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Abstract

A new mechanism responsible for generating regular and irregular bursts of large dynamic range near onset of an oscillatory
instability is identified. The bursts are present in systems with nearly square symmetry and are the result of heteroclinic cycles
involving infinite amplitude states created when the square symmetry is broken. All possible cycles of this type are identified
and the resulting bursts described. Global connections involving finite amplitude states are also present. The intricate sequence
of bifurcations that result is described in several cases. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has long been known that forced symmetry-breaking, that is, the introduction of small perturbations that reduce
the symmetry of a system, can introduce complex dynamics into a system that would otherwise behave in a regular
manner [1,2]. From a physics perspective this observation is of particular interest. In physical systems symmetries
are rarely exact and some symmetry-breaking imperfections must be assumed to be present. If these imperfections
have a dramatic effect on the observed dynamics then studies of idealized symmetric systems appear to have little
relevance to the real world. The problem studied in this paper shows that even if this is the case the symmetric
system still holds the key for understanding the dynamics in the imperfect system.

Imperfections usually have a dramatic effect precisely in those situations in which the symmetric analysis predicts
no stabledynamics near onset. These cases are typically deemed to be of little physical relevance and are dismissed.
However, symmetry-breaking imperfections can change this situation radically. The Hopf bifurcation with O(2)
symmetry provides a simple example [3]. In this bifurcation two solution branches bifurcate simultaneously from
the trivial state at. = 0; these correspond to traveling (TW) and standing waves (SW). Among the possible
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bifurcation diagrams that arise is one in which the TW bifurcate subcritically(0) and SW supercritically

(A > 0). Elementary theory [4,5] shows that in this case both branches are unstable near onset. Suppose now that
the rotation symmetry is broken but that the reflection symmetry is preserved. Then the SW remain as primary
solutions (although they are split into two branches of odd and even parity) and continue to bifurcate supercritically.
The TW, however, cannot bifurcate from the trivial solution because of the loss of rotation invariance, and hence
mustbifurcate off one of the SW branches irsacondanbifurcation. As a consequence the small amplitude SW

are “unmasked” and stable small amplitude states are now present [6]. In this regime Hirschberg and Knobloch
[3] find a number of global bifurcations and associated (stable) chaos. In the absence of forced symmetry-breaking
the values of. for which the nontrivial TW and SW states are present do not overlap; consequently no recurrent
dynamics are possible. The important consequence of breaking rotation invariance is precisely the generation of a
small interval inA in which both types of solution coexist, thereby allowing connections between them.

In the above example an infinitesimal perturbation of the SW will leadj fer 0, to a trajectory that not only
escapes to infinity but also looks like a TW at large amplitudes, i.e., there is a connection from a finite amplitude SW
to an infinite amplitude TW (cf. [7]). If a mechanism existed for returning the trajectory back to finite amplitude,
either in the O(2)-symmetric problem or in the imperfect problerhuest would result. The absence of such a
return mechanism suggests the study of a related problem in which such a mechanism occurs in a natural way. These
considerations motivate our study of the Hopf bifurcation with the symmetry of a square. In this system imperfections
that break theD4 symmetry are responsible for the appearance of bursts via a codimension one mechanism. This
abstract motivation is complemented by the frequent occurrend® afymmetry in physical systems (see, e.g.,

[8,9]) and the consequent interest in understanding the role played by symmetry-breaking imperfections in these
systems. Moreover, the fact that the resulting bursts can be observed by varying a single parameter makes the present
burst generating mechanism of particular relevance to experiments.

The dynamics of the Hopf bifurcation witb, symmetry are well understood [10]. In particular it is known
that there are several periodic states and in some cases quasiperiodic states as well. Each of these can bifurcate
subcritically or supercritically. When th4 symmetry is broken a number of homoclinic and heteroclinic connec-
tions may be created [11]. Of these the ones of greatest interest are codimension one heteroclinic cycles involving
infinite amplitude solutions. Suppose there is a subcritical branch and consider again theiregine\s in the
0(2)-symmetric Hopf bifurcation a perturbation in the form of the subcritical solutions evolves to infinite amplitude,
i.e., for these perturbations the solution “at infinity” is attracting. However, in contrast to the O(2)-symmetric case,
this solution can itself be unstable with respect to perturbations in the form of one of the (unstable) supercritical so-
lutions, thereby providing the required return mechanism and raising the possibility of a heteroclinic cycle between
these two solutions. Such a cycle would correspond to a series of infinite amplitude bursts. The period of these
bursts will be finite, in contrast to more usual heteroclinic cycles, because the trajectory reaches (and returns from)
infinity in finite time. This is the essence of the bursting mechanism explored in this paper. Of course the theory
formally breaks down for infinite amplitudes. However, in applications we are interested in bursts of finite amplitude
and these are correctly described by the present theory sufficiently close to onset. Because of this restriction the
physical amplitude of the bursts is in fact small; what distinguishes them from other dynamical behavior referred
to as bursting is theilarge dynamic range [8,9]. In this paper we focus on the burst generation mechanism itself;
detailed applications (cf. [11]) are discussed elsewhere [9,12].

The remainder of the paper is organized as follows. In Section 2 we introduce the basic equations describing the
Hopf bifurcation with brokerD, symmetry, and discuss their symmetry properties. In Section 3 we summarize the
properties of the perfedds-symmetric system and identify regimes in which heteroclinic cycles to infinity may
form. In Section 4 we describe the formation of such cycles whermheymmetry is broken and illustrate the
associated dynamics for several particular cases. In addition we identify a number of global bifurcations involving
finite amplitude states. The analysis in this section is of necessity largely numerical and forms the bulk of the present
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work. In Section 5 we discuss robustness of our results as the magnitude of the symmetry-breaking terms increases
and investigate the effects of higher order terms. A number of applications are mentioned in Section 6. Certain
aspects of the analysis are relegated to appendices. A brief account of our results has been published elsewhere [12].

2. Basic equations and their symmetries

In this paper we study the following (truncated) normal form equations describing a Hopf bifurcation with broken
D4 symmetry:

fe =+ Ah+i(@+ Ao)zy + Az P + 121Dz + Blzi P2y + CZ422, 1)
o= — A +i(@— Aoz + Az > + |z-1P)z— + Blz—*z— + CZ_z5. )

These equations describe the interaction of two nearly degenerate oscillatory modes of opposite parity, with
denoting the (complex) amplitude of the even/odd modes. The degeneracy is broken by the paraimatets
Aw: AX measures the difference in the linear growth rates of the two modeaaritle difference between their
frequencies at onset. The remaining coefficients are all complex. Under appropriate nondegeneracy conditions
(which we assume here) we may neglect all symmetry-breaking contributions to the nonlinear terms. Eqgs. (1) and
(2) were obtained and partially studied in [11] but are written here using notation that allows us to make contact
with earlier work of Swift [10].

WhenAx = Aw = 0 Egs. (1) and (2) have the symmefy x S, generated by the three operations

K11 (z4,2-) = (24, —2-), k21 (24,2-) = (2-,24),
Ny (z4.2-) = €%(z4.2-), o €[0,21)].

The operationg1, k2 generate the groupy; the remaining operation represents the action of the normal form
symmetrySt. When eitherAx or Aw are nonzero the symmetry is reducedz® x S1. Consequently the only
primary bifurcations are those to modes of odd or even parity [13]. In additi@n ifz_) is a nontrivial solution
so are thesymmetry-relatedolutions(—z, —z_) and(%iz,, +iz_).

In terms of the Swift variables defined by

24 = r¥2c080/2)d@tV2 o = Y2sing/2)d V2,

and a new time defined by @ /dr = r, Egs. (1) and (2) take the more convenient form
dr

g = 20-+ Akcosd) +r[2AR + Br(L+ co$6) + Crsin?d cos 2], ©)

T

do _ : 2 .

e sin@[ cosf(—Br + Cr cos 2) — C) Sin 2p] — —AAsing, (4)
T r

do ) 2

& Ccosf(B) — C)cos ) — CrSIN2p + —Aw, (5)
T r

d 2

£=2A|+B|+C|C0521>+CRsin2¢cos«9+—w, (6)

r

whereA = AR + iAj, etc. It will also sometimes be useful to consider thev, w) coordinates defined by

i 742
gV — S

u+iv=rsin6’ei¢:2z+27, w:rCOS@=|z+|2—|z,|2, = i
T43—
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In these coordinates, Egs. (1) and (2) become

d

d—‘: = 20 — 2Awv + (AR + Br + CR)ru — (B + Chvw, @)
dv

p 200 + 2Awu + (2AR + Br — CR)rv + (B — C)uw, (8)
dw

- 2AMr + 20w + 2(AR + Br)rw + 2Cuv, 9)
dyr u? — 2 uvw

— =2 2A, + B + C 2C . 10
dr w—}—r( Bt Iu2+v2+ Rr(u2+v2)) (10)

As a consequence of th# symmetry of Egs. (1) and (2) the variahledecouples in both cases. In the following

we refer to the equivalent sets of Egs. (3)—(5), and (7)—(9) atitiee-dimensionaystem. Sincg (modulo 4r) is
periodic in time both for fixed points and periodic solutions of the three-dimensional system such solutions in fact
correspond to periodic solutions and tori in the original four-dimensional system (1) and (2). The invariance of the
system (3)—(5) with respect to reflections in the plane = and the translations — 6 + 2r, ¢ — ¢ + 7 enables

us to restrict the variable®, ¢, y) to the intervals 0< 6 < 7,0 < ¢ < 7, 0 < ¥ < 4x. These symmetries

imply that if (r, 6, ¢) is a solution of Egs. (3)—(5) so aftg 27 — 0, ¢) and(r, 6 + 2mmn, ¢ + nm). Heremandn

are integers. However, since the restrictiog @ < = identifies symmetry-related solutions with distinct physical
manifestations (for example, winking states with bursts localized on the left or right side of the container would be
identified, cf. [12]), we continue using the rang@r < ¢ < 2. In the(u, v, w) variables,

k1. (u,v,w) = (—u, —v, w).

