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Abstract—Microelectromechanical oscillators utilizing nonin-
terdigitated combdrive actuators have the ability to be parametri-
cally excited, which leads to distinct advantages over harmonically
driven oscillators. Theory predicts that this type of actuator, when
dc voltage is applied, can also be used for tuning the effective
linear and nonlinear stiffnesses of an oscillator. For instance, the
parametric instability region can be rotated by using a previously
developed linear tuning scheme. This can be accomplished by
implementing two sets of noninterdigitated combdrives, choosing
the correct geometry and alignment for each, and applying ac
excitation voltages to one set and proportional dc tuning voltages
to the other set. Such an oscillator can also be tuned to display
a desired nonlinear behavior: softening, hardening, or mixed
nonlinearity. Nonlinear tuning is attained by carefully designing
combdrive geometry, flexure geometry, and applying the correct
dc voltages to the second set of actuators. Here, two oscillators
have been designed, fabricated, and tested to prove these tuning
concepts experimentally. [2006-0085]

Index Terms—Electrostatic, noninterdigitated combrives, non-
linear, parametric resonance, tuning.

1. INTRODUCTION

ECENTLY, microelectromechanical oscillators exploiting
Rparametric resonance have been shown to have benefits
over conventional linear based micro-oscillators. Parametric
resonance in microelectromechanical systems (MEMS) was
first proposed for amplification of harmonically excited os-
cillators in [1], and since then parametric excitation has been
investigated for increasing sensitivity in scanning probe mi-
croscopy [2] and mass sensing [3]. Common MEMS exhibiting
nonlinearities that lead to this type of resonant behavior include
translational [3], [4], torsional [2], and cantilever [1], [5] de-
vices. Parametric resonance has also been found in nanoscale
oscillators, specifically nanowires [6]. Characteristic to all
of these oscillators is the ability to resonate when driven at
frequencies near 2wg/n, where n is an integer greater than or
equal to one and wy is the natural frequency [7]. Of interest
in this paper is the oscillator’s primary parametric resonance
region, corresponding to n = 1, where the oscillator is driven
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Fig. 1. Representative first parametric region of instability in excitation voltage
amplitude V4 versus nondimensional frequency £2 space.

near twice its resonant frequency. Driving an oscillator in this
manner results in a wedge-shaped instability region, such as
that shown in Fig. 1, where the oscillator remains motionless
outside the wedge and transitions sharply to (relatively) large
amplitude oscillatory motion inside the wedge. It is these sharp
transitions that make this class of oscillators attractive for many
applications.

One of the more recent applications proposed for parametric
resonance is single frequency bandpass filtering [8], [9]. In order
for this technology to be applied to filtering, both linear and non-
linear tuning techniques are necessary to achieve the desired fre-
quency response characteristics [4], [10]. In this paper, two os-
cillators are designed, fabricated, and tested in order to demon-
strate the tuning concepts developed in [9]. Specifically, a linear
tuning scheme is used to rotate the instability region and a non-
linear tuning scheme is used to achieve desired hardening or
softening behavior in the system’s response. A single frequency
filter, utilizing these tuning concepts, has been successfully re-
alized with simulations [9].

Despite this paper’s emphasis on filtering applications, the
tuning methods can be leveraged in any application where
the dynamics inherent to parametric oscillators need to be
manipulated (e.g., resonant mass sensors based on parametric
resonance [3]). Additional techniques that have been developed
that allow for frequency tuning of general MEM oscillators
include localized thermal stressing of mechanical beam struc-
tures [11], power dissipation through filament annealing [12],
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Fig. 2. Scanning electron image of a parametrically excited MEM oscillator
with noninterdigitated driving and tuning combdrives (A and B), flexures (K),
and backbone (M).

resistive heating to induce thermal strains in MEM resonators
[13], and electrostatic tuning for parallel plate capacitor and
combfinger driven oscillators [14]-[17]. Tuning techniques
will aid in the design and implementation of a wide variety of
MEM devices.

