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Abstract

A new mechanism responsible for generating regular and irregular bursts of large dynamic range near onset of an oscillatory
instability is identified. The bursts are present in systems with nearly square symmetry and are the result of heteroclinic cycles
involving infinite amplitude states created when the square symmetry is broken. All possible cycles of this type are identified
and the resulting bursts described. Global connections involving finite amplitude states are also present. The intricate sequence
of bifurcations that result is described in several cases. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has long been known that forced symmetry-breaking, that is, the introduction of small perturbations that reduce
the symmetry of a system, can introduce complex dynamics into a system that would otherwise behave in a regular
manner [1,2]. From a physics perspective this observation is of particular interest. In physical systems symmetries
are rarely exact and some symmetry-breaking imperfections must be assumed to be present. If these imperfections
have a dramatic effect on the observed dynamics then studies of idealized symmetric systems appear to have little
relevance to the real world. The problem studied in this paper shows that even if this is the case the symmetric
system still holds the key for understanding the dynamics in the imperfect system.

Imperfections usually have a dramatic effect precisely in those situations in which the symmetric analysis predicts
no stabledynamics near onset. These cases are typically deemed to be of little physical relevance and are dismissed.
However, symmetry-breaking imperfections can change this situation radically. The Hopf bifurcation with O(2)
symmetry provides a simple example [3]. In this bifurcation two solution branches bifurcate simultaneously from
the trivial state atλ = 0; these correspond to traveling (TW) and standing waves (SW). Among the possible
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bifurcation diagrams that arise is one in which the TW bifurcate subcritically (λ < 0) and SW supercritically
(λ > 0). Elementary theory [4,5] shows that in this case both branches are unstable near onset. Suppose now that
the rotation symmetry is broken but that the reflection symmetry is preserved. Then the SW remain as primary
solutions (although they are split into two branches of odd and even parity) and continue to bifurcate supercritically.
The TW, however, cannot bifurcate from the trivial solution because of the loss of rotation invariance, and hence
mustbifurcate off one of the SW branches in asecondarybifurcation. As a consequence the small amplitude SW
are “unmasked” and stable small amplitude states are now present [6]. In this regime Hirschberg and Knobloch
[3] find a number of global bifurcations and associated (stable) chaos. In the absence of forced symmetry-breaking
the values ofλ for which the nontrivial TW and SW states are present do not overlap; consequently no recurrent
dynamics are possible. The important consequence of breaking rotation invariance is precisely the generation of a
small interval inλ in which both types of solution coexist, thereby allowing connections between them.

In the above example an infinitesimal perturbation of the SW will lead, forλ > 0, to a trajectory that not only
escapes to infinity but also looks like a TW at large amplitudes, i.e., there is a connection from a finite amplitude SW
to an infinite amplitude TW (cf. [7]). If a mechanism existed for returning the trajectory back to finite amplitude,
either in the O(2)-symmetric problem or in the imperfect problem, aburst would result. The absence of such a
return mechanism suggests the study of a related problem in which such a mechanism occurs in a natural way. These
considerations motivate our study of the Hopf bifurcation with the symmetry of a square. In this system imperfections
that break theD4 symmetry are responsible for the appearance of bursts via a codimension one mechanism. This
abstract motivation is complemented by the frequent occurrence ofD4 symmetry in physical systems (see, e.g.,
[8,9]) and the consequent interest in understanding the role played by symmetry-breaking imperfections in these
systems. Moreover, the fact that the resulting bursts can be observed by varying a single parameter makes the present
burst generating mechanism of particular relevance to experiments.

