
UNIVERSITY OF CALIFORNIA

SANTA BARBARA

Neural Oscillator Identification via Phase-Locking Behavior

by

Michael J. Schaus

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Mechanical Engineering

Committee in charge:
Professor Jeff Moehlis, Chair
Professor Francis J. Doyle III
Professor Mustafa Khammash

September 2005



The thesis of Michael J. Schaus is approved:

Professor Francis J. Doyle III

Professor Mustafa Khammash

Professor Jeff Moehlis, Chair

September 2005



Neural Oscillator Identification via Phase-Locking Behavior

Copyright 2005

by

Michael J. Schaus

iii



Acknowledgments

I would like to first thank my advisor, Professor Jeff Moehlis, for all his guidance

through my studies here at UCSB. He clearly remembers what it was like to be a

student and was a great help. Also thanks to my committee members, Professors

Mustafa Khammash and Frank Doyle, for their insights on improving the final

manuscript.

Thanks to my fellow students who helped me with some of the technical and

writing issues I encountered—Lina Kim, Barry DeMartini, Sophie Loire, and

Erkut Aykutlug.

And of course a special thanks to my family and wonderful girlfriend who

helped to make my graduate education both possible and enjoyable.

iv



Abstract

Neural Oscillator Identification via Phase-Locking Behavior

by

Michael J. Schaus

Knowledge of how neurons respond to different types of stimuli could lead to better

treatments of diseases such as Parkinson’s disease by using deep brain stimulation.

This approach involves injecting electrical current into the appropriate region of

the brain of a patient in an effort to desynchronize pathologically synchronized

groups of neurons which cause the patient to have resting tremors. A neuron’s

phase response curve (PRC) determines its response to electrical current inputs,

and is typically difficult to measure experimentally.

This thesis will show how properties of the PRC can be determined by con-

sidering the effects of sinusoidal stimuli on a neuron. Specifically, it will show

the relationships between the PRC of a neural oscillator and its phase-locking re-

gions. Knowledge of the PRC can be used to generate good predictions for some

of the phase-locking regions of an oscillator, and the phase-locking regions can

be used to get some information about the PRC. In the case of Type I neurons

where the PRC is always positive, data from the 1:1 locking region can lead to a

very good approximation of the PRC. For Type II neurons where the PRC has
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both positive and negative portions, data from the locking regions can be used

to find combinations of the Fourier coefficients of the PRC which can be used

as constraints in fitting procedures that generate Fourier coefficients of the PRC

from experimental data. For Type II neurons we can also give a good estimate of

the minimum frequency at which periodic behavior will be observed. A detailed

method to extract this information from neural systems is provided.

Despite the emphasis on neuroscience, the results are also expected to be appli-

cable to circadian rhythms, where a person’s wake-sleep cycles become entrained

to the light-dark cycles of the sun. The analysis here could be used to discover

more about the PRC and entrainment regions of the system, useful, e.g., in timing

the administration of drugs and improving safety of late-shift workers.
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Chapter 1

Introduction

For some neurodegenerative diseases such as Parkinson’s disease, symptoms

include trembling of a patient’s hands which can be associated with waves of

electrical activity in the brain [10, 21]. These waves correspond to large groups

of neurons firing in synchrony. Current theories suggest that if these neurons can

be desynchronized it would alleviate some of the symptoms of the disease, and in

fact, there is already an FDA-approved treatment for Parkinson’s disease based

on this idea called deep brain stimulation [2, 3, 28, 29]. With this treatment, an

electrode is implanted into the motor-control region of the brain, injecting a series

of high-frequency electrical pulses. This method desynchronizes the neurons to

a certain extent, but an understanding how neurons respond to such a stimulus

could improve its effectiveness. In this thesis, the focus is on the response of a

single neuron to stimuli; population-level response is deferred to future work.
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The way a neuron responds to stimuli is characterized by its phase response

curve (PRC). The PRC measures how a neuron will respond to an impulsive

perturbation depending on at what point the neuron is in its firing cycle. However,

knowing the PRC of a neuron allows one to numerically determine the response for

any weak stimulus, not just impulsive ones [5, 13]. For simple PRCs and stimuli,

it is possible to say quite a bit about the response properties, such as analytical

expressions for how a population of oscillators responds to a step-stimulus [5, 6],

or how weakly-coupled oscillators can spontaneously synchronize [4, 27].

However, determining the PRC of a neuron is usually not an easy task. One

‘obvious’ experimental method would give a neuron impulsive kicks of electrical

current at different times in its cycle and each time measure the effect on when

the neuron spikes next. This has traditionally led to data with too much noise to

accurately determine the PRC. Methods that use least-squares fitting techniques

of this noisy data to determine the Fourier coefficients of the PRC have been

recently proposed in [9, 15]. In the case of [15], random noise inputs are injected

into the neuron instead of impulses. Alternatively, if equations are known for the

neural system of interest, one can solve the associated adjoint equations to get

the PRC [5, 8]. If it is known that the system is in proximity to its bifurcation

to periodicity, one can use normal-form theory to at least get the form of the

PRC [5].

In this thesis, we propose a new method for determining the properties of
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the PRC. A neuron can be reduced to its phase description, where one variable

describes its state. In this form, the natural frequency, PRC, and input to the

system fully determine the dynamics, but due to the nature of the ODE it cannot

be solved using standard analytical techniques. However, assuming that the sys-

tem is sinusoidally forced, the solution can be approximated by averaging over the

forcing cycles. This averaged solution leads to a relationship between the strength

of forcing and deviation of the forcing from the neuron’s natural frequency where

the system stays at a constant phase difference from the forcing—an approxima-

tion of the phase-locking boundaries. Data points from the boundaries of the

phase-locking regions of neurons subjected to sinusoidal forcing can be fit to this

relationship, determining parameters that in some cases lead to a very good ap-

proximation of the PRC. In other cases, it can provide constraints on the fitting

procedures described in [9, 15]. Additionally, if the PRC is known ahead of time,

this relationship allows for very accurate predictions of some of the phase-locking

boundaries to be made.

Although our focus is on neural systems, it is expected that the results can

also be applied to the study of circadian rhythms. Humans have a natural sleep-

wake cycle different from 24 hours, but due to the light-dark cycles of the sun,

we are entrained to be on a 24-hour cycle. The scientific community is motivated

to study circadian rhythms to administer medication at more effective times [25],

develop treatments for jet lag or other sleep disorders, improve safety for late-shift
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workers, and improve efficiency of crews on submarines [26]. The techniques in

this thesis could help to clarify the properties of this entrainment and the PRC

for circadian rhythms.
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Chapter 2

Phase equations for nonlinear

oscillators

2.1 Neuron modeling

Neurons are the fundamental processing and information carrying units of

the central nervous system, involved with sensory, cognitive, regulatory, motor,

and other functions. In the human brain there are estimated to be 1011 of these

interconnected cells [16]. To create a mathematical model of a neuron, one looks at

how they are put together. Their outer membrane is made of a lipid bilayer which

acts as an electrical capacitor. Piercing through this are proteins that control the

flow of ions through the membrane; such gating proteins act as nonlinear resistors.

The potential difference between the inside and outside of the neuron drives the
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states of the corresponding gating proteins. Finally, ion pumps maintain the

differences in ion concentrations inside and outside of the membrane and behave as

batteries. Putting these components together appropriately and applying circuit

laws results in a conductance-based neuron model [7, 16]. This thesis considers the

dynamics of reductions of such conductance-based models subject to sinusoidal

current stimuli in the case that they have an attracting limit cycle in the absence

of such stimulus.

