of followers

and lacking feedback or cyclic influence.

We next address the issue of how a user’s importance changes. In Figure 3.3 (bot-

tom) we show the correlation of node ranking based on number of followers, followees

and PageRank [59] in the influence and follower networks. The correlation of each pair of

rankings is computed according to the Kendall τ rank correlation measure. The correla-

tion is below 0.5 for all measures and topics. Global network importance (PageRank) is

the most distorted when retaining only influence edges (0.4 versus 0.5 on average), while

locally nodes with many followers (or followees) tend to retain proportional degrees in

the influence network.
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Figure 3.3: Largest weakly and strongly connected component (WCC and SCC) sizes as
a fraction of the network size (top); and Kendall τ rank correlation of node importance
measures for the influence and follower networks (bottom) for the SNAP dataset.

While the follower structure features a lot of reciprocal (bi-directional) links (above

50% on average), these reciprocal links disappear almost completely in the influence

backbone (retaining 4% on average), as shown in Figure 3.4. This effect is most prominent

in the Celebrities topic where reciprocal links drop from 36% to less than 1% in the

influence network. Reciprocal links are related to friendship ties, i.e. nodes who are

possibly friends declare interest in each other’s posting by a bi-directional link. When

it comes to influence, however, the ties tend to be uni-directional with only one of the

nodes affecting the other.

Our comparative analysis of the influence and follower structure demonstrates that

the influence backbone is quantitatively different from the overall follower network. The

explanation for this lies in the fact that the influence backbone is based on the dynamic
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Figure 3.4: Comparison of the percentage of reciprocal (bi-directional) links in the influ-
ence and follower networks.

behavior of users (information dissemination on specific topics), while the follower struc-

ture represents the static topic-agnostic media channels among users. Not all followees

tend to exert the same amount of influence over their audiences in the actual information

dissemination process, giving rise to distinct topic-specific influence backbones.

3.2.2 Population behavior on topic backbones in Twitter

Thus far, the topical influence backbone networks are comprised of the individuals

within a given topic. Since many users are members of more than one backbone, yet

may be more responsive towards one topic than another, an ensuing question is whether

dynamics on the topic backbones are consistent with individual behavior. Does the Busi-

ness backbone, for example, propagate business hashtags faster than, say, the Sports

backbone? In general, we find this hypothesis to be true, assuming that the underlying

hashtag propagation process follows a simple epidemic-inspired compartmental popula-

tion model.
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Figure 3.5: Example of typical regression result, from data of the Political hashtag #beck,
referring to the political commentator Glenn Beck. (a) The measured data (solid lines)
and the approximated regression function (dashed lines) in the unnormalized coordinates,
and (b) the same data in the normalized coordinates. The plotted curves are colored
according to the topic backbone that the #beck hashtag was detected on.

Compartmental population models are often implemented to study average behavior

of a disease or meme within a population [17, 33, 58]. As discussed in Chapter 2, the

simplest case is where we have only two classes of individuals, susceptible (S) and in-

formed (I), a susceptible individual can become informed of a meme, and once informed

will remain informed. Such coarse two-state models for simple contagions (i.e., cascades)

describe average rates of adoption from one class of individuals to the next. For static

populations, where S + I = N for some fixed population of size N , the dynamics of a

typical S-I process are defined by Hethcote [17] as:

dI

dt
= βI(1− I

N
), (3.1)

which has the solution

I(t) =
NI(0)eβt

N + I(0) (eβt − 1)
, (3.2)
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where β is the transmission rate and I(t) is the size of the infected population at time t.

One can quantify and compare the contagiousness of a hashtag on different networks

by comparing its respective β values. An example set of realizations is depicted in Figures

3.5a and 3.5b. It is important to note the sigmoidal shape of the adoption curves and

their least-squares approximations. This sigmoidal shape is characteristic of the processes

governed by (3.2).

For this particular study, we track a hashtag of known topic on the Twitter network in

order to observe whether or not the hashtag is most viral on its own topic backbone. We

begin by considering only hashtags that have been tweeted by users who are members of

more than one topic backbone within the SNAP dataset. A distinct realization of (3.1)

for a hashtag is defined by the total population of individuals who have tweeted that

hashtag with respect to time.

When comparing the model defined by (3.2) to temporal hashtag data, one needs to

account for the fact that the hashtag may have existed on the network prior to the time

of initiating data acquisition. Hence, the first observed use of a hashtag in our data is

possibly not the actual first use of that hashtag. To account for this uncertainty of initial

hashtag usage time, we shift the initial tweet of each hashtag to the origin by an amount

of time τ , such that I(0) = 1 in all cases, and add a variable It− to account for the

existence of an informed population before the first hashtag detection. Therefore, (3.2)

becomes a regression problem with four degrees of freedom: N , β, τ , and It−. The
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least-squares objective function is defined as

minimize
∑
i

|y(ti)− I(ti)|2 (3.3)

for all i data points of the given hashtag. Here, y(ti) are the observed data points, and

I(t) is given by

I(t) =
Neβ(t−τ)

N + (eβ(t−τ) − 1)
− It−. (3.4)

Since equation (3.4) requires a count of only the total population for I(t) rather than

the specific backbone network topology, the backbones are used to identify the subset of

topic users whose collective hashtag adoption makes each I(t) signal. The N , β, τ , and

It− parameters are deduced from a non-linear least-squares regression of (3.4) on the set

of (t, I(t)) points for each hashtag realization on a backbone network.

For each hashtag h that is tweeted on more than one topic backbone B, there exists

a transmission rate parameter β(h) and effective population size N(h) for each of those

backbones. In order to compare the β(h) parameters for backbones of different effective

population sizes, we must first normalize each I(t) signal with respect to its best fit N(h).

By dividing both sides of equation (3.1) by N , one obtains

dÎ

dt̂
= β̂Î(1− Î), (3.5)

where β̂ = βN and Î = I/N . It is also noted that substituting β = β̂/N into equation

(3.2) leads to the normalized time scale t̂ = t/N . In this normalized setting, one interprets

β̂ as the number of interactions per unit of time (i.e., tweets among individuals that

contain the hashtag of interest).
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Figure 3.6: Relative transmission rate with respect to Jaccard similarity between two
backbones on which a hashtag propagates in the SNAP dataset. The same data points
are shown in both (a) and (b), but with different marking schemes, and each point in
either plot represents a (T,¬T ) pair. Color is added to improve marker differentiation.
(a) Colors indicate the topic backbone on which a given hashtag h is propagating (i.e.,
colored by the ¬T topic). (b) Colors indicate the true topic to which the given hashtag
h belongs (i.e., colored by the T topic).

There are many hashtag users who are present on more than one topic backbone

such that when one of these individuals uses a hashtag, that hashtag is observed to

be simultaneously propagating on each topic backbone to which the user belongs. For

example, suppose a Business related hashtag is used by an individual who is a member of

the Business, Politics, and Sports topic backbones. The true topic (T ) of this particular

hashtag is Business, and a not true topic (¬T ) is either Politics or Sports. In this case,

there will be two (T,¬T ) pairs: (Business,Politics) and (Business,Sports).

We denote the transmission rate of the hashtag on its actual topic backbone β̂T (h) and

the hashtag transmission rate on an off-topic backbone as β̂¬T (h). For each hashtag, we

also denote the Jaccard similarity between the subset of those hashtag users on the back-
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bones of a (T,¬T ) pair as Jaccard(UT (h), U¬T (h)), where UT (h) := {u ∈ BT | ∀u ∈ (U, h)}

and U¬T (h) := {u ∈ B¬T | ∀u ∈ (U, h)}. Recall that B represents the topic backbone,

and should not be confused with β, which represents the transmission rate of (3.1).

Figures 3.6a and 3.6b show the data comparing β̂T (h) relative to each β̂¬T (h) in

the vertical dimension, and the Jaccard similarity of the respective users of h in the

corresponding T and ¬T backbones, in the horizontal dimension. Overall, we see that, on

average, each hashtag propagates fastest on its own topic network since an overwhelming

majority of the data points lie below the β̂¬T (h)/β̂T (h) = 1 line.

Figure 3.6a demonstrates that the relative rates of propagation tend to increase as

the topic backbones increasingly overlap. This is particularly evident for the Business,

Celebrity, and Sports topic backbones. The collection of Sci./Tech points below the

trend line of Figure 3.6b indicates that these hashtags have transmission rates on off-

topic backbones β̂¬T (h) that are much less than their true topic backbone β̂T (h). The

corresponding points in Figure 3.6b indicate which off-topic backbone yields the trans-

mission rate β̂¬T (h).

Outliers in Figures 3.6a and 3.6b are an artifact of the SI-model not being an ap-

propriate underlying model for their data, but are included in the results because either

the T or ¬T backbones for the associated hashtag proved to have SI-type behavior. The

outliers, however, have little effect on the trend line shown in Figures 3.6a and 3.6b, since

the trend line has an average point-wise residual of 0.15 on the log-log scale shown.
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Data Parameter and Uncertainty
Estimation

Thus far, we have been able to track hashtags on the Twitter network, and have shown

that the characteristic logistic adoption behavior of the population is captured on the

topic backbone structures using standard least-squares regression techniques. However,

least squares regression alone does not sufficiently quantify the variance about the mean-

field signal of the least-squares solution, and quantifying this variance is essential for

being able to draw conclusions about what effects can be attributed to the network

structure.

In this section, we describe how statistical sampling methods, namely the delete-d

jackknife sampling method, can be used to estimate the variance about the mean-field

solution to the least-squares regression problem. We shall also go on to describe how

data can be assimilated in real-time using an adaptive jackknife estimation strategy.

The jackknifed estimation of the data signal synthetically estimates the underlying data

distribution, which can be described by the initial parameter distributions of the SI model.
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The agent-based network simulations discussed in Chapter 2 can then be run with the

same initial distribution so that the homogeneous solution to the agent-based model

agrees with the ensemble mean-field solution of the jackknifed data. From here we can

run a paired statistical hypothesis test to determine how likely the agent-based model

explains the data. We find that the agent-based network model does not adequately

explain the data, which suggests that a more precise, yet efficient, user model is needed.

4.1 Stochastic model estimation

Let us consider a continuous nonlinear model that contains model uncertainty in the

form of a stochastic forcing term, and is measured at discrete instances of time tk:

dx = f(t, x)dt+
√
Qdw, (4.1a)

y(tk) = h(x(tk)) +
√
RN(0, 1), (4.1b)

where x ∈ Rn represents the state of the system, f(t, x) : R×Rn → Rn is the deterministic

evolution of the states, h(x) : Rn → Rm is a function that maps x to the discrete-time

measured output y ∈ Rm, dw describes a vector Wiener process with mean zero and unit

variance, and N(0, 1) represents a normally distributed random variable with zero mean

and unit variance. It is also noted that the covariance matrices Q and R are positive

semi-definite symmetric matrices, and their square roots exist and can be computed using

a singular value decomposition [60].

55



Chapter 4. Data Parameter and Uncertainty Estimation

Since its discovery, the Kalman filter, in both its linear and nonlinear forms, has been

an effective model-based noise filter that relies on an assumed known deterministic model

with additive noise [61]. However, when either parameters of the model or noise variances

are unknown, which is common in tasks where model identification and state estimation

must occur simultaneously, the Kalman filter is likely to diverge [62,63].

To prevent divergence, various tuning procedures exist for finding the best estimates

of process and measurement noise for given a Kalman filter [64–68]. Kalman filter tun-

ing typically involves minimizing the measurement error over iterations of the Kalman

filter, with the process and measurement covariances as the free variables. For nonlinear

systems, this type of tuning procedure requires that at each optimization iteration, the

gradient of a complete time sequence of Kalman filter iterations is taken with respect

to all of the free variables. Hence, these methods are computationally costly, and are

susceptible to converging to suboptimal local minima of their objective functions.

Adaptive algorithms have also been developed to allow the Kalman filter to converge

on the correct noise values in an online manner [69–79]. Much effort has been given to

developing adaptive methods for nonlinear systems because online computation is in the

spirit of the Kalman filter. Adaptive methods for linear systems have seen much success

over the years [77], but their formulation is limited to the linear case and does not extend

to nonlinear systems in general. For nonlinear systems, adaptive strategies have been

implemented for the main variants of the nonlinear Kalman filter: the extended Kalman

filter (EKF) [74], and the unscented Kalman filter (UKF) [69, 72, 73]. However, for
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the adaptive EKF and UKF methods, convergence performance has yet to be rigorously

generalized, and is sensitive to the initial estimates of the unknown parameters.

To overcome these challenges associated with implementing adaptive nonlinear Kalman

filters, we propose that the unknown state and parameter distributions of the given model

can be estimated by an ensemble of least-squares regression (LSQ) estimates on the known

data. Jackknife sampling methods [80–82] can be used to generate the ensemble of LSQ

estimates [83], and this ensemble generation procedure can then be made adaptive (in a

Markov-Chain sense) by taking advantage of how jackknife sampling assimilates newly

acquired data into the model. The formula for a statistical Kalman filter can then be

used to infer the unknown process uncertainty and measurement noise covariance matri-

ces from ensemble estimates at each step. After the unknown quantities of the stochastic

model have converged, the adaptive procedure can be stopped, and a standard nonlinear

Kalman filter can be implemented to take over the state estimation process.

