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Abstract— The phase response curve for a nonlinear oscil-
lator describes the phase-shift of the oscillation due to an
impulsive perturbation as a function of the phase at which
the perturbation occurs. We propose a novel feedback control
mechanism which allows one to control the phase of an
oscillation, assuming only that the phase response curve is
known and that a once-per-period marker event, such as the
time at which a neuron fires, can be detected. The effectiveness
of this control method is demonstrated through analytical
and numerical results. This work represents a first step to-
ward a closed-loop form of electrical deep brain stimulation,
a treatment for neuromotor disorders such as Parkinson’s
disease, with symptoms characterized by pathological neural
synchronization.

I. INTRODUCTION

Symptoms of neuromotor disorders, such as Parkinson’s

Disease (PD), have been linked to pathological synchro-

nization of neuronal signals, which consist of sequences of

voltage spikes, or action potentials [11],[4]. Such disorders

may be treated by a surgically implanted device, similar

to a cardiac pacemaker, that sends a high frequency elec-

trical stimulus into the motor control region of the brain,

specifically the thalamus. This treatment, known as Electrical

Deep Brain Stimulation (EDBS), has been successful in

alleviating the symptoms of a variety of diseases including

neuromotor disorders, obsessive-compulsive disorder, and

even depression [1]. Since its approval by the FDA in 1997

for use in advanced cases of PD, and in 2003 for dystonia,

EDBS therapy has helped thousands of patients increase their

quality of life. The treatment, however, causes side-effects

including collateral damage to surrounding brain tissue due

to the continuous application of the stimulus signal, which

leads to dysarthria, dysesthesia, and cerebellar ataxia [13].

Researchers in the neuroscience community have become

interested in the concept of “Demand-Controlled” EDBS. It

has been argued that the side-effects of electrical stimulation

can be minimized by applying the stimulus only when

synchronization is detected [13]. We view this essentially

as a feedback control problem, and direct our first efforts

toward the task of controlling the firing times of a single

oscillatory neuron (a participant in the pathological synchro-

nized oscillatory population dynamics).
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In this paper, we seek a closed-loop control law that, based

on the detection of a voltage spike, drives an oscillatory

neuron to track a periodic reference phase trajectory using

a charge-balanced control signal (to avoid accumulation of

charge in the tissue). In the limit of weak coupling, we

envision a set of such controllers driving a population of

oscillating neurons to track time-staggered reference trajec-

tories, achieving desynchronization.

II. PROBLEM STATEMENT

We consider a population of uncoupled phase oscillators,

derived from conductance-based neuron models, that are

each equipped with both a stimulus and feedback electrode.

We seek to develop a control law that results in a uniform

(desynchronized) phase distribution around S
1 = [0, 2π),

based only on the detection of once-per-period marker events

(action potentials) of the individual oscillators.

A. Individual Neuron Models

The dynamics of neuronal membrane voltage signals are

typically modeled using conductance-based ordinary dif-

ferential equation systems, following the Hodgkin-Huxley

formalism [7], in the space-clamped form

CV̇ = Ig(V,n) + Ib + I(t), ṅ = G(V,n),

where V ∈ R is the voltage across the membrane, n ∈
R

m
[0,1] is the vector of gating variables, C is the constant

membrane capacitance, Ig : R × R
m → R is the sum of the

membrane currents, Ib ∈ R is a constant baseline current,

and I : R → R is the stimulus current. It is notable that

the Hodgkin-Huxley equations themselves are a feedback-

connected system.

We assume the neuron is operating in a region of parame-

ter space such that there exists a stable periodic orbit, x
γ(t),

with natural frequency ω. Following [2], [3], we introduce

phase variable θ(x) : R
m+1 → [0, 2π) such that, in the

absence of input I(t), we have θ̇ = ω. Let θ = 0 correspond

to a marker event - the peak value of V on periodic orbit

x
γ(t), i.e. the action potential. With input,

θ̇ = ω +
ZV (θ)

C
I(t), (1)

where ZV (θ) ∈ R is the voltage component of the phase

response curve (PRC) Z(θ) ∈ R
m+1, computed by solving

an adjoint equation, as described, e.g., in [2]. Originally

proposed by [15], [16], the concept of phase reduction
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was formalized mathematically in [5] in the limit of small

perturbations, which fits in well with the present control ob-

jective of minimizing stimulus energy. We endeavor to show

that the information contained in the phase response curve

provides a means to develop feedback-based control schemes

that achieve our desynchronization objective for a class of

conductance-based neuron models that undergo a Hopf (or

Bautin) bifurcation to a stable periodic orbit. Members of

this class include the Hodgkin-Huxley system [7], and its

FitzHugh-Nagumo reduction [8]. Figure 1 shows the voltage

component of the phase response curve for the Hodgkin

Huxley system for a typical oscillatory parameter set [2],

which is qualitatively similar to the simplest phase oscillator

representation of this class:

θ̇ = ω − sin (θ)u(t). (2)

This corresponds to (1) with ZV = − sin(θ), I(t)/C = u(t),
where the capacitance C of the system is a constant, usually

taken to equal 1. We will focus on this simplified oscillator

in order to simplify the development of the forthcoming

convergence results. Then we will extend our results to more

general phase response curves of this class.

Fig. 1. Phase response curves. The dashed line represents the space-
clamped Hodgkin-Huxley system ZHH(θ) with a baseline current of
10mA. The solid line is the simple ZS(θ) = − sin(θ).

B. Observables

We impose the constraint that the only observable for each

neuron model is the detection of a voltage spike (action

potential). This is based on the fact that membrane voltage

measurements are quite noisy, and ionic gates are impossi-

ble to measure in vivo. By limiting ourselves to a simple

measurable observable, such as the occurence of an action

potential, we ensure that the control concepts developed will

be applicable to the physical system.

C. Population Model

In this very simplified scenario of uncoupled oscillators,

the ability to independently control many single oscillators

to match a set of reference phase trajectories is equivalent

to the ability to desynchronize the population. To quantify

synchrony, we follow [9] and introduce the order parameter

ReiΨ =
1

N

N∑

j=1

eiθj , (3)

where N is the number of oscillators and R ∈ [0, 1]
quantifies the level of synchrony of the first (primary) mode.

At the population level, our control objective is to drive R
to zero. This objective will be achieved if we are able to

drive each oscillator to a corresponding staggered reference

trajectory

θrj(t) = ωt + θrj(0) mod2π, (4)

where θrj(0) = j−1
N 2π, since this set of reference trajectories

satisfies

Re




1

N

N∑

j=1

ei(ωt+ j−1

N 2π)



 = 0 ∀t ≥ 0. (5)

Following this argument, we will now focus on the single

oscillator case.

III. REFERENCE TRACKING CONTROL

For the phase oscillator represented by (2), we propose a

simple charge-balanced waveform and show that there exist

parameters such that the proposed waveform contracts the

phase error over one period of oscillation, which implies

monotonic global convergence of the oscillator phase to a

fixed reference phase with the same frequency.

We define the phase error of an oscillator relative to the

reference phase θr by

∆θ =

{
θr − θ , for |θr − θ| ≤ π
θr − θ − sgn(θr − θ)2π , for |θr − θ| > π

(6)

where θ is the phase of the oscillator. This non-standard

definition of error is made so that a positive error means the

neuron needs to speed up, and a negative error means that it

must slow down to correct the error.

Since the only observable is a voltage spike, which we

define to be θ = 0, we propose a controller that updates each

time the oscillator spikes, and forms a stimulus waveform

based on a snapshot of the phase error ∆θ = θr computed

when the oscillator spikes. We wrap this error so that ∆θ ∈
(−π, π], which allows the controller to either slow the neuron

down or speed it up to match the appropriate reference spike.

For the following theorem, we take the time duration of the

action of the controller waveform to be

ts = (2π − |∆θ|/2)/ω. (7)

In this simple case, the PRC ZS(θ) = − sin(θ) has zero

crossings at θ = 0 and θ = π. A simple charge-balanced

waveform which guarantees contraction is the piecewise

constant function

u(t) =







u1 , for t0 ≤ t < t0 + ts/2
u2 , for t0 + ts/2 ≤ t < t0 + ts
0 , otherwise

(8)
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where u1 = −c∆θ, u2 = c∆θ ≡ ū, and t0 is the time of

the last oscillator spike, which by translating time for each

control period, we may take as zero. This is, in a sense,

a kind of discrete proportional control scheme, where the

magnitude of the control stimulus is proportional to the phase

error calculated each time the oscillator passes through its

marker event at θ = 0. The following result proves that this

control scheme reduces the phase error in the limit of small

stimuli.

Theorem For the oscillator θ̇ = ω − sin(θ)u(t) where

u(t) is as defined above with ū = c∆θ, the phase error ∆θ
of the oscillator will be a contraction in the limit of small,

positive c.