In Section II, the governing equation of a tunable para-
metrically excited MEM oscillator with linear and nonlinear
time-varying stiffness terms, commonly referred to as a non-
linear Mathieu equation, is described. The addition of the
nonlinear time-varying stiffness term included here and in
[3] and [18] results in interesting dynamics, which differ from
those of Mathieu oscillators containing only linear time-varying
stiffness terms [19]. In Section III the linear tuning scheme is
reviewed, the design for two MEM devices is discussed, and
experimental results obtained for each device are presented and
discussed. Section IV has the same structure as Section IIT but
for the case of nonlinear tuning. Concluding remarks are given
in Section V.

II. DYNAMICS OF A TUNABLE PARAMETRIC MEM OSCILLATOR

This type of oscillator consists of a backbone (M), noninter-
digitated combdrives (A and B), and flexures (K). A standard
silicon-on-insulator process is used to fabricate the representa-
tive device shown in Fig. 2. This paper utilizes two sets of non-
interdigitated combdrives: one for actuation and one for tuning.
In [4], the concept of using a set of dc noninterdigitated comb-
drives to tune an oscillator’s effective linear and nonlinear stift-
ness coefficients is presented. Here oscillators are driven by ap-
plying an ac signal to a driving set of electrodes and tuned by a
dc signal that is applied to a second set of electrodes. The tuning
scheme used in this paper has been analyzed theoretically in
[9] and will be reviewed in sections to follow. The electrostatic
force produced by these noninterdigitated drives is modeled as
a cubic function of displacement [3]

Fos(z,t) = (r1011:+r30x3)V02+ (7’1A11+7"3A:I}3)VAQ(1+COS wt)
(D

where 719 and 730 are, respectively, the linear and nonlinear
electrostatic stiffness coefficients due to the dc excited elec-
trodes, 71 4 and 734 are, respectively, the linear and nonlinear
electrostatic stiffness coefficients due to the ac excited elec-
trodes, and V) and V4 are, respectively, the applied dc and ac
signal amplitudes. It is important to note that the oscillator is
driven with a square root cosine signal, giving rise to the ac
forcing term in (1), in order to demodulate harmonic and para-
metric excitation [2]. A restoring force is generated by the flex-
ures

F.(z) = kix + ksa? 2)

where k; and k3 are, respectively, the linear and cubic nonlinear
stiffness coefficients. Note the restoring force is also accurately
modeled as a cubic function of displacement, for which the
cubic nonlinear stiffness is generally mechanically hardening
(k3 > 0). Combining (1) and (2) along with the force due to
aerodynamic damping gives the equation of motion [9]

mi + ci + kiw + kax® + (rioz 4+ r302°) VE
+(riar +r342®)VEi(1 +coswt) =0 (3)

where ¢ is the damping coefficient and m is the oscillator’s
mass. For analytical purposes (see [9] and [18]), the time in the
equation of motion is rescaled according to

T = wot 4)

where wy is the pure elastic natural frequency

k
wo = \/g ®)

and displacement is rescaled according to

Ve (6)
To

where ¢ is a scaling parameter and x is a characteristic length,
e.g., the length of the oscillator backbone (note this is the scaling
adopted in [9]). As in [18], displacement can also be scaled ac-
cording to z = z/xo and the scaling parameter € can be intro-
duced by assuming that nondimensional damping, electrostatic
forces, and mechanical nonlinearities are small. In either case,
the rescaled equation of motion becomes

2"+ 262" + 2 [1 + ev1 + €Ay cos(Q7)]
ez [x +v3+ Azcos(Q7)] =0. (7)

Table I describes each parameter and the derivative operator of
(7); also see [18] and [9].

Equations (3) and (7) are generalizations of the Mathieu equa-
tion. Specifically, both linear and nonlinear stiffness terms vary
with time, whereas the conventional Mathieu equation only con-
tains linear time-varying stiffness terms, e.g., [19]. The presence
of nonlinear parametric excitation leads to interesting dynamics,
which have been accurately modeled in [18]. In this analysis,
averaged equations were determined for (7) through a pertur-
bation technique and steady-state solutions to these averaged
equations were determined. By analyzing the stability of the
trivial solution, a boundary for the primary parametric stability
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TABLE 1
NONDIMENSIONAL PARAMETER AND OPERATOR DESCRIPTIONS FOR (7)

