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ABSTRACT

A general class of car-following models is analyzed where
the longitudinal acceleration of a vehicle is determined &y
nonlinear function of the distance to the vehicle in froheit
velocity difference, and the vehicle’'s own velocity. Theetis
response to these stimuli includes the driver reaction tiha
appears as a time delay in governing differential equatidrise
linear stability of the uniform flow is analyzed for humariven
and computer-controlled (robotic) vehicles. It is showattthe
stability conditions are equivalent when considering riogd
and platoon configurations. It is proven that time delaysules
in novel high-frequency oscillations that manifest theweseas
short-wavelength traveling waves. The theoretical resaite il-
lustrated using an optimal velocity model where the nomline
behavior is also revealed by numerical simulations. Theltss
may lead to better understanding of multi-vehicle dynarais
allow one to design cooperative autonomous cruise control a
gorithms.

INTRODUCTION

Vehicular traffic is one of the most complex interconnected
dynamical systems created by mankind. Each vehicle is con-
trolled by a human operator (sometimes assisted by an omtboa
computer) who senses the environment (i.e., the motionhafrot
vehicles, traffic signals and road conditions), makes d®&tss
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based on the collected information and actuates the cardcco
ingly. This process takes a finite amount time, known as the
driver reaction time. The emergent dynamics of a traffic sys-
tem, i.e., the time evolution of traffic patterns over largestand
length scales, is determined by these delayed, nonlinéaardr
to-driver and driver-to-infrastructure interactions. this paper

we focus our attention on the former one and study the corre-
sponding car-following dynamics.

By now, a vast number of different car-following models
have been constructed [1-3], but still no first principlegiaeen
established to guide the modeling procedure (if such pplasi
exist at all). In many cases, authors have claimed that the de
veloped model described traffic better than models prioh#d t
point, and such claims were often justified by fitting the mod-
els to empirical data. This approach may easily lead to nsodel
capturing, but also missing, some essential characteriatid a
model fit to one set of data may no longer be predictive when
extrapolated to new sets of data. We believe that anothettavay
conduct research in traffic can be by studying general ctasfse
models and classifying their qualitative dynamical feasuwwvhen
varying model parameters.

Of particular interest is the stability of the uniform traffi
flow in which vehicles follow each other with the same velgcit
because this state is beneficial for traffic safety and thipug
The approaches taken to analyze this state are very diffaren
the physics, applied mathematics and control engineengs ¢
munities. To bridge the gap between these approaches, leere w
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FIGURE 1.

calculate the flow stability by two different approaches ahdw
that they lead to the same result for the considered geness ¢
of delayed car-following models when the number of vehicles
is sufficiently large. (Such proof was presented for norayied
models in the appendix of [3].) Both methods provide valaabl
insights into the dynamics underlying jam formation. Intjzar
ular, apart from the location of the stability boundariespax
rameter space, the frequencies of the arising oscillatonisthe
wavelength of the developing traveling waves can be detexthi

Although, this paper focuses on the linear stability of the
uniform flow, we emphasize that car-following models are in-
herently nonlinear due to a fundamental speed-headwayn(or a
equivalent flux-density) relation built into them. Since ttie-
tailed bifurcation analysis of car-following models goeybnd
the scope of this paper we demonstrate the implicationseof th
linear stability analysis on the nonlinear dynamics by nricad
simulations.

MODELING CAR-FOLLOWING

In car-following models each driver-vehicle system is mod-
elled by a set of differential equations that are coupledtbeio
driver-vehicle systems based on the driver’s responsestés-e
nal stimuli. Fig. 1 shows a queue of vehicles on a single lane
where vehicles have equal lengthAt timet, the position of the
front bumper of then-th car is denoted byy(t), its velocity is
Vn(t) = Xa(t) and the bumper-to-bumper distance to the vehicle
in front (called the headway) is,(t). It can be read from the
figure thathn(t) = Xa-1(t) — Xn(t) — £, which results in