Thus, if (1o, vo, wo) is a solution of Egs. (7)—(9) so {s-ug, —vo, wo). Consequently a solution that is not invariant
underx1 will have ax;-related counterpart. In the following we use= |z,|% + |z_|? = Vu? +v2+ w2 as a
useful measure of the amplitude of the perturbation from the trivial state.

Egs. (1) and (2) also have additional symmetries called parameter symmetries. For a parametrized family of
ODEs given byX = f(X, A), Swift [10] defines gparameter symmetrgs a symmetry of the extended system
X = f(X,A), A =0 such that

FX, vah) =y f(X, D),

wherey, is a group action on the phase space variablesyanid a group action on the parameters. This is to
be distinguished from &tue symmetryn which the group acts only on the phase space variables. The parameter
symmetries are most easily given in tte v, w, ) variables; it is readily verified that the following group actions
are parameter symmetries of Egs. (7)—(10):

P (u,v,w,¥) - (—v, —u, —w, ¥)

(A,B,C, A, 0, AL, Aw) - (A, B, —C, L, w, — AL, —Aw),
P3:(u,v,w,¥) = (u,v, w, )

(A,B,C, A, w, AL, Aw; t) — (—A, =B, —C, =\, —w, — AL, —Aw; —t),
Py:(u,v,w, ) > (—u, —v, —w, —y)

(A,B,C, A, 0, AL, Aw) — (A, B,C, A, —», — AL, Aw).
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If AL = Aw = 0 and we restrict attention to the reduced phase sfpaae w) an additional parameter symmetry
is present:

Pyi(u, v, w) — (v, w,u)
(A,B.C.2) > (A+B—=C.—3B+3C. ~3B—3C.2).

This symmetry is relevant to thgerfectsystem AL = Aw = 0, only.

3. The perfect system(AA = Aw = 0)

When theD4 symmetry is exactAr = Aw = 0) Egs. (4) and (5) fof (r) and¢ (t) decouple from the others.
We may think of this two-dimensional system as describing dynamics on the surfasplod@of variable radius
r(t) and refer to it, following Swift [10], as the associated spherical system. The ragiysorresponding to
a given solution of this system can be found by integratingrtbguation evaluated on this solution. The fixed
points(6p, ¢o) of the associated spherical system are summarized in Table 1 and correspond to periodic solutions
to Egs. (1) and (2). The isotropy subgroup is the set of group elemeiits ®f ST which act as the identity on the
solution. This table also summarizes the terminology we shall use to refer to the various solutions and defines the
u, v andw fixed points in both sets of variables. Their amplitudg) is given by

22X
=———— >0
F (6o, ¢0)
where

F(0,$) = 2AR + Br(1+ coS0) + Cr Sinf6 cos 2p.

Thus, if F (6g, ¢o) < 0 the fixed point branch bifurcates supercritically, whil&®o, ¢o) > 0 the branch bifurcates
subcritically.

Swift also proved that in open regions of parameter space there exists a periodi@btbjt ¢*(t)) in the
associated spherical system corresponding to a quasiperiodic solution (hefgafieiEgs. (1) and (2). Thep
branch bifurcates supercritically from the trivial statéif< 0 and subcritically ifF > 0, where

_ 1 I+
F = —/ F@O*(t), ¢* (")) dr’
T‘L’ 0

Table 1

Fixed point solutions in the associated spherical system for the perfect system (w = 0. Thens solutions only exist in the open regions
of parameter space defined p§|2 > |C|2, |C|?2 > |[Re(BC)|, and their form in thqu, v, w) variables is omitted. The isotropy subgroup is
given in terms of its action on the, v, w) space; the elemeiitzx1)2 which acts as the identity on this space is omitted.

Name Isotropy subgroup [CN)) (uo, vo, wo)
u solution (k2) cosdp =0 vp=wy=0
cospy =1
v solution (k2K1) cosdp =0 ug=wo=0
CoSpy = —1
w solution (k1) sinfp=0 ug=v9=0
) ) CI2(|B? - |CJ?
ns solution Id sirfgg = ICI7(BI” — | l,)
|B|?|C|2 - [Re(BC))?
Re(BC
COS 2pg = &BC)

Ic|?
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Table 2

Eigenvalues for fixed point solutions of the three-dimensional system Egs. (3)—(5) for the perfect problem. The radial eigers/éhee
amplitude eigenvalue and corresponds to perturbations with no componentdrothg direction, while the angular eigenvalugsand ss
correspond to perturbations in the associated spherical system. The radial eigenvalue for a fixed pantgwith (6, ¢o) is F (6o, ¢o), SO

if the radial eigenvalue is positive (negative) the branch bifurcates subcritically (supercritically)s Tiked points are always saddles in the
associated spherical system,; thiis3* < 0 [10]. The expressions for the determinants in the lower table on p. 361 of [10] are all too small by
a factor of 2.

Solution Eigenvalues

u Si‘EZAR+BR+CR
{s3. 53} 53 +s5 = BR — 3CR
shsk = 2(C3 + CZ — BrCr — BIC))
v Si]EZAR-‘rBR—CR
{53,535} 835 +s3 = BR + 3Cr
5353 = 2(Ci + C7 + BRCR + BiC))
w s{ = 2(AR + BRr)
{s¥,s¥): s¥ +s¥ = —2Br
sé"sé‘" — |B‘2 _ |C|2
Br[ICI(I1BI? +|CI?) — 2(R(BC))?] + Cr(IBI? — |CI>)Re(BC)
|B2|C |12 — (Re(B())?

ns 518 =2AR +

2 L | L / 1 BI

-5 -4 -3 -2 -1 0 1 2

Fig. 1. Distinct regions of parameter space wiig = —2.8 andCr = —1. The boundaries between regions | and Il (givers3y = 0), llI
and Iy (given bysy'sy’ = 0), and Il and 1\, (given bysys3 = 0) correspond to the condition for a pitchfork bifurcation of thev, andu
fixed points, respectively; this bifurcation leads to the creation or destructionsmiutions which exist only in regions Il and Ill. The boundary
between regions Il and 1l corresponds to the condition that a heteroclinic orbit connectimg swetutions forms, creating or destroying the
gp solutions; the location of this boundary must be found numerically. Similar regions of parameter space exist for other Byupgshef
range—3 < Br < —1 withCr = —1.

andT; is the period of the orbit (cf. [14]), and can take the form of eithébwtion (where after one period the
variable¢ returns to its original value) or @tation (where after one period the varialencreases by a nonzero
multiple of ) [15].

Table 2 summarizes the linear stability properties of the fixed point solutions of the three-dimensional system
(3)-(5); note that in these equations the titnis used. The branches are radially stable (unstable) if they bifurcate
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Table 3

Existence and angular stability properties of all solutions8r< Bgr < —1 andCr = —1. For given parameters the region is determined by
the values o) andC; (see Fig. 1). In this parameter range ¢lzesolutions are attracting if they exist and hence are sinks within the associated
spherical system.

Region Solution Properties
| u Source
v Saddle
w Source
ns Absent
qp Sink
1l u Source
v Sink
w Source
ns Saddle
qp Sink
1l u Source
v Sink
w Source
ns Saddle
qp Absent
IV u Source
v Sink
w Saddle
ns Absent
qp Absent
IVy u Saddle
v Sink
w Source
ns Absent
qp Absent

supercritically (subcritically) from the trivial state. The dependence of the angular eigenvalues of the solutions on
parameters can be simplified using the parameter symmetries and rescaling time to restrict attention to the parameter
range

—-3<Br<-1 Cr=-1

We may also restrict attention to the cdge< 0. Appendix A describes how to deduce the properties of solutions for
parameters which do not lie within this range. Note that the parameter symmetry can change a libration to a rotation
and vice versa. For fixeHr andCr the (B, C)) plane may be divided into distinct regions (see Fig. 1); the stability
properties of the solutions in these regions are summarized in Table 3; typical phase portraits are shown in Fig. 12
of [10]. As BR — CRr thegp solution may approach a heteroclinic orbit connecting a pair of symmetry-related

v fixed points (see Table 4), and s — 3Cr the gp solution approachesuwasolution, with a Hopf bifurcation
occurring atBg = 3Cr. The dependence of the radial stability on parameters fan,theandw solutions may be

easily deduced from the radial eigenvalues in Table 2; the resulting possibilities are shown in Fig. 5 of [10]. The
radial stability of thezs andgp solutions is not discussed in [10] but may be understood through a combination of
analytical and numerical arguments, a summary of which appears in Appendix B. A useful observatiod s that
may be thought of as controlling the radial stability of the solutionstgincreases with all other parameters held

fixed it becomes more likely for any of the solutions to be subcritical.
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Table 4
Conditions for existence and stability of heteroclinic orbits in the associated spherical system connecting paasa# fixed points, obtained
by applying parameter symmetries to the results of [10]

Fixed points Conditions for existence Condition for angular stability

u BrR+Cr=0 BR—3Cr <0
|C|? — BRCr — B|C| <0
|- 3B +3C| <|3B+ 30|

v BrR—Cr=0 BrR+3Cr <0
|C|2+ BRCr + BIC) <0
13B1+ 3C11 < 3B — 3C1]

w Cr=0 Br >0
[Bi| < |C]
IBI? < |C|?

4. Bursts in the imperfect system AA # 0, Aw # 0)
4.1. Burst mechanism

Because the associated spherical system (4) and (5) is two-dimensionalAi#hen Aw = 0 no complex
dynamics are possible in the perfect system unlesStimermal form symmetry is broken as in the Faraday system
[16,17]. We do not pursue this possibility here, and instead focus on the effects of breaking shmmetry; as
shown numerically in [11] this leads to the possibility of bursts for certain parameter values. Here we will elucidate
the mechanism by which these bursts occur.