Parameters Descriptions
(o) = ds') scaled time derivative
T

e = 2"‘;‘]0 scaled damping ratio

2 2
rioVg +tr1aVi

T linear electrostatic stiffness coefficient

vy =

V2
e = riAvVa

== linear electrostatic excitation amplitude

Q== nondimensional excitation frequency
wo
12k3 . . . .
X = —zl— nonlinear mechanical stiffness coefficient
2 2 2
zg(r3oVg +7r34V, . . . .
v3 = W nonlinear electrostatic stiffness coefficient
:c21‘3 A VK . . s .
Az = _OT nonlinear electrostatic excitation amplitude
Y3 =x+vs combined nonlinear stiffness coefficient

region can be determined; Fig. 1 depicts a representative sta-
bility boundary. The nontrivial solutions to the averaged equa-
tions represent different branches of the system’s response and
ultimately allow for effective nonlinearities to be defined. In the
end, the qualitative behavior of the system’s response is deter-
mined by these effective nonlinearities. These analytical results
are instrumental in the design portion of this paper.

III. LINEAR TUNING

For applications such as filtering, having an ampli-
tude-dependent bandwidth (as in Fig. 1) is undesirable. As
aresult, a method for tuning this wedge shaped region has been
developed [9] and is briefly reviewed here. Specifically, the
system’s natural frequency is forced to depend on the excitation
voltage amplitude V4. This is accomplished by applying a
dc voltage Vp, which is proportional to the ac voltage ampli-
tude (i.e., Vo = aVy), to a second set of noninterdigitated
combdrives. The linear and nonlinear stiffness coefficients are
redefined as

2
vy = (M) 1% (8)
kq
22(rspa +r
vy = [—0( 30 i SA)} Vj )

respectively. Next, a tuning parameter is introduced

7‘100&2

121 _1+

=3 = (10)

p
T1A

Linearizing about the no-motion state and rewriting in the form

2"+ w2z = —ef(z,2,t), (7) becomes

2"+ (1 +edip)z = —€[2¢2" + 2)1 cos(027)]. (11)
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Fig. 3. Noninterdigitated combfinger and flexure geometries. (a) Aligned,
(b) misaligned, (c) fixed—fixed, (d) crableg.

The oscillator’s nondimensional time-independent natural fre-
quency now depends on excitation amplitude

wp =V 1+ ep; = V1 +evy.

With the introduction of the new parameter p comes the ability
to tune the system’s instability region. Specifically, as V4
changes, therefore changing )1, the natural frequency changes.
As a result, by choosing the correct magnitude and sign for p
and sign for 71 4, the instability region in Fig. 1 can be rotated
clockwise or counterclockwise to a specific location [9]. For
filtering applications, tuning the wedge-shaped region to have a
vertical, frequency-independent boundary is desirable. Pertur-
bation analysis used in [9] shows that by choosing p = 1/2 for
r1a > 0 (or p = —1/2 for r14 < 0), the left boundary of the
instability zone is rotated to the vertical position. Likewise, the
right boundary can be tuned to the vertical position by choosing
p=—1/2forri4 > 0(orp=1/2forr; 4 < 0). As detailed
in [9], the implementation of two tuned oscillators (one with
p = 1/2 and another with p = —1/2) in a single system can
render a highly effective single frequency bandpass filter.

(12)

A. Designing Linear Tunable Oscillators

Noninterdigitated combdrives and flexures can be designed
to achieve specific linear tuning characteristics. The main con-
cern for designers, however, is the geometry of the combdrives
because the linear mechanical stiffness k; only changes in
magnitude for different flexure designs. The geometric factors
affecting electrostatics between combfingers are spacing, gap,
length, width, and alignment [depicted in Fig. 3(a) and (b)].
For details on how combfinger geometry affects the elec-
trostatic coefficients, refer to [4]. For design purposes, the
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TABLE II
OSCILLATOR DESIGN DESCRIPTIONS AND COEFFICIENTS (SEE FIG. 3 FOR
LABELED GEOMETRIES)