Although our approach is supported by the theory behind ensemble Kalman filtering

(EnKF) [84, 85], our adaptive method of assimilating the data is original, as well as our

application of jackknife sampling to generate ensemble members. Particle filters and

the EnKF both make assumptions on the sampling distribution of states, and typically

rely on Markov-Chain Monte Carlo (MCMC) simulation to generate ensemble members

and deduce ensemble statistics of the states. We show that by using LSQ estimation

in conjunction with jackknife sampling of the known data, a sampling distribution and

ensemble statistics can be acquired without making any assumptions of the sampling
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distribution nor having to run a high number of MCMC simulations. Furthermore, we

describe how our adaptive method can be implemented in a parallel setting, and with a

fixed number of computations at each update step.

Therefore, the aim of this manuscript is to implement the techniques of jackknife

variance estimators as they apply to least squares estimators, to construct an adaptive,

nonparametric, and computationally efficient statistical nonlinear filter. To motivate our

jackknife sampling LSQ approach for generating ensemble statistics, we shall present an

overview of the derivation of a statistical Kalman filter in Section 4.2. In Section 4.3

we present a description of jackknife sampling methods, an adaptive jackknife sampling

approach to assimilating new data, and how jackknife sampling can be used with LSQ

estimation. We combine the results of Sections 4.2 and 4.3 to construct a procedure in

Section 4.4 for estimating the process and measurement noise of the model (4.1). We

present an example application in Section 4.5 to demonstrate the efficacy of our adaptive

jackknife filter, and we summarize our conclusions and directions for future work in

Section 4.6.

4.2 Ensemble Kalman Filtering

The ultimate objective of this manuscript is to develop a procedure to optimally

estimate the states of a noisy nonlinear state-space model, when only a model structure

and some observed measurements are provided. Since only a model structure is assumed,

we shall attempt to estimate model parameters while simultaneously estimating model
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states. Optimal state estimation is often performed using a Kalman filter, which has many

linear and nonlinear variants. For reasons that will be discussed later, we shall focus our

attention on the EnKF and its formulation [61,84,85]. Here, we will describe the EnKF

in order to motivate our approach for estimating the unknown model parameters in the

next section.

4.2.1 Model Uncertainty Propagation

Let us consider a general nonlinear model that contains model uncertainty in the form

of a stochastic forcing term

dx = f(t, x)dt+ g(x)dq, (4.2)

where x represents the state of the system, f(t, x) gives the deterministic evolution of

the states, g(x) is a function that may depend on the states, and dq =
√
Qdw describes

a vector Wiener process with mean zero and covariance matrix Qδ(t). It is noted as a

technical detail that since g(x) is not an explicit function of dq, the Ito interpretation

is used [86], and
∫ tk
tk−1

dw =
√
tk − tk−1N(0, 1). Thus, one can integrate (4.2) from tk−1

to tk to obtain the distribution of x(tk) when the distribution x(tk−1) is known. The

probability distribution of x(tk) for a given initial point x(tk−1) is

x(tk) = F (tk, x(tk−1)) + g(x(tk−1))
√
Q∆tkN(0, 1), (4.3)

where ∆tk = (tk−tk−1), and F (tk, x(tk−1)) is the evolution operator that deterministically

maps x from time tk−1 to tk according to the dx = f(t, x)dt part of (4.2).
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When g(x)dq is normally distributed and forms a Markov process, it is shown in [84]

that it is possible to derive the Fokker-Planck equation to describe the time evolution of

the probability density function p(x, t) of the model state:

∂p(x, t)

∂t
+
∑
i

∂(fi(t, x)p(t, x))

∂xi
=

1

2

∑
i,j

∂2(gQgT )ij
∂xi∂xj

, (4.4)

where fi(t, x) is the ith component of f(t, x), and gQgT is the covariance matrix for the

model errors at time t.

The EnKF, as discussed in [84] and [85], applies a Markov Chain Monte Carlo Method

(MCMC) to solve (4.4). The probability density p(x, t) is represented by an ensemble of

N model states x(i) for i ∈ {1, . . . , N}, and the ensemble prediction, by integrating model

states forward according to (4.3), is equivalent to using a MCMC method to solve (4.4).

Hence, there is no need to find an explicit form for the solution p(x, t) of (4.4) because

p(x, t) can be sufficiently described by its ensemble statistics.

Since we assume no prior knowledge of the function g(x), we shall simplify matters and

take g(x) = In×n so that all of the model uncertainty is spatially invariant and entirely

attributed to the process noise. Furthermore, we shall assume discrete measurements

yk at times tk, which have their own uncertainty that we shall assume to be normally

distributed. For the remainder of the manuscript we shall assume the continuous-discrete

stochastic model defined by (4.1).
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4.2.2 Statistical Derivation of a Kalman Filter

To help explain how the Kalman filter is implemented from an ensemble of nonlinear

system realizations, it is instructive to first provide a statistical derivation of the Kalman

filter. The following statistical derivation for a general Kalman filter closely follows [61].

We define the following variables at the discrete time instance tk of the latest measurement

y(tk):

• x(tk) = true state value,

• x̂−(tk) = state estimate prior to measurement,

• x̂+(tk) = posterior state estimate,

• P−(tk) = E
[
(x(tk)− x̂−(tk))([· · · ])T

]
,

• P+(tk) = E
[
(x(tk)− x̂+(tk))([· · · ])T

]
,

where the [· · · ] is shorthand notation for the term immediately to the left of it, so that

the covariance matrices are written as E
[
(z)([· · · ])T

]
= E

[
(z)(z)T

]
.

Suppose, for computational performance reasons, we want a state estimator that

linearly updates the ensemble mean of its state estimate x̂(tk) based on the latest mea-

surement y(tk) according to the rule

x̂+(tk) = K(tk)y(tk) + b(tk), (4.5)

where K(tk) and b(tk) are a yet to be determined matrix and vector, respectively. For

notational convenience, we shall momentarily omit any explicit dependence on tk because
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all of the variables are understood to be implicitly evaluated at the same time instance

tk.

Since we want an unbiased state estimate (i.e., x̂+ = x), we can see by taking the

mean of (4.5) that

x̂+ = Ky + b, (4.6)

which gives the constraint that

b = x−Ky, (4.7)

which ensures unbiasedness of the estimate x̂+ regardless of K.

To find the gain matrix K, we shall solve for the K that minimizes the expression for

the trace of P+
x . In general, a covariance is defined as

Pz = E
[
(z − z)(z − z)T

]
,

= E
[
zzT
]
− zzT , (4.8)

for any random vector z. Let us now set z = x− x̂+. Because of the unbiasedness of the

estimate of x̂+ as asserted by (4.7), it is noted that z = 0, and

P+
x = E[zzT ]

= Pz + zzT

= Pz. (4.9)
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By directly calculating Pz for z = x− x̂+, one obtains

P+
x = Pz

= E
{

[x− x̂+ − E(x− x̂+)][· · · ]T
}

= E
{

[x− (Ky + b)− x+ (Ky + b)][· · · ]T
}

= E
{

[(x− x)−K(y − y)][· · · ]T
}

= Px −KPyx − PxyKT +KPyK
T , (4.10)

where Pab denotes the cross-covariance of random variables a and b. Using the fact that

covariance matrices are symmetric (i.e., Pxy = P T
yx), then the trace of (4.10) becomes

Tr(P+
x ) = Tr(Px −KPyx − PxyKT +KPyK

T )

= Tr
[
(K − PxyP−1y )Py(K − PxyP−1y )T

]
+ Tr

[
Px − PxyP−1y P T

xy

]
. (4.11)

Since covariance matrices are positive semi-definite, the first term of (4.11) is non-

negative, and is identically equal to the zero matrix when K = PxyP
−1
y . The second

term of (4.11) does not depend on K. Therefore, the posterior covariance estimate P+
x

is minimized when

K = PxyP
−1
y . (4.12)

If the prior estimate x̂− is also unbiased so that x = x̂−, then Px = P−x . By making

this assumption and substituting equations (4.12) and (4.7) into (4.10), we have the
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update equations

x̂+ = x̂− +K (y − y) , (4.13)

P+
x = P−x −KP T

xy. (4.14)

We remark that equations (4.7) and (4.13) have the Markov property, and are only

true when the Markov property is true for the equations that determine each of these

elements. In the next section we will discuss how one can use the ensemble output

statistics to appropriately estimate y, and prevent measurement bias from affecting the

state estimate in (4.13).

4.2.3 Ensemble estimation of Px and Py

When integrating an ensemble of points forward in time according to (4.3), the state

covariance matrix P−x depends on the distribution of those deterministic points and the

stochastic forcing term. For notational convenience, let us denote x̂− = F (tk, x(tk−1)).

Since the ensemble mean is unbiased so that x̂− = x, then an approximation for the prior

ensemble covariance P−x (tk) becomes

P−x = E
[
(x− x̂−)(· · · )T

]
= E

[
(x̂− − x̂− +

√
Q∆tkN(0, 1))(· · · )T

]
=

1

N − 1

N∑
i=1

[
(x̂−(i) − x̂−)(· · · )T

]
+Q∆tk

= P̂x
−

+Q∆tk, (4.15)
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where P̂x
−

is the sample ensemble covariance of the state prior distribution, and

x̂− =
1

N

N∑
i=1

x̂−(i)

for the collection of N ensemble members x̂−(i).

To find the measurement covariance Py and cross-covariance Pxy, the process noise

can be made an explicit term by taking a series expansion of h(x(tk)) about x̂− at time

tk:

h(x(tk)) = h(x̂− +
√
Q∆tkN(0, 1)) (4.16)

= h(x̂−) +Dhx̂−
√
Q∆tkN(0, 1)

+
∞∑
n=2

1

n!
Dnhx̂−(

√
Q∆tkN(0, 1))n, (4.17)

where Dnhx(i) represents the nth vector derivative of h about the point x(i)(tk). From

this we obtain

Py = E
[
(y − y)(· · · )T

]
= E

[
(h(x(tk))− h(x(tk)) +

√
RN(0, 1))(· · · )T

]
= E

[
(h(x̂−) +Dhx̂−

√
Q∆tkN(0, 1)− h(x̂−)

+
√
RN(0, 1))(· · · )T

]
=

1

N − 1

N∑
i=1

[
(h(x̂−(i))− h(x̂−(i)))(· · · )

T
]

+
1

N

N∑
i=1

Dhx̂−
(i)
Q∆tkDh

T
x̂−
(i)

+R

= P̂y + Q̂y +R, (4.18)

65



Chapter 4. Data Parameter and Uncertainty Estimation

where P̂y is the sample ensemble covariance of the measurements and Q̂y comes from the

stochastic forcing term. Similarly, one finds the cross covariance to be

Pxy = E
[
(x− x)(y − y)T

]
= E

[
(x̂− − x)(h(x̂−)− h(x̂−))T

]
=

1

N − 1

N∑
i=1

[
(x̂−(i) − x̂

−
(i))(h(x̂−(i))− h(x̂−(i)))

T
]

= P̂xy, (4.19)

where P̂xy is the sample ensemble cross-covariance and all additive noise terms vanish

because they are mutually uncorrelated.

By substituting equations (4.15), (4.18), and (4.19) into equations (4.12) and (4.14),

one obtains

K = P̂xy(P̂y + Q̂y +R)−1 (4.20)

x̂+ = x̂− +K (y − y) (4.21)

P+
x = P̂−x +Q∆tk −K(P̂y + Q̂y +R)KT . (4.22)

However, to implement this nonlinear statistical filter, we need to have quantities

for Q and R, which we propose can be estimated directly from the data, and without

making any assumptions on their sampling distribution. We did make assumptions that

the process and measurement noise terms are Gaussian, which we will find in the next

section, is actually consistent with a least squares parameter estimation strategy.
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4.3 Ensemble generation and adaptive update

In order to implement a statistical Kalman filter, we need to obtain ensemble estimates

of the state and output distributions. To do this, we can take a statistical sample of those

distributions via jackknife sampling [80–82], which has been shown to be a robust and

computationally efficient way of estimating the sample distribution of a given population.

By mapping the data to the state-space via LSQ estimation, we shall jackknife sample

the known data in order to obtain the underlying sample distribution of the states and

model parameters. The points that define the sample distribution of the states and model

parameters are then treated as ensemble members for the statistical Kalman filter. We

shall first explain jackknife sampling, its consistency properties and an adaptive update

rule, and then apply jackknife sampling to LSQ estimation.