For the equations with brokeh, symmetry AL # 0 and/orAw # 0) only the fixed points with even and odd
parity remain as primary branches; these are the analogs of fhed points for the three-dimensional perfect
system and are given by [11]

1. we solution (even)

—A—AX
u=v=0 r=w=—; 0=0, (1))
AR + Br
2. wg solution (odd)
—A+ AA
u=v=0, r=—w=L; 6 =m. (12)
AR + Br

These solutions only exist for > 0. The analogs of the remaining primary branches may bifurcate in secondary
bifurcations from these or they may form disconnected branches; they are most easily found numerically.
To make the large amplitude behavior associated with bursts more manageablewe 1¢t in Egs. (3)—(5),
giving
do

=" [2AR + Br(1 + COS0) + Cr SinP0 cos 2] — 2(A + AX cost) p?, (13)

T

dg . . .

o sind[ cosf (—Br + Cr cos 2p) — C) sin 2p] — 2AX sinbp, (14)
T

do

9 = cosH(B; — Cj cos ) — CrSiN2p + 2Awp. (15)
T
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These equations have an importamariant subspacee = {(p, 6, ¢)|p = 0} corresponding tinfinite amplitude

states. The invariance of this subspace lies at the heart of the bursting mechanism described below. In this subspace
Egs. (14) and (15) reduce to Egs. (4) and (5) with= Aw = 0, i.e., to the perfect system. Thus the fixed points,

limit cycles and heteroclinic orbits in the associated spherical system that governs the dynamics of the perfect system
continue to exert significant effect on all large amplitude states of the imperfect system, and it is in this sense that
the perfect system organizes the dynamics of the imperfect one. In the following we label the infinite amplitude
fixed points by analogy to the (finite amplitude) fixed points for the perfect problem; for examplixed points

havep =0, cosd =0, cos 2 = 1, etc.

Because of the above relation between the two systems the angular eigenvalues (Floquet multipliers) of any
infinite amplitude fixed points (limit cycles) in the imperfect system are identical to those of the corresponding
solution of the associated spherical system for the perfect problem already computeff’ie. sy, s3> = s4,
etc. Egs. (3) and (13) show that the radial eigenvalue of an infinite amplitude fixed point in termgofahiable
is the negative of the radial eigenvalue of the corresponding finite amplitude fixed point in terms whtfable.

Thus, if a finite amplitude fixed point in the perfect system is radially unstable the corresponding infinite amplitude
fixed point in the imperfect system is radially stable, and vice versa; a similar statement holdsfeistilations.

In particular, if a solution branch is subcritical in the perfect system there is a corresponding infinite amplitude
solution of the imperfect system which is radially stable for- 0. In our scenario, a burst occurs for> 0

when a trajectory follows the stable manifold of a fixed point (or a limit cy@deg X that isunstablewithin

3. The instability withinX then kicks the trajectory towards another fixed point (or limit cycleg X. If this

point has an unstable eigenvalue the trajectory escapes frahtowards finite amplitudes, forming a burst. If

A and/or Aw # 0 a value ofx may be found for which the unstable manifold aflies within the stable
manifold of B forming a heteroclinic cycl&# — A — B. The bursts then repeat. We now classify all cycles of
this type.

4.2. Codimension one heteroclinic cycles involving infinite amplitude solutions

Bursting behavior occurs for parameter values near those for which a heteroclinic cycle exists between infinite
amplitude solutions. To specify a heteroclinic cycle we identify symmetry-related solutions (technically, we identify
solutions with conjugate isotropy subgroups, i.e., solutions on the same group orbit [18]). Such a cycle between two
infinite amplitude p = 0) solutionsA and B will exist if the following conditions hold:

(i) A is supercritical ana is subcritical for the perfect problem.
(i) Thereis atrajectonB — A in the & subspace; this is possible if, within this subspace, or equivalently, for the
perfect problem within the associated spherical system,
B =source andi =sink,
B =source andi =saddle,
B =saddle andi =sink, or
B =saddle andi =saddle.
Table 3 lists possible candidates #oand B when—3 < Br < —1, Cr = —1. The connecting trajectories are
structurally stable to changesirbecause the dynamics in the= 0 subspace are independent.of
(iii) Thereis atrajectoryd — B out of theX subspace which exists for some value of the bifurcation parameter
The existence of such a trajectory must be demonstrated numerically.

Since the existence of the resulting heteroclinic cycle depends only on the parapietea codimension one
phenomenon. To enumerate all situations for which a heteroclinic cycle of this type may exist, we restrict attention
to the parameter range3 < Br < —1, Cr = —1. For this parameter range, periodic orbits and heteroclinic orbits
in the associated spherical system are considered to be sinks (see Tables 3 and 4) and we deduce that the only
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N G\ /-
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v u ns LU
-—++y w v '\ _ /’ w
++—\\ , . . Gt , -
/ -+ 4 - \ / -+ +
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(c) N d) NS
N --- QL7 -—-

Fig. 2. All bifurcation diagrams for the perfect system with the connect®rs A of the type required for the existence of heteroclinic cycles
involving infinite amplitude solutions wher3 < Br < —1, Cr = —1 andB, and(, are chosen to be in (a) region\MA = w, B = u),

(b) region lll (A = ns, B = u), (c) region | A = gp, B = v), (d) region Il A = gp, B = ns). Solid (dashed) lines indicate stable (unstable)
solution branches. The signs of the eigenvalues are indicated by + anith the first indicating radial stability. Parameter symmetries allow

one to find possible heteroclinic connections involving other types of infinite amplitude solutions. For the heteroclinic cycle to exist there must
also be a trajectory frod — B out of theX subspace. The branch names are defined in Section 3.

possible ways to satisfy conditions (i) and (ii) are those shown in Fig. 2. By using parameter symmetries we can find
possible heteroclinic cycles between other types of infinite amplitude solutions. In particular since these symmetries
can change thgp solution from a libration present in the above parameter range to a rotation in other regimes
the parameter symmetries can be used to generate necessary conditions for heteroclinic cycles involving rotations.
However, since the trajectory from — B out of theX subspace described in condition (iii) is not necessarily
preserved under the action of a parameter symmetry its presence must be demonstrated numerically for each set of
parameters. Note that no cycles involving the heteroclinic orbit separating librations and rotations in the associated
spherical system are possible.

We now briefly describe some manifestations of the presence of heteroclinic cycles involving infinite amplitude
solutions in the bifurcation diagrams; these are illustrated in the examples which follow. The heteroclinic cycles
may be analyzed within the three-dimensional system (3)—(5). First, suppost éimakB are infinite amplitude
(p = 0) fixed points in this system. K (B) has complex (real) eigenvaluesi a Shil'nikov-like analysis [19,20]
is possible. The analysis shows that a periodic solution branch may undergo an infinite number of saddle-node
bifurcations{A,} as the branch is followed to higher period, with; — A.+ andiz; 1 — A.— asj — oo.

Herel. is the parameter value at which the heteroclinic cycle form4. i an infinite amplitude limit cycle (i.e.,

A = gpso) andB is an infinite amplitude fixed point, an analysis along the lines of [21] becomes possible provided
parameters (such a8r) are chosen so that has just undergone a Hopf bifurcation. In the present problem,
the unstable (stable) manifold d@f (B) is a tubular (planar) two-dimensional surface outhfwe denote these
manifolds bywV (A) (WS (B)). Suppose that for a particulasayi.1) WY (A) becomes tangent 'S (B). In the
presence of a (structurally stable) traject@®y—> A within X (see (ii) above) this tangency implies the formation

of a heteroclinic cycle at.;. For slightly larger the tubeW? (A) will intersect WS (B) along two distinct lines
corresponding to the presencetab distinct heteroclinic cycles at the samealue. These cycles are structurally
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stable, but unlike the situation studied in [18] this does not depend on the presence of fixed-point subspaces of
and B. Finally, whenx is increased far enough the tubB&” (A) emerges on the other side vfS(B), forming a

last tangency at, sa¥,= A.2 > A.1. Analysis of this process implies, cf. [21], that periodic solutions may undergo
an infinite number of saddle-node bifurcationsiat {1,} as the branch is followed to higher period, with the
sequence$io;} and{iz;41} tending to the twodifferentvaluesi.; andi., asj — oo (see, in particular, Fig. 5

of [21]). As the Hopf bifurcation ofA is approached (by varyingr) these two heteroclinic cycles “merge” (the
tubularw? (A) shrinks to a line) and beyond the Hopf bifurcation only a single heteroclinic cycle exists{at.)
connecting the resulting infinite amplitude fixed points.

We call such infinite sequences of saddle-node bifurcations along a periodic solution branch “Shil’nikov-like
behavior” and describe several examples in Section 4.3. In addition, near each saddle-node bifurcation there is a
period-doubling bifurcation [22], or if the periodic orbit is reflection-symmetric a symmetry-breaking pitchfork
bifurcation [23]. The branch of periodic solutions that results may itself form a subsidiary heteroclinic cycle when
followed to higher period, or it may reconnect to the same branch at another period-doubling or symmetry-breaking
pitchfork bifurcation, forming a bifurcation “bubble” [24].

For branches which form heteroclinic cycles involving infinite amplitude solutions when followed to higher
period, we find numerically that the average value,of-), may locally increase or decrease, ktltis larger at
the saddle-node bifurcation &t than ath; in the resulting bifurcation diagranis) versusk the branch “spirals
off to infinity.” Sometimes, however, the oscillatory branch collides with a branch of finite amplitude fixed points;
if this finite amplitude fixed point has complex eigenvalues the resulting heteroclinic cycle may also give rise to
Shil'nikov-like behavior, while if it has real eigenvalues homoclinic explosions may be encountered [25]. When
such a global bifurcation is approached the periodic orbit on the branch spends more and more time near the fixed
point(s) andr) approaches the value ofor these fixed point(s). This is in contrast to heteroclinic cycles involving
infinite amplitude solutions for which the trajectory reaches and returns from infinity in finite {ipee Appendix
C); such heteroclinic cycles thus describe bursténtie duration.

Finally, because symmetry-related solutions may have different physical manifestationsiitis also useful to consider
the heteroclinimetwork defined to be the set of all heteroclinic connections associated with a heteroclinic cycle
in which symmetry-related solutions amet identified. This concept is important because on reaching an infinite
amplitude stateB that is a saddle It a trajectory can exit in one of two directions which take it to different but
symmetry-related statesandA’. Some consequences of the presence of networks will be explored in the examples
below.