Pn(t) = Vis1(t) = Va (1), 1)

when differentiated with respect to tinte To complete the
model, this equation has to be supplemented with a carvioilp
rule, that is, the velocity or the acceleration has to bergagthe
function of stimuli that are usually the distanlg the velocity
differenceh, and the vehicle’s own velocity,. To represent the
fact that the longitudinal dynamics of automobiles are iculled

by varying the engine torque we choose a class of models where

2

Tn41

SEQUENCE OF CARS ON A SINGLE LANE SHOWING VEHICLES’ POSITNG, VELOCITIES, AND HEADWAYS.

the acceleration of vehicles is prescribed:

Vn(t) = f (hn(t — 7), hn(t — 0),Va(t — K)) . 2)

For simplicity, drivers with identical characteristicsearonsid-
ered. The delays, o,k represent driver reaction times to dif-
ferent stimuli (dead times required to process informatod
initiate action). To make the models more tractable, simgle
lations may be assumed between the different delays. There a
three simplifications commonly used in the literature:

1. Zeroreaction timest = o = k = 0. This is usually justified
by saying that dynamic models (2) may reproduce uniform
flow as well as traveling waves for zero reaction time by
varying some other characteristic times [4].

2. '‘Human driver setup’:71 = 0 > 0,k = 0. This setup rep-
resents that drivers react to the distance and to the vglocit
difference with (the same) delay but they are aware of their
own velocity immediately [5, 6].

3. ‘Robotic driver setup”:t = 0 = k > 0. This setup is mainly
used in the adaptive/automatic/autonomous cruise control
(ACC) literature. The delay accounts for the time needed for
sensing, computation and actuation in computer controlled
vehicles [7, 8].

Many other setups are also possible, for example, one may ac-
count for human memory effects by using distributed delays a
in [9]. We remark that in the first case the system (1,2) césisis
of ordinary differential equations (ODEs) where the iitiandi-

tions are given by, (0),v,(0). In the latter cases, systems of de-
lay differential equations (DDESs) are obtained whigfg), vq(t),

t € [-1,0] must be specified as initial conditions.

Determining the general properties of the multi-variable
nonlinear functionf in (2) is a difficult task. However, the model
must be able to reproduce the uniform flow where both the ve-
locities and the headways are time independent:

=, Va(t) = V"

3
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We also assume a functional relationship between the bquili v,
rium headwayh* and the equilibrium velocity*, that is,

0=f(h",0,v) = Vv =V(h) & h'=v1iv), 4

whereV is assumed to have the following properties: 0 Pstop 0 hstop h*

1. V is continuous and monotonically increasing (the more
sparse traffic is, the faster drivers want to travel).

2. V(h) =0 for h < hgep (in very dense traffic, drivers intend
to stop).

3. V(h) = vmax for largeh (in very sparse traffic, drivers intend
to drive with maximum speed — often called free flow).

Umax

This function is often called the range policy in the contitelr-
ature [10]. Two examples are shown on the top panels in Fig. 2.
The function on the left represents that between stopping an
free-flow conditions, drivers intend to keep a constant tgap FIGURE 2. EQUILIBRIUM SPEED-HEADWAY DIAGRAMSV* =
Tgap (also called time-headway), while the function on top right V(h*) ARE SHOWN ON THE TOP, AND THE CORRESPOND-
shows a scenario when the intended time gap changes with theING EQUILIBRIUM FLUX-DENSITY DIAGRAMS g* = Q(p*) ARE
distance/velocity. DISPLAYED AT THE BOTTOM.

One may define the equilibrium density and the flux as

_1
hstop+£

1
hstop+L

Another car-following model that satisfies the general con-
ditions above is the intelligent driver model [7,13]

* 1 k ok Ak * I *
P =iy 9=P Vi=p"V(1/p"—€):=Q(p"). (5)

Vmax

\% )4 N (hstop+ VTgap_ hV/ V 4ab) 2‘|

f(h,h,v)—a[l( .

This way the equilibrium speed-headway diagrams can bs-tran

formed into the equilibrium flux-density (fundamental) gliams ) _ ) _ (7)
displayed at the bottom of Fig. 2. The rising part of the funda " this modelarepresents the maximum acceleration biithe
mental diagrams (that represents free flow) can be observed i comfortablle .degeleratlon. Here the equilibrium speediivey
empirical traffic data, collected by loop detectors, whiteially relationship is given by

a cloud appears instead of the decaying part (indicatintgables

equilibria) [3]. Nevertheless the triangular fundamenlialgram h* :Vfl(\fk) _ Nstop+ V" Tgap (8)
is often used for designing flow control strategies for rang m V1= (V*/Vmax)* '

tering and variable speed limit control [11].