2.2 Phase reduction

Nonlinear oscillators with attracting limit cycles can have the limit cycle

mapped to phase coordinates to simplify further analysis, as detailed below [5, 11,

31, 32]. Here we consider a nonlinear oscillator described by a generic conductance-

based model of a single neuron,

CV̇ = Ig(V,n) + Ib, (2.1)

ṅ = N(V,n), (2.2)

with (V,n)T ∈ RN . V is the voltage across the membrane of the neuron, n is the

(N -1)-dimension vector of gating variables (which determine the states of the ion

channels in the model), and C is the membrane capacitance. Ig(V,n) is the vector

of membrane currents and Ib is the baseline current that sets the natural frequency

of the oscillator. Examples of such models include the Hodgkin-Huxley equations
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Figure 2.1: The phase-space for a two-dimensional reduction of the Hodgkin-Huxley neuron
model with Ib = 10. The limit cycle is in bold while the isochrons, equally spaced in time, are
dotted. The thicker dotted lines are the nullclines of the system, where d(·)/dt = 0.

(HH) [14, 23] and the Hindmarsh-Rose equations (HR) [24]; see Appendix A. It

will prove useful to rewrite Equations (2.1) and (2.2) in the general form

dX

dt
= F(X), (2.3)

where X = (V,n)T ∈ RN and F(X) is the baseline vector field. We suppose that

this system has an attracting limit cycle X0(t) with period 2π/ω.

To move to phase coordinates, we introduce the scalar phase variable θ(X) ∈

[0, 2π) for all X in U , some neighborhood of X0 contained within its basin of

attraction, such that the evolution of the phase takes the form

dθ(X)

dt
= ω (2.4)

for all X ∈ U . That is, θ evolves linearly in time. This is accomplished by defining

the level sets of θ(X), called isochrons, as follows. Let XS
0 be the point on the limit
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cycle with the highest voltage, i.e. where the neuron spikes. We define θ(XS
0 ) = 0.

To determine θ for the rest of the points on the limit cycle (e.g. XP
0 ), let the system

evolve from XS
0 with θ(XP

0 ) = ωt. This method assigns a value of θ in [0, 2π) to

every point on X0. The isochron associated with a point XP
0 on X0 is defined as

the set of all initial conditions, X ∈ U , such that the distance (evaluated at time

t) between trajectories starting at XP
0 and X goes to zero as t → ∞. The point

XP
0 and the points on its isochron, XP

iso, are said to have the same aymptotic

phase. As in Figure 2.1, it is useful to plot isochrons equally spaced in time so

that a sense of the flow on the limit cycle can be gained. This figure shows results

for a two-dimensional reduction of the HH equations given by Equations (4.35)

and (4.36) of [17].

Now, consider the system

dX

dt
= F(X) + εG(X, t), (2.5)

where εG(X, t) is a small perturbation to the system. Using the chain rule and

Equation (2.4) which tells us that dθ/dt = ω in the absence of perturbations,

dθ

dt
=

∂θ

∂X
· dX

dt
=

∂θ

∂X
· (F(X) + εG(X, t)) = ω + ε

∂θ

∂X
·G(X, t). (2.6)

Defining the phase response curve (PRC, discussed in more depth in Section 2.3)

as

Z(θ) =
∂θ

∂X

∣∣∣∣
X0(θ)

, (2.7)
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an approximation to Equation (2.5) is given by

dθ

dt
= ω + Z(θ) · εG(X0, t). (2.8)

Suppose now that εG = εG(t) = (I(t),0), where I(t) is a current stimulus that

directly affects only the voltage of the neuron. (If reversal potentials were included,

I(t) would be replaced by I(V, t).) Including C so that the units work out correctly

and using only the voltage component of Z(θ), the general form for the phase

reduced neural oscillator becomes

dθ

dt
= ω +

Z(θ)

C
I(t). (2.9)

The phase response curve can be written as

Z(θ) = CZdζ(θ), (2.10)

where Zd is a dimensional constant (units of rad/coulomb), and ζ(θ) is a non-

dimensional O(1) function. For this thesis, the injected current is sinusoidal with

the form

I(t) = If sin(ωf t), (2.11)

where If is the strength of the injected current in milliamperes and ωf is the

frequency of the forcing.

2.3 Phase response curves

The phase response curve (PRC) of a system determines how small pertur-

bations in a given variable affect the system’s phase. By definition, the PRC
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0

∆θ
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Figure 2.2: Typical details of isochrons (equally spaced in time) for a neuron model. The spacing
and orientation of the isochrons determines how much a voltage perturbation will advance or
push back the phase. (a) Perturbations in voltage lead to a decrease in the phase of the system.
(b) Perturbations result in an increase in phase.

characterizes response only to impulsive perturbations. The PRC does not de-

scribe the response for different frequencies of an input, such as a Bode Plot

would, but rather how the response depends on what point during the cycle of

the oscillator an impulse is applied. When the PRC is positive (resp., negative),

positive perturbations increase (resp., decrease) the phase. This behavior, closely

related to the system’s isochrons, is detailed in Figure 2.2. For neural oscillators

such as in this thesis, a useful way to think about the PRC is

Z(θ) =
∂θ

∂V
= lim

∆V→0

∆θ

∆V
, (2.12)

with units rad/mV .

The PRC for the HH system with Ib = 10 is shown in Figure 2.3. This was

found by numerically solving an associated adjoint equation, as implemented in

the computer program XPP [5, 8]. PRCs in general are not required to be zero at

values of 0 and 2π. That this occurs here can be understood by recognizing that
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Figure 2.3: Phase response curve for the HH system with baseline current Ib = 10. Isochrons
for the part of the system where the PRC is negative look similar to Figure 2.2(a). Isochrons
where the PRC is positive look similar to Figure 2.2(b).

HH is an example of a fast-slow system. When the two-dimensional phase-space is

drawn (as has been done Figure 2.1), voltage is considered to be a ‘fast’ variable

and the gating variable n is considered to be ‘slow’. Looking at the isochrons

near where the neuron spikes, we see that they are sparsely spaced (due to the

small amount of time spent in that part of phase-space) and almost parallel to the

V -axis. Thus, a voltage impulse would not push the system onto a significantly

different isochron and the value of the PRC is almost zero. In other parts of

phase-space where the isochrons are closer together and more ‘steep’ compared

to the V -axis, the PRC takes on a larger magnitude. Note that the slope of the

isochrons (along with the general direction of the flow) determines whether the

PRC is positive or negative at that point, as in Figure 2.2.

Nullcline analysis can be used with fast-slow systems to approximately deter-

mine the shape (and existence) of the limit cycle. A nullcline of a state-variable

11



-80

-60

-40

-20

0

20

40

15 20 25 30 35

���������
	
�

��

�������

���
���������! #"$��%'& �'( ) ��"+*,�.-+� )

�./��0�1���������0�
2

��

����3��

( �4�'(5�

Figure 2.4: Effect of impulsive perturbations on an HH neuron. Impulses at different points, in-
dicated by the vertical arrows, correspond to different signs of the PRC and thus either accelerate
or delay the onset of the next spike. The solid line is the unperturbed voltage trace.

in a system is defined as the curve where the time-derivative of that state-variable

is zero. The intersections of all the system’s nullclines make up the system’s fixed

points. In Figure 2.1 it can be seen that the limit cycle of the (reduced) HH sys-

tem spends much of its time near the V -nullcline. There is one intersection of the

nullclines which corresponds to an unstable fixed point. Near this fixed point the

isochrons are the most tightly spaced of anywhere else in the system, indicating

that the system spends most of its time on the portion of the limit cycle near the

fixed point.