4.3.1 Jackknife Sampling

Suppose we are given a sequence of n data measurements Dn = {Y1, . . . , Yn}, where

Yi = (yi, ti) is defined for an observed response vector yi from a known input sequence of

ti values. For the moment, let us fix the number of available data points n and choose

some fixed positive integer d. We shall describe the delete-d jackknife estimator [81,82],

which estimates the sample distribution of parameters by aggregating the least squares

estimates on randomly chosen subsets of r = n−d data points. Let Sr be the collection of

subsets of {1, . . . , n} that have size r. For s = {i1, . . . , ir} ∈ Sr, let θ̂s = θ̂ (Yi1 , . . . , Yir).
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The delete-d jackknife estimator of var(θn) is defined as

vn =
r

dN

∑
s∈Sr

(
θ̂s − θn

)(
θ̂s − θn

)T
, (4.23)

where N =
(
n
d

)
, and θn is the parameter estimate that explains all of the available n

data points. For a finite set of measurements, we can approximate θn by the arithmetic

average of subsample means, which we call the jackknife estimate θ̂n, and define

ṽn =
r

dN

∑
s∈Sr

(
θ̂s − θ̂n

)(
θ̂s − θ̂n

)T
(4.24)

with

θ̂n =
1

N

∑
s∈Sr

θ̂s.

When N is very large, the number of computations can be reduced by implementing

techniques from survey sampling. For instance, take a simple random sample (without

replacement) of size m from Sr (i.e., Sm ⊂ Sr). Compute θ̂s for s ∈ Sm, and use

vsn =
r

dm

∑
s∈Sm

(
θ̂s − θn

)(
θ̂s − θn

)T
(4.25)

and

ṽsn =
r

dm

∑
s∈Sm

(
θ̂s − θ̂n

)(
θ̂s − θ̂n

)T
(4.26)

with

θ̂n =
1

m

∑
s∈Sm

θ̂s.

to approximate vn and ṽn, respectively. These approximations are called the jackknife-

sampling variance estimators (JSVE’s) [81, 82], and m is the second-stage sample size.
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It is also noted that the pre-factor terms r/(dN) and r/(dm) are explained in [81, 82],

and mitigate the bias associated with estimating the variance from a finite sample.

In [87], it was shown that

• ( [87] Theorem 1) var(vn) = o (n−2),

• ( [87] Theorem 2) 0 ≤ var(vsn)− var(vn) = O(m−1τn), for τn = E
[
(θn − θ)4

]
.

We remark that var(vsn), var(vn), and E
[
(θn − θ)4

]
are well defined for jointly distributed

random variables [88], and are only needed here to prove asymptotic consistency of

jackknife sampled distributions.

The authors of [87] also show that choosing m = nδ for some δ ≥ 1 is sufficient and

has the same number of computations as the delete-1 jackknife estimator. If m is much

smaller than N , sampling with replacement for the second-stage sample will produce

almost the same estimator as sampling without replacement, which further simplifies the

sampling procedure and is nearly identical to bootstrap sampling. It is also important to

note that these results do not necessarily rely on m−1
∑

s∈Sm
θn → θ as m → ∞, which

is a convergence result that we will further discuss next.

4.3.2 Adaptive Jackknife Variance Estimator

Although the estimates are conditioned on past data, we see that the ensemble jack-

knife estimates abide by the Markov property in the sense that they only rely on the

previous ensemble measurement and the current ensemble measurement. When tracking
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only the mean and variance of the distribution, all of the previous ensemble members

may be forgotten, as their statistics are sufficiently captured by the mean and variance.

Suppose another measurement is collected so that there are now a total of n+ 1 data

points, and for computational reasons we want the values of r and m to remain the same

as before. When constructing the basic form of our adaptive equations, it is important

to define the mean and variance of the linear combination of two uncorrelated random

variables X1 and X2. For µ1 = E[X1], µ2 = E[X2], v1 = var(X1), v2 = var(X2), and two

constants a1, a2 ∈ R such that

X3 = a1X1 + a2X2,

then

E[X3] = a1µ1 + a2µ2, (4.27)

var(X3) = a21v1 + a22v2. (4.28)

In this context, each jackknife estimate θ̂n can be viewed as a combination of jackknife

estimates θ̂n∈s that include the nth data point, and those that do not θ̂n6∈s:

θ̂n = a1θ̂n∈s + a2θ̂n6∈s, (4.29)

where a1 + a2 = 1. It is also assumed that θ̂n∈s and θ̂n6∈s are uncorrelated, which is

intuitively justified by the fact that the noise contributing to the nth data point is un-

correlated with the noise contributing to any of the previous n− 1 data points.

The values a1 and a2 in (4.29) represent the relative likelihoods of occurrence for the

two types of jackknife estimates θ̂n∈s and θ̂n6∈s, respectively. If we temporarily remove the
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nth data point from the data set, we see that there are
(
n−1
r

)
possible unique jackknife

estimates θ̂n6∈s that can be obtained from r data points. Moreover, it becomes apparent

that θ̂n6∈s = θ̂n−1. Since there are
(
n
r

)
total possible unique jackknife estimates of θ̂n, the

likelihood of reselecting an estimate θ̂n is
(
n−1
r

)(
n
r

)−1
= 1− r/n. Hence, one obtains

a1 = r/n and a2 = 1− r/n. (4.30)

By substituting equations (4.29) and (4.30) into (4.27), and observing that θ̂n6∈s =

θ̂n−1, the adaptive jackknife sample mean estimator is defined to be

θ̂n =
r

n
θ̂n∈s +

(
1− r

n

)
θ̂n−1, (4.31)

where

θ̂n∈s =
1

m

∑
s∈S+

m

θ̂s,

and

S+
m = {s ∈ Sm|n+ 1 ∈ s = {i1, . . . , im}} .

Similarly, the jackknife sample variance update is obtained by substituting equations (4.29)

and (4.30) into (4.28). By again observing that θ̂n 6∈s = θ̂n−1, one gets

ṽsn =
( r
n

)2
ṽsn∈s +

(
1− r

n

)2
ṽsn−1, (4.32)

where

ṽsn∈s =
r

(d+ 1)m

∑
s∈S+

m

(
θ̂s − θ̂n

)(
θ̂s − θ̂n

)T
.

Equation (4.31) inherits the convergence properties of its respective constituent terms

θ̂n∈s and θ̂n 6∈s, because each of those constituent terms have identical convergence prop-

erties and (4.31) is a convex combination of its constituent terms. The same reasoning
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about convergence applies to (4.32) and its constituent terms ṽsn∈s and ṽsn 6∈s, as well.

Furthermore, since we are effectively keeping track of a running average of second-stage

m samples, the total number of second-stage samples acquired at measurement number

n = n0 +k is mn = m0 +km, where m0 is the number of second-samples used to estimate

the first n0 measurements. By choosing m0 = n0, then the condition mn = nδ for some

δ ≥ 1 is satisfied, and the variance estimate of vn has the same accuracy as the delete-1

jackknife, but for a fixed number of computations at each increment of n.

4.3.3 Least Squares Parameter Estimator

The previous sections established general results for the convergence in sample-variance

for a parameter estimate without any mention of the parameter estimator. Since we want

to make no assumptions about the parameter’s prior distribution, we shall choose the well

known LSQ estimator. Fortuitously, the LSQ estimator naturally produces a normally

distributed parameter estimate [83], which is consistent with the assumed uncertainty

terms in the stochastic model (4.1a) and (4.1b).

Suppose we have, again, a sequence of n data measurements Dn = {Y1, . . . , Yn}, where

Yi = (yi, ti), as defined earlier. Adopting much of the notation from [83], we consider a

general nonlinear model to describe an observed sequence of data

yi = H(ti, θ) + σei, i = 1, . . . , n, (4.33)

where θ is a vector of unknown constant parameters, H(t, θ) is a nonlinear function in θ,

the ei’s are independent and identically distributed (i.i.d.) unobservable random variables
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with mean zero and variance one, and σ is the unknown error standard deviation. It is

also noted that the error terms define the measurement residuals ri = (yi−H(ti, θ)) = σei.

A LSQ parameter estimator finds an estimate θ̂n of the parameters that minimizes

the mean squared error (MSE) for a model over all available data points

θ̂n = argmin
θ

1

n

n∑
i=1

(yi −H(ti, θ))
2, (4.34)

which effectively minimizes σ in the model (4.33). In relation to the SDE model (4.2),

one finds that H(t, θ) = h(F (t, x(T ))) when θ = x(T ) for some fixed point in time T .

We remark that the solution to (4.34) also minimizes the sample variance of the θ̂n

estimate’s residuals var(r̂n). When using all of the data points, the solution to (4.34)

is only one point estimate of the parameters. With only one point estimate of the

parameters θ̂n, there is no knowledge about how sensitive the parameters are to the

data, or equivalently, what the variance estimate is of the parameters (i.e. var(θ̂n)) that

produced the given realization of the data. Jackknife variance estimation, such as the

JSVE, provides a way of aggregating parameter estimates without making any prior

assumptions about the distribution of θ̂ (i.e., JSVEs are nonparametric estimators).

From the given data realization Dn, we can implement a delete-d jackknife sampling

of Dn to generate a sample distribution of D, which directly gives us a sample distribu-

tion of θ by running the LSQ estimator on each jackknife sample of Dn. This approach is

rigorously studied in [83] (and references therein), which specifically describes the asymp-

totic consistency properties of the LSQ estimator and its jackknife variance estimator in

nonlinear models. For the jackknife estimate θ̂n of θn, it was found in [83] that consis-
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tency and asymptotic normality of θ̂n can be established, as well as the consistency of

the jackknife variance estimator of the asymptotic covariance matrix of θ̂n. The results

are summarized here for the delete-1 jackknife, as originally presented in [83], and can

easily be extended to the delete-d case using the results of the previous sections.

• ( [83] Theorems 1 and 2) For a LSQ estimator θn conditioned on n data points,

then θn → θ almost surely (a.s.), and the distribution of a sequence of consistent

LSQ estimators θn is asymptotically normally distributed.

• ( [83] Lemma 3) Let θ̂s, for i = {1, . . . , n}, be the collection of delete-1 jackknife

samples of the LSQ estimates of θn. Then

maxi≤n

∥∥∥θ̂ni − θ∥∥∥→ 0 a.s. (4.35)

• ( [83] Theorem 4) The jackknife variance estimator is consistent, by proving that

n(ṽn − vn)→ 0 a.s.

Therefore, a jackknifed sampling of least squares estimates allows us to estimate

a prior distribution of parameters for a nonlinear model without having to implement

MCMC methods. An added benefit of the LSQ jackknife sampling procedure is that the

estimated parameter distribution will asymptotically be normally distributed. Ensuring

that the distributions are normal is essential to the performance of the EnKF, since

the EnKF only uses the first two moments of the ensemble distribution. Furthermore,
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the adaptive scheme in the previous section provides a computationally efficient way of

assimilating new data into the statistical model.

4.4 Posterior estimation via ensemble filtering

In previous sections, we saw how to use ensemble filtering to construct posterior es-

timates of a distribution’s mean and covariance without having to implement MCMC

methods. However, the ensemble filtering requires knowledge of the process noise, mea-

surement noise, and the mean and covariance of the prior distribution. When these prior

quantities are known, ensemble filtering can be implemented to further reduce the com-

putational cost of assimilating new data. Without prior knowledge of model parameters

or model noise distributions, we propose that one can implement jackknife estimation

methods to initialize the stochastic model such that ensemble filtering can take over the

posterior parameter and state estimation process once it produces posterior estimates

that agree with that of the adaptive jackknife method.

4.4.1 Estimating R from Cross-Validation

When implementing the jackknife LSQ estimator, the sampling distribution for θ pro-

duces an output distribution for y. However, the measurements are subject to uncertainty,

as accounted for in (4.2), and this uncertainty can be measured as being attributed to the

additional out-of-sample error. Cross-validation (CV) is a statistical learning technique

typically used to evaluate a model by describing its out-of-sample statistics. Typical
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CV methods involve training a model on a subset Sm of the available data, and then

validating (testing) the model on the complement of Sm, which we denote as Scm.

The delete-d jackknife variance estimator already removes d data points from the

available data before each step of the parameter estimation, which naturally allows us to

use those d data points to acquire out-of-sample residual statistics that are indicative of

the errors we would see for a future measurement. Furthermore, we can use the delete-d

jackknife methodology to obtain jackknife estimates of the residual statistics, except the

validation set uses a delete-r jackknife estimate.

For a given jackknife parameter estimate θ̂s such that s ∈ Sm, a residual r̂j is defined

for some j ∈ Scm as

r̂j = yj −H(tj, θ̂s), (4.36)

and the residual statistics defined for a set of µ indices {j1, . . . , jµ} ∈ Scm, for which

µ ≤ d, are

r̂s =
1

µ

∑
j∈Sc

m

r̂j,

σ̂2
s = MSE(θ̂s) =

d

rµ

∑
j∈Sc

m

r̂j r̂
T
j ,

where σ̂2
s estimates the out-of-sample variance of θ̂s.