The equilibrium speed-density function (range policy) may and the correspondinyg is similar in shape to the functions in

be explicitly built into car-following models. The corresud- Fig. 2 —except that (h) < 0 forh < hstop. (However, the uniform
ing so-called optimal velocity (OV) model [4,6,10,12] ca@a b  flow is usually unstable here, and such a non-physical motion
formulated as is rarely observed in simulations.) Notice that in (8) we éav

V' (Nstop) = 1/ Tgap
_ We emphasize that the reaction timee, Kk (~0.5-1.5 sec
(V(h) —v) +bh. (6) for human drivers~0.1-0.2 sec for computer-controlled vehi-
cles) are not equal to the time gag,, ~1-2 sec and these rep-
resent physically different features. They also diffemirthe
The first term corresponds to relaxation to a density depgnde relaxation timel ~1-10 sec that corresponds to the acceleration

f(h,h,v) =

=l

optimal velocity given by the increasing OV functidhwith a capabilities of vehicles.

relaxation timeT, while in the second, relative-velocity term we There are two common vehicle configurations that allow one
haveb > 0. Despite its simplicity, the model (6) can reproduce to characterize the stable and unstable motions that maytiogy
qualitatively almost all kinds of traffic behavior. skeleton of traffic dynamics.
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1. Ring-road configuration: Nrehicles are placed on a ring of
lengthL 4 N/ (yielding h* = L/N and the periodic boundary
conditionxy1 = X1). Usually, the largeN limit is taken:

N — oo such that_/N is kept constant. This configuration
has been studied experimentally in [14].

2. Platoon configuration: N+ 1 vehicles are placed on a road
of infinite length and the motion of the leadé\t { 1-st ve-
hicle) is assigned — e.g., in equilibrium it travels with
The system is viewed as an inpug( 1) output (/1) system
with a chain ofN nonlinear integrators. ACCs are usually
designed using this configuration [15].

Notice that in the first approach, the key parameter is thé equ
librium headwayh*, while in the second approach, it is the equi-
librium velocity v*. However, these quantities are linked by (4).
We will show in the next section that the conditions for thehr
stability of the uniform flow are equivalent for the two config
rations in the largéN limit. In this paper we us&l = 33 when
drawing stability charts, which is small enough to keep the i
lustrations readable but is large enough to represent the
limit.

LINEAR STABILITY ANALYSIS

In this section we study the linear stability of the uniform
flow for different delay setups using both the ring-road amal t
platoon configurations. Linearizing the system (1,2) alibat
equilibrium (3) and defining the perturbatioggt) = hn(t) — h*,
Wi (t) = vo(t) — v* one obtains

$n(t) = Wnra(t) —wn(t),

Wn(t) =F st —T)+G&(t—0) —Hwh(t—k), ©

where the coefficients

F=onf(h",0,v"), G=g,f(h",0,v"), H=-4,f(h",0,v)
(10)

are assumed to be positive to obtain physically realisticedr
behavior, i.e., drivers intend to decrease perturbations.

Ring-road and platoon configurations require different
methods to analyze the stability. In the former case theesyst
autonomous and trial solutionse’, A € C may be used (which
is equivalent to performing a Laplace transformation inetim
This leads to a ®-th order characteristic equation far To ob-
tain asymptotically stable uniform flow one needs to enshiag t
all characteristic roots are in the left-half complex plathat is,
Re(A) < Oforall A [6,16].

Platoons are driven by the leadét € 1-st vehicle). Here
to obtain stable uniform flow, one must ensure that pertiohat

decay as they propagate upstream along the chain of vehicles

4

At the linear level this can be addressed by studying thestran
fer function that links the Laplace transformswf, 1 andwy:

if the magnitude of the transfer function is smaller than r1dib
excitation frequencies then the uniform flow is stable. Tnp-
erty is often called string stability in the literature [13]. In the
following subsections we determine these stability coods for
different delay setups.