A sample voltage trace for the HH system can be seen in Figure 2.4. Voltage

perturbations are applied to the neuron at different points during its refractory

period, corresponding to phases with opposite signs of the PRC. Thus, it is clearly

seen that the exact timing of a voltage perturbation in a neuron has an important
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α = 0

(a) (b)

α = 0
αsn

p.o.

f .p.

p.o.

f .p.

Figure 2.5: (a) Supercritical Hopf bifurcation. (b) Bautin (subcritical Hopf at α = 0, saddle
node bifurcation of periodic orbits at α = αsn) bifurcation. Here, the bifurcation parameter is
α and the periodic orbits arise at α = 0. The vertical axis represents the size of the periodic
orbit. The periodic orbit (p.o.) and fixed point (f.p.) branches are as shown. Solid segments are
stable, dashed segments are unstable. Phase-space representations can be seen in Figure 2.6.

effect on its overall dynamics. To measure the PRC of a neuron, experiments can

be done very similar to what is seen in Figure 2.4—measure ∆θ/∆V directly by

injecting an impulse at a given phase and seeing how this impulse affects the arrival

of the next spike. However, such experiments are difficult to set up and in general

result in data with too much noise to be very useful. Hence, an improvement upon

this method is explored in this thesis.

2.4 Bifurcations to periodicity

For a generic vector field, there are four codimension one bifurcations that can

give rise to a limit cycle [12]. These are SNIPER (saddle node of fixed points on

a periodic orbit), supercritical Hopf (a stable fixed point becomes unstable and a

stable periodic orbit is formed—see Figure 2.5(a)), Bautin (which includes a sub-

critical Hopf and a saddle node bifurcation of periodic orbits—see Figure 2.5(b)),

13



α = 0α < 0 α > 0

α > 0α < 0

α > 0

α < 0 α = 0 α > 0

(a)

(b)

(c)

(d)

α < αsn αsn < α < 0

Figure 2.6: The four codimension one bifurcations to periodicity. The primary bifurcations occur
at α = 0. (a) SNIPER. (b) Supercritical Hopf (as in Figure 2.5(a)). (c) Bautin (subcritical Hopf
at α = 0, saddle node bifurcation of periodic orbits at α = αsn as in Figure 2.5(b)). Here,
the solid (resp., dashed) closed curve represents a stable (resp., unstable) periodic orbit. (d)
Homoclinic. Figure adapted from [5].

and homoclinic (a homoclinic orbit to a hyperbolic saddle node exists at the bifur-

cation point) bifurcations. Figure 2.6 shows how the phase-space of the systems

characterized by these bifurcations changes as the bifurcation parameter passes

through the bifurcation point α = 0.

Neuron models have been developed which undergo each of these four codi-

mension one bifurcations to periodic firing. The Hindmarsh-Rose system has a

14



SNIPER bifurcation, Hodgkin-Huxley has Bautin (more accurately, a bifurcation

diagram that closely resembles Bautin), Fitzhugh-Nagumo can have a supercrit-

ical Hopf, and Morris-Lecar has a homoclinic bifurcation [5]. For these neuron

models the bifurcation parameter is the baseline injected current, Ib.

In this thesis, we focus on the Hodgkin-Huxley (HH) and Hindmarsh-Rose

(HR) neurons, which represent typical examples of the two most common types of

neurons. HR neurons are called Type I because their PRC is always positive. HH

neurons are Type II because their PRCs are both negative and positive. Again,

due to the fast-slow nature of the models, both PRCs are approximately zero at

θ = 0, 2π.

2.5 Phase-locking behavior

Phase-locking occurs when a system’s response cycles at either the forcing

frequency or a ratio of the forcing frequency determined by both the strength of

the forcing and how far from its natural frequency the system is being forced.

When this happens, the system is said to be entrained to the forcing. The phase-

locking regions shown in Figure 2.7 (and, e.g. Figures 3.2 and 3.4) are called

Arnold Tongues [22, 30], or more simply tongues or wedges. Inside these tongues,

forcing cycles and resulting forced oscillations have frequencies in specific ratios.

In general, n : m phase-locking refers to n cycles of forcing resulting in m cycles

of system oscillation. It is also useful to define the ratio ρ = m/n, called the

15
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(a) (b)

Figure 2.7: Sketch of the 1:1 phase-locking boundary for a neural oscillator. Associated with
the two types of regions are Lissajous plots at typical points, where one axis plots the amplitude
of the forcing function while the other axis plots the amplitude of the system response. (a)
Synchronous state—the oscillatory periods of the forcing function and the system response are
equal, forming a closed curve. (b) Quasiperiodic state—the ratio of the two periods is irrational.
No point on the plot is ever returned to, eventually causing the entire region to become filled.

rotation number [22].

As seen in Figure 2.7, when ωf = ω (i.e. the forcing frequency equals the

oscillator’s natural frequency), the system is phase-locked for even an infinitesimal

strength of forcing, If . In this case the forcing is not really entraining the system;

they are phase-locked by definition of having no change in relative phase. When

ωf 6= ω, there are competing effects leading to two qualitatively different regimes

in the ωf − If space. The oscillator would like to persist at its natural frequency,

but the forcing is trying to make it oscillate at a different frequency. If the forcing

is strong enough, it becomes phase-locked and, if in the 1:1 tongue, the system

fires at the forcing frequency. If inside a different tongue the system fires at ρωf .

These are called synchronous states. When the system is outside of the Arnold

tongues, phase-locking does not occur, corresponding to an irrational rotation

number. This type of response is called quasiperiodic.
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In theory, n : m tongues exist for all n, m ∈ N, but in real systems the vast

majority have widths too small to measure [30]. In general, the larger the values

of n or m, the thinner the tongue will be. More on the existence and behavior of

higher-order tongues can be found by exploring Farey trees [19], Cantor sets [20],

and the Devil’s staircase [1, 18, 20].
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Chapter 3

Universal entrainment curves for

sinusoidal forcing

3.1 Introduction

In this chapter, it is assumed that the PRC Z(θ) is known. This could be

from the proximity of the neural system to a bifurcation which gives rise to its

periodicity [5], from the numerical solution to the adjoint equations for the neural

model of interest [5, 8], or from recently proposed least-squares fitting procedures

which can be applied to experimental data [9, 15]. We will show how such knowl-

edge of Z(θ) can be used to find an analytical approximation for the boundaries

of phase-locked regimes. Near bifurcations to periodicity, we call such boundaries

universal entrainment curves.

18



3.2 Non-dimensionalization of the phase equa-

tions

Non-dimensionalizing the phase-reduced equations allows them to be studied

without worrying about individual parameter values or scales, such as an oscil-

lator’s natural frequency. General trends can be seen which can be applied to

specific oscillators by computing the actual value of the non-dimensional param-

eters.