It is worthwhile to note that this theorem implies global

monotonic convergence of |∆θ| to zero. Before proving the

theorem, we develop the following Lemma.

Lemma Suppose

θ̇ ≤ ω + u0(Aθ + B), (9)

where ω, u0, A, and B are real constants. Then

θ(t) ≤
ω + u0B

u0A

(

eu0A(t−t∗) − 1
)

+ θ(t∗)eu0A(t−t∗) (10)

for t > t∗.

Proof: Suppose equality held in (9), and make the

substitution

θ(t) = K(t)eu0A(t−t∗). (11)

We solve the resulting differential equation for K(t), using

the fact that θ(t∗) = K(t∗) from (11) to determine the

integration constant, to give

K(t) =
ω + u0B

u0A

(

1 − e−u0A(t−t∗)
)

+ θ(t∗). (12)

Then from (11),

θ(t) =
ω + u0B

u0A

(

eu0A(t−t∗) − 1
)

+θ(t∗)eu0A(t−t∗). (13)

This is true when equality holds in (9). When the inequality

holds, (13) gives an upper bound, implying (10).

This is a special case of Lemma 4.1.2 of [6], a form of

Gronwall’s Lemma. We can similarly show that if

θ̇ ≥ ω + u0(Aθ + B), (14)

then for t > t∗ we have the bound

θ(t) ≥
ω + u0B

u0A

(

eu0A(t−t∗) − 1
)

+θ(t∗)eu0A(t−t∗). (15)

We also note that if equality holds for (10) or (15) for

t > t∗, then θ reaches the value θ̃ at time

t̃ = t∗ +
1

u0A
log

(

ω + (B + Aθ̃)u0

ω + (B + Aθ(t∗))u0

)

. (16)

We now prove the theorem, maintaining the notational

convenience of setting the time of the last spike t0 = 0.

Proof: We begin by addressing the case

0 ≤ ∆θ ≤ π. (17)

Piecewise linear outer and inner bounds for the phase re-

sponse curve ZS(θ) = − sin (θ) are

fO(θ) =







−θ 0 ≤ θ ≤ π/2
θ − π π/2 < θ ≤ 3π/2
2π − θ 3π/2 < θ ≤ 2π

(18)

fI(θ) =







−2θ/π 0 ≤ θ ≤ π/2
−2 + 2θ/π π/2 < θ ≤ 3π/2,
4 − 2θ/π 3π/2 < θ ≤ 2π

(19)

respectively. That is, we have

|fI(θ)| ≤ |ZS(θ)| ≤ |fO(θ)| (20)

for all θ ∈ [0, 2π).
We will now find upper and lower bounds for θ(t) under

the input (8) in the limit of small ū. Suppose that the neuron

has just fired, so θ(0) = 0. If there was no input (ū = 0),

then θ(ts/2) = ωts/2 = π − (∆θ)/4, so that (17) implies

that

3π/4 ≤ θ(ts/2) ≤ π. (21)

Furthermore, θ(ts) = ωts = 2π − (∆θ)/2, so that (17)

implies

3π/2 ≤ θ(ts) ≤ 2π. (22)

It is always possible to choose ū sufficiently small so that

these relationships hold even in the presence of input.

Let’s first consider the upper bound for θ(t). Until θ
reaches π/2, we have θ̇ ≤ ω + fO(θ)u1 = ω + ūθ. This

gives the bound (10) with t∗ = 0, θ(t∗) = 0, u0 = ū, A = 1,

and B = 0. If equality held then, from (16), θ will be π/2
at time

tπ/2 =
1

ū
log

(
ω + πū/2

ω

)

. (23)

Now, for tπ/2 < t < ts/2, we have θ̇ ≤ ω + fO(θ)u1 =
ω + (π − θ)ū. The largest value that θ can reach by time

ts/2 is found by assuming equality, which from (13) with

t∗ = tπ/2, θ(t
∗) = π/2, u0 = ū, A = −1, and B = π gives

θmax(ts/2) = −
ω + ūπ

ū

(

e−ū(ts/2−tπ/2) − 1
)

+
π

2
e−ū(ts/2−tπ/2). (24)

From (21), for sufficiently small ū we expect that

θmax(ts/2) ≤ π. Until θ reaches π, the PRC ZS(θ) is

negative and u(t) = ū is positive (since t > ts/2). Thus

θ̇ ≤ ω+fI(θ)u2 = ω+
(

2
π θ − 2

)
ū. This gives the bound (10)

with t∗ = ts/2, θ(t∗) = θmax(ts/2), u0 = ū, A = 2/π,B =
−2. If equality held, then from (16), θ = π at time

tπ = ts/2 +
π

2ū
log

(
ω

ω + 2(θmax(ts/2)/π − 1)ū

)