For each θ̂s estimate, there exists a corresponding jackknife sample distribution of

out-of-sample residual values r̂j. The jackknife mean of r̂ is the measurement bias,

and the jackknife variance estimate σ̂2
s captures the uncertainty attributed to both θ̂n

and the measurement noise
√
RN(0, 1). Since we obtain m estimates of θ̂s, we also
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obtain m sample distributions of the out-of-sample residuals, and the expected residual

distribution is described by the arithmetic mean of the m residual distributions (i.e., each

residual distribution has equal probability of being the correct residual distribution). The

expected jackknife residual statistics are

r̂n =
1

m

∑
s∈Sc

m

r̂s, (4.37)

σ̂2
n =

1

m2

∑
s∈Sc

m

σ̂2
s . (4.38)

The adaptive rule outlined in Section 4.3 can also be applied to obtain

r̂n =
r

n
r̂n∈sc +

(
1− r

n

)
r̂n−1 (4.39)

σ̂2
n =

( r
n

)2
σ̂2
n∈sc +

(
1− r

n

)2
σ̂2
n−1, (4.40)

where r̂n∈sc and σ̂2
n∈sc are defined by (4.37) and (4.38) with n ∈ Scm.

By taking Py = σ2
n, and

P̂y =
r

dm

∑
s∈Sm

(
H(ts, θ̂s)−

1

m

∑
s∈Sm

H(ts, θ̂s)

)
([· · · ])T , (4.41)

then one can solve for R from (4.18) to get

R = σ̂2
n − P̂y. (4.42)

Because the LSQ estimator finds a deterministic realization of each θ̂s assuming no

stochastic forcing, it is noted that when using the definitions (4.38) and (4.41), the Q̂y

term of (4.42) is identically equal to the zero matrix. It is also noted that by combining

the results of [87] and [83], both σ̂2
n and P̂y are each aymptotically consistent, and thus

R is asymptotically consistent as well.
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One can also account for the measurement bias in (4.13) to correct the expected

output signal

x̂+ = x̂− +K
(
y − y − r̂n

)
. (4.43)

4.4.2 Estimating Q from the ensemble filter

When comparing the jackknife LSQ estimator model (4.23) to the SDE model (4.2),

the parameter vector θ of the LSQ estimator is usually comprised of the SDE state values

x(t) at some time tk:

θk =

x(tk)

xp

 , (4.44)

where the SDE state values x(t) are augmented by the SDE model parameters xp having

zero deterministic dynamics (i.e., dxp = Qpdw). It follows from (4.3) thatx(tk+1)

xp

 =

F (tk+1, θk)

0

+
√
Qk∆tkN(0, 1). (4.45)

Here,

Qk =

Qt Qtp

Qtp Qp

 ,
where Qt is the Q from (4.3), Qp is the auto-covariance of uncertainty in the parameters,

and Qtp represents the cross-covariance between uncertainty in the states and parameters.

Together, Qk defines the process uncertainty of the augmented stochastic model (4.45).
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By treating each jackknife estimate θ̂s as an ensemble estimate θ̂i, we have N ensemble

estimates at time tk:

x̂(i) = F (tk, θ̂ki), (4.46)

P̂x =
1

N

∑
(x̂(i) − x̂(i))([· · · ])T . (4.47)

Essentially, the jackknife samples represent an ensemble of state estimates via the

transformation of (4.45). In terms of the ensemble filtering framework, the posterior state

covariance matrix P+
x for state values x(tk) = θk can be estimated from the jackknife

variance estimate vk, and the prior state covariance matrix P−x for the state values x(tk) =

θk−1 can be estimated by evolving ensemble members backward in time to tk (similar to

the prediction step in UKF) and calculating the ensemble variance at that time step,

say P̂−x . The justification here is that both P+
x and vn are representations of the state

covariance matrix after assimilating new data. By substituting vn = P̂+
x into (4.22) and

taking σ̂2
n = P̂y +R, one can explicitly solve for Q:

Q =
1

∆tk

(
vn − P̂−x + P̂xy(σ̂

2
n − Q̂y)

−1P̂ T
xy

)
. (4.48)

4.4.3 Discussion

To simplify the computation of (4.48), the Q̂y can be omitted from (4.48), which will

yield a pessimistic (i.e., greater in norm) solution for Q since Q̂y is positive semi-definite

and contributes positively to an inverted term. For many applications, including robust

control, this is an acceptable approximation.
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For highly nonlinear systems, the LSQ procedure may possibly find a region of minima

that are located significantly further away from the dominant mode. These types of

secondary modes can quickly emerge and cause the P̂−x to be large enough to make

(4.48) negative semi-definite. One solution to this problem would be to implement a

Gaussian mixture model (GMM) on the ensemble of realizations and run the adaptive

Kalman filter on the constituent normal distributions of ensemble members. In cases

where this approach is too computationally costly, the P̂−x term can be omitted from

(4.48) to, again, yield an even more pessimistic solution for Q.

4.5 Example application: logistic data

To demonstrate the performance of the adaptive jackknife estimator, we shall consider

a simple logistic model with discrete measurements and additive noise:
dx

dβ

dN

 =


βx
(
1− x

N

)
0

0

 dt+
√
Qdw (4.49)

yk = x(tk) +
√
RN(0, 1), (4.50)

where β ∈ R+ is the growth parameter, N ∈ R+ is the upper bound of x, and dq and

√
RN(0, 1) are the noise processes described in Section 4.2. The logistic model defined

by Eqs. (4.49) and (4.50) is a common model used to describe the adoption of a behavior

or new technology [17], and is known to have well known convergence properties when
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Figure 4.1: Adaptive jackknife estimation performance evaluation for a logistic model,
with different jackknife parameter values. In all test cases, n = 50 and µ = n− r.

using a jackknife sampling LSQ variance estimator [83]. It is also noted that the integral

of the deterministic part of (4.49) (i.e., dx = βx
(
1− x

N

)
dt) has the solution:

x(t) =
Nx(0) exp βt

N + x(0) (exp βt− 1)
. (4.51)

We simulated a sequence of 200 measurements yk, at times uniformly distributed

on the interval t = [0, 80], with initial values (x(0), β,N) = (1, 0.225, 500), and noise

covariance matrices Q = diag(15, 0.001, 10) and R = 1. Figure 4.1 shows the error,

in Euclidean norm, between the state estimate of the adaptive jackknife filter and the

value of (4.51) at time tk. For a fixed burn-in period of 50 measurements, we find that

the estimate of the augmented state vector converges with a greater number of included

measurements r, and fewer jackknife samples m. With a greater value of r, the adaptive

jackknife filter is able to use as many measurements as possible during the burn-in initial-

ization phase, which (i) causes a reduction in the jackknife variance estimate according

to (4.32), and (ii) results in an initial estimate closer to the true value by causing the
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value r/n to be large. Using fewer jackknife samples (i.e., m = 25 vs m = 50) seems to

also counter-intuitively produce a fast convergence result in this example, because few

jackknife samples are needed to accurately represent the uncertainty distributions in the

model. Choosing m = 50 causes an over-sampling of outliers, and it is not until we have

m = 250 that the true distribution emerges.

4.6 Conclusion and Future Work

We have shown how one can implement the techniques of jackknife variance estimators

as they apply to least squares estimators to construct an adaptive, nonparametric, and

computationally efficient statistical nonlinear filter.

One issue that we left as an assumption is that for each jackknife estimate, there

exists a solution to the LSQ problem. In fact, this is not a far-fetched assumption

to make because bootstrap methods (similar to jackknife sampling) have been shown to

efficiently search for the solution to the general LSQ problem [89]. Lastly, we also remark

that jackknife sampling LSQ problem is easily broken down to a parallel computation

problem, since the LSQ solution for each jackknife sample of the data can be solved

independently of each other jackknife sample. Therefore, there is room for future work

on this subject to increase computational efficiency, both with respect to improving LSQ

estimation and parallelizing each step of the adaptive algorithm.

At first glance it seems as though one can use the sum of least-squares of residuals

(i.e., the least-squares objective function) as an estimate for the signal variance. However,
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this variance estimate is one point sample of the variance estimate for the available data,

and does not say anything about the confidence level of this estimate with respect to the

true variance.
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Chapter 5

Does the network model explain the
measured data?

With a known network topology, the agent-based adoption model of Chapter 2 de-

scribes the simple contagion behavior of information on that social network, where each

individual on the network can only become informed from another member of the same

network. Furthermore, the results of Chapter 2 are careful to only discuss the agent-based

model as a tool for investigating the effects of network structure on the rate of informa-

tion propagation when controlling for all other parameters. Suppose that we know the

other parameters in addition to knowing the network structure, and let us suppose also

that we have actual time series data for the adoption of a behavior on a social network.

How well do these agent-based network models explain real data?

The statistical tools of Chapter 4 allow us to estimate the underlying stochastic model

that produced an observed realization of the data. To do this, we estimated a mean-

field solution (LSQ jackknife mean) and variance about that mean-field solution (LSQ

jackknife variance) of the adoption data. The ensemble of mean-field solutions from the
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jackknife sampling procedure can be described by their distribution of parameters and

initial conditions, and these same ensemble parameters and initial conditions can also be

used as the parameters and initial conditions for the agent-based network model. Since

the agent-based network model has the same parameter and initial value distribution as

the stochastic data model, a paired statistical hypothesis test can be used to determine

how likely the agent-based network ensemble realizations were generated by the stochastic

data model, when a specified null hypothesis is true. Ultimately, our findings will be used

to motivate the need for a better way of modeling agent behavior on social networks,

which is discussed in Chapter 6.

5.1 Generating Ensemble Realizations from Data

With repeated experiments, uncertainty in the data can be estimated by an ensem-

ble distribution of the data. However, with real data from the Twitter social network,

adoption phenomena can only be observed once. For example, once a user adopts a

hashtag, it is very unlikely that they will forget the hashtag and re-adopt it in the same

context. Not only does it remain an open research problem for how to reliably detect

when someone on a social network has forgotten a parcel of information, it still remains

a challenge to control for all other variables that affect the state of the social network.

Fortunately, all is not lost. The adaptive jackknife sampling tools discussed in Chapter

4 provide a way for us to estimate the stochastic model that generated each individual
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hashtag adoption time series. The solution to the SDE of the stochastic model can then

be solved via Monte-Carlo simulation [90].

Since the methods of Chapter 4 tend to over estimate the magnitude of the stochastic

forcing term
√
Q of (4.1a), a more reliable estimate of

√
Q can be found by simulated

maximum likelihood (SML) [91]. The open source SDE Toolbox for Matlab [92] imple-

ments the SML algorithm outlined in [91], and uses the Euler-Murayama method [90]

to Itō integrate each ensemble realization in the Monte Carlo simulated SDE solution.

The SDE Toolbox also implements Matlab’s built-in Nelder-Mead simplex (direct search)

method [93], which is used to find the
√
Q value that maximizes the maximum likelihood

objective function of the SML algorithm. Therefore, the adaptive jackknife procedure

finds the maximum likelihood parameters (in a LSQ sense) that define the drift term

of (5.1), and the SML algorithm finds the magnitude of the stochastic forcing (diffusion)

term.

After the jackknife procedure finds the maximum likelihood estimates of the I(0), N ,

and It− parameters, we treat these values as constants. We also assume, in this chapter,

that the data measurements are direct measurements of the I state variable (i.e., R = 0),

and obtain the 1-D SDE:

dI = βI

(
1− I

N

)
dt+

√
Qdw (5.1a)

y = I + It−. (5.1b)

The SML algorithm is used to find the maximum likelihood estimate of
√
Q in (5.1).
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Using the notation established in Section 4.3, the adaptive jackknife scheme is imple-

mented on each hashtag’s observed time series with m = 250 and r = 4n/5, which are

sufficient values for estimating the logistic equation according to the results of Section 4.5.

Because a sufficient number of data points is required to do the adaptive jackknife esti-

mation, we include only those hashtags that have at least n = 30 data points. Therefore,

for each of these hashtags, we chose µ = 4 and used the first n0 = r + 5 data points

to begin the adaptive estimation procedure. The adaptive jackknife estimation was also

implemented on the ICB computer cluster at UCSB, where we had reserved access to

exactly 25 nodes via the built-in Matlab parallel computation toolbox.

After finding the jackknife parameter estimates for the hashtags with a sufficient

amount of data, complexity of the SML algorithm limited it to only being able to converge

to a solution for a subset of the remaining hashtags. In total, we were able to accurately

estimate all unknown parameters for 28.6% of the hashtags in our data set. Although

it remains as future work to accurately and robustly estimate all parameters for a given

SDE from real data, generalizing a computationally tenable procedure for this task is an

ongoing research problem that is outside the scope of this manuscript.

We remark that having access to only 25 compute nodes limited us to m = 25

realizations of the agent-based model because a single realization on one processor took

on the order of 6 minutes to 18 hours, depending on the number of data measurements.

Although we could have increased the value of m at the cost of linearly increasing total

compute time, the findings of Section 4 demonstrate that m = 25 is sufficient. It is also
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Figure 5.1: (a) Ensemble realizations normalized by population size for the respective
model, and (b) time-dependent p-values for the #nobama hashtag.

noted that each parameter set of these realizations was chosen from the set of parameters

corresponding with one of the 250 LSQ jackknife ensemble members. For each of these

25 randomly selected parameter sets, a set of 1000 Monte Carlo ensemble realizations

was simulated to produce the 25000 realizations that compose the empirical data density

distribution (see Figure 5.1a for example).