Geometry Common to Both Designs

Geometry
Width = 1.5um
All Gap = 1luym
Combdrives Spacing = 10um
Length = 8um
Device 1
Geometry Coefficients
AC aligned r1a =5.3x 1073 L0,
Combdrives 160 Fingers r34 = —1.5 % 10_3;4_75er7
DC misaligned ri0 = —9.7 X 10_4@‘%5
Combdrives 164 Fingers rgo = —1.8 X 10_5M—T%erf
crableg ki = 5.3647
Flexures Lq = 200pm ks = 0‘032;%@
Ly = 20pum

Width = 1.5um

Effective Mass m = 5.95 x 10~ 10kg

Device 2
Geometry Coefficients
AC misaligned A= —T7.7X 1()—4;71%2
Combdrives 130 Fingers raa = —14 x 1075 K0,
DC aligned ro = 4.3 X 10*3;71%2.
Combdrives 128 Fingers reg = —1.2 X 10_3;7#7er5
fixed-fixed ky = 112147
Flexures Lo = 160pm ks = 15.16 475 =

Width = 1.5um

Effective Mass

m = 4.89 x 10~ 10kg

#
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Fig. 4. Aligned combdrive force-displacement relationship determined using
ANSYS for Device 1 (x’s) and Device 2 (0’s). The polynomials are fit to these
data to determine linear and cubic nonlinear stiffness coefficients (solid curves).

multiphysics environment in ANSYS is used to determine
the force-displacement relationship for different combdrive
geometries.

To achieve rotation of the instability regime in a desired direc-
tion, (10) is considered. Specifically, the coefficients 719 and r1 4
must be of opposite sign to rotate the wedge and achieve verti-
cality of either boundary, which is of interest here. Of course the
ratio can be chosen to be positive; however, then vertical bound-
aries cannot be achieved. If 714 > 0, then the instability zone

Force (%)
(=)

21

4|

-4 -2 0 2 4
Displacement (pm)

Fig. 5. Misaligned combdrive force-displacement relationship determined
using ANSYS for Device 1 (x’s) and Device 2 (0’s). The polynomials are fit to
these data to determine linear and cubic nonlinear stiffness coefficients (solid
curves).

bends off to the right and the introduction of a negative r effec-
tively rotates the wedge counterclockwise. On the other hand,
forry4 < 0, apositive r1g rotates the wedge clockwise. In either
case, the magnitude of « dictates how far the wedge rotates and
whether the right or left boundary of the wedge is vertical. Here,
two oscillators have been designed, both having a combfinger
width of 1.5 um, combfinger gap of 1m, combfinger spacing of
10 pm, and combfinger length of 8 um (Table II). It turns out that
aligned combfingers [Fig. 3(a)] having this geometry exhibit a
positive linear electrostatic stiffness and misaligned combfin-
gers [Fig. 3(b)] exhibit a negative linear electrostatic stiffness.
Therefore, by designing one pair of combdrives to be aligned
and one pair of combdrives to be misaligned, the oscillators’
parametric regions of instability can be tuned with the scheme
presented in [9] (reviewed above). The two oscillator designs
are discussed in Table II. It is important to note that Device 1
has 160 aligned combfingers, 164 misaligned combfingers, and
an effective mass of approximately 5.95 x 10™'"kg, while De-
vice 2 has 128 aligned combfingers, 130 misaligned combfin-
gers, and an effective mass of approximately 4.89 x 10_10kg.
The force-displacement relationships, determined from finite el-
ement analysis, for each design’s aligned and misaligned comb-
drives are shown in Figs. 4 and 5, respectively.

For Device 1, the linear electrostatic stiffness coefficient r1 4
is positive, so that the wedge shaped instability region bends off
toward the right. For proof of concept of the theory presented in
[9], the right instability boundary of this device was chosen to
be made vertical. Since 714 > 0, the tuning parameter should
be p = —1/2 and the applied dc and ac voltages should be
related by the proportionality constant @ = 2.86 from (10).
Device 2, on the other hand, has 714 < 0, so that the wedge
bends off toward the left. In this case, the goal was to rotate the
left stability boundary to the vertical position, so p = —1/2
should be chosen and the dc and ac voltages should be related
by a = 0.52.