4.3. Numerical studies of the imperfect system

Following [12] we focus on parameter values for which the perfect system has suberiiohltions and su-
percritical v, w solutions. The coefficient8 and C will be used to control whether thes and/orgp solutions
are also present. We use ttistool[26] simulation package to solve the differential equations with a fourth-order,
variable-step Runge—Kutta integration scheme, and AUTO [27] to follow solution branches and detect bifurca-
tions. For different purposes different variables are useful. For example, it is often easiest numerically to work in
the (o, 0, ¢) coordinates because this makes the lar@pehavior associated with bursts more manageable. The
eigenvalues reported in this section are all calculated using Egs. (13)—(15). However, the variahles high-
light the symmetry properties of the solutions and are therefore used in many of the phase space plots. Time
series showing the bursting behavior will be plottedras: |z4|? + |z_|°> = VuZ+v2+ w2 = 1/p versus
t. Bursts are associated with smallvalues, or equivalently, with large excursions from the neighborhood of
(u, v, w) = (0, 0, 0). Inthe phase space plots plus signs, squares, and diamonds indicate saddles, sources, and sinks,
respectively.
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The bifurcation diagrams typically show

17 T,
(r)E—/ rde = 16
TJo fg’,odt (16)

as a function of the bifurcation parameteiHereT is the period of the solution in the original tilheandT?, is the
period of the solution to Egs. (13)—(15) found in terms of the rescaledd#irBence the bursts are fast events in the
timet (see Appendix C), the average for a sequence of large amplitude bursts may in fact be quite small. However,
for heteroclinic cycles involving infinite amplitude solutions Eq. (16) shows Hat= co. The presence of such
heteroclinic cycles can have a dramatic effect as discussed in the examples that follow. In the bifurcation diagrams
solid (broken) lines indicate stable (unstable) solutions; circles, diamonds, squares, and triangles indicate Hopf,
saddle-node, period-doubling, and symmetry-breaking pitchfork bifurcations, respectively. Many period-doubled
branches are omitted. Often, saddle-node and period-doubling (or symmetry-breaking pitchfork) bifurcations occur
at nearly the same value bflue to rapid variation of one or more Floquet multipliers of the periodic solutions as the
solution branch is followed. If the remaining nontrivial Floquet multiplier has modulus less than one between such
a pair of bifurcations, there will be a small rangeiofalues in which the solutions are stable. Moreover, branches
which arise from period-doubling (or symmetry-breaking pitchfork) bifurcations often undergo period-doubling
bifurcations themselves near thgalues at which they come into existence; if the other nontrivial Floquet multiplier
has modulus less than one between the subsequent period-doubling bifurcations, there will be a smallirange of
values in which period-two solutions are stable. In the following we use RS (NRS) to indicate that a periodic or
chaotic solution to the three-dimensional system is symmetric (not symmetric) with respect to the symmetry
For a RS periodic orbit, the action of is equivalent to time translation by half a period. The symmetries of chaotic
solutions may be thought of as symmetrgsaverage

We now examine a number of examples chosen to illustrate different types of dynamical behavior. The eigenvalues
and Floquet multipliers of the infinite amplitude solutions involved in heteroclinic cycles in the examples that follow
are summarized in Table 5.

4.3.1. Example 1(a)
When

A=1-15i, B=-28+5i, C=1+i; Ar=Aw=0,

theusolutions are subcritical, the w, andgp solutions are supercritical, and thesolutions are absent. Application

of the parameter symmetr brings these parameters into the rarge < Br < —1, Cr = —1 and region | of
parameter space; this corresponds to case (c) of Fig. 2, suggesting the possibility of a heteroclinic cycle involving
infinite amplitude solutions. In the original parameters this translates to the possibility of a heteroclinic cycle
involving the u, (saddle withinX) and gp~ (sink within X) solutions. The (partial) bifurcation diagram for

A)L = 0.03, Aw = 0.02 is compared with the bifurcation diagram fah. = Aw = 0 in Fig. 3. As|A| becomes

large, the behavior of the imperfect system approaches the behavior of the perfect system. In partied@mthe

we branches given by Eqgs. (11) and (12) approachutheranch for the perfect problem. In addition to the two
primary bifurcations responsible for the o branches the bifurcation diagram reveals the presencdiséannected
branch of fixed points. This branch, labelegv, must be computed numerically; as— —oo (+00) the fixed

points on this branch approach th&v) fixed points for the perfect system (hence the name). Finally, the Hopf
bifurcation ath = 0.180681 gives rise to a stable periodic orbit which approaches the gtalsielution for the
perfect problem as — oo.
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Table 5

275

Eigenvalues and Floquet multipliers from Eqgs. (13)—(15) for the infinite amplitude solutions involved in heteroclinic cycles for the examples of
Section 4.3. The eigenvalues and Floquet multipliers with subscripts 1 (2,3) correspond to perturbations out of (wkhsuitihigace. All are

independent of. and hence are identical for all heteroclinic cycles that exist.

Example B A
Uoco 4P
1(a) 54 = ~0.200 FM=57.46
55> = —5.868 FM=1.000
55 = 0.0682 FM=0.604
Uoco 4P
1(b) si% = —0.150 FM=45.19
st = —5801 FMp=1.000
sa% = 0.151 FMs=0.894
Uoo Voo
2 54 = —0.100 s = 1.700
i = —5734 53 = —0.05+ 2.929i
s = 0.234 53 = —0.05— 2.929i
NS0 4DPso
. s = —0.164 FM=77.97
s = _5,723 FM=1.000
sa = 0.0319 FM=0.581
NSxo Voo
4 st = ~0.0322 si® = 1730
sp — 5384 55 = —0.005+ 2.598i

sa% = 0.0870

55 = —0.005— 2.598i

0.00, ——. oI

-0.05

Fig. 3. Partial bifurcation diagram ft =1 — 1.5i,B = —2.8+5i,C = 1+ iandAx = 0.03, Aw = 0.02. The Hopf bifurcations on thee
branch at. = 0.00857143 and on the/v branch at. = 0.100750 are indicated but the resulting branches are omitted (see Fig. 4). In contrast
to the perfect system (inset) with a stabje primary branch, the stable primary branch in the imperfect system is¢dfeanch.
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Fig. 4. Detailed bifurcation diagram for the parametars= 1 — 1.5i,B = —2.8 4+ 5i, C = 1+ i, and Ax = 0.03, Aw = 0.02. Not all
period-doubled branches are shown.

Fig. 4 shows the results of a detailed bifurcation study for these parameters [12]; however, not all period-doubled
branches are shown. Th«% branch arises from the Hopf bifurcation on tiag branch at. = 0.00857143; each
trajectory on this branch visits the vicinity of different (but symmetry-relaiegd)fixed points. These solutions
are rotations. The/v! branch is born in a Hopf bifurcation on thg'v branch at. = 0.100750; each trajectory
along this branch visits repeatedly the vicinitysaimanfinite amplitude fixed point. These solutions are librations.

The g branch will be described later. Notice that té solutions are stable for large rangesjofalues (for
example, for 0M885 < A < 0.1065) while the:/v! solutions are stable for much smaller ranges (for example, for
0.1250< A < 0.1256). In fact, for this range the stabl¢v! solutions coexist with stable/v solutions which are
more likely to be observed i is ramped upwards from belowI250. We now describe the major characteristics
of this bifurcation diagram.

(a) Heteroclinic cycle involving infinite amplitude solutiodss argued above, this example offers the possibility
of a heteroclinic cycle involving the,, andgp, solutions. Examples of such cycles are shown in Fig. 5. Here the
effect of these cycles is local; the branches which might be expected to be affected by the heteroclinic cycles (e.qg.,
thew? andu/v* branches) in fact terminate in global bifurcations involving finite amplitugiefixed points, i.e.,
instead of undergoing an infinite number of saddle-node bifurcations as they are followed to higher period, these
branches only undergofimite number before colliding with the finite amplitudgv fixed points.

(b) Global bifurcations involving finite amplitude fixed pointheu /v fixed points do not lie in the reflection-
invariant subspace Fixc1)) = {(u, v, w)|u = v = 0}; thus there are twe/v solutions related by;. Consequently,

RS heteroclinicorbits connecting the twe:-relatedu /v fixed points or twoxs-relatedhomoclinicorbits to the
k1-relatedu /v fixed points are both possible. The existence of these orbits is suggested by following many solution
branches (e.g., thejé and u /vl branches) to very high period. As such a homoclinic or heteroclinic orbit is
approached, the periodic orbit spends more and more time neay thiexed point(s) so thafr) approaches the
value ofr for these fixed point(s) (see Fig. 6).
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Fig. 5. (&) A numerically calculated heteroclinic cycle involving the infinite amplitude fixed painaind the infinite amplitude limit cycle
gp ati = 0.0974. (b) Another heteroclinic cycle exists)ate 0.110. (c) Sketch of the resulting complete heteroclinic network showing all
connections.

Fig. 7 shows deteroclinicorbit for A = 0.0964187 connecting two/v fixed points related by1; another such
orbit exists forn = 0.09654768. At these global bifurcations thgv fixed points have purely real eigenvalues
s1 > s2 > 0 > s3 (see Fig. 8); sincész/s3| < 1 we expect that the global bifurcations will lead to homoclinic
explosions as for the Lorenz equations (but with time reversed from the case which is typically studied) [20,25].
We have located a solution branch which is born in one of these global bifurcations and terminates in the other. An
example of a stable solution on this branch (which we caht aolution; such a solution is RS) and a bifurcation
diagram is shown in Fig. 9. Finally, Fig. 10 shows twerelatedhomoclinicorbits which exist fon. = 0.0962724;
similar orbits exist also for = 0.0964974. Because there is only one homoclinic orbit for each fixed point, these
global bifurcations do not produce homoclinic explosions [20].

(c) Complicated behavior foB.065 < A < 0.092. The range .065 < 1 < 0.092 contains much complicated
behavior including period-doubling cascades to strange attractors, periodic windows, and symmetry-increasing
bifurcations of strange attractors [28]. These are conveniently described using (approximately one-dimensional)
Poincaré maps which take into account the reflection symmetry. We let
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Fig. 6. Bifurcation diagram showing global bifurcations involving the finite amplitugiefixed points. Tha:/v% andu/v?* branches arise

from period-doubling bifurcations from the/v® branch, while thev??, w?, g%, and¢?* branches arise from symmetry-breaking pitchfork
bifurcations from thev? andg* branches.
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Fig. 7. The RS heteroclinic orbit connecting twp-relatedu /v fixed points ath. = 0.0964187 withrmax ~ 166. The frame at right shows a

blow-up of the frame at left. Another RS heteroclinic orbit exists at 0.09654768 withrmax &~ 7378. Heremax denotes the maximum value
of r along the orbit.