5.2 Model Comparison

Because the carrying capacity (i.e., relevant population size) of the agent-based net-

work model (2.15) may be different from the carrying capacity of the SDE (5.1a) that

best explains the data, we normalize each model by its respective carrying capacity for

each hashtag. We shall denote IN(t) to represent the size of the informed population of

the agent-based network model at time t, and, similarly, ID(t) to represent the size of
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the informed population represented by the data and included in the SDE data model.

As mentioned in [17], the carrying capacity of the logistic model is an asymptotically

stable fixed point. For the network model, the carrying capacity of the hashtag’s topi-

cal backbone network, say IN(∞), is determined by the set of users who are reachable

from the set of known infected individuals (as given by the data realization for that

hashtag), while the carrying capacity for the data, denoted as ID(∞), is a parameter

found by the adaptive jackknife procedure of Chapter 4 (i.e., ID(∞) = N). Therefore,

each user in the agent-based simulation was initialized with the same likelihood of being

informed so that both the agent-based network simulation and the data Monte Carlo

realizations have the same initial conditions in their respective normalized scales (i.e.,

IN(0)/IN(∞) = ID(0)/ID(∞)).

By construction of this experiment, the normalized homogeneous approximation of

the difference equation (2.15) is identical in the continuous limit (h → 0) to the drift

term of (5.1a), when normalized with respect to ID(∞). Both systems have the same

β value, and the same initial likelihood of informed individuals. The normalized agent-

based network model and the normalized SDE data model differ by their additive terms.

The additive term of the agent-based network model is the bound on the heterogeneous

network effects, while the additive term of the SDE data model is the stochastic forcing

(diffusion) term. In this section we investigate the significance of these additive terms

by determining how well the uncertainty in the data model (stochastic forcing term)

is explained by the heterogeneous effects of the network (homogeneous approximation
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error). Section 5.2.1 uses a statistical hypothesis test to investigate the probability that

the agent-based network realizations were generated by the same density function that

generated the data. Section 5.2.2 explains the results of Section 5.2.1 in terms of the

magnitudes of the additive terms with respect to each other.

5.2.1 Statistical hypothesis test

When a sample statistic is drawn, such as a sample mean, one would like to be able to

determine how likely it is that the sample statistic was drawn from a given distribution

rather than by random chance. To do this we can perform a statistical hypothesis test

on the sample statistic.

For a given point in time t, let us take the sample mean µ(t) of sample size m = 25

as our test statistic. At each time step, we shall employ a z-test [94] to determine

the likelihood that the sample mean of the agent-based network realizations came from

the sample distribution of Monte Carlo ensemble members that comprise the data SDE

solution.

The jackknife members define the agent-based ensemble distribution such that the

ensemble mean of the network realizations is

µN(t) =
1

m

∑
θi

IN(t), (5.2)
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for each LSQ jackknife parameter estimate θi at time t. Likewise, a sample mean of m

randomly chosen ensemble members ID(t) from the data SDE solution is defined as

µD(t) =
1

m

∑
ID(t). (5.3)

When conducting the z-test, we take the null hypothesis to be

H0 : µN(t) = µD(t). (5.4)

It is noted that the distribution of µD(t) can be approximated from the mean and variance

of the empirical distribution of ID(t) values at time t, as implemented by Matlab’s built-in

ztest() function, which was used to produce the results in this section.

Each z-test, conducted at each time step, will produce a p-value [94]. The p-value is

commonly interpreted as representing the probability that an observation of the sample

statistic occurred by random chance under the null hypothesis. However, we shall only

consider the p-value for the much simpler task of detecting a binary outcome. For

instance, it is often accepted in literature that a p-value of less than 0.95 is enough

evidence to reject the null hypothesis [94].

By construction, it must necessarily be true that µD(0) = µN(0) in both the absolute

and normalized coordinates. Figure 5.1a shows a set of ensemble realizations in the

normalized coordinates, and Figure 5.1b shows how the p-values change in time. Since the

normalized initial conditions of the network and data models are the same value, and both

models asymptotically approach the unity value in their respective population-normalized

coordinates, one should expect the greatest separation between the two models to be
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Figure 5.2: Minimum P-values over time for all available hashtags.

greatest during the transient phase of the system. From the example shown in Figure 5.1a,

we find that the p-values are closest to p = 1.0 where the functions intersect, and near

zero at time t = 120(days). Since the minimum p-value for the #nobama hashtag is

significantly less than 0.95, this indicates that the two ensembles are highly unlikely to

be statistically different by random chance.

We repeated this statistical hypothesis test at each time step for each hashtag in

our dataset, and recorded the minimum observed p-value in each hashtag’s time series.

Twenty tree hashtags were discarded because their
√
Q values were large enough to

stochastically drive the data ensemble mean to the ID(t) = 0 (unstable) fixed point,

which violates the assumption that no members of the population are able to forget

about the hashtag. Figure 5.2 shows the distribution of minimum p-values over the set

of remaining ninety eight available hashtags from the original data set. The maximum

p-value recorded in Figure 5.2 is 0.68, and suggests that none of the agent-based network

ensembles were generated by the same process that generated the data.
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5.2.2 Stochastic forcing or network effects?

Let us consider the respective network and data models. The proportion of informed

agents in a network defined by the row stochastic adjacency matrix A, is generally de-

scribed by dividing (2.15) by the network carrying capacity IN(∞):

It+h
IN(∞)

=
It

IN(∞)
+ hβ

It
IN(∞)

(
1− I

I∞

)
+O

(
h ‖A−R1‖2
IN(∞)

)
, (5.5)

which has an upper bound on the homogeneous approximation error term, as described

in Appendix B.3:

O

(
h‖A−R1‖2
IN(∞)

)
≤ O

(
hβN‖A‖2
IN(∞)

)
. (5.6)

Thus, combining expressions (5.5) and (5.6) gives

It+h
IN(∞)

=
It

IN(∞)
+ hβ

It
IN(∞)

(
1− I

I∞

)
+O

(
hβ‖A‖2
IN(∞)

)
. (5.7)

To further simplify our analysis in this section, we can take advantage of the fact that

β << 1 is true for all hashtags in our data set so that (5.7) is numerically stable [95].

Therefore, we can let xN(t) = It/IN(∞) and use the continuous ODE:

dxN
dt

= βxN (1− xN) +O

(
hβ‖A‖2
IN(∞)

)
(5.8)

as a close approximation of (5.7), since (5.7) is a forward Euler approximation of (5.8).

Similarly, we can normalize (5.1a) by ID(∞) and let xD(t) = ID(t)/Id(∞) to obtain:

dxD
dt

= βxD (1− xD) +

√
Q

ID(∞)
dw. (5.9)
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Figure 5.3: Distribution of ‖A‖2/‖
√
Q‖2 values for the hashtag dataset.
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Figure 5.4: Distribution of the normalized εD vs. normalized εN values for the hashtag
dataset.

When comparing (5.8) to (5.1), the stochastic forcing term

εD , (
√
Q/ID(∞))dw of (5.9) and the εN , (β‖A‖2/IN(∞)) term of (5.8) are analogous

to each other, and we can compare their relative magnitudes to each other. If the

magnitudes are relatively close, then it may be possible that the data realizations are

actually consistent with each other even though their estimated ensemble behavior is

significantly different. However, the evidence shown in Figure 5.4 weakly supports the
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null hypothesis (5.4), and leads one to conclude that uncertainty in the data is not

explained by the homogeneous approximation error of the network model.

Figure 5.3 shows the distribution of the ‖A‖2/‖
√
Q‖2 values for the available hashtags

in our dataset, and shows that these quantities are of the same order of magnitude.

However, since the relative magnitudes of the normalized εD and εN values, as shown

in Figure 5.4, are often orders of magnitude different, it seems very unlikely that the

stochastic forcing term is explained by the homogeneous approximation error for an

arbitrary hashtag. These findings support the earlier claims of Section 5.2.1.

5.3 Discussion

Based on the evidence presented in Section 5.2, it is unlikely that the fluctuations

in the data are explained by the given network structure. This suggests that if one

wished to use an agent-based network model to describe hashtag adoption data within

a population, then a more detailed and time-varying edge weighting scheme may be

required to sufficiently model each user-user interaction in the agent-based network. With

a social network as large as Twitter, which has over 1.47× 109 edges [50], the procedure

one chooses to model the behavior at each edge can quickly become untenable. If this

type of procedure were actually tenable, the uncertainty of the edge weight estimations

would collectively result in a high level of uncertainty in the overall estimate of the size

of the informed population. In contrast, when considering the population model directly,
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one may think of the fluctuations in the edge weight functions as canceling each other

out so that there is more certainty in the population estimates inferred from the data.

Furthermore, as future work, it may be possible to explain the hashtag adoption data

using an SEI-type contagion model [17], which models an exposed (E) class of individuals

who are neighbors of hashtag users but have not used the hashtag themselves. One can

compare the estimated size of E-class individuals to the number of exposed neighbors

in the network model using our adaptive jackknife estimation strategy, and compare

the size of these sets in order to gain more insight into the network effects of hashtag

adoption. However, population models that are more complex than the simple SI systems

become even more complex when constructing their agent-based network analogue since

complexity of the agent-based model scales with the size of the network. Once the agent-

based model is defined for these more complex population models, it still remains a

challenge how one can reduce the agent-based network equations to a coarse population

model for comparison.

It is also known that the value of social information in a network varies in time. For

instance, it has been empirically shown that the recency of a news story affects its rate

of imitation among news sources [39]. The authors of [39] suggest a parameter, say η,

that describes the global proportion of news sources writing about a given meme at time

t after its first mention:

dη

dt
= cqηt−1,
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where c is a normalization constant, and q is a constant rate parameter. If we were to

perceive the aggregate discussion of hashtag related stories in news outlets as a proxy

for the general interest in a given meme, then the value of η represents a scaling of the

population’s hashtag adoption curve I(t): dI
dt

dη
dt

 =

hηβI
(

1− I
I∞

)
cqηt−1

 . (5.10)

Since η scales the adoption rate β in (5.10), the ability of the agent-based network model

to track the data will not be affected, but only relatively scaled. One could add more

parameters to the existing model to account for various population effects, however, it is

unlikely that these types of modifications will lessen the disparity between the population

model and the agent-based network model since population effects will affect the mean

behavior of both models equally.

At this point, it is clear that population-level models are better for predicting population-

level behavior than the agent-based network models. At the individual level, is it possible

to make better predictions about who will adopt a hashtag conditioned on their neighbors

who have already used the hashtag? The evidence suggests that the agent-based network

model of (5.5) seems to be ill suited for this task. How can we do better?
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A Better User Model

Instead of using the agent-based network model for predicting global hashtag adop-

tion, which is outperformed by the optimal estimation techniques outlined in Chapter

4, we propose a novel user model that is capable of capturing topic specific behavior

and is capable of generally predicting adoption behavior at the agent level. Since the

jackknife methods already optimally estimate global hashtag behavior from the data, we

shall investigate the efficacy of a genetically inspired user model that is able to describe

user behavior with respect to hashtags of different topics.

Trends and influence in social media are mediated by the individual behavior of users

and organizations embedded in a follower/subscription network. The social media net-

work structure differs from a friendship network in that users are allowed to follow any

other user and follower links are not necessarily bi-directional. While a link enables a

possible influence channel, it is not always an active entity, since a follower is not neces-

sarily interested in all of the content that a followee posts. Furthermore, two individuals

are likely to regard the same token of information differently. Understanding how infor-
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mation spreads and which links are active requires characterizing the users’ individual

behavior, and thus going beyond the static network structure. A natural question then

arises: Are social media users consistent in their interest and susceptibility to certain

topics?

In this chapter, we answer the above question by demonstrating a persistent topic-

specific behavior in real-world social media. We propose a user model, termed genotype,

that summarizes a user’s topic-specific footprint in the information dissemination process,

based on empirical data. The social media genotype, similar to a biological genotype,

captures unique user traits and variations in different genes (topics). Within the genotype

model, a node becomes an individual represented by a set of unique invariant properties.

For our particular analysis, the genotypes summarize the propensity and activity

level in adoption, transformation, and propagation of information within the context of

different topics. We propose a specific set of properties describing the adoption and use

of topic-specific Twitter hashtags. The model, however, applies to more general settings

capturing, for example, dissemination of URLs or sentiments in the network.

We construct the genome (collection of user genotypes) of a large social media dataset

from Twitter, comprised of both follower structure and associated posts. The existence

of stable genotypes (behavior) leads to natural further questions: (1) Can this consistent

user behavior be employed to categorize novel information based on its spread pattern?

(2) Can one utilize the genotypes and the topic-specific influence backbone to (i) predict

likely adopters/influencers for new information from a known topic and (ii) improve
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the network utility by reducing latency of disseminated information? In this chapter,

we explore the potential of the genotype model to answer the first question within the

context of Twitter1.