Case 1 — Zeroreactiontime: 71=0=k=0

This case has already been reported in [3], but we review the
results since it allows us to establish the framework thélthvei
used in the forthcoming cases.

Considering the ring-road configuration, substituting the
second equation to the first one in (9), and assuming the trial
solutions, = e, wy = &M, A, Nn, & € C, one may obtain
the characteristic equation

A2+ (G+H)A+F)N = (GA +F)N. (11)

Taking theNth root of both sides, substitutinfg=iw, w € R>o,
separating the real and imaginary parts, and using trigetrdm
cal identities, one may determine that the stability changa
Hopf bifurcations at

222+ [1+ (22 +1)tart (kwﬂ)} . @)

with angular frequency

%’ = (ZS + 1) tan(XIT) (13)
wherek=1,...,N —1 is a discrete wavenumber. The corre-
sponding spatial wavelength s, = (L 4+ N¢)/k for k < N/2
andA_ = (L+N¢)/(N —k) for k > N/2; i.e., the same spatial
pattern arises for wavenumbérandN — k.

Note that for the physically realistie,G,H > 0 parameter
regime only the wavenumbefks< N/2 are admissible. Also
note that the dimensionless parametey#i?,G/H depend on
the equilibriumh*,v*. It can also be shown that when cross-
ing the above stability boundaries by increaskgthe pair of
complex conjugate characteristic roatsw crosses the imagi-
nary axis from left to right, i.e. the system becomes ‘more un
stable’. SinceF /H? is an increasing function d for k < N/2
(c.f., (12)), the stability loss occurs for the lowest wanenber
k= 1. In the largeN limit, we haveX™ — 0 and so the stability
condition becomes

% < %(2§+1), (14)
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with frequencyw — 0. Note that forA = iw one may calculate
the eigenvector componenfs = eigFF”, SO

which shows that the oscillations manifest themselves as tr

eling waves (propagating upstream). When nonlinearities ar

added to the system the small-amplitude nonlinear odoifiat
can be written in the above form and the amplitwgig, can de-
termined by normal form calculations [12, 16].

For the platoon configuration one can focus on the relation-

ship between the velocity perturbationg andw,1 in (9), and
define the state, output, and inputas: [s,,wq]", y = wy, and
U= Wy, 1. Thatis, for zero delays (9) can be rewritten as

X = AXx+Bu,

A:[g_(G_iH)], B:H, c=[01, p=]0.
(16)

y=Cx+Du,

The corresponding transfer function becomes

GA +F
A2+ (G+H)A+F’
17)
wherey,(A) is the Laplace transform afiy(t). Here, one may
study the stability of the controller: the poleslofA ) have to be
on the left half complex plane which is ensuredys,H > 0.
On the other hand, to ensure the stability of the uniform fliogv,(
string stability), the inequalityT (iw)| < 1 needs to be satisfied
for all w € R>o, which results in the condition

r(A) = ¥a(A)

= =C(Al-A)B+D=
()~ CAT=A)

F 1,.G 1 w?
m%(%“)*am' (18)

The right-hand side is minimal fab — 0, yielding (14) as a con-
dition for string stability. Notice that substituting thésdersion
relation (13) into (12) results in (18), showing that thefetiént
approaches are equivalent.

Case 2 — Human-driver setup: 7=0>0,Kk=0
Sincet > 0 one may rescale the time &s- t/1 and define
the non-dimensional characteristic rodts- A t and frequencies

@ = wt. We remark that one may obtain the stability bound-
aries without this rescaling but the formulae may becomeemor

complicated.