= {(u,v,w)u =v,u> 0}
X ={u,v,w)u=v,u <0},

and define the Poincaré maps ©, — ., P : £, — X_. All periodic orbits which pierc& . are fixed points

of P. Because of the; symmetry the map front_ to X, is identical toP so thatP = P - P. For a RS periodic

orbit the action of? is the same as the actionsef; thus RS periodic orbits are fixed pointsigf- P in addition to

being fixed points oP. On the other hand, NRS orbits are fixed point®dfut not of«1 - P. There may be RS and

NRS periodic orbits embedded in a RS strange attractor; however, only NRS periodic orbits may be embedded in a
NRS strange attractor, so for such attractors we expect that the mapwill not have any fixed points.
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Fig. 8. Eigenvalues;, s2, andss of theu /v fixed points; the former are real for@50< A < 0.0967. The vertical dashed (dotted) lines show
the A values for heteroclinic (homoclinic) bifurcations involving the finite amplitude fixed points.

Fig. 11(a) shows a partial bifurcation diagram fo8® < A < 0.080. The RSw? branch is born at a Hopf
bifurcation on thawe branch wherk = 0.00857143, and is stable until a symmetry-breaking pitchfork bifurcation
at A = 0.0672409. This bifurcation gives rise to twq-related stable NRS periodic solutions which we call
wg solutions; for these solutions successive bursts differ in amplitude (see Fig. 12(a)1)§1§mﬁ1tions undergo
identical period-doubling cascades which accumulate at 0.06975 and lead to twes-related NRS strange
attractors. As\ is increased to @701 a period 6 window (defined according to the number of successive bursts
with distinct amplitudes) is formed with a periodic NRS orbit as shown in Fig. 12(b). iisncreased further the
period 6 orbit itself undergoes a period-doubling cascade so that5y0.07013 there are again twq-related
NRS strange attractors. At~ 0.070319 these strange attractors merge in a symmetry-increasing bifurcation as
illustrated in Fig. 13. As\ is increased to 0707 a period 5 window is formed with a periodic RS orbit. This
periodic orbit undergoes a symmetry-breaking pitchfork bifurcation and the resulting NRS periodic orbits then
undergo period-doubling cascades leading to twaelated NRS strange attractors. These attractors merge at
A~ 0.070779 giving a RS strange attractor. Similar behavior is foundiggncreased further, with other periodic
windows (such as a period 7 window neae 0.07454) which are destroyed in ways similar to those described
above. There is a reverse period-doubling cascade which accumulates @t0762. AtA = 0.0769685 theug
solutions regain stability.

The w2 solutions remain stable asis increased to 0852558 at which point they undergo a period-doubling
bifurcation. In Fig. 11(b) we show the bifurcation diagram fod&b < A < 0.092. In this range there are again
period-doubling cascades, periodic windows (including a period 3 windaw-a0.088), and symmetry-increasing
bifurcations in which NRS strange attractors merge to form a RS strange attractor. A unique feature for this portion
of the bifurcation diagram is the presence of many saddle-node and period-doubling bifurcatioB858r0 A <
0.0865; the origin of this behavior has not been determined. At0.0884534 thav?2 branch reconnects with the
wé branch in a symmetry-restoring pitchfork bifurcation.

Complicated behavior such as that described here also occurs for apprbpehtes for the remaining examples,
but will not be emphasized.
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Fig. 9. (a) Stablg solution forx = 0.1109354 with(r) ~ 2.045. The frame at right shows a blow-up of the frame at left. (b) Bifurcation
diagram showing the! branch and the branches which bifurcate off ghéranch in symmetry-breaking pitchfork bifurcations. All subsequent
period-doubled branches are omitted. Inset shows detail of (b).
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Fig. 10. The twoc; -related homoclinic orbits to the -relatedu /v fixed points at. = 0.0962724 withrmax &~ 18.2. The frame at right shows a
blow-up of the frame at left. Such homoclinic orbits also exist at 0.0964974 withrmax ~ 991.
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Fig. 11. Detail of the bifurcation diagram for (a)085 < A < 0.080 and (b) M85 < A < 0.092. Not all period-doubled branches are shown.

4.3.2. Example 1(b)
We now decrease the value Gk choosing

A=1-15j B = —-2.8+5i, C =0.95+1.
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Fig. 12. (a) Two stable;-related NRSw? solutions at. = 0.0675 with (r) ~ 0.665. At right is the time series for one of these solutions.
(b) Stable NRS period 6 orbit and burst sequence-at0.0701. Thec;-related orbit is omitted.
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Fig. 13. The maps (a); - P and (b)P for the twok:-related NRS strange attractors wher= 0.07013. The gap nedky - P) - u = u in (@)
indicates that there are no RS periodic solutions embedded in these attractors. The two fixed points in (b) correspeladsd NRS periodic
solutions. When. is increased to 0.070319 a symmetry-increasing bifurcation occurs, arg tiemap (c) has a fixed point indicating a RS
periodic solution embedded in the strange attractor.Atr@p (d) has three fixed points, one corresponding to this RS periodic solution and the
other two corresponding te -related NRS periodic solutions.
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Fig. 14. Bifurcation diagram for the parameters= 1 — 1.5,B = —2.8 + 5i,C = 0.95+i,AAx = 0.03, Aw = 0.02 for comparison with Fig.
4. Not all period-doubled branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system.

WhenAX = Aw = 0 theu solutions are still subcritical, the w, andgp solutions supercritical and tle solutions
absent. As before we taker = 0.03, Aw = 0.02. Holding the other parameters fixed, the solutions undergo a
subcritical Hopf bifurcation which destroys thp, solutions a€'r decreases throughBr/3 = 14/15~ 0.93333;

for the above parameter values tye,, solution therefore still exists but the system is closer to a Hopf bifurcation.
As in Example 1(a) application of the parameter symmegrgnd rescaling of time brings these parameters into the
range—3 < Br < —1, Cr = —1 andregion | of parameter space, i.e., to case (c) of Fig. 2. The resulting bifurcation
diagram is shown in Fig. 14, with branch names defined as in Example 1(a). The main point to be emphasized here
is that although the /v! branch terminates in a global bifurcation involving the finite amplituge fixed points

as in Example 1(a), the)é branch does not; instead, it undergoes Shil'nikov-like behavior due to a heteroclinic
cycle involving theus, andgpeo solutions. In this case the saddle-node bifurcations oruthsolution branch
accumulate, in the notation of Section 4.2)te ~ 0.089 andi.» ~ 0.095. Fig. 15 shows the peridd /2 between
successive bursts on the! branch as a function of together with projections of the solution at two successive
saddle-node bifurcations. As the period increases the number of turngmneancreases and the solutions become
better and better approximations to heteroclinic cycles consisting of a trajectory connetinfp@d point to a

gPoo Solution withinX, followed by return trajectory lying outside to anothe, fixed point shifted inp by =

from the first one. Branches which arise from symmetry-breaking pitchfork and period-doubling bifurcations from
thew? andu/v? branches, respectively, also show Shil'nikov-like behavior.

4.3.3. Example 2
WhenCRr is decreased even further the., solution is destroyed in a Hopf bifurcation on the solution. Thus,
when

A=1-15i, B =-28+5i, C=09+i, AA=Aw=0,
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Fig. 15. (a) The period; /2 between successive bursts on thfgbranch as a function of. (b) Trajectories for the points labeled 1 and 2 in
(a). These approximate the two distinct heteroclinic cycles between the infinite amplitude fixedupgiatsl the infinite amplitude periodic
solutionsgpeo, cf. Fig. 5, withA = 1.1 ~ 0.089 and\ = A2 ~ 0.095.

the u solutions are subcritical, the andw solutions are supercritical, but twe andgp solutions are now both
absent. Application of the parameter symmetgy P; and a rescaling of time brings these parameters into the range
—3 < Br < —1, Cr = —1 andregion I\, of parameter space, i.e., to case (a) of Fig. 2. In the original parameters,
this translates to the possibility of a heteroclinic cycle involvingitheandv, solutions. The bifurcation diagram

for AL = 0.03, Aw = 0.02 is shown in Fig. 16 and includes (a) a heteroclinic cycle involving the infinite amplitude
1o andue, Solutions neak = 0.08461 (see Fig. 17), and (b) global bifurcations involving finite amplitude fixed
points. Because of the periodicity gnthe heteroclinic network consists of two basic units, as illustrated in Fig. 18.
This is because on arriving at, a trajectory can go, withiix, to either of twov, fixed points that are related by
periodicity ing. In fact, since the trajectory out &f is the same for both units as sketched in Fig. 18(c) and (d), the
periods along the /v! andwé branches become infinite at tkame\ value. Subsidiary heteroclinicities, sketched

in Fig. 19, are also present but form at differeéntalues.
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Fig. 16. Bifurcation diagram for the parameters= 1 — 1.5i,B = —2.8 4+ 5i,C = 0.9+ i,Ax = 0.03, Aw = 0.02 for comparison with Fig.
14. Not all period-doubled branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system.
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Fig. 17. (a) A numerically calculated heteroclinic cycle involving the infinite amplitude fixed poiptandvs, atA = 0.08461. (b) Sketch of
the complete heteroclinic network showing all connections.
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for theu/v! (w}) branch. The accompanying phase space projections show the approach to the two basic units of the heteroclinic network,
sketched in (c) and (d) as solid lines. The cycle forms.at 0.08461.