To validate the consistency of genotypes, we show that combining genotype-based

classifiers into a composite (network-wide) classifier achieves accuracy of 87% in pre-

dicting the topic of novel hashtags that spread in the network. We extract and analyze

topic-specific influence backbone networks and show that they structurally differ from the

static follower network. When considering the population level dynamics, using a simple

contagion model, we show that hashtags of a known topic propagate at the greatest rate

on backbone networks of the same topic, and that this result is consistent with the local

user model.

We remark that the data values for each genotype metric are likely to be affected by

the fact that 80% of the SNAP users’ messages were not recorded. In addition, not all

hashtags we encounter can be attributed to a topic. Nonetheless, all metrics in this study

are affected equally, and evaluated relative to each other. Obtaining complete snapshots

of network structure at any given point in time in these experiments is untenable. Thus,

we acknowledge this limitation and cast our results in the context of only what is known

about the network structures and posts within the Twitter dataset.

1Both questions are discussed in [4], and the work pertaining to question (2) is primarily attributed
to Petko Bogdanov.
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6.1 Related Work

The network structure has been central in studying influence and information dis-

semination in traditional social network research [96, 97]. Large social media systems,

different from traditional social networks, tend to exhibit relatively denser follower struc-

ture, non-homogeneous participation of nodes, and topic specialization/interest of indi-

vidual users. Twitter, for example, is known to be structurally different from human

social networks [50], and the intrinsic topics of circulated hashtags are central to their

adoption [52].

A diverse body of research has been dedicated to understanding influence and in-

formation spread on networks, from theories in sociology [98] to epidemiology [17, 33],

leading to empirical large-scale studies enabled by social web systems [49, 52, 99, 100].

Here, we postulate that the influence structure varies across topics [57] and is further

personalized for individual node pairs. Lin and colleagues [101] also focus on topic-

specific diffusion by co-learning latent topics and their evolution in online communities.

The diffusion that the authors of [101] predict is implicit, meaning that nodes are part

of the diffusion if they use language corresponding to the latent topics. In contrast, we

focus on topic-specific user genotypes and influence structures concerned with passing of

observable information tokens and their temporal adoption properties.

Earlier data-centered studies have shown that sentiment [99] and local network struc-

ture [52] have an effect on the spread of ideas. The novelty of our approach is the focus

on content features to which users react. Previous content-based analyses of Tweets have
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adopted latent topic models [102, 103]. We tie both content and behavioral features to

the network’s individuals.

With regard to influence network structure and authoritative sources discovery, Ro-

driguez and colleagues [104] were able to infer the structure and dynamics of information

(influence) pathways, based on the spread of memes or keywords. Bakshy et al. [105] fo-

cus on Twitter influencers who are roots of large cascades and have many followers, while

Pal et al [106] adopt clustering and ranking based on structural and content characteris-

tics to discover authoritative users. Although the above works are similar to ours in that

they focus on influence structures and user summaries, our genotype targets capturing

the invariant user behavior and information spread within topics as a whole, involving a

collection of topically related information parcels.

Our framework is inspired by biology and evolution, similar to Reali and Griffiths [107].

We broaden the genotype interpretation beyond word variants, and demonstrate their

predictive utility. Our goal is to treat the observable content as a genetic parcel of in-

formation that users pass on to one another, while potentially introducing a delay or

alteration to the message. An added benefit of this approach is that similarity of behav-

ior toward certain types of messages among users may indicate social affinity (of interests,

attitudes, etc.), provide important information about transmission paths in the network,

and predict future edge formation [108].
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6.2 Genotype Model

Here we define our genotype model capturing the topic-specific behavior of a single

user (node) within a social media network. Our main premise is that, based on observed

network behavior, we can derive a consistent signature of a user. Hence, the genotype

model is an individual user model, by definition, in the sense that it represents the behav-

ioral traits of a social network user. For our analysis, the genotype captures adoption and

reposting of new information, activity levels, and latency of reaction to new information

sent by influential neighbors. Other behavioral traits can be incorporated as well. The

genotype is topic-specific as we summarize the behavioral traits with respect to a set of

predefined topics.

Recall that a social media network N(U,E) is a set of users (nodes) U and a set

of follow links E. A directed follow link e = (u, v), e ∈ E connects a source user u

(followee) to a destination user v (follower). The network structure determines how

users get exposed to information posted by their followees. The static network does not

necessarily capture influence as users do not react to all information to which they are

exposed. To account for the latter, we model the behavior of individual users taking into

account their context in the follower network.

In its most general form, a user’s genotype Gu is an entity embedded in a multi-

dimensional feature space that summarizes the observable behavior of user u with respect

to different topics. It is up to the practitioner to define the different dimensions of the

topic feature space and the relevant aspects of observable behavior in the network locality
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of a node. Each genotype value can be viewed as an allele that the user introduces to

the process of message propagation through a network.

In our study, we focus on hashtag usage within Twitter, since hashtags are simple user-

generated tokens that annotate tweets generated by either a social group or designating a

specific social phenomenon, and are often “learned” from others on the social network [51].

In this context, a hashtag serves as a genetic parcel of cultural information, just like

alleles of a gene within a biological context. Hashtags can be associated with topics such

that an individual’s response to a collection of hashtags within a topic indicates a user’s

propensity to respond to other hashtags within that same topic.

We consider a finite set of hashtags H = {h}, each associated with a topic Ti ∈ T . To

obtain the genotype, we analyze the social media message (tweet) stream produced by a

user u, with respect to H. Let us define m(·) to be a function that maps each occurrence

of (u, h) to a real values m : {(u, h)} 7→ R. The set of hashtags associated with topic Ti

and adopted by user u are denoted as H(u,Ti) := {h}Ti ∩ {h}u, where {h}Ti is the set of

hashtags in topic Ti and {h}u is the set of hashtags adopted by user u. The ith element of

the user genotype Gu is the set of {m(u, h) | h ∈ H(u,Ti)} values. We remark that this set

of values may also be reduced to their average value or some approximated distribution

function if one wishes to have a coarser representation of the data.

To construct each user’s topic-genotype from empirical data, we consider a variety

of metrics m(·) for (u, h) pairs, listed in Table 6.1. These metrics serve the purpose of

quantifying a user’s response to a hashtag by defining the data values that are used to
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Metric Function definition Notes
Time TIME(u, h) = min(u,h)(t(u, h)) −

minv∈Vu(t(v, h)), where t(u, h) is the
time (u, h) occurs and Vu is the set
of followees of u.

The absolute amount of time
between a users first exposure
to the given hashtag and his
first use of that same hashtag.

Number of
Uses

N-USES(u, h) = |{(u, h)}|, where | · |
is the cardinality function.

The total number of occur-
rences of the (u, h) pair.

Number of
Parents

N-PAR(u, h) =
|{v ∈ Vu | t(v, h) < t(u, h)}|

The number of followees to
adopt before the given user.

Fraction of
Parents

F-PAR = N-PAR(u, h)/ |Vu|. The fraction of a user’s fol-
lowees who have adopted the
hashtag prior to the user.

Latency LAT(u, h) = (|{hj ∈ HTi | HTi 3 h ,
and t(u, hj) < t(u, h)}|)−1.

The inverse of the number of
same-topic hashtags posted to
the user’s time-line between his
first exposure to the hashtag
and his first use of the hashtag.

Log-latency LOG-LAT(u, h) =
log (LAT(u, h)/Avg(LAT(w, h)
s.t. w ∈ U)).

The logarithm of each latency
value after each latency value
has been divided by the mean
latency value for that hashtag.

Table 6.1: Behavior-based metrics that are components of the topic-specific user geno-
type.

estimate the topic distributions. While TIME and N-USES are intuitively obvious metric

choices, LAT and LOG-LAT are novel to this manuscript. N-PAR and F-PAR have been

previously studied in a different context [52], and are included here for comparison.

While we define the user genotypes based on adoption of hashtags in Twitter similar

models can be built in other networks as well. The follower network structure in Twitter

forms a directed graph and hence the definition can be easily generalized to undirected

networks such as those of systems like Facebook and Google+. Instead of hashtags one
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can focus on other aspects of behavior such as adoption of new phrases, hyper-links or

other tokens that carry topical information.

6.3 Genotype model validation in Twitter

To justify the genotype model as a meaningful representation of social network users,

we demonstrate that it is capable of capturing stable individual user behavior for a given

topic. We seek to evaluate the stability of configuration of multiple users’ genotype values

within a topic, and use a classification task and the obtained (training/testing) accuracy

as a measure of consistency for our genotype model. Within this context, we compare

different genotype dimensions and evaluate the level to which each of them captures

characteristic invariant properties of a social media user.

6.3.1 Topic consistency for individual users

Our hypothesis is that individual users exhibit consistent behavior of adopting and

using hashtags (stable genotype) within a known topic. If we are able to capture such

invariant user characteristics in our genotype metrics, then we can turn to employing

the genotypes for applications. We compute genotype values according to our collection

of hashtags with known topics by training a per-user Linear Discriminant (LD) topic

classifier to learn the separation among topics. The LD algorithm fits a multivariate

normal density (via the standard EM algorithm) to each group with a covariance estimate

that is assumed to be equal for each topic [109], and was implemented via Matlab’s
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Figure 6.1: Training and testing accuracy of hashtag classification in a leave-one-out
Linear Discriminant classification.

classify() function. Since each metric in our study is a scalar real value, the LD

classifier for each user partitions the real line into adjacent convex sections corresponding

with each topic of maximum likelihood. Therefore, assigning a hashag to a topic for a

specific user becomes a simple binary decision, where we place the hashtag on the real

line according to it’s metric value and note whether or not it is assigned the correct topic

label.

For our application, consider the LOG-LAT genotype metric: for a user u, we have a

set of observed LOG-LAT values (based on multiple hashtags) that are associated with

the corresponding topics. If the user u is consistent in her reaction to each topic, then the
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LOG-LAT values per topic will allow the construction of a classifier with low training and

testing error. It is also noted that each hashtag does end up having a topic distribution,

but for the scope of this study, a sufficient hashtag classification should at least agree in

the topic of greatest probability/likelihood, which is what is presented here. Moreover,

to be able to estimate probability distributions for each topic, we only consider users who

have at least two hashtag uses in each topic.

The consistency of user responses is evaluated using a leave-one-hashtag-out vali-

dation. Given the full set of (u, h) response values, we withhold all pairs including a

validation hashtag h and employ the rest of the pairs involving hashtags of known topic

to estimate the individual user’s topic genotype. We repeat this for all genotype metrics.

The training and testing error rate for this experiment are presented in Figure 6.1, and

their similar error rates demonstrate how consistent users are at classifying hashtags into

topics. In both cases, our genotype metrics enable significantly lower error rates than

a Random model (i.e. random prediction based on number of hashtags within a topic),

demonstrating that, in general, genotype metrics capture consistent topic-wise behav-

ior. One exception is the Politics topic as it has comparatively many more hashtags

than other topics, skewing the random topic distribution resulting in slightly lower error.

Across genotype metrics, we observe that normalized latency of adoption (LOG-LAT) is

more consistent per user than alternatives.
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Bus. Celeb. Poli. Sci./Tech. Sport E[x]

Random Error 0.96 0.95 0.28 0.85 0.95 0.45
F-PAR 0.50 0.88 0.61 0.15 0.09 0.41
LAT 0.09 0.46 0.18 0.19 0.25 0.21
LOG-LAT 0.05 0.13 0.19 0.12 0.03 0.13
N-PAR 0.09 0.50 0.88 0.09 0.03 0.40
N-USES 0.45 0.42 0.90 0.22 0.56 0.54
TIME 1.0 1.0 0.01 0.92 0.88 0.61

Table 6.2: Error rates of the NB consensus topic classification. E[x] is the expected error
across topics.

6.3.2 Topic consistency within the network

In order to track topics, or recommend relevant content, it is essential to understand

the topic of newly-arising hashtags. To this end, we leverage the existing genotypes for the

SNAP dataset and build a concensus classification framework based on how new hashtags

spread within the network of genotype-annotated nodes (i.e., Twitter users). We begin

by using the individual user classifications from the validation set of hashtags, and then

implement a Naive Bayes (NB) algorithm to achieve consensus on the topic classification

of each validation hashtag. Additionally, we also demonstrate that consensus becomes

more accurate as more individuals use the given hashtag. While individual users may

exhibit some inconsistencies in how they behave with respect to hashtags within a topic,

an ensemble of users’ genotypes remains more consistent overall. To demonstrate this

effect, we extend our classification-based evaluation to the network level. We implement

a network-wide ensemble-based Naive Bayes (NB) classifier that combines output of

individual user classifiers to achieve network-wide consensus on the topic classification of

each validation hashtag.
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To implement a NB consensus classifier on the output of each user’s local LD classifier,

posterior topic distributions from the LD classifier are required for each topic of each

user’s genotype. Since the LD classifer optimally fits a multinomial normal distribution

to the sets of topics for each user, one can use this multinomial distribution to estimate the

posterior likelihood that a newly classified hashtag (i.e., from the validation set) belongs

to a specified topic. However, the LD classifier assumes the same covariance estimate

for each topic, which causes the posterior likelihood to be underestimated for tightly

clustered hashtags of the same topic, and over estimated for relatively dispersed clusters

of same-topic hashtags. To correct for the uniform covariance assumption, posterior

likelihood estimates are calculated from the empirical hashtag distributions of each topic

(for the specified user). To remain consistent with the normality assumption of the LD

classifier, we assume normality for these empirical distributions within each topic, where

the mean values are centered about the correctly classified training hashtags and the

variance is computed from all training hashtags for that topic.