For the ring-road configuration the characteristic equmatio
becomes

(A2 4 THA + (1GA + 12F)e )N = ((1GA + 12F)e M)V,

19)
One may substitutd = i@, € R>p and separate the real and
imaginary parts, but due to the exponential terms it is nesjixe
to eliminate®@. Instead the Hopf bifurcation curves are given in
the parametric form

H2 2sin(X) cog (& KN
o @cos(— X
~ 2&sin(Km) —sin(@- k1)’

F (2§sin(kﬁn)—sin(@—%))(l—zﬁsin(kﬁ) sin((b—kw"))

(20)

which are shown in the top row of Fig. 3. Red arrows indicate
the increase of the wavenumbefrom 1 toN/2 (blue curves)
and its decrease froM — 1 to N/2 (green curves), that is, the
spatial wavelength decreases fram N to 2(L/N +¢) in both
cases. In the left panels the curves are ordered such thstiathe
bility boundary is given by the lowest wavenumitet 1, that is,
low-wavelength low-frequency oscillations are expectedyp-
pear when the stability is lost (as for the zero-delay case).
contrast, in the right panels, curves intersect each otiethigh-
frequency short-wavelength oscillations are expectedstdii-
ciently large delay. This behavior can be explained by tloe fa
that for

G 1
— > 21
H ™ 2sin(kT) (21)
the curves intersect the vertical axis at
; G ainkmy ]t k
arcsm{ [Zﬁ sm(W")} } + 3
™ |F:0 = , (22)

4ﬁ—§sin2(kW") -1

which is a decreasing function dﬁ’ on the intervalO, r1j. That
is, curves belonging to higher wavenumbers cross the aértic
axis at smaller values of delay. Notice that according tQ (@i
curves intersect the vertical axis unl€ggH > 1/2.

For the platoon configuration the transfer function becomes

B (TGA + 12F )
A2+ THA + (TGA + T2F)e

rQ) (23)

Copyright © 2011 by ASME
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FIGURE 3. STABILITY DIAGRAMS FOR THE LINEARIZED MODEL (2) FOR HUMAN (TOP) AND ROBOTIC (BOTTOM) DRIVERS. THE
STABLE REGIONS ARE SHADED AND HOPF BIFURCATIONS TAKE PLACE WEN CROSSING THE BLUE AND GREEN CURVES GIVEN
BY (20) AND (28). RED ARROWS SHOW THE CHANGE OF THE DISCRETE WELENGTH FROML +N¢ TO 2(L/N +¢). THE NOTATION
g= 2% +11S USED; C.F. (14). THE THICK RED DASHED ENVELOPES CORRESWDTO THE STRING STABILITY BOUNDARIES (25)
AND (32), WHILE RED CROSSES SEPARATE THE LOW- AND HIGH- FRE@MCY SECTIONS.

and the conditionl” (id)| < 1 leads to

03 ) (-G
TH/F G &\ . . (e4)
—E<W+HW)SIHOJ>O.

This is clearly satisfied if the minimum of the functid¥( ()
is positive. Although, this minimum cannot be determined in
closed form, one may differentiate the above formula and find
the stability boundary by setting(é) = 0, -&P(&) = 0 which

v ddd
leads to
~2 ~ b .~

F %(ﬁ+1)+%(cosw—%smw)
H2 cos@+ M siné ’

3 .

THY
aj (T) = 07

L @

= (25)
ap = 1@siNd + cos®,
a1 = 3(3sin®— &cos®) — & (sindcosid+ @),
a = 1sin®(®—4E sin®),
ag = %(sin&)— @Ccosw) + %(Sin(bCOS&)— ).

6

Solving the second equation one obtaih$ as a function ofo
andG/H, and the smallest (positive real) root can be substituted
into the first equation. This way the string stability curgeob-
tained in a parametric form in th@e /H?, tH) plane. Indeed,
the corresponding thick red dashed curve envelopes of tipé Ho
curves as shown by the upper row in Fig. 3. This proves that the
two approaches used for determining the linear stabilityhef
uniform flow give equivalent results.

When considering the limi® — 0, equation (25) leads to

i =220 ) @)
(TH)3%(4S - 1) + (TH)2%<4S - 1) +TH (25 - 1) ~1,

where the second equation have a unique positive real aoluti
for TH if and only if G/H > 1/4. In fact forG/H < 1/4 the
string stability boundary is given by the first equation @)@ith

@ — 0 (left panels, top row, Fig. 3), while fd&/H > 1/4 this
only gives the lower section of the curve and the upper sectio
is given by (25) with@ > 0 (right panels, top row, Fig. 3). The
low-frequency and high-frequency sections are separaged b
red cross that moves down and to the right wigeis increased.
Furthermore, considering = 0 in the first equation of (25) one