Let the non-dimensionalized time be

τ = ωf t, (3.1)

where ωf is the frequency at which the oscillator is forced. The time derivative is

transformed as

d

dt
= ωf

d

dτ
. (3.2)

Using these transformations, the non-dimensionalized version of Equation (2.9) is

dθ

dτ
=

ω

ωf

+
IfZd

ωf

ζ(θ) sin τ. (3.3)

We can then define the two non-dimensional quantities

λ =
ωf

ω
(3.4)

µ =
IfZd

ωf

(3.5)

for easier plotting and conceptual understanding. λ is the ratio between the

forcing and natural frequencies, while µ measures the strength of the forcing.
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This simplifies Equation (3.3) to

dθ

dτ
=

1

λ
+ µζ(θ) sin τ. (3.6)

3.3 Averaging the phase equations

The solution θ(τ) cannot be found explicitly from Equation (3.6) through

standard ODE techniques such as separation of variables. However, through av-

eraging the equations, a close approximation to the solution can be found. We

will show that averaging also allows approximations of phase-locking boundaries

to be found, with their form being related to the type of bifurcation that gives

rise to periodic firing for the neuron.

Consider that the system is forced with frequency ωf ≈ q
p
ω, i.e.

ω

ωf

=
p

q
+ ε∆, (3.7)

where p and q are relatively prime integers and ε∆ represents a small detuning

with respect to the center of the q : p phase-locking region. The system is put

into a rotating reference frame by letting

γ = θ − p

q
τ, (3.8)

where γ is the difference in phase angle between the original system and the

forcing, adjusted for proximity to the q : p tongue. The time-derivative is then

dγ

dτ
=

dθ

dτ
− p

q
. (3.9)
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These transform Equation (3.6) into

dγ

dτ
= ε∆ + µζ

(
γ +

p

q
τ

)
sin τ. (3.10)

We can then define

εĨf = If (3.11)

εκ = ε
ĨfZd

ωf

= µ, (3.12)

where ε is small, Ĩf is an O(1) amount of current, and εκ measures the strength

of the forcing. Note that ε, ∆, and κ are dimensionless. These transform Equa-

tion (3.10) into

dγ

dτ
= ε

[
∆ + κζ

(
γ +

p

q
τ

)
sin τ

]
. (3.13)

Using the averaging theorem (Theorem 4.1 of [12]) and introducing the aver-

aged variable γ̄,

dγ̄

dτ
=

ε

2πq

∫ 2πq

0

[
∆ + κζ

(
γ̄ +

p

q
τ

)
sin τ

]
dτ (3.14)

= ε

{
∆ +

κ

2πq

∫ 2πq

0

[
ζ

(
γ̄ +

p

q
τ

)
sin τ

]
dτ

}
. (3.15)

The averaging theorem states that solutions to Equation (3.14) remain within

O(ε) of solutions to Equation (3.13) (i.e. γ = γ̄ + O(ε)) for times of O(1/ε).

Furthermore, fixed points of Equation (3.14) (i.e. values of γ̄ where dγ̄/dτ = 0)

correspond to the periodic orbits of Equation (3.13). The integration period of

2πq was chosen because it is the smallest common multiple of the periods in the
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Table 3.1: Forms of the phase response curves for the four codimension one bifurcations to
periodicity. Z(θ) comes from analysis of the normal forms of the bifurcations as done in [5].

Bifurcation Z(θ) µ ζ(θ) g(γ̄)

SNIPER csn

ω
(1− cos θ)

If csn

ωf ωC
1− cos θ −κ

2
sin γ̄

Bautin |cB |
|ω−ωSN |

sin(θ − φB)
If |cB |

ωf |ω−ωSN |C
sin(θ − φB) κ

2
cos γ̄

Hopf |cH |√
|ω−ωH |

sin(θ − φH)
If |cH |

ωf

√
|ω−ωH |C

sin(θ − φH) κ
2
cos γ̄

Homoclinic chcωe(2πlu/ω)e(−luθ/ω)

integrand. We can then define the function

g(γ̄) =
κ

2πq

∫ 2πq

0

[
ζ

(
γ̄ +

p

q
τ

)
sin τ

]
dτ. (3.16)

Using these results, Table 3.1 shows the forms of Z(θ), µ, ζ(θ), and g(γ̄) for

the bifurcation types discussed in detail in this thesis. Only Z(θ) is shown for

homoclinic neurons; due to their uncommon nature and significant difference in

necessary analysis, neurons exhibiting homoclinic bifurcations will not be consid-

ered in the remainder of this thesis.

Computing g(γ̄) for anything but the most simple PRCs gets difficult very

quickly. To alleviate this problem, the PRC can be expanded as a Fourier series,

ζ

(
γ̄ +

p

q
τ

)
=

∞∑
j=0

[
aj cos

(
jγ̄ + j

p

q
τ

)]
+

∞∑
j=1

[
bj sin

(
jγ̄ + j

p

q
τ

)]
. (3.17)

The relationship between the coefficients in this series, e.g. aj, and coefficients

derived from the original PRC (with units rad/mV ), e.g. aPRC
j , is

aj = aPRC
j

1

CZd

, (3.18)

which comes from Equation (2.10). For the terms in the series to contribute a

non-zero value to the integral in Equation (3.16) when being multiplied by sin τ ,
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the sin term and the ζ term must have the same frequency. Thus, we must have

j p
q

= 1. Since j = q
p

must be an integer, this method of averaging only gives

nontrivial results for n : 1 tongues. For other tongues, a higher-order averaging

technique might provide better results. Taking this into account, g(γ̄) can be

written as

g(γ̄) =
κ

2πq

∫ 2πq

0

[
aq/p cos

(
q

p
γ̄ + τ

)
sin τ + bq/p sin

(
q

p
γ̄ + τ

)
sin τ

]
dτ, (3.19)

which evaluates to

g(γ̄) =
κ

2

[
−aq/p sin

(
q

p
γ̄

)
+ bq/p cos

(
q

p
γ̄

)]
. (3.20)

Combining the sin and cos terms from Equation (3.20) to a single sin term with

a phase lag turns Equation (3.14) into

dγ̄

dτ
= ε∆ +

εκ

2

√
a2

q/p + b2
q/p sin

(
q

p
γ̄ − tan−1 bq/p

aq/p

)
. (3.21)

3.4 SNIPER PRC

For Z(θ) ∼ (1− cos θ), corresponding to proximity to a SNIPER bifurcation,

Equation (3.16) is nonzero only when p/q = 1. Equation (3.14) evaluates to

dγ̄

dτ
= ε

(
∆− κ

2
sin γ̄

)
. (3.22)

Thus, as shown in Figure 3.1, when the detuning is greater than some proportional

value of the forcing strength, the plot of dγ̄/dτ versus γ̄ no long crosses zero and the
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(a) (b) (c)

γ̄

dγ̄

dt

2π

0

stable

unstable marginally stable

dγ̄

dt

2π0

dγ̄

dt

2π0

µ/2 (1 /λ− 1 )

γ̄ γ̄

Figure 3.1: dγ̄/dτ versus γ̄, the averaged solution of the phase equations with a SNIPER bi-
furcation (similar for Bautin and supercritical Hopf). (a) The detuning

(
1
λ − 1

)
= 0. (b)(

1
λ − 1

)
= µ

2 . (c)
(

1
λ − 1

)
> µ

2 . Following the arrows, it can be seen that (a) has one stable and
one unstable fixed point, (b) has one marginally stable fixed point, and (c) has no fixed points.
Note that γ̄ = 0 and γ̄ = 2π correspond to the same point.

difference between the system phase and the forcing phase continually changes—

the system is no longer entrained to the forcing. This can be used to produce an

approximate analytical boundary between the locked and unlocked region of 1:1

forcing. This boundary is shown in Figure 3.2, and given analytically by

ε∆ = ±εκ

2
⇒

(
1

λ
− 1

)
= ±µ

2
. (3.23)

This relationship is representative of what is happening in Figure 3.1(b). Also

shown in Figure 3.2 are the actual phase-locking boundaries for the phase-reduced

system. To locate these boundaries, XPP [8] was used to first vary the forcing

frequency at a given forcing strength to find points on the boundary on both sides,

then following these bifurcations in the two parameters λ and µ. The averaged

solution to the 1:1 boundary closely matches the actual boundary for relatively

small values of µ.