With regards to our NB implementation, the topic prior distributions are estimated

from the relative proportion of hashtags in each topic, and the hashtag’s ultimate topic

classification is determined by the maximum posterior likelihood over the network (all

user-wise LD classification outputs).

We note that since each hashtag was used by a moderate subset of users (compared to

the size of the whole network), only those users’ genotypes were needed for training the

classifiers. This locality of hashtag usage, and hence relevant users, is computationally
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advantageous because the amount of data needed for classification is bounded by the

number of users who used the validation hashtag, and the complexity of their genotypes.

However, the inherent data sparsity may become a disadvantage by limiting the classi-

fication to binary (in-topic or not-in-topic as opposed to multi-class) and degrading the

overall network classification performance when too few local classifiers are available.

Table 6.2 summarizes the testing error rate of our NB scheme for classifying hashtags

into topics in a leave-one-hashtag-out validation. The consensus error rate decreases

compared to local classifiers (Figure 6.1), demonstrating that the genotypes, as a complex,

are more stable and consistent than individual users. The lowest error rate of 0.13 is

achieved when using the LOG-LAT metric. The TIME metric happened to be the least

accurate metric of them all, because individual user response time values (TIME) showed

the least discernable clustering behavior. The accuracy of the TIME metric performed

most similar to the null (Random) model when compared the other metrics on a topic-

by-topic basis, but TIME happened to be more biased towards political hashtags because

they occurred most frequently in the dataset.

The latency genotype metrics that are most invariant (LAT and LOG-LAT) implic-

itly normalize their time scales of response with respect to the user’s own frequency of

activity, which is a feature not captured by the absolute TIME metric, or any of the

other metrics. Furthermore, both of these metrics incorporate the network structure,

measuring the message offset since the earliest exposure to the hashtag via a followee.

LOG-LAT has a slight advantage over LAT because it suppresses the background noise
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(a) LAT Net Classifier (b) LOG-LAT Net Classifier

Figure 6.2: Accuracy of the network classification as a function of the number of local
classifiers (SNAP). A logistic function is fit to each topic’s accuracy.

of each hashtag measurement. However, LOG-LAT has the disadvantage of being de-

pendent on a network-wide latency measurement for the same hashtag, which might be

harder to obtain in practice. In this sense, LAT is a more practical genotype dimension

when summarizing individual user behavior in real time.

While the system of all user genotypes exhibits significant consistency (high classifica-

tion accuracy), it is useful to know how many user genotypes are needed to obtain a good

classification (i.e., detect a network-wide topic-specific spread). We observe an increasing

classification accuracy with the number of users included in the NB scheme. Figures 6.2a

and 6.2b show the dependence of accuracy on number of local LD classifiers included per

topic. All curves increase sharply, indicating that variability within individuals is easily

overcome by considering a small subset of users within the network. In fact, the Busi-

ness and Sci./Tech. accuracies in Figure 6.2 are most accurate for the smallest subset of

users (i.e., fewest number of local classifiers), and then decrease slightly as less reliable
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individuals are included in the network classifier. Overall, the accuracy of the LOG-LAT

network classifier tends to increase faster to its optimal level with increasing number of

local classifiers, since the LOG-LAT metric features a network wide normalization and

thus contains global information.

With increasing number of available individual genotypes, the Business topic requires

consistently fewer local classifiers than the Celebrities. One explanation of this might

be a higher heterogeneity of sub-topics within Celebrties and hence lower topic-wide

response consistency. For example, many businesses and brand names are designed to

be topically distinct, while celebrities may be perceived as sports stars, politicians, or

company executives. For topics like the latter, more individual genotypes are needed to

arrive at a correct hashtag classification.

It is important to note that we use classification only as a way to evaluate if the

topic specific-behavior captured by our genotype metrics is invariant for users. While

the genotypes might be adopted for actual novel information classification into topics, an

improved classifier for such applications may benefit from combining the genotypes with

textual features of tweets.

6.4 Discussion

When comparing the results of this chapter to the results of Chapter 5, it becomes

more clear why the agent-based network model discussed in Chapter 2 is not able to fully

explain the fluctuations that are observed in real hashtag adoption data on the Twitter
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social network. In Section 2.2, the coupling strength between agents in the network is

assumed to be defined by the relative frequency of interactions between each pair of

neighboring agents. However, as shown in Section 6.3, we found that response time

(TIME) and number of hashtag uses (N-USES) within a topical network perform worse

than the null model (Random Error) and are the least reliable predictors of adoption

behavior. This indicates that each user is typically inconsistent in their response times

to same-topic hashtags, and suggests that an agent-based ODE model parameterized

by time is unlikely to accurately capture adoption behavior on social networks similar

to Twitter. Over all, the evidence presented in this chapter supports the results of

Chapter 5.

In future work, we are interested in applying the genotype framework beyond hash-

tags and Twitter. Alternative information retrieval and natural language processing

approaches for annotating tweets into topics can also be adopted within our framework.

Hashtags, as a means of annotation and defining a universal vocabulary, are also com-

mon in systems for other types of content such as music, photos and video. Examples

include the photo sharing social site Flickr, the video sharing site YouTube, and music

streaming sites such as Last.fm and Pandora. We believe that our hashtag-based geno-

type framework might extend to modeling and analysis of user behavior when interacting

and disseminating photos and multimedia as well.

We adopt a model in which every information item (hashtag) is associated with exactly

one topic. This particular way to instantiate our genotype model is the first attempt to
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demonstrate the preserved behavior within a topic. One can naturally extend this to

a richer analysis in which we have “soft” association of content items and topics. One

promising direction is to learn such association using latent topic models such as the ones

introduced by Blei and colleagues [110] in lieu of hard topic classification. Our proposed

applications (topic prediction, latency minimization, and adoption prediction) can then

be extended naturally using the probabilistic association weights of hashtags for different

topics.
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Conclusions

Many models of disease and rumor spreading phenomena average the behavior of

individuals in a population in order to obtain a coarse description of expected system

behavior. For these types of models, we determined how close the coarse approximation

is to its corresponding agent-based system. These findings lead to a general result on

the logistic behavior of information propagation for networks on both connected graphs

with doubly stochastic edge weights, and connected graphs with symmetric edge weights.

Moreover, we discussed the appropriateness of the discrete logistic approximation for a

few example heterogeneous graph topologies.

Motivated by our need to test the logistic approximation results with real hashtag

adoption data from the Twitter social network, we used statistical learning methods to

construct an adaptive state estimator for nonlinear systems. Optimal state estimation

typically requires knowledge of process and measurement uncertainty, which we proposed

can be estimated from (conditioned on) past observed data. As new data is acquired, the

state estimates, process uncertainty, and measurement uncertainty were updated accord-
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ingly. These statistical estimation methods helped us compare the real Twitter hashtag

data to the agent-based model, We found that the agent-based model, where coupling

between agents is only described in terms of network structure, does not sufficiently cap-

ture the user adoption behavior of hashtags, and thus a more descriptive user model is

required.

Since information propagation in social media depends on the topic-specific user be-

havior, we developed a novel model incorporating dynamic user behavior, termed a geno-

type. The genotype is a per-topic summary of a user’s interest, activity and susceptibility

to adopt new information. We demonstrated that user genotypes remain invariant within

a topic by applying the genotypes for the classification of new information spread in large-

scale real networks (demonstrated 87% accuracy). There is still room for this genotype

framework to be developed, and we leave it as future work to continue in this direction.
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Appendix A

Logistic Bounds of the Completely
Connected Solution

For systems of finite size, it is possible to bound (2.6) by discrete logistic functions.

Since the fact that each element of pt ∈ [0, 1] implies that
(
p
(i)
t

)2
≤ p

(i)
t and thus

|pt|22 ≤ |pt|1, then one obtains the upper bound:

xt+h ≤ xt + hβt
N

N − 1
xt (1− xt) . (A.1)

A lower bound for (2.6) can be obtained by simply truncating the the |pt|22 term:

xt+h ≥ xt + hβtxt

(
1− N

N − 1
xt

)
. (A.2)

We now compare the various logistic approximations to conclude that the single step

upper and lower logistic bounds of (2.6) produce upper and lower solutions for all time

steps. First, we show that if given xt, yt ∈ [0, 1] at time t and parameters φ, θ ∈ R>0,

then xt ≥ yt implies xt+h ≥ yt+h if the two points evolve according to the same discrete

logistic equation of the form xt+h = xt + φhβtxt (1− θxt).
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Appendix A. Logistic Bounds of the Completely Connected Solution

(a) (b)

Figure A.1: (a) Comparison of the graph-based solution to the logistic equation in the
thermodynamic limit, as well as the upper and lower bounding logistic solutions for the
finite case. The solutions are nearly indistinguishable. (b) Pointwise error difference of
the upper, lower, and thermodynamic limit logistic solutions with respect to the graph-
based solution. Parameters are βt = 1 and N = 100 in both plots.

By assuming xt ≥ yt, then

xt+h − yt+h = xt + φhβtxt (1− θxt)− yt − φhβtyt (1− θyt)

= (xt − yt) + φhβt
(
(xt − yt)− θ

(
x2t − y2t

))
= (xt − yt) [1 + φhβt (1− θ (xt + yt))]

≥ (xt − yt) [1 + φhβt (1− 2θ)] ,

and is non-negative when 2θ ≤ 1 or

h ≤ 1

suptβtφ (2θ − 1)
. (A.3)

By imposing a requirement on the step size of the discrete logistic equation, it can be

shown that one discrete logistic solution bounds another discrete logistic solution if their

single step dynamics also bound each other. When applied directly to (A.1) and (A.2),

the minimum step size comes from (A.2) with φ = 1 and θ = N/ (N − 1).
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Now suppose h satisfies (A.3) with the φ and θ values from (A.2) so that

h ≤ N − 1

N + 1

1

supt βt
.

The dynamic equation (2.7) yields a logistic approximation, x∗t , that is bounded by (A.1)

and (A.2). To show this is true, let

xUppert+h := xt + hβt
N

N − 1
xt (1− xt) ,

x∗t+h := xt + hβtxt (1− xt) ,

xLowert+h := xt + hβtxt

(
1− N

N − 1
xt

)
.

Given an initial condition |P0|1 /N = xUpper0 = x∗0 = xLower0 , equations (2.7) - (A.2)

provide the respective x1 values and their relation to each other (i.e., xLower1 ≤ x∗1 ≤

xUpper1 ). Let the relationship between x0 and the x1 terms be the base case for induction.

To show that xUppert ≥ x∗t implies xUppert+h ≥ x∗t+h as the inductive step, we begin with

the hypothesis that xLowert ≤ x∗t ≤ xUppert . If one were to briefly let yLowert = x∗t and

yUppert = x∗t , then the same procedure used to obtain the base cases asserts that yLowert+h ≤

x∗t+h ≤ yUppert+h . Since xLowert ≤ yLowert and yUppert ≤ xUppert , it follows that xLowert+h ≤ yLowert+h

and yUppert+h ≤ xUppert+h . Hence, xLowert ≤ x∗t ≤ xUppert implies xLowert+h ≤ x∗t+h ≤ xUppert+h so that

the solution to (2.7) is bounded by the solutions to (A.1) and (A.2).

For this bounding statement to be true, the step size must be chosen appropriately

based on the size on the network and the transmission rate. Thus, when comparing data

to the model under the homogeneous assumption, one must consider the behavior of the
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information since it affects the transmission rate. The transmission rate affects the step

size, which in turn affects the adjacency matrix (in the more general case).
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Appendix B

Proof of General Coarse
Approximation

B.1 Doubly Stochastic Matrices

To show how well the scalar logistic model approximates the graph-based model, first

let A be the doubly stochastic and irreducible adjacency matrix that corresponds with

the network topology. Since the elements of pt are all nonnegative, the one norm of the

vector pt is simply a sum over all of its elements (i.e. |pt|1 = 1Tnpt), we begin by taking

the 1-norm of (2.4):

|pt+h|1 = 1T (pt + hβtApt − hβtdiag{pt}Apt)

= 1Tnpt + hβt1
TApt − hβtpTt Apt.
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Quadratic forms have the property that pTt Apt = pTt (AS) pt, where AS =
(
A+ AT

)
/2 is

a symmetric matrix. Using the series representation AS =
∑n

i=1 λiwiw
T
i :

|pt+h|1 = 1Tnpt + hβt1
T
nApt − hβtpTt

n∑
i=1

λiwiw
T
i pt

= |pt|1 + hβt1
T
nApt − hβtλ1pTt w1w

T
1 pt − hβtpTt

n∑
i=2

λiwiw
T
i pt. (B.1)

Since A is doubly stochastic, the columns of A each sum to 1 so that the second term of

(B.1) simplifies to hβt |pt|1.