(25)

Now, until θ reaches 3π/2, we have θ̇ ≤ ω+fO(θ)u2 = ω+
(θ−π)ū. If equality held, the time to reach θ = 3π/2 is found

from (16) with t∗ = tπ, θ(t∗) = π, u0 = ū, A = 1, B = −π:

t3π/2 = tπ +
1

ū
log

(
ω + πū/2

ω

)

. (26)
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Finally, until θ reaches 2π, we have θ̇ ≤ ω + fO(θ)u2 =
ω + (2π − θ)ū. If equality held, the time to reach θ = 2π
is found from (16) with t∗ = t3π/2, θ(t

∗) = 3π/2, u0 =
ū, A = −1, B = 2π:

t2π = t3π/2 +
1

ū
log

(
ω + πū/2

ω

)

. (27)

A similar argument can be made to show that for the lower

bound of θ(t), using similar notation,

t′π/2 =
π

2ū
log

(
ω + ū

ω

)

,

θmin(ts/2) = −
π(ω + 2ū)

2ū

(

e−2ū(ts/2−tπ/2)/π − 1
)

+
π

2
e−2ū(ts/2−tπ/2)/π,

t′π =
ts
2

+
1

ū
log

(
ω

ω + (θmin(ts/2) − π)ū

)

,

t′3π/2 = tπ +
π

2ū
log

(
ω + ū

ω

)

.

The input u(t) must be nonnegative for 3π/2 < θ < 2π
(from (21), it can only be negative up to θ = π). But from

(22), we cannot guarantee that the input will be nonzero for

this range of θ values. ZS(θ) is positive for this range, so

the worst case scenario for our lower bound is zero input for

3π/2 < θ < 2π, giving

t′2π = t3π/2 +
π

2ω
.

Our reference trajectory is θr(t) = ∆θ+ωt, so θr(t2π) =
∆θ + ωt2π. Our phase error at t2π is then

∆θnew = θr(t2π) − 2π. (28)

Let ū = c∆θ, where c > 0. Using the above formulae, and

expanding around c = 0, for our upper bound for θ(t) we

find

∆θnew

∆θ
= 1 +

(∆θ)2(2 + π) − 16π3

32πω
︸ ︷︷ ︸

gu(∆θ)/ω

c + O(c2). (29)

For our lower bound for θ(t) with small c,

∆θnew

∆θ
= 1 +

(∆θ)2(2 + π) − 24π2

32πω
︸ ︷︷ ︸

gl(∆θ)/ω

c + O(c2). (30)

where gu(θ) < 0 and gl(θ) < 0 for initial error satisfying

(17). Furthermore, choosing c sufficiently small, ∆θnew ≥ 0.

Therefore, our control algorithm, in the limit of small ū,

decreases the error each iteration.

A similar argument can be made for −π ≤ ∆θ < 0.

Alternatively, suppose u(t) = ǫv(t) and θ(t) = ωt+ǫθ1(t)+
O(ǫ2). Then

θ(t) =

∫ t

0

[ω + f(θ(t′))u(t′)]dt′

= ωt + ǫ

∫ t

0

f(ωt′)v(t′)dt′ + O(ǫ2).

For v(t) = ±v̄,

θ(t) = ωt ± ǫv̄

∫ t

0

f(ωt′)dt′ + O(ǫ2). (31)

That is, a small, positive constant input advances the phase

by the same amount that a small, negative constant input of

the same magnitude retards the phase. For the input (8), we

thus get the same bounds for −π ≤ ∆θ < 0.

As implied above, an equivalent condition to global mono-

tonic convergence of the phase error |∆θ| to zero is the phase

error gain |∆θnew/∆θ| < 1 over the full measure of the

domain (−π, π]. Figure 2(a) shows results from simulation

that verify the global monotonic phase error convergence for

the case when c = 0.05 and ω = 1.

Another tool to analyze stability of the system is the

one dimensional map M : (−π, π] → (−π, π] defined by

∆θnew = M(∆θ). Figure 2(b) shows that, for this case, the

fixed point of M at ∆θ = 0 for this case is clearly globally

stable since the origin is a stable fixed point and the absolute

value of the slope is bounded by one over the entire domain.