Itis also possible to find global bifurcations which involve one or both ofthefixed points. For example, for
A = 0.08208 there are twi; -related homoclinic orbits te; -relatedu /v fixed points, while fon. = 0.0795 there is
a RS heteroclinic orbit connecting the twgv fixed points. Fig. 20 shows the eigenvalugsso, 52 for theu /v fixed
points for thex range of interest; both of these global bifurcations occur \WRi#(s2)/s1| < 1, so Shil'nikov-like
behavior occurs (but with time reversed from the case which is typically studied because R@) [22,20]. We
have located a solution branch (which we call théranch) which terminates at both ends in the global bifurcation
ati =~ 0.0795 (see Fig. 21).
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Fig. 19. Sketches of several subsidiary heteroclinic cycles arising from a period-doubling bifurcation onu(a)‘theanch and (b) thev}
branch, respectively; (c) shows a further possibility not detected numerically. Solid lines indicate the basic units for each cycle.

4.3.4. Example 3
When

A=1-15i, B =-2.8+5i, C=14092, Ar=Aw=0

the u and ns solutions are subcritical, and the w and thegp solutions are supercritical. Application of the
parameter symmetri, and a rescaling of time brings these parameters into the raAge Br < —1, Cr = —1

and region |l of parameter space, i.e., case (d) of Fig. 2. The bifurcation diagramfet 0.03, Aw = 0.02

is shown in Fig. 22(a). In this example the branch undergoes Shil'nikov-like behavior with the saddle-node
bifurcations clearly accumulating at two differenvaluesi.1 ~ 0.1047 andi.» =~ 0.1181; see Fig. 22(b). Also,
the branches which arise from symmetry-breaking pitchfork bifurcations froméﬂm&anch do not form subsidiary
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Fig. 20. The eigenvalues, s», 52 of theu /v fixed points as a function of. The vertical dashed (dotted) lines show thealues at which the
heteroclinic (homoclinic) bifurcations involving the finite amplitudé fixed points occur.

heteroclinicities (see Fig. 22(c)). In addition, thh! branch now terminates in a global bifurcation involving the
u /v solutions; numerically, this occurs at the point at whichitlie solutions undergo a saddle-node bifurcation.

4.3.5. Example 4
When

A =1-15i, B = 2.8+ 4.5i, C =093+0.94i, Ar=Aw=0

the u andns solutions are subcritical, the and w solutions supercritical, anglp solutions absent. Application

of the parameter symmetr§s; - P, and a rescaling of time brings these parameters into the raBge Br <

—1, Cr = —1 and region Il of parameter space and hence case (b) of Fig. 2. The bifurcation diagram for
0.03, Aw = 0.02 is shown in Fig. 23. Thwé branch again exhibits Shil'nikov-like behavior, as do the branches
born in symmetry-breaking pitchfork bifurcations on tbébranch (only one such branch is shown in Fig. 23). For
the values studied, the/v branch does not undergo a Hopf bifurcation and:io! branch is present.

We conclude our brief survey of the dynamics of Egs. (1) and (2) by listing the eigenvalues and Floquet multipliers
for the infinite amplitude solutions involved in heteroclinic cycles for the above examples (see Table 5). In the next
section we discuss the effects of changing the magnitude of the forced symmetry-breaking and, given the large
amplitude of the bursts, of including higher order terms in these equations.

5. Robustness of results
5.1. Symmetry-breaking parameters

We focus on Egs. (1) and (2) with parameters as in Example 1(a) but different valtves ®he Hopf bifurcation
on thewe branch that gives rise to thel solution occurs when

2A 4+ (2AR + BR)rw, =0
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provided

20 + (2AR + BrR + CR)7yy —2Aw — (B 4 C|)ry, -0
2Aw + (B) — Crye 20 + (2AR + Br — CR)T e '



J. Moehlis, E. Knobloch /Physica D 135 (2000) 263—-304 291

~<o
S~

<

-
We, Wy
o A, PP

I | I | |
0.025 0.050 0.075 0.100 0.125 0.150 0.175

e A

(b)

0 A A
0.09 0.10 0.11 0.12 0.1 0.11 0.12

Fig. 22. (a) Bifurcation diagram for the parametdrs= 1 — 1.5i,B = —2.8+ 5i,C = 0.92+i,Ax = 0.03,Aw = 0.02. Not all period-doubled
branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system. (b) Shil’nikov-like behavigiboaribi
with saddle-node bifurcations accumulatingvgt ~ 0.1047 andi., ~ 0.1181. (c) The branch arising from a symmetry-breaking bifurcation
on thew}3 branch at. = 0.09878,(r) = 2.545, terminating at = 0.1173,(r) = 3.001.

Herer,, is given by (11). ThusAw does not affect the location of this bifurcation which continues to occur at
A = 0.00857143, although it does affect the resulting Hopf frequency. Bifurcation diagrams«fe 0.1 and

Aw = 0.5 are shown in Fig. 24. We see that thg¢ branch still terminates at a global bifurcation involving the
finite amplitudex/v solutions; however, this occurs at highevalues than forAw = 0.02. Moreover, the:/v?
solutions no longer exist. AAw increases the phageslips more and more rapidly, cf. Eq. (5), and averaging then
eliminates the parametérfrom Egs. (3) and (4), giving

2\ 1 2AA
=——" _ #=cost{-=2).
2AR + BR rBr



292 J. Moehlis, E. Knobloch/ Physica D 135 (2000) 263304

0.0

0.100 0.105 0.110 0.115 0.120

Fig. 23. Bifurcation diagram for the parametdrs= 1—1.5i, B = —2.8+4.5i,C = 0.93+-0.94i,A% = 0.03, Aw = 0.02. Not all period-doubled
branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system.

Sincer is now constant in time the bursts fade away with increagingand are replaced by smaller amplitude,
higher frequency states (see Table 6). However, even for extreme valdes ibfis apparently still possible to
choose\ values so that bursts of large dynamic range occur (see Fig. 25).

We next consider the parameters of Example 1(a) but with= —0.02. The resulting bifurcation diagram is
shown in Fig. 26. Bothw? andu/v* branches undergo Shil'nikov-like behavior, with the saddle-node bifurcations
accumulating toi.1 ~ 0.02554 andi.> ~ 0.03642. New types of solutions found for these parameter values
include stable chaotic states which visit the vicinity of the same infinite amplitude fixed point (see Fig. 27(a)) and
stable chaotic states which are characterized by successive visits to the vicinitysbthespace sometimes near
thesameand sometimes neardifferentbut symmetry-related infinite amplitude fixed point (see Fig. 27(b)), much
as already described by Rodriguez and Schell 28ig. 27(c) demonstrates that for; < A < A two distinct
heteroclinic cycles exist for theamei value, as expected from Section 4.2.

WhenAuw is held fixed instead bursts persist for a rang@afvalues as well. However, we have not attempted
a detailed classification of the properties of Egs. (1) and (2) for arbitrary values ahd Aw.

5.2. Higher order terms

Thus far we have studied Egs. (1) and (2) which have been truncated at third order in the amplitadels
z—. The presence of bursts of large amplitude requires, however, that we reexamine the truncation that led us to
these equations. Recall that in the derivation that leads to these equatiquisytiealamplitudes arel/2z,
wheree measures the distance above threshold. It follows that the physical amplitudes remain small provided

1 The term—0.753 in Eq. (4b) of [29] should be-0.75-3p.



J. Moehlis, E. Knobloch /Physica D 135 (2000) 263—-304 293

(r)

3. 04 N

a. (b)

0
-0.25 0.00 0.25 0.50 0.75 1.00 1.25

Fig. 24. Bifurcation diagrams for the parametdrs= 1 — 1.5i,B = —2.8+ 5i,C = 1+i,AA» = 0.03 and (a)Aw = 0.1, (b) Aw = 0.5.

€Y?|z4lmax < 1. Under these conditions all fifth-order terms in Egs. (1) and (2) enter the derivation with
O(e) coefficients and remain small relative to the cubic terms retained. However, the presence of even small
fifth-order terms has an effect: if such terms are stabilizing the solutions responsible for the bursting behavior
cannot reach arbitrarily large amplitude and instead have largénitetamplitudes. As an example we consider
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Table 6

Maximum burst amplituderf,ax) and time between burstgy) for stable periodic solutions wheft = 1 — 1.5i,B = —2.8 + 5i,C = 1+,

A =0.1,Ax = 0.03, and different values cfw

Aw I'max Ty

0.02 7.649 29.27

0.1 0.763 7.85

0.5 0.296 2.69
600 T T T

200

—1

0.5 1

0
0

Fig. 25. Bursts with large dynamic rangela& 15 andA = 1 — 1.5i,B = —2.8 + 5i,C = 1+i,A% = 0.03 andAw = 10.
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Fig. 26. Bifurcation diagram for the parameters= 1 — 1.5,B = —2.8 4+ 5i,C = 1+ i,A} = 0.03,Aw = —0.02. The bifurcation diagram

for the perfect system is shown in the inset of Fig. 3.

the system

ip = [+ A +i(@+ Ao)zs + Azt 12 + 1221924 + Blz P24 + CZ42% + Dlzi|*zy,

o =[A— A +i(@— Aoz + Az ? + |z-1P)z— + Blz—*2— + CZ_z% + D|z—|*z-
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Fig. 27. (a) Stable chaotic state with repeated visits to the vicinity of the same infinite amplitude states-far— 1.5i, B = —2.8 + 5i,
C =1+i,Ax=0.03 Aw = —0.02 and » = 0.04. (b) Stable chaotic statejat= 0.03 which makes repeated visits to either the same infinite
amplitude state or symmetry-related ones. (c) Two distinct heteroclinic cycles exis&f@.03 which lies between.; and. 2.

and analyze the consequences of the new terms, choosing(thecoefficient D = Dgr + iD; such that the
subcritical branch undergoes a saddle-node bifurcation. In this case solutions on this branch existieve® for
Egs. (13)—(15) become

dp

. 5 3
T = —p[2AR + Br(1+ coS0) + CrSint6 cos 2] — 2(x + AXcosh)p? — ZDR - ZDR cos 2,
T

do _ . . D .
e sin@[ cosf(—Br + Cr coS 2) — C) Sin 2p] — 2AX1Sin6p — R cosd sing,
T P

d . D, cost
d—¢ = CcosH(B) — Cj cos 2) — CrSiN2p + 2Awp + 2=
T

We consider the parameter values from Example 2 With, D)) = ¢(—1, 1) and focus our discussion on the
u/vY branch; similar results hold for other branches. When0.01 theu, fixed points have moved out of the= 0
plane which is no longer invariant; we call thaesgi fixed points. For example, when= 0.1 the coordinates
of usinite are(p, 0, ¢) = (0.046Q 1.577Q —0.0136+ m), wherem is an integer. Fixed points analogous to the
Voo fixed points do not exist for these parameters. Bursts now occur when the trajectory makes visits near the large
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Fig. 28. Bifurcation diagrams for the/v? branch for (a,b} = 0.01, (c)e = 0.00001, and (d} = 0. Fore > 0 theu/v* solution collides with
a newusiinite fixed point; this global bifurcation manifests itself as a vertical branch in the bifurcation diagrams. At the sari¢ ip@oaches
the value ofr for the new fixed point.

but finite amplitudessinite fixed points. Fig. 28 compares the bifurcation diagrams:fer 0.01,¢ = 0.00001 and
¢ = 0, and demonstrates that aslecreases the system behavior approaches that£o0, i.e., the limite — 0
captures the mechanism responsible for the generation of bursts near threshold of the primary instability. Moreover,
in this example, the “complexity” of the dynamical behavior increases with decreasingontrast with typical
situations in the study of the transition to complex behavior where the “complexity” of a system increases with the
distance above threshold.