The dynamics of the Hopf bifurcation withD4 symmetry are well understood [10]. In particular it is known
that there are several periodic states and in some cases quasiperiodic states as well. Each of these can bifurcate
subcritically or supercritically. When theD4 symmetry is broken a number of homoclinic and heteroclinic connec-
tions may be created [11]. Of these the ones of greatest interest are codimension one heteroclinic cycles involving
infinite amplitude solutions. Suppose there is a subcritical branch and consider again the regimeλ > 0. As in the
O(2)-symmetric Hopf bifurcation a perturbation in the form of the subcritical solutions evolves to infinite amplitude,
i.e., for these perturbations the solution “at infinity” is attracting. However, in contrast to the O(2)-symmetric case,
this solution can itself be unstable with respect to perturbations in the form of one of the (unstable) supercritical so-
lutions, thereby providing the required return mechanism and raising the possibility of a heteroclinic cycle between
these two solutions. Such a cycle would correspond to a series of infinite amplitude bursts. The period of these
bursts will be finite, in contrast to more usual heteroclinic cycles, because the trajectory reaches (and returns from)
infinity in finite time. This is the essence of the bursting mechanism explored in this paper. Of course the theory
formally breaks down for infinite amplitudes. However, in applications we are interested in bursts of finite amplitude
and these are correctly described by the present theory sufficiently close to onset. Because of this restriction the
physical amplitude of the bursts is in fact small; what distinguishes them from other dynamical behavior referred
to as bursting is theirlarge dynamic range [8,9]. In this paper we focus on the burst generation mechanism itself;
detailed applications (cf. [11]) are discussed elsewhere [9,12].

The remainder of the paper is organized as follows. In Section 2 we introduce the basic equations describing the
Hopf bifurcation with brokenD4 symmetry, and discuss their symmetry properties. In Section 3 we summarize the
properties of the perfectD4-symmetric system and identify regimes in which heteroclinic cycles to infinity may
form. In Section 4 we describe the formation of such cycles when theD4 symmetry is broken and illustrate the
associated dynamics for several particular cases. In addition we identify a number of global bifurcations involving
finite amplitude states. The analysis in this section is of necessity largely numerical and forms the bulk of the present
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work. In Section 5 we discuss robustness of our results as the magnitude of the symmetry-breaking terms increases
and investigate the effects of higher order terms. A number of applications are mentioned in Section 6. Certain
aspects of the analysis are relegated to appendices. A brief account of our results has been published elsewhere [12].

2. Basic equations and their symmetries

In this paper we study the following (truncated) normal form equations describing a Hopf bifurcation with broken
D4 symmetry:

ż+ = [λ+1λ+ i(ω +1ω)]z+ + A(|z+|2 + |z−|2)z+ + B|z+|2z+ + Cz̄+z2
−, (1)

ż− = [λ−1λ+ i(ω −1ω)]z− + A(|z+|2 + |z−|2)z− + B|z−|2z− + Cz̄−z2
+. (2)

These equations describe the interaction of two nearly degenerate oscillatory modes of opposite parity, withz±
denoting the (complex) amplitude of the even/odd modes. The degeneracy is broken by the parameters1λ and
1ω: 1λ measures the difference in the linear growth rates of the two modes and1ω the difference between their
frequencies at onset. The remaining coefficients are all complex. Under appropriate nondegeneracy conditions
(which we assume here) we may neglect all symmetry-breaking contributions to the nonlinear terms. Eqs. (1) and
(2) were obtained and partially studied in [11] but are written here using notation that allows us to make contact
with earlier work of Swift [10].

When1λ = 1ω = 0 Eqs. (1) and (2) have the symmetryD4 × S1, generated by the three operations

κ1 : (z+, z−) → (z+,−z−), κ2 : (z+, z−) → (z−, z+),

Nσ : (z+, z−) → eiσ (z+, z−), σ ∈ [0,2π)].

The operationsκ1, κ2 generate the groupD4; the remaining operation represents the action of the normal form
symmetryS1. When either1λ or 1ω are nonzero the symmetry is reduced toZ2 × S1. Consequently the only
primary bifurcations are those to modes of odd or even parity [13]. In addition if(z+, z−) is a nontrivial solution
so are thesymmetry-relatedsolutions(−z+,−z−) and(±iz+,±iz−).