Certain tongues which exist in other systems were not found in this phase
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Figure 3.2: Phase-locking regions (‘tongues’) for the phase-reduced oscillator exhibiting a
SNIPER bifurcation. The dotted lines near the 1:1 tongue are from the averaged solution.

reduced model, such as 2:3 and 2:1. It is fully expected not to find the 2:1 tongue

because there is no sin 2θ or cos 2θ (or higher) Fourier component of the PRC, and

Equation (3.16) is only nonzero when p/q = 1. However, a 1:4 tongue, thinner

than the 1:3 tongue, was found. This progression indicates there are likely to exist

many more 1 : m tongues of continually decreasing thickness. Unfortunately, the

method of averaging used in this thesis does not tell us any additional information

about such tongues. Outside of the tongues the response was quasiperiodic.

3.5 Bautin and supercritical Hopf PRCs

For Z(θ) ∼ sin(θ − φ), corresponding to proximity to either the Bautin or

supercritical Hopf bifurcations, Equation (3.16) is again nonzero only when p/q =
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Figure 3.3: 1:1 phase-locking region for the phase-reduced oscillator exhibiting a supercritical
Hopf or Bautin bifurcation. Dotted lines: averaged boundary. Solid lines: actual boundary.

1. Equation (3.14) evaluates to

dγ̄

dτ
= ε

(
∆ +

κ

2
cos γ̄

)
. (3.24)

The plot of dγ̄/dτ versus γ̄ is qualitatively the same as for the SNIPER bifurcation

shown in Figure 3.1. The analytical phase-locking boundary for both supercritical

Hopf and Bautin is again given by Equation (3.23), recalling that the definition

of µ depends on the bifurcation (see Table 3.1). Figure 3.3 shows the analytical

and actual boundaries for these two bifurcations. Using XPP, only the 1:1 tongue

could be reliably found for the unaveraged Equation (3.6). Again, it is expected

that there be no 2:1 or greater whole-number ratio tongue because the PRC has no

contribution to the Fourier series beyond sin θ. We were unable to locate tongues

with ratios smaller than 1:1 (such as 1:2).
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Figure 3.4: The lines show predicted phase-locking boundaries for the HH system with Ib = 10.
The data points come from numerically finding the actual boundaries.

3.6 General PRCs

For the general case where Z(θ) is represented by a Fourier series, dγ̄/dt is

given by Equation (3.21). The tongues are thus approximately(
1

λ
− p

q

)
= ±µ

2

√
a2

q/p + b2
q/p, (3.25)

recalling that q/p must be an integer. Rewriting with dimensional terms,(
ω

ωf

− p

q

)
= ± If

2ωfC

√
(aPRC

q/p )2 + (bPRC
q/p )2. (3.26)

Figure 3.4 shows the averaged solution to the whole-number ratio phase-locking

regions of the HH system. Also included are actual points from these boundaries

found numerically (details of how this was done are included in Appendix B.1).

The plot shows that by knowing the PRC of a system, some of the phase-locking

regions can be accurately predicted. Because HH has a bifurcation similar to

Bautin, the tendency for the data points to be to the left of the averaged bound-

aries can be explained by comparing with Figure 3.3.
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Chapter 4

Using phase-locking data to

deduce properties of the phase

response curve

4.1 Introduction

In this chapter, we assume that the PRC Z(θ) is not known for the system of

interest, but we do know if it is of Type I or Type II. We show how data points

on the phase-locking boundaries can be used to deduce properties of the PRC.

In the case that the system is known to be close to a SNIPER bifurcation, such

data can lead to a very good approximation of Z(θ). In other cases, it provides

constraints on recently proposed least-squares fitting procedures for Z(θ) [9, 15].
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Figure 4.1: Left panel: Raw data taken for phase-locking boundary of the HR system for three
values of Ib. Right panel: Same data non-dimensionalized using a value of csn fitted individually
to the SNIPER averaged boundary for each value of Ib.

More details of this process for determining properties of the PRC are included

in Appendix B.1.

4.2 SNIPER PRC / Type I

Suppose it is known that a given neuron is of Type I, i.e. it gives rise to its

periodic firing though a SNIPER bifurcation and the PRC is always positive.

Figure 4.1 shows data on the 1:1 phase-locking boundary for the HR system,

a two-dimensional set of equations which exhibits Type I behavior. Data was

taken for three different values of the baseline current (Ib = 4.95, 5.00, 5.10),

corresponding to three different natural frequencies.

To find the locking regions in these equations, we simulated them with MAT-

LAB, plotting the voltage of the neuron each time the forcing sinusoid reached

zero radians (i.e. when it reached the beginning of each cycle), creating a Poincaré
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map. After many cycles, if the neuron settled down to a single voltage each time

it was strobed, it was considered to be phase-locked with the forcing sinusoid.

The closer the forcing frequency was to the actual boundary the longer it took

to clearly synchronize, typically requiring between 300–600 cycles to achieve good

accuracy. A MATLAB program to find data on the tongues (of the HH system—it

can be easily modified for HR) is included in Appendix C. XPP was not used to

trace out the boundaries for the HR equations because of numerical issues that

were encountered. The problem was most likely that these sets of equations are

too stiff for XPP to handle (because of the action potentials).

The analytical phase-locking boundary for the SNIPER PRC given by Equa-

tion (3.23) can be written as

ω

ωf

− 1 = ± Ifcsn

2ωωfC
. (4.1)

Solving for If as a function of ωf ,

If = ∓2ωC

csn

(ω − ωf ). (4.2)

Letting

β =
If

2ωωfC
, (4.3)

Equation (4.2) simplifies to

β =
1

csn

(
1

λ
− 1

)
. (4.4)

Note that data points found experimentally describing the phase-locking boundary
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of a system can be expressed in terms of λ and β (because all terms are known).

Fitting to Equation (4.4) will yield a value for csn.

The data from smaller If values that appeared to fall on a straight line was

put into Mathematica and fit to Equation (4.4). Only this linear data was used

because when plotted in dimensional terms (as the raw data is naturally, e.g. in

Figure 4.1), the averaged solution to the phase-locking boundary consists of one

linear segment on each side of the wedge (see Equation (4.2), Figures 2.7 and 3.4).