Finally, it should also be noted that whenis small anyD4-breaking terms omitted from the cubic terms in
Egs. (1) and (2) may also become significant and change the detailed dynamips=n@ar

6. Conclusion

In this paper we described a simple geometrical mechanism responsible for the presence of bursts, both periodic
and nonperiodic, very close to threshold of an oscillatory instability in systems with bibbkesymmetry. The
mechanism relies on the presence of structurally stable connections in an invariant sibspeesponding to
infinite amplitude states together with a connectidto X and is of codimension one.

This geometrical picture is not specific to this system, although the presence abgxsychmetry in this subspace
greatly facilitates the analysis. Indeed, in the context of near Hamiltonian systems with an indefinite Hamiltonian
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a related scenario was suggested already by Newell et al. [30,31]. In fact any dynamical systénwith an

invariant subspac& that contains at least two invariant setsand B, one of which ) is nonstable inZ and

the other Q) attracting inX can generate this type of mechanism provided thég attracting andd nonstable

in RV\ X. If the unstable manifold ot is one-dimensional the resulting mechanism will be of codimension one
and hence readily observable. Note that neitheror B need to be chaotic in order that the resulting dynamics

be chaotic. This type of set-up, discussed already by Knobloch and Moore [32,33], has much in common with
recent studies of on—off and in—out intermittency [34,35] but differs in several respects. In on—off intermittency a
strange attractor in an invariant spatdoses stability in the transverse direction when a paranietsrvaried

but the dynamics irE: do not depend on. This is so for our infinite amplitude states although in our case the
dynamics inX are simple. In in—out intermittency there may be several invariant s&s possibly nonchaotic,

with different transverse stability properties all of which vary with the paraniet&he bursts that result do not
require per se proximity to a heteroclinic connection (although such a bifurcation is inevitably in the background)
and hence have a finite dynamic range determined by the global reinjection mechanism. The resulting bursts are
therefore of finite duration. Our scenario differs in that the bursts are associated with visits to the invariant subspace,
not away from it, and have arbitrarily large dynamic range. Moreover the bursts have finite duration despite their
association with a heteroclinic cycle. In addition our problem has the skew product structure of on—off intermittency
but chaotic bursts are produced despite the absence of a chaotic attraEtoBétause of these differences we

were able to study explicitly the sequence of bifurcations responsible for the generation of the bursts. Moreover,
because the existence of the bursts is a consequence of weak breakindafdyr@metry our bursts occur very

close to onset of the oscillatory instability, and their presence can therefore be viewsthagestatiorof forced
symmetry-breaking. However, the dynamics of the system without forced-symmetry breaking are still crucial for
understanding the dynamics in the imperfect system. We have seen that as the magnitude of the symmetry breaking
is increased for fixed the bursts decrease in amplitude and increase in frequency. It appears, however, that some
type of bursting remains in appropriate ranges gélues further from threshold. As in other problems of this type
forced symmetry-breaking has a particularly dramatic effect when both supercritical and subcritical branches are
present.

The mechanism we have described finds a number of natural applications in physical systems of interest. This
is because brokef, symmetry can arise in several different ways. The most straightforward is in systems with
approximate square geometry undergoing an oscillatory instability. As examples we mention three-dimensional
overstable convection (such as binary fluid convection) in containers of nearly square cross-section [36,37] and
more generally any partial differential equation on a nearly square domain describing the evolution of an oscillatory
instability (cf. [38]). Other systems where such equations arise are four coupled oscillators with nearly identical
coupling [10,39,40] and the related problem of spring-supported fluid-conveying tubes [41].

Broken D4 symmetry also arises in slender systems undergoing an oscillatory instability. If such a system has
left—right reflection symmetry (the symmetry) the first modes that set in typically have opposite parity. Moreover,
because the neutral stability curve for the unbounded system usually has a parabolic minimum these set in in close
succession as the bifurcation parameter is increased. Since, as first argued in [11], the equations for the formally
infinite system cannot distinguish between these two modes, the amplitude equations must in this limit also be
equivariant with respect to mode interchange (the symmelrySince in any finite domain the two modes do not
generically set in simultaneously tiil; symmetry generated by andks is inevitably broken. The resulting bursts
take the form of either blinking states (rotations) or winking states (librations) and bear substantial resemblance to
the bursts observed in binary fluid convection very close to threshold [42] as discussed in [12]. Systems featuring
competition between two nearly degenerate oscillatory modes form a further class of systems to which the present
mechanism is likely to be relevant. As examples we mention the Faraday system in a nearly square container [43],
and models of the solar magnetic cycle [44,45]. Finally, since the normal form for a Hopf bifurcation with the
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symmetry of the quaternion group is identical to the normal form for a Hopf bifurcation Bjtesymmetry [46],
bursts might also occur in systems with weakly broken quaternion symmetry.
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Appendix A. Parameter symmetries

Suppose that the original parameters do not lie in the wedge in parameter space givgn by Br < CR;
then it is possible to act with parameter symmetries to bring the parameters into this wedge with the phase space
suitably relabeled. Time may then be rescaled so@kat —1. The existence and stability results in the main text
for solutions with—3 < Br < —1 andCr = —1 may then be applied to the transformed system. By “undoing”
the relabeling of phase space we can deduce the existence and stability properties for the original parameters. Note
that care should be used in determining the stability properties because the parameter sytnnestgses time,
thereby changing the signs of the eigenvalues; also, changing the sign of the radial eigenvalue changes subcritical
branches into supercritical branches and vice versa. For given valugsaidCr, Fig. 29 shows the necessary
action to bring the parameters into the wed@g 3< B < Cg. Note that if after this actio®, > 0 a further action
of P4 willmake B < 0, if desired.

We illustrate the use of parameter symmetries with an example. Supgpesé — 1.5i, B = —2.8 + 5i, and
C = 1+ i (the system behavior for these parameters is studied carefully in Example 1(a) of Section 4.3). Since
Br = —2.8, Cr = 1, from Fig. 29 the actiorP, brings the parameters into the desired wedge in parameter space.
This givesB| > 0 so we then act wittP4. Overall

3 1 Cr
-2 -1.5 -1 -0.5 0 05 1 1.5 2

Fig. 29. The parameter symmetries required to transform different regions of the parameter space into th€weddg, 3< Cg.
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Pi-Po: (u,v,w) — (,u,w)= w,v,w)
(A.B.C) = (1—15i, 28451, 1+1) — (14151, 2.8 — 5i. —1+1i) = (A", B’ C').

SinceCf, = —1itis not necessary to rescale time to apply the results from the main text. We find (see Fig. 1) that
the transformed parameters lie just within region | of parameter space. Lettsofutions be fixed point solutions
with v = w’ = 0, etc., we find that the’, v/, andw’ solutions are, respectively, a source, saddle, and source
in the associated spherical system (see Table 3); also’ thelutions are subcritical and andw’ solutions are
supercritical. A supercritica}p’ solution also exists enclosing tlé solution in the associated spherical system.
As an example of “undoing” the relabeling of phase space, conside #wutions. Since these solutions satisfy
v/ = w’ = 0, in the original parameters they correspond to solutionswvithw = 0, i.e.,v solutions. The stability
properties of the solutions in the original parameters are identical to the stability properties of #wdutions in

the transformed parameters. We thus conclude that ferl — 1.5i, B = —2.8 4+ 5i, andC = 1+ i the u solution

is a subcritical saddle and that thew solutions are supercritical sources. There is also a superctjjpiddiration
around they solution.

As noted in the main text, the parameter symmétryapplies only if we restrict attention to the reduced phase
spacgu, v, w); thatis, the equation fa is not equivariant under this parameter symmetry. However, this does not
affect our use of parameter symmetries to establish the existence and stability properties of new solutions because
these depend only on the dynamics in the three-dimensional system from whighetiugtion decouples.

Appendix B. Radial stability of ns and gp solutions

For the parameter range3 < Br < —1, Cr = —1 we can place the following restrictions on the radial stabilities
of thens andgp solutions. Recall that these solutions are radially stable (unstable) if they bifurcate supercritically
(subcritically) from the trivial state.

(i) Supposethats solutions exist. Ifthe solutions are supercritical, then thesolutions must also be supercritical.
If the w solutions are subcritical, then the solutions must also be subcritical.

These results follow from the observations that wekn= 0, the conditions;s3 = O is identical to the
conditions}* = 0, and similarly, whenj’ = 0, the conditiors’s3’ = O is identical to the conditios* = 0. In
other words, this says that whdr is chosen so that the radial stability of ther w solution is degenerate, the
condition for the pitchfork bifurcation which causes the creation or destruction afsteelutions is identical
to the condition that the radial stability of the solutions is degenerate. Using this result and a numerical study
of how the curve}® = 0 varies in(By, C|) space withAr, we verify (i) (see Fig. 30).