Flexure designs are discussed in the nonlinear tuning design
section of this paper because the magnitude of the linear me-
chanical stiffness does not strongly affect the linear electrostatic
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Fig. 6. Experimental untuned (0’s) and tuned (x’s) instability zones for (a) De-
vice 1 and (b) Device 2. An ac signal is applied solely to the driving set of
combfingers for the untuned wedges and both dc and ac signals are applied to
the respective combdrives for the tuned wedges. Tuning coefficients for each
case are (a) &« = 1.66 and (b) = 0.42.

tuning of the instability region. It is important, however, to point
out that Device 1 and Device 2 have different flexure configu-
rations (crableg and fixed—fixed, respectively), different flexure
lengths, and different effective masses, so each has a different
resonant frequency. Fig. 2 shows a scanning electron image of
Device 2 with fixed—fixed flexures.

B. Experimental Results

Parametrically excited MEM oscillators have successfully
been tuned by applying a dc voltage to a second set of noninter-
digitated combfingers, which is proportional to the amplitude
of the ac excitation voltage applied to the other set of combfin-
gers. To test the dynamics of these devices, a single point
laser vibrometer was used [20] (all devices were tested in a
4.7 Torr vacuum environment). Taking the a values calcu-
lated in Section III-A, which theoretically tune one stability
boundary for each device to be vertical, as starting points in
experiment, the parametric stability regions are manipulated
until the correct rotation is achieved. As expected, by driving
Device 1 with the aligned set of combdrives, the untuned
wedge bends off to the right [shown in Fig. 6(a)]. This confirms
finite element simulations, which predict that an aligned set of
combfingers, with the geometry discussed in Section III-A, has
a positive linear electrostatic stiffness coefficient. By applying
dc voltages proportional to the ac excitation voltage ampli-
tudes, specifically o = 1.66, the wedge-shaped region has
been rotated counterclockwise, roughly to the vertical position.
Since a counterclockwise rotation was achieved, the linear
electrostatic stiffness coefficient for this set must be negative,
again confirming finite element results.

In the case of Device 2 [results shown in Fig. 6(b)], the
region of instability bends left in the untuned case when driving
the device with misaligned combfingers. By tuning with the
aligned combfingers, the parametric stability region rotates

clockwise. Tuning with a proportionality constant a« = 0.42, the
left boundary has been tuned roughly to the vertical position.
Again the misaligned combfingers exhibit a negative linear
electrostatic stiffness, while aligned combfingers exhibit a
positive linear electrostatic stiffness for the geometry presented
in Section III-A.

In both cases, the linear electrostatic stiffness for the driving
and tuning sets of combfingers are of opposite sign, therefore
allowing an « to be chosen that rotates the right (Device 1)
or left (Device 2) stability boundary roughly to the vertical
position. Experimental « values for Device 1 and Device 2 both
compare well with theoretically obtained « values, especially
considering the amount of uncertainty in the dimensions of the
fabricated devices. These results prove the concepts proposed
in [4] and [9]. Since proof of concept is the main goal here,
a system identification procedure has not been performed. If
system parameters needed identification, however, methods
similar to those discussed in [21] could be adopted. Also, it is
important to note that more testing and finer tuning of « can
yield better verticality if desired for specific applications, i.e.,
filtering, where a frequency-independent boundary is desired.

IV. NONLINEAR TUNING

Due to the presence of nonlinearities in its equation of mo-
tion, this type of tunable oscillator can exhibit oscillatory mo-
tion outside the stability region and hysteresis. In [18], the qual-
itative nature of the system’s nonlinear response is character-
ized analytically. To accomplish this, a standard perturbation
analysis, averaging, was employed. After using a standard co-
ordinate transformation and introducing a detuning parameter
o = (Q — 2)/e, the averaged equations become

a':%ae [=8¢ + (2A1 + a?X3) sin(2)] + O(¢?) (13)

q//:ée[?,a?(x +v3) +4A1p — 40 + 2(A1 + @A) cos(2¢))]
+0(e?) (14

where a is the amplitude and 1) is the phase of oscillator’s re-
sponse. Assuming zero damping and solving for the steady-state
responses of the averaged equations, it was found that there are
one trivial and three nontrivial solutions. The trivial solution
corresponds to the no-motion state of the system and the first
two nontrivial solutions correspond to branches of periodic or-
bits originating from the no-motion state with amplitudes