Thus, not all the data was used for the fit, but all of the data was put into the

plots. Figure 4.1 shows the results for finding a different value of csn for each

value of Ib and plotting the boundaries (each one non-dimensionalized with the

corresponding value of csn) all together. These fitted csn values can be used to

draw the general shape of the phase response curves as shown in Figure 4.2. These

are compared with the actual PRC of the Hindmarsh-Rose equations obtained

numerically through XPP and a (1 − cos θ) curve with a simple least-squares

magnitude fit to the actual PRC. It also shows the three actual PRCs and a

(1 − cos θ) curve multiplied by csn fit from all of the data. Because Z(θ) ∼ 1/ω,

these curves are multiplied by ω so that the data (roughly) collapse to a single

curve [5]. These results show that this method captures the general shape as well

as the magnitude of the PRC with less than 6% error (the largest error being for

the case Ib = 5.10, the test current farthest away from the bifurcation, and thus

expected to have the largest error because the PRC looks less like (1 − cos θ),
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Figure 4.2: Phase response curves for HR data from three different Ib values. The curves in the
bottom-right panel are multiplied by ω to remove the expected ω dependence of the magnitude
of the PRCs.

instead having a larger contribution from higher-order Fourier terms). Also note

that, as expected, the curves from the tongue data are always slightly smaller in

magnitude than the actual PRCs. This is because they do not take into account

the (small) contribution from the higher-order Fourier modes.
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Figure 4.3: Left panel: Raw data taken for the phase-locking boundary of the HH system for
three values of Ib. Right panel: Same data non-dimensionalized using cB and ωSN fitted to the
Bautin averaged solution using data from all three Ib values.

4.3 Bautin PRC / Type II

Now suppose that a given neuron is of Type II (i.e. the value of the PRC

changes from negative to positive). We assume that such a system can be de-

scribed as having a Bautin bifurcation to periodicity. Numerical data for the 1:1

phase-locking boundary was taken for the HH equations, a Type II neuron model.

The data, taken for three different values of the baseline current (Ib = 6.6, 10.0,

20.0), are shown in Figure 4.3.

As with HR in the previous section, a stroboscopic Poincaré map was made

with MATLAB to find the phase-locking tongues for HH. When near the bound-

aries, it took an especially long time to determine if the system was locked with

good accuracy, usually up to 1250 forcing cycles.

Rewriting the phase-locking boundary of the averaged system (Equation (3.23))
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Figure 4.4: Phase response curves for HH data from three different Ib values. The actual PRCs
are multiplied by (ω−ωSN ) to remove the expected (ω−ωSN ) dependence of the magnitude [5].

gives

ω

ωf

= 1± If |cB|
2ωf |ω − ωSN |C

. (4.5)

In this case, the equation must be set up to do a two parameter fit to determine

both cB and ωSN . Using λ and β as before simplifies Equation (4.5) to

β =
|ω − ωSN |

ω|cB|

(
1

λ
− 1

)
. (4.6)

Figure 4.3 also shows the results of fitting a value of ωSN and cB to all of the

HH data and plotting them together using non-dimensionalized variables. For the

HH model, parameter fits cannot be made for single Ib values as with the HR

model because the fit to Equation (4.6) needs data from more than one Ib value

to avoid being underdetermined. Thus, the only fit done used all of the data with

the appropriate forcing strengths. Figure 4.4 shows the phase response curves for

the different Ib values for the HH model, along with a sin θ curve with amplitude

cB. Table 4.1 compares the actual and predicted values of the coefficients of the
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Table 4.1: Comparison of actual and predicted Fourier terms for the HH system with Ib = 10.

Ib

√
(aPRC

1 )2 + (bPRC
1 )2 |cB |

|ω−ωSN |
% Error

6.6 0.320 0.322 0.6
10.0 0.0793 0.0835 5.4
20.0 0.0399 0.0402 0.7

first Fourier terms. This shows that the 1:1 phase-locking tongue can be used to

accurately predict the combination of the first terms in the Fourier decomposition

of the PRC.

The lowest value of the injected current which maintained periodic firing in

the HH system was Ib = 6.269, corresponding to ωSN = 0.317. The value from

the fit was ωSN = 0.324, which is a 2.2% error.

One might suspect that using phase-locking data from the 2:1 and 3:1 tongues

(and so on) would allow for a more accurate representation of the PRC to be put

together, but this procedure only gives the quantity
√

a2
j + b2

j , not the individ-

ual aj and bj values, meaning no phase information about the Fourier terms is

available, and thus a PRC with more Fourier terms cannot be formed. However,

knowing the quantity
√

a2
j + b2

j does allow for constraints to be formed for use

with procedures to find PRCs from experimental data recently proposed in [9, 15].

These procedures use least-squares fits to individual Fourier terms, so knowing the

relationships between some of the terms could lead to better results.
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Chapter 5

Deducing neuron type from

phase-locking data

5.1 Introduction

The phase-locking data can also be used to determine the type of neuron being

studied (and thus which bifurcation gives rise to its periodicity). Here, models

for Type I (HR) and Type II (HH) neurons have their underlying bifurcation

determined from phase-locking data alone. This is accomplished by finding the

best fit for the data using both SNIPER and Bautin universal entrainment curves

and choosing the more likely one as the one which minimizes the variance of the

fit while still suggesting parameters which are physically allowed.
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Table 5.1: Parameter results from fitting HH and HR phase-locking data to the SNIPER and
Bautin universal entrainment curves.

HR HH
SNIPER csn 0.00358 0.0305

σ2 0.554 0.146
Bautin cB 0.00393 0.00883

ωSN -0.00133 0.324
σ2 0.182 0.0159

5.2 Hindmarsh-Rose system

The non-dimensionalized data from the HR system fit to the SNIPER and

Bautin universal entrainment curves (Equations (4.4) and (4.6)) are shown in

Figure 5.1. Table 5.1 shows the numerical results of the fitting process. σ2 is

the variance as estimated by Mathematica. Both fits look good, but the key is

that for the Bautin fit, ωSN is negative, which has no physical meaning. If ωSN

is constrained to be non-negative, ωSN = 0 is the best fit, which yields the same

result as the SNIPER case (and when plotted on the Bautin universal entrainment

curve is clearly not an optimal fit judging visually, not shown). Thus, SNIPER

must be the bifurcation displayed by the HR equations. Additionally, note how the

HR data matches the SNIPER universal entrainment curve for very high values

of µ, much higher than the values up to µ = 0.1 used in the fits. Again, it was not

necessary to know ahead of time any specific information about these equations

or the type of neuron they represent.
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Figure 5.1: Left panel: Data from the HR system fit to the SNIPER universal entrainment
curve. Right panel: Data from the HR system fit to the Bautin universal entrainment curve.
The HR system has a SNIPER bifurcation.
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Figure 5.2: Left panel: Data from the HH system fit to the SNIPER universal entrainment
curve. Right panel: Data from the HH system fit to the Bautin universal entrainment curve.
The HH system can be described as having a Bautin bifurcation.
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5.3 Hodgkin-Huxley system

The non-dimensionalized data from the HH system fit to both the SNIPER

and Bautin universal entrainment curves is shown in Figure 5.2. Again, Table 5.1

shows the results of the parameters in the fitting process. In this case, it can be

clearly seen by eye that the Bautin fit is better than the SNIPER fit. Both fits

have physically possible parameters, but the statistical variance (9 times higher

for the SNIPER fit) confirms a significant difference, leading to the conclusion

that periodicity in HH neurons is best associated with a Bautin bifurcation, so

that it is a Type II neuron.