(i) Supposeyp solutions exist. If thel solutions are subcritical then tlygp solutions are also subcritical.

We write

_ 1 - _
F =2AR + 7/ GO*(t), ¢* () dt’ = 2Ar + G,
7J 0
where

G (0, ¢) = BR(1+ co$0) + CRr sin’0 sin 2p,

and defineA; = AL(BR, B, Cr, () to be the value ofAr for which F = 0 (so that ifAR > Ar(< AR) the
gp branch is supercritical (subcritical)). Thus,
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B;

-2.5

Fig. 30. WhenBr = —2,Cr = —1 the radial eigenvalug of thev, uandw solutions vanishes fatg = 0.5, 1.5 and 20, respectively. (a) The
dotted (dashed) lines show whetf = 0 for Ar = 0.4 (0.6). For Agr = 0.4,s7° < 0 in regions Il and Il (the only regions in which the
solutions exist) and thes solutions are always supercritical. Fog = 0.6 the curves]* = 0 has moved beyond the boundary between regions
I 'and Il and thens solutions may be supercritical or subcritical depending on the valugs afidC;. (b) The dot-dashed, dashed, and dotted
lines show where]* switches signs foAr = 1.5, 1.8, and 2.2, respectively. Fég = 1.5,s7* < 0 only outside regions | and Il. Fotg = 1.8
thens solutions may be supercritical or subcritical depending on the valuBs afdC). For Ar = 2.2 the curves]* = 0 has moved beyond
the boundary between regions Ill andyJ\sincens solutions only exist in regions Il and Il thes solutions are now always subcritical. Similar
behavior is found for other values 8% in the range-3 < Bg < —1.

25 T T T L
A;} oCr=1 aCr=3 aCr=5
+Cr=2 xCr=4
D e i
5 OO .
S _ﬂ_\x
1F ;E ; : N\ 4
05 eereesme s 1
B;
0 1 1 1 1 1

Fig. 31. The dependence af; on B, for different fixed values o€’} with Br = —2 andCr = —1. These data points are extracted from the
Floguet multipliers calculated by AUTO. For a particular valug€pfthe maximum value oB is reached when thgp solution collides with
thens solutions, corresponding to the boundary between regions Il and Ill. The dotted liags-a0.5, 1.5, and 20 are for the respectivér
values at which the radial stabilities of theu, andw solutions are degenerate. Similar behavior is found for other valuBg af the range

—3< Br < —1.

The value ofG for a periodic orbit can be calculated by numerical integration or extracted from the Floquet

multipliers calculated by AUTO [27]. In Fig. 31 we plot the dependencé;pbn B, for different values ot
(hereBr = —2, Cr = —1 are fixed; the results also hold for other valueBgfin the range-3 < Br < —1).
We see thatd}; is always less than the values Ak for which the radial stabilities of the solutions are
degenerate; thus, if thesolutions are subcritical then tlgg solutions are also subcritical.

(iii) Let C; = (| be fixed, and defing| to be the value oB; for which (B|, C)) lies on the boundary between
regions Il and llI. If thens solutions are supercritical withB, C) = (B|, C|), then thegp solutions will be
supercritical for all values ofBy, C|) for which they exist.
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Without loss of generality we consid#j < 0. Numerical calculations show thdg; is a monotonically
decreasing function a#, (see Fig. 31); foC| = C| itreaches its minimum valu&y, .., whenB) = B/ because
for larger values o) thegp solutions do not exist. FaiB|, C|) = (B, C|) the periodic orbit has become a

heteroclinic orbit connectings solutions; thereforé” is dominated by thes solutions so that
G = F(enxv ¢ns) - 2AR

and hence
" 1
AR,min = AR - EF(Qmw ¢ns)-

But in this equationF (0, ¢ns) < 0 because thes solutions are supercritical fqBy, C|) = (B[, C|); thus

A*R)min > ARr. But for all other values oB, for which gp solutions existAf, > AE,min so thatA} > Ag;

therefore theyp solutions are supercritical.

This leads to the following restrictions on the possible radial stabilities of the solutions. First, we know

numerically that if thens solutions are supercritical anywhere in region Il with = C| they will also be
supercritical at(B, C) = (B, C|) (see, e.g., Fig. 30(a)); thus, if the andgp solutions exist and thes
solutions are supercritical, then the solutions must also be supercritical. Secondi g, Br, andCr have
been chosen so that thesolutions are supercritical, then from (i) thesolutions with the same values of these
parameters will be supercritical; in particular, they will be supercritical Wih C)) = (B, C|) so that the;p
solutions must be supercritical.

(iv) Suppose that theandv solutions are subcritical, amd solutions exist and are supercritical. Thgnsolutions
cannot exist.

Consider the valudr = —(BRr + Cr)/2 for which the radial stability of tha solution is degenerate; then

ns . Bi+C

=—— " —  (IC]?-Re&BC()).
I = 5 pos (€1 —ReBC)

In order forns solutions to exist it is necessary thé@i? —Re(BC) > 0. Thus, the curves defined By+C; = 0
or BRC| — B|Cr = O divide the(B), C)) plane into regions in whick* is positive or negative (see Fig. 30(b)).
Numerically it is seen that* < 0 only outside of the regions | and II; in other wordspif solutions are
supercritical theryp solutions cannot exist. Based on a numerical study of how the ciifve- O varies in
(B1, C)) space withAR (Fig. 30), we conclude that this also cannot happen for larger valugg ébr which
theu solutions are subcritical.

All possibilities for the radial stability of thes andgp solutions which do not violate the restrictions (i)—(iv)
occur for open regions of parameter space with< Cr < —1 andCr = —1.

Appendix C. Proof that heteroclinic cycles involving infinite amplitude solutions are traced out in finite time

Consider a heteroclinic cycle involving the two infinite amplitude fixed painéd B as shown in Fig. 32. Near
B, local coordinates are chosen so that

—_— = s _— = y _— = s 17
dr B ge TP g TR9 a7
wheres? > 0,52 < 0, ands2 < 0. Near4, local coordinates are chosen so that
dx d dz
2 = axp + Po, £ _ 1o, =2 = _Bxy+az2, (18)

dr dr dr
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Fig. 32. Heteroclinic cycle involving tha and B infinite amplitude fixed points. The cross-sectidf, [111, [1p2, andI1;, are defined in the
text.

wherex < O,sf‘ > 0,and8 > 0. AsshowninFig. 32, we construct cross-sections Badefined byl1p; = {p = €}
andIli1 = {x1 = €}, and cross-sections neardefined byllp, = {z2 = 0} andIl12 = {p = €¢}. The parameter
€ is small but finite and is chosen so that the mappings ffltgn — I111 and fromIlg2 — I112 may be suitably
approximated by the linearization of the flow about the fixed pathtnd A, respectively. In terms of the time
the heteroclinic cycle is traced out in infinite time. However, in terms of the original tithe situation is more
subtle because the transformatiandt = p fails for p = 0; thus, we consider a limiting procedure in which a
trajectory approaches the heteroclinic cycle between the infinite amplitude fixed points. This consists of four parts.
(i) PS4 Moy — Mg

Suppose that at = 0 a trajectory passes throudlty; with coordinatesx1, p, z1) = (xo1, €, zo1), With

x01 = zo1 = 0 denoting the point on the heteroclinic cycle. From Eq. (17),

B B B
x1(1) = x01€3%, p(r) =€€1", z1(1) = z01€2".

The timer for the trajectory to go froniilps to I111 (determined by the time required for to go fromxgz to€)
ist = (1/s§)(loge/x01), a quantity which diverges ag; — 0 (i.e., as the heteroclinic cycle is approached).
If, however, we work in the original timedefined by d/dt = p, Egs. (17) become

dxg sBx1 dp _ B dz1 sBz1
d ~ p 7 dr Y de T p
with solution

B B,.B
sBt+e /i B sBt+ € 2/
x1(2) = xo01 c . o p@®) =srt+e, z21(0) =zo1 c .
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The timet to go fromIIp; to IT1; is thus

Is2 /s8]
IZ%[(LM) 1S _1].
Sq €

In the limit xo1 — O (i.e., as the heteroclinic cycle is approached} e/|sf|, i.e., afinitetime in the original
time variable.
(i) PL:TM11— Moo
Reset time so that at = 0 the trajectory passes throu@h 1 with coordinatesx1, p, z1) = (€, p11, 711),
with the trajectory on the heteroclinic cycledf; = z11 = 0. Using the timer, it takes a finite timel; to go
from IT41 to py. Using the timd, this takes a time

T T, T:
T = / dr = / pdt < pmax dr = pmaxT*,
0 0 0

wherepmax is the maximunp value of the trajectory betwedi;; andIlgy. Thus, sincd? is finite, soisT. In
fact, pmax — 0 in the limit p11 — 0, z11 — 0; thus, in the limit as the trajectory approaches the heteroclinic
cycle, the time of flight fronTI1; to [Tz is zeroin the original time variable.
(iii) POLZ cIgp — Il12
We now reset time so that at = 0O the trajectory passes throudty, with coordinates(xz, p, z2) =
(x02, po2, 0) chosen such that the heteroclinic cycle forms whgn= 0 andxg, takes an appropriate value.
From Eq. (18),0(t) = po2 &7, The timer for the trajectory to go fronilpy to I112 (determined by the time
required forp to go frompga to€) ist = (l/sf)(log €/ po2) which diverges ago2 — 0. If, however, we work
in the original timet, then cb/dt = s1* with solutionp () = s7't + po2. The timet to go from Iy to Iyz is
thusr = (e — poz)/sf. In the limit pg2 — O (i.e., as the heteroclinic cycle is approached) e/slA, afinite
time in the original time variable.
(iv) PL: M2 — M1
Using the timer, it takes a finite timd’; to go fromI112 to [p;. As for case (i), using the timethis takes
atimeT < pmaxTy Wherepmax is the maximunyp value of the trajectory betwedr;» andIlp;. SinceT; is
finite, so isT.
Since each part of the heteroclinic cycle is traced out in finite or zero time the whole cycle is traced out in
finite time. A similar argument holds for heteroclinic cycles involving an infinite amplitude limit cycle.
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