Copyright © 2011 by ASME



may obtaintH |F:0 and show that this only takes a finite value  which yields the stability condition
if G/H > 1/2. In summary, not only the boundaries but also the
frequencies of arising oscillations are matched for thg-rivad

and platoon configurations. 162 1/.6G =
o) = =2 4 =(2241) — = cosa
Q(w) 2r2H2+2( T ) [y COS® a
Case 3 — Robotic-driver setup: T=0=k >0 _ (S n 1) ﬂHsincI) ~0.
T

For the circular-road configuration the characteristicaequ
tion becomes

ConsideringQ(&) = 0, %Q((D) = 0 one may obtain

(7\2ef~‘ +1(G+H)A +12F)" = (1GA +12F)", (27)

. . . . F 1/,.G 1 /G
which results in the Hopf bifurcation curves ___ (2= 2
p v 2(2~H+1)cosw+ TH(H+1)S|n2w

. . 5 s e + % r;ﬁz (c”ocosd)— Zsincb> ,
F o <2ﬁ+1) [COS(W)(ZW+1) sm(W)tan(wW)] ) |
- oot ) L gamieo <32>

=

~ ~ K

o chos(w— W’L ’ (28) bo = 3@ (&@sind+2cos)
(2g+1 sin (4F) blzf(%+1)(sind)coscb+&)),

that are shown at the bottom in Fig. 3. Now for any valu&gH
the curves cross the vertical axis at
where the second equation may be solvedférand the smaller

1 (positive real) root can be substituted into the first equmti
arctan{ [(2% +1 tan(kW")} } + kn Again the corresponding parametric curve gives the eneetp
TH| = > . (29) the Hopf curves as shown by the thick dashed curve in Fig. 3.
\/(2% + 1) sir? (X7) 4 cog (XIM) That s the two different stability calculations indeedure the
same stability condition.

In this case, taking the limid — 0, equation (32) yields
which is again a decreasing functionﬁ? on the intervalO, r1].
(Fork=N/2, we haverH ’F:O =11/2/(2G/H + 1), which takes

the valuerr/2 for G = 0 and approaches 0 wh&hincreases as F }(29 n 1) (33)
indicated in the figure.) This leads to multiple crossingsveen H2  2\"H ’
the stability curves of different wavenumbers. 21/.G G 1

There also exists a critical “point” where large large numbe (TH) 4 (zﬁ + 1) ~TH (ﬁ + 1) +5=0
of intersections occur and the behavior changes radiddiiow
this, long-wavelength low-frequency oscillations arideew sta-
bility is lost by increasing the gaiff, while above the critical ~ Here the first equation gives the string stability boundany o
point short-wavelength high-frequency oscillations afeeeted. the interval TH € [0,6], where 6 is the smaller solution of
Furthermore, a trade-off may be observed when comparing the the second equation. This is depicted by the vertical sectio
panels for different values @/H: increasingG the width of the of the red dashed curve in Fig. 3 (bottom row). The critical
stable regime increases but its height decreases, i.esysiem point (TH,F /H?) = (G/H +1/2,8) is marked by red a cross
tolerates smaller delays. that moves down and to the right &sis increased. We have

For the platoon configuration the transfer function becomes Y= 2—+/2 for G =0 while 6 approaches 0 for larg®. The sec-
tion of the red dashed curve above the cross is given by (32) fo

- @ > 0 that is high-frequency oscillations are expected for suffi
F(i\) _ ] TGA + 1°F (30) ciently large delay for any value @ corresponding to the results
226+ T(G+ H);\ +12F’ obtained from the ring-road configuration.

7 Copyright © 2011 by ASME
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FIGURE 4. STABILITY DIAGRAMS FOR THE OPTIMAL VE-
LOCITY MODEL (35). THE PARAMETER CHOICES CORRE-
SPOND TO THE SECOND COLUMN IN Fig. 3.