The matrix AS will also be doubly stochastic, and thus row stochastic. From the

Perron-Frobenius theorem [37], λ1 = 1 and w1 = 1n/
√
n, and denoting the inner product

as 〈·, ·〉, the third term of (B.1) can be simplified as follows:

−hβtλ1pTt w1w
T
1 pt = −hβt

〈
1n/
√
n, pt

〉2
= −hβt

1

n
〈1, pt〉2 = −hβt

1

n
|pt|21 .

By applying the inner product notation to the fourth term of (B.1), it can be rewritten

as −hβt
∑n

i=2 λi 〈wi, pt〉
2.

Upper and lower bounds on the fourth term of (B.1) can be obtained by observing

that

− |λ2|
n∑
i=2

〈wi, pt〉2 ≤
n∑
i=2

λi 〈wi, pt〉2 ≤ |λ2|
n∑
i=2

〈wi, pt〉2.

To further simplify this expression, we can use the submultiplicative property of matrix

norms, where
∑n

i=2 〈wi, pt〉
2 ≤

∑n
i=1 〈wi, pt〉

2 =
∥∥W Tpt

∥∥2
2
≤
∥∥W T

∥∥2
2
|pt|22 = |pt|22. By

substituting σ2 = |λ2| and applying this inequality, one obtains the following:

−σ2 |pt|22 ≤
n∑
i=2

λi 〈wi, pt〉2 ≤ σ2 |pt|22 ,
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which indicates that the fourth term of (B.1) is a term of order hσ2.

Therefore, (B.1) simplifies to

|pt+h|1 = |pt|1 + hβt |pt|1 −
hβt
n
|pt|21 + O (hσ2) . (B.2)

Finally, divide by n, and let xt = |pt|1 /n to obtain the average probability of being

informed:

xt+h = xt + hβtxt (1− xt) + O (hσ2) . (B.3)

B.2 Symmetric Matrices

Beginning with expression (2.14), one can factor out R1 use the fact that (A−R1) is

a symmetric matrix to obtain

pt+h = pt + hβt (I − diag{pt}) pt + hβt (I − diag{pt})WDW Tpt,

where D is a matrix whose diagonal elements are the eigenvalues of (A−R1). By rec-

ognizing that −σ1I ≤ WDW T ≤ σ1I, it follows that one obtains (2.15) by summing the

elements and dividing by the cardinality of the population. A similar argument shows

that mean-field solutions are upper-bounded by solutions to

xt+h = xt + σ1hβtxt (1− xt) ,

where xt = |pt|1/N and σ1 provides a time-scaling effect on the step-size when h satisfies

(A.3).
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B.3 Row Stochastic Upper Bound

Suppose that the network adjacency matrix A is row stochastic so that A1N = 1N .

Beginning with equation (2.15), one is able to factor A out of the expression A− R1 by

using the facts that A1N = 1N and R1 = 1N1TN/N to obtain

R1 =
1

N
1N1TN

=
1

N
(A1N) 1TN

= AR1,

and thus

‖A−R1‖2 = ‖A(I −R1)‖2

≤ ‖A‖2‖I −R1‖2. (B.4)

The matrix (I − R1) is a circulant and symmetric Toeplitz matrix of dimension N

with eigenvalues

λk = 1 +
N−1∑
k=0

(
− 1

N

)
exp

(
i2πk

N

)
. (B.5)

For k = 0, λ0 = 1 − (N)(N−1) = 0. For k 6= 0, we use the fact that (B.5) contains a

geometric series to obtain

λk 6=0 = 1− 1

N

1−
(
exp

(
i2π
N

))N
1− exp

(
i2π
N

)
= 1.

Therefore, since ‖I−R1‖2 = 1 we obtain from (B.4) the bound ‖A−R1‖2 ≤ ‖A‖2. When

including the time step h and rate parameter β, one finds that the approximation error
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of (2.15) has the bound

O(h‖A−R1‖2) ≤ O(hβ‖A‖2),

for any row stochastic matrix A.
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Additional Definitions

As explained in [1], the characteristic path length (L) of a network is defined as the

number of edges in the shortest path between two vertices, averaged over all pairs of

vertices. Similarly, one can define the characteristic path length (Li) of a single node i

as the average shortest path length between i and each other j ∈ V .

To define a network’s average clustering coefficient (C), we first define the set of edges

Ei that exist between a given node i ∈ V and its neighbors as Ei = {(i, j) ∈ E, ∀ j ∈ V }.

If node i has ki neighbors, then the clustering coefficient (Ci) of node i is

Ci =
2 |Ei|

ki (ki − 1)
, (C.1)

where |Ei| represents the cardinality of Ei, and ki (ki − 1) /2 is the maximum number of

edges that can possibly exist in Ei. Hence, C is the average value of Ci over all i.
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Topic Hashtag Lists

Note: The hashtags “glennbeck”, “obama”, and “palin” were each verified to belong

to both the Celebrity and Politics topics, and “nascar” was verified to belong to both

the Politics and Sports topics. For the purposes of this manuscript, these hashtags were

treated as distinct elements in each topic (i.e., “obama” referred to as a celebrity versus

“obama” referred to as a politician), and with identical genotype metric values. For

example, since only the hashtag “obama” is detected in the data, it is understood that

references to obama as a celebrity co-occur with references to obama as a politician.

D.1 Business

4jobs, business, collaboration, consumers, ecommerce, economy, entrepreneurs, inno-

vation, leadership, management, marketing, mktg, networking, painatthepump, restau-

rant, retail, sales, shoplocal, smallbiz, smallbusiness, smallbusinesssaturday, smallsizSat,

socbiz, socialbiz, socialbusiness, startups, tax
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D.2 Celebrity

aaliyah, anoopdesai, argentinawantsjb, ashleytisdale, australiawantsjonas, brazilmiss-

esdemi, brazilwantsjbagain, brazilwantsjb, bringbackrachelle, bsb, chamillionaire, craigfer-

guson, davidarchuletta, gagavmas, glennbeck, happybirthdaypink, iwantpeterfacinelli,

jonaslive, michaeljackson, mileycomeback, mj, niley, obama, palin, regis, signmattgiraud,

teamtaylor, tilatequila, welovekevinjonas, weloveyoujoejonas, weloveyoujustin, welovey-

oumiley

D.3 Politics

1u, 2012gop, 2012, 250gas, 2nd, 2, 4all2c, 912, 99percent, a4a, abc, abortion, abor-

tions’, ac360, acon, agenda21, ak, alabama, algop, alinsky, allenwest, allstar, al, alpri-

mary, america, ampat, ampats, andrewbreitbart, anybodybutobama, armyofbreitbarts,

askthe, attackwatch, awesome, axelrod4romney, az, azright, bbc, beck, bell, bet, bettym-

ccollum, bible, biggovernment, bighollywood, bigjournalism, bigot, bigpeace, blacknews,

black, blogconclt, boston, boycotthollywood, b, breastlift, breitbartarmy, breitbartishere,

breitbartnet, breitbart, breitbart’s, brtt, budget, c4l, cain, ca, caring, catcot, catholic,

cbsnews, cbs, cfsa, chicago, chitpp, christian, christians, clcs, cnndebate, cnn, college,

communism, communist, communists, compromise, congress, con, conservative, conser-

vatives, consnc, constitution, cpac12, cpac, criticalrace, criticalracetheory, cspj, ct, dads,

daretovoterick, dc, democrat, democrats, dem, dems, de, dianesawyer, dinnerwithbarack,
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dnc2012, dnc, doj, dprs, drudge, edchat, edshow, education, egypt, election2012, election,

electionsmatter, endorsemitt, energy, epicfail, espn, exposetheleft, fail, faith, fastandfu-

rious, fbi, ff, film, flgop, florida, fl, flprimary, flsen, fluke, forward, foxnews, fox, fraud,

freechrisloesch, freechris, freedom, gamechange, ga, gaprimary, gas, gbtv, gen44, gingrich,

glennbeck, goa, god, gop2012, go, gop, g, green, gsa, guns, gu, handsoff, hannity, hbo,

hcr, healthcare, hhrs, hi, hispanic, holder, hollywood, ho, humor, hypocrisy, hypocrites,

iamandrewbreitbart, iambreitbart, iamthe53, iamthemob, icon, id, illinois, il, imab, im-

breitbart, impeach, independent, independents, inde, iranelection, iran, iranrevolution,

islam, israel, isreal, isupportrush, jcot, jemuhgreen, jesus, jewish, jews, jihad, jobs, key-

stone, ks, ktvd, kulaktv, kxl4jobs, la, latino, launfd, liberal, liberals, libertarian, liberty,

libya, limbaugh, lnn, lnyhbt, lol, lolwut, l, lur, maddow, majority, ma, mapoli, mapri-

mary, maraliasson, marines, marklevinshow, marxist, may, mdayton, md, media, mili-

tary, mil, mi, mitt2012, mitt, mmfa, mn2010, mngop, mnleg, moms, mo, mosque, msm,

msnbc, ms, muslim, nascar, nationaldebt, navy, nbc, ncgop, nc, ndaa, ndcaucus, nd, news,

newt2012hq, newt2012, newt, newyork, newyorkpost, nj, nobama2012, nobama, nolabels,

notgoingaway, notobama, n, npr, nra, nugent, nwo, nyc, ny, obama2012, obamaateadog,

obamacare, obamadogrecipes, obamafail, obamaland, obamaonempty, obama, obama’s,

ocares, occupiers, occupy, occupysf, occupyunmasked, occupywallstreet, ocra, ohio, oh,

ohprimary, ohyeah, oil, ok, okprimary, omg, o, orcot, orpol, oversight, ows, p21, p2, palin,

pa, parents, patriot, patriots, paul, pbs, phnm, pinkslimemedia, plannedparenthood, pol-

itics, potus, p, progressive, prolife, propaganda, pr, pushbackgop, r3volution, racecard,
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racewar, racism, racistcrt, racistderrickbell, racist, reagan, redeye, religion, repealan-

dreplace, resist44, retweet, right, rino, ri, rnc, romney, ronpaul2012, ronpaul, rosen, rs,

rt, rush, sallykohn, sanford, santorum, sarahpalin, savage, saveamerica, sayfie, scgop,

scotus, sc, scprimary, seiu, sgp, shariah, sharia, sharpton, socialism, soledad, solyndra,

sot, sotu, ’s, s, standwithbreitbart, stopmitt, stoprush, stoptweetingsoledad, stribpol, su-

pertuesday, syria, tbrs, tco, tcot, tcot talk, tc, teambreitbart, teamdueprocess, teamwc,

teapa, teapar, teapart, teaparty, tea, teap, te, terrorists, texas, theblaze, thefive, thevet-

ting, tif, timetochoose, timetochoos, tiot, tlot, tn, tnprimary, topprog, t, tpot, tppatriots,

tp, tpp, trayvonmartin, trayvon, treasonousacts, treason, truthiness, truth, truthteam,

tsa, tsot, tummytuck, twcot, tweetcongress, twiste, twisters, tw, tx, tyranny, ucot, ujcp,

undefeated, union, unions, un, usa, usmc, utpol, ve, veteran, veterans, vets, vettheme-

dia, vetthepress, vettheprez, vi, voteobamaout, vote, voterfraud, voteridnow, voterid, v,

vt, vtprimary, wakeup, wa, waronmoms, waronwomen, war, wecantwait, weeklyrecap,

wethepeople, wethepeo, whitehouse, whyimin, winning, wi, wiprimary, wirecall, wiright,

wisconsin, withnewt, wiunion, woman, women4newt, women, wow, w, wv, wwiimuseum,

wy, yal, zerobama, zimmerman

D.4 Science and Technology

140conf, advertising, amazon, android, apple, apps, beatcancer, blackberry, books,

consciousness, design, digg, digital, drivehertz, drupal, e3, ebay, ecademy, epharma,

eventprofs, facebook, fb, firefox, flickr, formspringme, foursquare, free, funny, google,
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google+, googlewave, harmony, hcsm, hootsuite, infographic, in, instagram, internet,

ipad, iphone, jquery, linkedin, linux, mac, mashable, mhealth, microsoft, mobile, moon-

fruit, mp3, nokia, openwebawards, peace, photoshop, php, pinterest, pipa, prsa, redesso-

ciales, runkeeper, seo, shared, sharepoint, shazam, smartmeters, smm, sm, smtalk, social-

media, social, socpharm, sopa, squarespace, stopbullying, sundayblessings, sxsw, tchat,

teamfollowback, technion, technology, tech, tinychat, trackle, travel, trb, tweetphoto,

twibbon, twittermarketing, twitter, unity, wave, webdesign, weworkin, wisdom, word-

press, wwdc, youtubefail, youtube

D.5 Sports

ashes, canucks, comedy, cowboys, cricket, cubs, dodgers, f1, follow, football, golf,

goroaddogs, lakers, mets, mlb, mma, nascar, nba, nfl, nhl, phillies, redsox, rio2016,

rugby, soccer, sport, sports, tdf, teamzucker, ufc, victorysessions, warriors, yankees
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