In terms of the Swift variables defined by

z+ = r1/2 cos(θ/2)ei(φ+ψ)/2, z− = r1/2 sin(θ/2)ei(−φ+ψ)/2,

and a new timeτ defined by dτ/dt = r, Eqs. (1) and (2) take the more convenient form

dr

dτ
= 2(λ+1λ cosθ)+ r[2AR + BR(1 + cos2θ)+ CR sin2θ cos 2φ], (3)

dθ

dτ
= sinθ [ cosθ(−BR + CR cos 2φ)− CI sin 2φ] − 2

r
1λ sinθ, (4)

dφ

dτ
= cosθ(BI − CI cos 2φ)− CR sin 2φ + 2

r
1ω, (5)

dψ

dτ
= 2AI + BI + CI cos 2φ + CR sin 2φ cosθ + 2ω

r
, (6)

whereA = AR + iAI , etc. It will also sometimes be useful to consider the(u, v,w) coordinates defined by

u+ iv = r sinθeiφ = 2z+z̄−, w = r cosθ = |z+|2 − |z−|2, eiψ = z+z−
|z+z−| .
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In these coordinates, Eqs. (1) and (2) become

du

dt
= 2λu− 21ωv + (2AR + BR + CR)ru− (BI + CI)vw, (7)

dv

dt
= 2λv + 21ωu+ (2AR + BR − CR)rv + (BI − CI)uw, (8)

dw

dt
= 21λr + 2λw + 2(AR + BR)rw + 2CIuv, (9)

dψ

dt
= 2ω + r

(
2AI + BI + CI

u2 − v2

u2 + v2
+ 2CR

uvw

r(u2 + v2)

)
. (10)

As a consequence of theS1 symmetry of Eqs. (1) and (2) the variableψ decouples in both cases. In the following
we refer to the equivalent sets of Eqs. (3)–(5), and (7)–(9) as thethree-dimensionalsystem. Sinceψ (modulo 4π ) is
periodic in time both for fixed points and periodic solutions of the three-dimensional system such solutions in fact
correspond to periodic solutions and tori in the original four-dimensional system (1) and (2). The invariance of the
system (3)–(5) with respect to reflections in the planeθ = π and the translationsθ → θ + 2π , φ → φ+π enables
us to restrict the variables(θ, φ, ψ) to the intervals 0≤ θ < π , 0 ≤ φ < π , 0 ≤ ψ < 4π . These symmetries
imply that if (r, θ, φ) is a solution of Eqs. (3)–(5) so are(r,2π − θ, φ) and(r, θ + 2mπ, φ + nπ). Herem andn
are integers. However, since the restriction 0≤ φ < π identifies symmetry-related solutions with distinct physical
manifestations (for example, winking states with bursts localized on the left or right side of the container would be
identified, cf. [12]), we continue using the range−2π ≤ φ < 2π . In the(u, v,w) variables,

κ1 : (u, v,w) → (−u,−v,w).
Thus, if(u0, v0, w0) is a solution of Eqs. (7)–(9) so is(−u0,−v0, w0). Consequently a solution that is not invariant
underκ1 will have aκ1-related counterpart. In the following we user = |z+|2 + |z−|2 = √

u2 + v2 + w2 as a
useful measure of the amplitude of the perturbation from the trivial state.

Eqs. (1) and (2) also have additional symmetries called parameter symmetries. For a parametrized family of
ODEs given byẊ = f (X,3), Swift [10] defines aparameter symmetryas a symmetry of the extended system
Ẋ = f (X,3), 3̇ = 0 such that

f (γxX, γ33) = γxf (X,3),

whereγx is a group action on the phase space variables andγ3 is a group action on the parameters. This is to
be distinguished from atrue symmetryin which the group acts only on the phase space variables. The parameter
symmetries are most easily given in the(u, v,w,ψ) variables; it is readily verified that the following group actions
are parameter symmetries of Eqs. (7)–(10):

P2 : (u, v,w,ψ) → (−v,−u,−w,ψ)
(A,B,C, λ, ω,1λ,1ω) → (A,B,−C, λ, ω,−1λ,−1ω),

P3 : (u, v,w,ψ) → (u, v,w,ψ)

(A,B,C, λ, ω,1λ,1ω; t) → (−A,−B,−C,−λ,−ω,−1λ,−1ω; −t),
P4 : (u, v,w,ψ) → (−u,−v,−w,−ψ)

(A,B,C, λ, ω,1λ,1ω) → (Ā, B̄, C̄, λ,−ω,−1λ,1ω).
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If 1λ = 1ω = 0 and we restrict attention to the reduced phase space(u, v,w) an additional parameter symmetry
is present:

P1 : (u, v,w) → (v,w, u)

(A,B,C, λ) →
(
A+ B − C,−1

2B + 3
2C,−1

2B − 1
2C, λ

)
.