. \/40—2)\1(2,0— 1) \/40—2/\1(2p+1)

a = N .
b2 3(x +v3) =23 3(x +v3) + 23

15)

Depending on the sign and magnitude of each linear and non-
linear electrostatic stiffness coefficient and the magnitude of the
ac excitation voltage V4, these two branches can independently
bend toward each other, away from each other, or in the same di-
rection. As aresult, the system’s response can exhibit hardening,
softening, or mixed hardening and softening effective nonlin-
earities. The third nontrivial solution describes a constant am-
plitude branch

—2)\
A3

(16)

az =
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which only exists when A1 /A3 < 0. Effective nonlinearities for
the system are defined by examining the denominator in (15)

m =3(x +vs) —2X3
Ny = 3(X + 1/3) + 2)\3

7)
(18)

where v3 = x + v3 is the combined stiffness coefficient, sub-
sequently designated in Table I. In [18], by analyzing the three
nontrivial steady-state solutions and effective nonlinearities, it
was found that the nonlinear parameter space (3 versus As) can
be split into six different regions, where the responses within
each region have a distinct qualitative behavior. The six different
regions of parameter space and the corresponding responses are
described in [18].

A. Designing Nonlinear Tunable Oscillators

The two oscillators discussed in Section III-A were also de-
signed to exhibit certain nonlinear behavior. Specifically, De-
vice 1 was designed to have a softening qualitative nonlinearity
and Device 2 was designed to have a hardening qualitative non-
linearity. In other words, the nonhysteretic side of each response
originates from the vertically tuned side of the instability zones.
Typical responses showing the hysteresis characteristic to this
class of parametric oscillator can be seen in the experimental
section, which follows. For switching applications, tuning this
nontrivial side of the response to occur away from the tuned, fre-
quency-independent stability boundary is desirable [9]. During
the design process, the effective nonlinearities n; and 7),, for the
system are used to help achieve the correct nonlinear behavior
for Devices 1 and 2. In physical terms, the effective nonlinear-
ities are

32 1

m = “0 ks + ( r300® + 5734 Vj (19)
k1 3
3z 5

N2 = k'_lo [k‘:’, + <7“300£2 + 57"3.4) Vj} . (20

In order to obtain a softening effective nonlinearity for Device
1, m1 and 72 must both be negative; and to obtain a hardening
effective nonlinearity for Device 2, 11 and 72 must both be
positive, as found in [18]. First considering Device 1, by
designing the driving set of combfingers such that 734 is
large in magnitude and negative and the tuning set such that
reoa® + 1/3r34 < 0, the driving voltage V4 can be tuned so
that the naturally positive nonlinear mechanical stiffness k3 is
overcome and both effective nonlinearities are negative. The
critical voltage for softening can be lowered if k3 is designed
to be small. For a fixed—fixed beam, the stress on the neutral
axis is relatively large due to the boundary conditions, therefore
leading to a large cubic nonlinear mechanical stiffness. By
creating small folds in the beams (commonly referred to as
crableg beams), the cubic nonlinear mechanical stiffness can
be mitigated by several orders of magnitude. For a comparison
of crableg and fixed—fixed flexures, see [3]. To help achieve
softening behavior for Device 1, crableg beams are used with
L, = 200 um, Ly = 20 pm, and width = 1.5 pum [see
Fig. 3(d) for labeling and Table II for calculated stiffness

03t AN b Ila 5
4 g

111 I

0.1 1
3.5V
(5o
~ =
7.1V e
-0.1 L= 7
v ,f/’/ VI
//’//A/' z
03[ -2 Va Vb N2 1
NG o
RN
-0.3 -0.1 0.1 0.3
BE]

Fig. 7. Nonlinear parameter space showing the transition of Device 1’s re-
sponse as ac excitation voltage V4 is varied, with tuned oscillator represented
by dashed line and untuned oscillator by dash-dotted line.

values]. Note that fold lengths L; are made small enough to
ensure that unwanted torsional and out-of-plane modes occur at
much larger frequencies than the primary parametric resonant
frequency but long enough to provide ample stress relief and
decrease ks significantly.