Fig. 2. Numerical results for the proportional control law as described in (8)
with c = 0.05. The solid line in (a) is the phase error gain, shown within the
bounds (30) and (29). Figure (b) shows the final error map M displayed
as a solid line with the dashed line ∆θnew = ∆θ where intersections
correspond to a fixed point.

IV. GLOBAL ASYMPTOTIC STABILITY

The global monotonic convergence of |∆θ| to zero, as

described above, is a strong form of global stability that

may not be attainable for all oscillators with phase response

curves in the family we wish to consider. Also, in the limit

of small control magnitudes, slow monotonic convergence

may not be as desirable as fast asymptotic convergence in

the context of controlling neural synchrony.

These caveats lead us to investigate the concept of relax-

ing the monotonicity requirement, and instead focusing on

asymptotic stability of a control scheme. Given a constant

frequency reference trajectory θr, as defined in (4), global

asymptotic stability on S
1 can be ascertained by analyzing

the stability of the fixed point at ∆θ = 0 of the map M , as

defined in the previous section.

For a phase oscillator subject to the control algorithm

based only on the error ∆θ = θr − θ computed at a marker

event on its closed orbit, ∆θ globally converges to zero if
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the map M has a single stable fixed point at ∆θ = 0 with

a basin of attraction consisting of the full measure of the

interval (−π, π]. This, however, is only a sufficient condition

for global stability. In the next section, we will show results

from a control law developed for the Hodgkin-Huxley phase

reduction model that show global asymptotic stability on

a set of full measure, but do not exhibit monotonic error

convergence.

Unfortunately, the development closed-form analytic rep-

resentations of the map M may not be tractable, in general.

However, maps of this type are easily approximated by simu-

lation. By sampling a discrete set of ∆θ points throughout the

domain, applying the control law and observing ∆θnew at the

time of the next marker event, an approximation of the map

M can be constructed of arbitrary (finite) resolution. This is

the method we have used to construct the results presented

earlier in Figure 2, as well as the forthcoming results in

the next section. Once a sufficiently accurate approximation

of M has been calculated, the basin of attraction of the

stable fixed point at the origin (which, by construction will

exist) can be easily ascertained by graphical methods, e.g.

cobwebbing [12], or by reformulating the map as a Markov

process and checking the state transition operator for a single

eigenvalue of 1 with an eigenvector representing the origin.

V. EXTENSION OF THE CONTROL LAW

We now develop a heuristic method for calculating reason-

able control magnitudes for a more general class of phase

response curves. The control objective will be to reduce

the phase error as much as possible within one period of

the neuron, which implies a preference for fast asymptotic

convergence over slow monotonic convergence. We propose

a control law that will provide stimulus through the entire

duration of the desired period, which is a more aggressive

strategy than the similar control law developed earlier in

(8). In addition, we forego the strict requirement of charge

balance, in favor of waveforms that are “nearly” charge-

balanced. This is acceptable because small deviations in

charge balance can be easily computed and corrected by

applying a short corrective pulse when the neuron fires (since

the PRC is zero at θ = 0, a short corrective pulse will have

no effect on the dynamics). To simplify the presentation, we

will neglect this technicality.

We no longer assume the symmetric form of a sinusoidal

waveform, instead we consider smooth phase response curves

derived from systems exhibiting a Hopf (or Bautin) bifurca-

tion, which yield a class characterized by the conditions

Z(0) = 0 , Z ′(0) < 0
Z(α) = 0 , Z ′(α) > 0

max(Z(θ)) > 0 , min(Z(θ)) < 0.
(32)

For such a phase model, the control waveform may be

parametrized as follows:

u(t) =







ū1 , for t0 ≤ t < t0 + tswitch

ū2 , for t0 + tswitch ≤ t < t0 + tr
0 , otherwise

(33)

where tswitch = ( α
2π )tr, and tr = 2π−∆θ

ω is the time the

reference trajectory crosses zero. Suitable values for ū1 and

ū2 can be approximated by the following:

ū1 =
2πω∆θ

α (2π − ∆θ)
(
Z̄1 − Z̄2

) (34)

ū2 =
−2πω∆θ

(2π − α) (2π − ∆θ)
(
Z̄1 − Z̄2

) . (35)

Here, Z̄1 = 1
α

∫ α

0
Z(θ)dθ Z̄2 = 1

2π−α

∫ 2π

α
Z(θ)dθ.

We arrive at (34) and (35) by considering the average

values Z̄1 and Z̄2 of the two intervals of the phase response

curve Z(θ).We will use the simplifying assumption of linear

phase evolution proportional to the length of the intervals,

i.e. θ = α at time t0 + tswitch, and θ = 2π at time t0 + tr.