Stability of the optimal velocity model with delay

In this section we apply the above stability criteria to the
optimal velocity model (6) where

! *
VW) b m=t o B v

G
T T HZ T

— =DbT.
(34)

To decrease the number of parameters we rescale distanttes by

desired stopping distandgop (that is,h = h/hstop) and rescale

velocities by the desired maximum velociyax (that is, V=

V/Vmax). Consequently, time is rescaledfas tvmax/hstop The

rescaled OV model can be written as

f(h,h.¥) = a(V () — 9) + Bh, (35)
where the rescaled OV function
o 0, it helo,1],
VR =g (Bon/et e (36)

1+ ((h—1)/d)3’

is used, in which the constadt describes how much the OV
function is stretched to the right ¢f = 1. Here we usel =
2; c.f. top right panel in Fig. 2. Furthermore, we will use the
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FIGURE 5. NUMERICAL SIMULATIONS CORRESPONDING
TO THE MARKS IN THE LEFT PANELS OF Fig. 4. NOTICE
THAT THE APPEARING CHARACTERISTIC WAVELENGTHS
ARE VERY DIFFERENT IN THE TWO CASES.

nondimensional parameters

TVmax h*

B hstop _ bhstop

= , . f= . h = . (37
T Vimax Vmax hstop hstop S
Also, formulae (34,37) lead to
F ~ G p
— =V/(h* — =
Ve, = (39)

Here we varya and considef3/a = 0.2, which corresponds to
the second column of Fig. 3. Using (36) one may transformethes
into the diagrams shown in Fig. 4, where the stability cuives
plotted in the(ﬁ*, T) plane (for different values af). It can be
seen that for human-driven vehicles increasings beneficial
for stability. However, it can be shown that there existsitcal
delay above which instability cannot be eliminated by iasiag

a. On the other hand, for robotic vehicles increasintgads to

a trade-off: the unstable domain disappears for small debay

in the meantime the maximum tolerable delay is decreasing.
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NONLINEAR BEHAVIOR

In this section we demonstrate by numerical simulation that
the oscillations of different wavelengths that are sugggedsty
the linear stability analysis, do appear in the nonlineatey.
In particular, we marked a point (by red cross) in the leftgdan
of Fig. 4 in the unstable regime @t*, T) = (2.8,1.0). The corre-
sponding numerical simulations, i.e., the trajectoriesetficles
in space-time, are shown in Fig. 5. The system is initialiaed
equilibrium except one vehicle whose headway and velocgy a
slightly reduced. (The initial functiorts (t), va(t) are considered
to be constant along the intenta [—1,0].) The system is inte-
grated by applying 4th order Adam-Bashforth method in Matla
using the step size/100. The (rescaled) position of the front
bumperx; of each vehicle is plotted as a function of (rescaled)
time f. Periodic boundary conditions are considered (ring-road
configuration) and the rescaled car-length 1 is used.

One may observe that the patterns appearing after tragsient
are different for human and robotic drivers. For human dsye
although short-wavelength oscillations show up originathe
asymptotic pattern is a long-wavelength traveling wave,, i.
stop-and-go traffic jams appear. In contrast, for roboticets
the asymptotic pattern consists of short-wavelength lasicihs.
This means that the patterns concluded from the linear sisaly
show up at the nonlinear level, demonstrating that delaysad:
ically change the arising patterns in a spatially extenaedpiex
system. However, we remark that it may be difficult to map the
full nonlinear behavior of the system by using nonlinearidan
tions only. For example, if the Hopf bifurcations are suticai
one may obtain sustained nonlinear oscillations even oradltsn
where the uniform flow equilibrium is linearly stable [6, ]1
Characterizing the nonlinear dynamics of classes of ddlage
following models is a challenging subject for future resbar

CONCLUSIONS

A general class of car-following models was considered and
the linear stability of the uniform flow was studied for diféat
(ring-road and platoon) vehicle configurations. It was prothat
both configurations give the same stability charts evenghaloe
applied mathematical tools are different. It was also shtivei
when the stability is lost, traveling waves of different wbangth
appear. The developing nonlinear waves were demonstrgted b
numerical simulations. It was shown that the wavelength and
frequency of the primary instability depend on the how tHayte
are incorporated in the systems. The results demonstrate th
time delays lead to much more complex behavior than suggjeste
by the zero-delay case. The presented results may leadtér bet
understanding of the dynamics of human-driven vehicleesyst
and may also allow one to design cooperative autonomousecrui
control algorithms for computer-controlled vehicles.
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