To aid in the design process, ANSYS simulations were used,
ultimately helping to understand how combdrive and flexure ge-
ometries affect the respective nonlinear coefficients. Through
these simulations, the electrostatic and mechanical nonlineari-
ties were determined for each device, as shown in Table II. The
theoretical parameters for Device 1 yield an effective nonlin-
earity that transitions from a hardening to a mixed and then to
a softening response as ac excitation voltage is increased both
when the oscillator is tuned and untuned, as shown in Fig. 7.

So, as ac voltage is increased, the response of the tuned oscil-
lator starts off hardening (region VI) transitions to a mixed soft-
ening and hardening response at 3.5 V (regions Va and Vb) and
finally transitions to a softening response at 7.1 V. Theoretically,
Device 1 should exhibit a softening response for ac voltages
above 7.1 V when tuned by an by a dc voltage, which is related
to the ac voltage by a = 2.86. Also from Fig. 7, when the dc
tuning electrodes are activated, the line cutting through this pa-
rameter space rotates clockwise since 73 is negative. Having a
negative 3 is desirable when designing a device to have a soft-
ening response because it effectively lowers the critical voltage
to achieve two negative effective nonlinearities.

Next, considering Device 2, note that the effective nonlinear-
ities n7 and 72 can be both made positive in several ways. First,
the geometry of the combfingers can be designed so that r3 4 and
r30 are both positive, in which case 1; and 1, will also be posi-
tive because k3 is always positive. Secondly, either one or both
of 734 and 739 could be designed to be negative and k3 large
enough so that both effective nonlinearities are positive for a
large range of ac excitation voltages. For this paper the latter is
chosen, where both nonlinear electrostatic coefficients are nega-
tive. In this case, the flexure design becomes important because
hardening behavior is desired for a wide range of applied ac
voltage. To achieve this, fixed—fixed beams were implemented
(each with a length L, = 160 pm, which leads to the calculated
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Fig. 8. Nonlinear parameter space showing the transition of Device 2’s re-
sponse as ac excitation voltage V4 is varied, with tuned oscillator represented
by dashed line and untuned oscillator by dash-dotted line.

stiffness values shown in Table II), which yield a cubic non-
linear stiffness that is several orders of magnitude larger than
crableg beams. The resulting parameters for this design yield
effective nonlinearities that transition through 3 — A3 param-
eter space as a function of applied voltage as shown in Fig. 8.
The system’s response, when tuned, should remain hardening
until an ac voltage of 209 V is reached (using oo = 0.52). Since
the nonlinear electrostatic coefficient for the tuning electrodes is
relatively large and negative, the untuned oscillator will remain
in the hardening response regime for a much wider range of ex-
citation voltage than the tuned oscillator, specifically 806 V, a
range well beyond the physical limits of the oscillator. Partic-
ularly, the oscillator will fail as a result of breakdown well be-
fore the 806 V is reached. Again, this negative nonlinear tuning
coefficient effectively rotates the oscillator’s path through this
parameter space clockwise.

B. Experimental Results

Using the aforementioned analytical techniques, Devices 1
and 2 have successfully been developed to exhibit pure softening
and pure hardening nonlinearities, respectively, for a wide range
of excitation voltages. Fig. 9(a) shows a softening response for
Device 1 when a 5.20 V ac signal is applied to the aligned
set of driving combfingers and no dc tuning voltage is applied
to the misaligned combfingers. It is important to note that the
experimental transition voltages presented in this section are
slightly different than the theoretical transition voltages above
because imperfections in the fabricated devices cause the ac-
tual parameters to differ slightly from those predicted assuming
no structural imperfections. Adding a dc voltage of 8.63 V to
the misaligned set of combfingers, the response is shifted to the
right but remains softening, as seen in Fig. 9(b). In both cases,
the hysteresis is found on the left side of the response, indi-
cating that both effective nonlinearities n; and 7, are negative.
Keeping the ac and dc voltage amplitudes proportional, specif-
ically a = 1.66, effectively rotated the instability region coun-
terclockwise as seen in Fig. 6(a). Fig. 9(c) depicts experimental
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Fig.9. Softening responses for Device 1 (a) untuned with 5.20 V ac excitation,
(b) tuned with 5.20 V ac excitation and 8.63 V dc tuning, and (c) tuned, o« =
1.66, with various ac excitation voltages (sweeping down in frequency): dashed
= 5.20 V ac, dotted = 6.20 V ac, dash-dotted = 8.20 V ac, and solid = 9.20 V
ac.