5.4 Process for determining bifurcation type

With a set of data representing the 1:1 phase-locking boundary of a neuron,

the underlying bifurcation type can be determined. A quick method to narrow

down the choices of bifurcations can be used as a cross check of the more thorough

method. As shown in Figure 2.6, due to the nature of the bifurcations, SNIPER

and homoclinic neurons can fire arbitrarily slowly as Ib is reduced to be near the

bifurcation. Bautin neurons do not have a stable periodic orbit that continuously

shrinks into a fixed point, and cannot fire arbitrarily slowly. Hopf neurons have

a periodic orbit that grows continuously from the fixed point, but the frequency

is typically bounded away from zero. Due to the uncommonness of Hopf neurons,
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it follows that if a neuron in the lab cannot fire arbitrarily slowly it is most

likely Type II (Bautin PRC). Because homoclinic neurons are also uncommon, if

a neuron can fire arbitrarily slowly, it is most likely Type I (SNIPER PRC).

More details on determining the bifurcation type occurring in a neuron are

described in Appendix B.2.
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Chapter 6

Conclusions and future work

Knowledge of how neurons respond to different types of stimuli could lead

to better treatments of Parkinson’s disease through therapies such as deep brain

stimulation. Such response is characterized by the neuron’s PRC, which is typ-

ically difficult to measure experimentally. This thesis has shown how properties

of the PRC can be determined by considering the effects of sinusoidal stimuli on

a neuron. Specifically, it has shown the relationships between the PRC of a neu-

ral oscillator and its phase-locking regions. Knowledge of the PRC can be used

to generate good predictions for the whole-number ratio phase-locking tongue

boundaries of an oscillator, and the phase-locking tongues can be used to get

some information about the PRC. In the case of Type I neurons, data from the

1:1 Arnold tongue can lead to a very good approximation of the PRC. For Type

II neurons, data from the tongues can be used to find combinations of the Fourier
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coefficients of the PRC which can be used as constraints in fitting procedures that

generate Fourier coefficients of the PRC from experimental data [9, 15]. For Type

II neurons we can also give a good estimate of the minimum frequency at which

periodic behavior will be observed. If it is known that a particular group of Type

II neurons has a PRC that is close to sinusoidal in nature, our procedure can give

a good approximation of the magnitude of the PRC.

It was shown that the phase-reduced version of an oscillator has dynamics very

similar to the full system it represents. This is what allows for the bifurcation type

of an unknown neuron to be determined—normal form theory says that systems

with each of the codimension one bifurcations to periodicity have a different form

of the PRC. The dynamics of the full neural systems are similar enough to the

phase-reduced systems with PRCs from the normal forms of the bifurcations that

they can be associated with one another for identification. Determining the neuron

type does not require any previous knowledge about the neural system.

If there was a way to generate information about the phases of a PRC’s Fourier

components generated by our method, then it could be possible to take data from

several whole-number ratio tongues and synthesize the PRC with as many Fourier

terms as needed. Another possible extension of our method would be to take a

Fourier decomposition of an arbitrary periodic current stimulus, If (t), and use

information about responses to sinusoidal forcing to determine the response of

the system to this arbitrary input.
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This work will also provide insights into the dynamics of populations of os-

cillators with randomly distributed initial phases subjected to sinusoidal forcing.

This will allow one to see how quickly a group of oscillators can be synchronized or

desynchronized and if there are any special distributions the neurons take on. In

future work, periodically forced population models could include coupling, noise,

or different distributions of the individual oscillators’ natural frequencies.

Finally, the work done in this thesis can be applied to more models such

as those for circadian rhythms or the types of neurons involved in Parkinson’s

disease to find out what can be said about the response dynamics of these systems.

Eventually, a closed-loop control systems problem could be formulated for the deep

brain stimulation treatment instead of the current open-loop approach that would

desynchronize the neurons using a more optimal, likely lower-power method. A

similar problem could be devised for circadian rhythms, where a control system

could apply light to a user in such a way as to avoid jet lag. Additionally, an input

shaped more like the way the sun works could be fed into a circadian system

by creating it with terms from a Fourier series, to which this thesis provides

information about the response.
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Appendix A

Equations for the neural models

Included below are equations for the two neural models discussed in detail in

this thesis. To add sinusoidal forcing to either one, replace Ib with Ib +If sin(ωf t).

The Hindmarsh-Rose equations:

V̇ = [Ib − gNam∞(V )3(−3(q −Bb∞(V )) + 0.85)(V − VNa)

−gKq(V − VK)− gL(V − VL)]/C

q̇ = (q∞(V )− q)/τq(V )

q∞(V ) = n∞(V )4 + Bb∞(V ) , b∞(V ) = (1/(1 + exp(γb(V + 53.3))))4 ,

m∞(V ) = αm(V )/(αm(V ) + βm(V )) , n∞(V ) = αn(V )/(αn(V ) + βn(V )) ,

τq(V ) = (τb(V ) + τn(V ))/2 , τn(V ) = Tn/(αn(V ) + βn(V )) ,

τb(V ) = Tb(1.24 + 2.678/(1 + exp((V + 50)/16.027))) ,

αn(V ) = 0.01(V + 45.7)/(1− exp(−(V + 45.7)/10)) ,
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αm(V ) = 0.1(V + 29.7)/(1− exp(−(V + 29.7)/10)) ,

βn(V ) = 0.125 exp(−(V + 55.7)/80) , βm(V ) = 4 exp(−(V + 54.7)/18) .

Parameters:

Ib, If = [µA/cm2] ,

VNa = 55 mV , VK = −72 mV , VL = −17 mV , gNa = 120 mS/cm2 ,

gK = 20 mS/cm2 , gL = 0.3 mS/cm2 , gA = 47.7 mS/cm2 ,

C = 1 µF/cm2 , γb = 0.069 mV−1 , Tb = 1 msec ,

Tn = 0.52 msec , B = 0.21 gA/gK .

The Hodgkin-Huxley equations:

These equations are written using modern conventions and look slightly different

than those given in [14]. One obtains the equations in the paper by letting VHH =

−V − 65.

dV/dt = [Ib − gNah(V − VNa)m
3 − gK(V − VK)n4 − gL(V − VL)]/C

dm/dt = am(V )(1−m)− bm(V )m

dh/dt = ah(V )(1− h)− bh(V )h

dn/dt = an(V )(1− n)− bn(V )n

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10))

bm(V ) = 4 exp(−(V + 65)/18)

ah(V ) = 0.07 exp(−(V + 65)/20)
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bh(V ) = 1/(1 + exp(−(V + 35)/10))

an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10))

bn(V ) = 0.125 exp(−(V + 65)/80)

Parameters:

Ib, If = [µA/cm2] ,

VNa = 50 mV , V k = −77 mV , VL = −54.4 mV , gNa = 120 mS/cm2

gK = 36 mS/cm2 , gL = .3 mS/cm2 , C = 1 µF/cm2
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Appendix B

Detailed process for determining

PRC properties and neuron

bifurcation types

B.1 Determining PRC properties

Details of the method used in this thesis for finding points on the phase-locking

boundaries of the neural systems follows.

1. Get numerical data for 1:1 phase-locking boundaries of neurons

• Use a range of baseline current values, Ib, to capture three significantly

different natural frequencies, with one value of Ib being near the bifur-

cation
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• Care must be taken for Ib values near the bifurcation—if If is too large,

it may push the neuron to an Ib value below the bifurcation during part

of the forcing cycle, yielding unpredictable results (recall that the total

current injected into the system is Itot ∼ Ib + If )

• If data is inconsistent at higher If values, it may be because the neuron

is not returning to the limit cycle fast enough while being forced—use

smaller If values

• In this thesis, six data points at each Ib value were used to make a good

fit

• Use the same number of data points for each value of Ib

• Using an initial guess for the needed parameters, try to limit µ, the

non-dimensional forcing strength, to 0.1 or less (this is an order of

magnitude figure for the region of linearity of the tongue boundary)

• After taking a set of data, examine if the portion of the boundary

traced is linear. If it is, more data can (but not necessarily should) be

taken at higher If values. If not, more data should be taken at lower

If values.