Using the square waveform, the charge-balance equation
∫ tr

t0

u(t)dt = 0 (36)

yields the following relation:

α

2π
ū1 + (1 −

α

2π
)ū2 = 0. (37)

Approximating Z(θ) by Z̄i for θ ∈ Ii gives a simple

separable ODE with the following solution

2π = ωtr + ū1Z̄1
α

2π
tr + ū2Z̄2

(

1 −
α

2π

)

tr. (38)

Without loss of generality, we take t0 = 0 and it is readily

shown that (34) and (35) are the solution in terms of ū1 and

ū2.

Both control laws (8) and (33) use a piecewise constant

waveform that switches sign during the period of actuation

and switches to zero afterward. They differ in the way the

magnitudes are calculated given the phase error ∆θ, and,

more subtly, in their switching times. Since the simple phase

oscillator with the PRC ZS(θ) = − sin(θ) has Z̄1 = −Z̄2,

and thus ū1 = −ū2, we can parameterize the control

magnitude by a single variable, ū = ū2 = −ū1, and directly

compare the two methods.

Given their slightly different switching time schemes,

the goal of these methods is to calculate the best control

magnitude, ū, as a function of initial error, ∆θ. Recall that

the control law (8) uses ū = c∆θ where 0 < c ≪ 1,

while the control law (33) uses (34) and (35). To ascertain

the effectiveness of the two methods, we fix the control

magnitude, ū, and simulate a single period of control to

get the phase error gain |∆θnew/∆θ| for a specific initial

phase error ∆θ. Repeating over a set of initial phase errors

∆θ ∈ [−π, π) shows the effectiveness of that particular ū
value as a function of the initial phase error. Performing

these simulations over a set of ū ∈ [−2, 2] quantifies the

performance over a range of ū values as a function of initial

error. In these plots, shown for both schemes in Figure 3, we

have truncated values over 1 (so they appear white) to better

visualize the regions of good controller performance (small

|∆θnew/∆θ|). Figure 3(a) shows results using the timing

scheme from (8) and one can see that a line ū = c∆θ
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for small positive c will lie entirely within the region of

negative phase error gain. Figure 3(b) shows results using

the timing scheme from (33) and one can see that the white

dashed curve calculated by (34) and (35) lies over the region

of lowest error gain. Using this control, we observe a very

low gain curve and extremely stable error map, as shown in

Figures 3(c) and 3(d), compared with the results from the

less aggressive scheme shown in Figure 2.

Fig. 3. Phase error gain for the PRC ZS(θ) = − sin(θ) for the control
scheme from (a) Eqn. (8) and (b) Eqn. (33) with different values of ū, and
(c) Eqn. (33) using (34) and (35). (d) shows the map M corresponding to
(c). The white dashed line in (b) corresponds to the results shown in (c)
and (d).

We now consider the phase reduction of the Hodgkin-

Huxley system, with the phase response curve shown previ-

ously in Figure 1. For this system, α ≈ 4.12, Z̄1 ≈ −0.031,

Z̄1 ≈ 0.105. Again, by simulation we study both the gain and

final error map. Figure 4(a) shows that this system does not

have monotonic gain convergence, but the stable fixed point

at the origin of the map M does have a basin of attraction

consisting of the entire domain (less the unstable fixed point,

a set of zero measure), so the system with the proposed

control scheme is asymptotically stable.

Fig. 4. (a) Phase error gain and (b) map M for the Hodgkin-Huxley PRC
for the control scheme from Eqn. (33) using (34) and (35).

VI. CONCLUSIONS

In this paper, we introduced a control problem drawn from

electrical deep brain stimulation, a treatment for neurolocal

disorders. We proposed novel feedback control mechanisms

which control the phase of an individual neuron, assuming

only that the phase response curve is known and that the time

at which the neuron fires can be detected. The effectiveness

of this mechanism was demonstrated through analytical and

numerical results. For a population of uncoupled neurons,

appropriate application of this control scheme to each in-

dividual oscillator will desynchronize the population, as

desired.

There are many extensions to the present work that we

plan to consider, including controlling individual neurons

with Type I phase response curves, such as the Hindmarsh-

Rose model [2], commanding individual neurons to fire

at frequencies different from their natural frequency, and

desynchronizing coupled populations of neurons. We also

plan to broaden the class of waveforms we consider to take

advantage of the properties of the phase response curve in or-

der to minimize the total delivered energy, and will compare

with results from optimal open-loop techniques [10].
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