11.50

responses, obtained by sweeping down in frequency, that origi-
nate from the right boundary of this wedge. Notice that the right
side of the responses originate very close to one another, there-
fore indicating that the linear tuning scheme has succeeded in
rotating the right stability boundary roughly to the vertical po-
sition. Likewise, the nonlinear tuning scheme has successfully
produced responses where the nonhysteretic region lives on the
tuned boundary. Also important to note is the fact the softening
has been achieved for considerably low excitation voltages, as
low as 4.2 V, in both tuned and untuned cases.

Fig. 10(a) shows the untuned hardening response for Device
2 when a 10.80 V ac signal is applied to the misaligned set of
combfingers. As expected, including fixed—fixed beams to the
design has shifted the system’s effective nonlinearity to the right
in nonlinear parameter space, therefore substantially increasing
the voltage range where hardening occurs. After applying a dc
voltage of 4.52 V to the aligned fingers, the response, as shown
in Fig. 10(b), remains hardening. Note the hysteresis living to
the right side of the response extends over a very large band of
frequency, indicating that the effective nonlinearities are both
large in magnitude and positive. The large hysteresis range can
be attributed to the fact that fixed—fixed beams are used, which
increase the nonlinear mechanical stiffness by several orders of
magnitude when compared to the crableg beams used in Device
1. Fig. 10(c) depicts three tuned responses for different excita-
tion voltages when sweeping up in voltage, which all have the
right side of the response originating very close to each other.
This indicates that by tuning the oscillator’s instability region
with o = 0.42, the onset of instability occurs roughly at the
same frequency for a range of excitation voltages.
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V. CONCLUSION

To utilize parametric resonance in a wide variety of appli-
cations, methods for predicting and manipulating the dynamics
of such devices are necessary. An accurate model for the dy-
namics of a class of oscillators exhibiting both linear and non-
linear time-varying stiffness terms has been developed and ver-
ified in [18]. In order to implement this technology into applica-
tions such as switching, additional tuning techniques, proposed
in [9], are required. In this experimental study, the concept of
both linear and nonlinear tuning has been proved. First, the para-
metric region of instability has been rotated counterclockwise
and clockwise for Devices 1 and 2, respectively, by applying
proportional ac and dc voltage amplitudes to independent sets
of noninterdigitated combdrives. It has also been shown that
choosing p &~ —1/2 for Device 1 rotates the right stability
boundary roughly to the vertical position since r14 > 0 and
choosing p & —1/2 rotates the left stability boundary roughly
to the vertical position since 714 < 0. In this case, proof of
concept was more important than obtaining perfect verticality
and frequency independence of the stability boundary in each
device; however, more precise tuning can be used to obtain fre-
quency-independent boundaries for filtering applications. These
same two oscillators have also been designed to exhibit specific
nonlinear behavior to prove the concept of nonlinear tuning.
Specifically, the geometry of the noninterdigitated combdrives
and flexures was chosen so the system’s two effective nonlinear-
ities 1 and 7, are tuned either to be both positive or both neg-
ative, creating either a hardening or softening response, respec-
tively, for a range of applied ac voltage. Device 1 was designed

so that the system’s effective nonlinearities become negative at
relatively low applied voltages. This device’s experimental re-
sponse showed softening behavior at ac drive voltages as low
as 4.2 V, indicating that the nonlinear tuning scheme worked
and that both effective nonlinearities were negative above this
voltage. The nonlinear tuning scheme was also proved in the
experimental results of Device 2, but for the case of two pos-
itive effective nonlinearities yielding pure hardening behavior.
In conclusion, methods for tuning the dynamic behavior of para-
metrically excited MEMS have been proved through experi-
ment. These methods will help such oscillators become more
applicable to a wide range of technologies.
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