2. Put the data into a spreadsheet to calculate the λ and β parameters for all

data points to be fitted, as shown in Section 4.2. The triplet {λ, ω, β} will

be fed to Mathematica. Again, only data that appears linear should be put
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into Mathematica for the fit.

3. Use Mathematica to fit the data taken to the appropriate model

• Run this code first to load the needed toolbox:

<< Statistics‘NonlinearFit‘

• Put the data into this format:

data={{λ, ω, β},...,{λ, ω, β}}

Data points with λ > 1 should be adjusted to have a negative β value

due to the nature of the (1/λ− 1) curve.

• SNIPER fit command:

NonlinearRegress[data, (1/lambda - 1)/c, {x, w}, {c}]

• Bautin fit command:

NonlinearRegress[data, (w - wsn)(1/lambda - 1)/(w cB), {x,w},

{{cB, .1}, {wsn, 0.1}}]

Note that running this fit requires data that includes more than one Ib

value to prevent the problem from being underdetermined.

Running this code will yield values for the different parameters of the system

along with many statistical results, the most important of which is the variance.

These fitted parameters can be used to get a much better idea of the actual µ

values tested than from the initial guess. Using this, confirm that the values

used in the fit fall below about 0.1. Values above 0.1 are useful when plotting,
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but the nonlinearity of the actual tongue boundaries begins to be more prevalent

and reduces the accuracy of the resulting parameters. Also, the PRC, which was

derived for small forcing, might begin to lose validity at higher forcing strengths.

B.2 Determining neuron bifurcation type

A more thorough method than described in Section 5.4 to determine the bi-

furcation type that takes advantage of the phase-locking data is as follows:

Case 1 Fit to Bautin universal entrainment curve is unreasonable / has high

variance, SNIPER fit is reasonable / has low variance: System characterized

by SNIPER

The Bautin fit may yield an unreasonable result, such as a negative value

for ωSN . This means that the best fit (with physically possible parameters)

actually has ωSN = 0, which corresponds to the SNIPER case. It is impor-

tant to note that if a fit gives parameters that are not physically possible,

it cannot represent the proper bifurcation—this rule takes precedence over

any involving variance.

Case 2 Fit to Bautin universal entrainment curve is reasonable / has low vari-

ance, SNIPER fit has high variance: System characterized by Bautin

In this case, when the data non-dimensionalized with the SNIPER csn are

plotted, different linear trends for the data are clearly seen corresponding
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to different values of Ib, as was observed in Figure 5.2. The data non-

dimensionalized with the Bautin parameters fall more closely onto a single

curve, giving the fit a much lower variance.

56



Appendix C

MATLAB program to find

Arnold tongues

The following MATLAB program was used to find the data points on the 1:1

phase-locking boundary of the HH system. Varying the forcing frequency, it uses

a binary search algorithm at a given forcing strength to check if the system is

entrained to the forcing at that point. A plot is generated for every point the

program checks so that the algorithm can be confirmed visually.

The program can easily be changed to find data for other neural models, and

can also be modified to find data at 2:1 and higher tongues. With the exception of

the forcing term, the code for the HH system contained in the odefunc function

and below is generic.

---------- syncfinderHHauto.m ----------
% works with one I_b value at a time - change I_b (I) in odefunc
% Primary inputs: I, freqnat, lambda, numCycles, cB, wsn, mu
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function syncfinderHHauto
global omegaf forceAmp;
tic
freqnat=68.3; % entered manually - really only sets inital lower value
omegan = (freqnat*2*pi)/1000;

lambda=1.1; % initial guess - sets ‘upper’ value.
% Greater than 1 gets points on right, less than 1 gets points on left

freqforce=freqnat*lambda;
omegaf = (freqforce*2*pi)/1000; % max omegaf, used for mu approximation
numCycles=1250;

cB=0.009; % guess of c value to get forceAmp from mu’s fairly correct
wsn=0.310; % guess of omega_{saddle node}
mu = [0.01 0.02 0.04 0.06 0.08 0.10]; % desired mu locations to search

forceAmpArray = mu*omegaf*(omegan-wsn)/cB; % array of I_f values

for i=1:length(forceAmpArray) % loop through I_f values
forceAmp=forceAmpArray(i);
lower=freqnat;
upper=freqnat*lambda;
synced = 0;

while abs(upper-lower) > 0.005
% loop until boundary is enclosed by two values close to each other

mid = (lower+upper)/2;
synced = hhsim(numCycles,mid); % forceAmp sent via a global var
if synced

lower=mid;
else

upper=mid;
end

end

mu_i = mu(i) % print out the results
forceAmp
freqforce = lower % outputs point closest to tongue that still locks

end
elapsed_hours=toc/3600 % takes a while to run this code

function synced = hhsim(numCycles,freqforce)
global omegaf forceAmp;
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omegaf = (freqforce*2*pi)/1000;
cycleTime = 1000/freqforce;
TFINAL=numCycles*1000/freqforce;
IC = [-74.95951612406819 0.63292036803569 0.01543265525027 ...

0.18523851622145];

points(1)=IC(1); % voltage is first state-variable
counter=2;
for i=0:cycleTime:TFINAL

[t,x] = ode23s(@odefunc,[i i+cycleTime],IC);
IC=x(length(x),:);
points(counter)=IC(1);
counter=counter+1;

end

figure % make and label plot
plot(points,’.-’)
xlim([1 numCycles+2])
title([’freqforce=’ num2str(freqforce) ’ forceAmp=’ num2str(forceAmp)])

% synced? check second half of points for small enough voltage diff
points=points(length(points)/2:length(points));
deltav=abs(max(points)-min(points));
if deltav < 0.5

synced = 1;
else synced = 0;
end

function ydot=odefunc(t,y)
global omegaf forceAmp
gna = 120; % mmho/cm^2 % constants
gk = 36; % mmho/cm^2
gl = 0.3; % mmho/cm^2
Vna = 50; % mV
Vk = -77; % mV
Vl = -54.4; % mV
C = 1; % microF/cm^2
I = 10; % microA/cm^2 - Entered manually here!

ydot=[(I-gna*y(3)^3*y(4)*(y(1)-Vna)-gk*y(2)^4*(y(1)-Vk)-gl*(y(1)-Vl)+...
forceAmp*sin(omegaf*t))/C

alpha_n(y(1))*(1-y(2))-beta_n(y(1))*y(2)
alpha_m(y(1))*(1-y(3))-beta_m(y(1))*y(3)
alpha_h(y(1))*(1-y(4))-beta_h(y(1))*y(4)];
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function val=alpha_n(V)
val = 0.01*(V+55)/(1-exp(-(V+55)/10));
function val=alpha_m(V)
val = 0.1*(V+40)/(1-exp(-(V+40)/10));
function val=alpha_h(V)
val = 0.07*exp(-(V+65)/20);
function val=beta_n(V)
val = 0.125*exp(-(V+65)/80);
function val=beta_m(V)
val = 4*exp(-(V+65)/18);
function val=beta_h(V)
val = 1/(1+exp(-(V+35)/10));
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