This symmetry is relevant to theperfectsystem,1λ = 1ω = 0, only.

3. The perfect system(1λ = 1ω = 0)(1λ = 1ω = 0)(1λ = 1ω = 0)

When theD4 symmetry is exact (1λ = 1ω = 0) Eqs. (4) and (5) forθ(τ ) andφ(τ) decouple from the others.
We may think of this two-dimensional system as describing dynamics on the surface of asphereof variable radius
r(τ ) and refer to it, following Swift [10], as the associated spherical system. The radiusr(τ ) corresponding to
a given solution of this system can be found by integrating ther-equation evaluated on this solution. The fixed
points(θ0, φ0) of the associated spherical system are summarized in Table 1 and correspond to periodic solutions
to Eqs. (1) and (2). The isotropy subgroup is the set of group elements ofD4 × S1 which act as the identity on the
solution. This table also summarizes the terminology we shall use to refer to the various solutions and defines the
u, v andw fixed points in both sets of variables. Their amplituder(λ) is given by

r = − 2λ

F(θ0, φ0)
> 0,

where

F(θ, φ) = 2AR + BR(1 + cos2θ)+ CR sin2θ cos 2φ.

Thus, ifF(θ0, φ0) < 0 the fixed point branch bifurcates supercritically, while ifF(θ0, φ0) > 0 the branch bifurcates
subcritically.

Swift also proved that in open regions of parameter space there exists a periodic orbit(θ∗(τ ), φ∗(τ )) in the
associated spherical system corresponding to a quasiperiodic solution (hereafterqp) to Eqs. (1) and (2). Theqp
branch bifurcates supercritically from the trivial state ifF̄ < 0 and subcritically ifF̄ > 0, where

F̄ = 1

Tτ

∫ Tτ

0
F(θ∗(τ ′), φ∗(τ ′))dτ ′

Table 1
Fixed point solutions in the associated spherical system for the perfect system (1λ = 1ω = 0. Thens solutions only exist in the open regions
of parameter space defined by|B|2 > |C|2, |C|2 > |Re(BC̄)|, and their form in the(u, v,w) variables is omitted. The isotropy subgroup is
given in terms of its action on the(u, v,w) space; the element(κ2κ1)

2 which acts as the identity on this space is omitted.

Name Isotropy subgroup (θ0, φ0) (u0, v0, w0)

u solution 〈κ2〉 cosθ0 = 0 v0 = w0 = 0
cos 2φ0 = 1

v solution 〈κ2κ1〉 cosθ0 = 0 u0 = w0 = 0
cos 2φ0 = −1

w solution 〈κ1〉 sinθ0 = 0 u0 = v0 = 0

ns solution Id sin2θ0 = |C|2(|B|2 − |C|2)
|B|2|C|2 − [Re(BC̄)]2

cos 2φ0 = Re(BC̄)

|C|2
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Table 2
Eigenvalues for fixed point solutions of the three-dimensional system Eqs. (3)–(5) for the perfect problem. The radial eigenvalues1 is the
amplitude eigenvalue and corresponds to perturbations with no component in theθ or φ direction, while the angular eigenvaluess2 and s3
correspond to perturbations in the associated spherical system. The radial eigenvalue for a fixed point with(θ, φ) = (θ0, φ0) is F(θ0, φ0), so
if the radial eigenvalue is positive (negative) the branch bifurcates subcritically (supercritically). Thens fixed points are always saddles in the
associated spherical system; thussns2 s

ns
3 < 0 [10]. The expressions for the determinants in the lower table on p. 361 of [10] are all too small by

a factor of 2.

Solution Eigenvalues

u su1 ≡ 2AR + BR + CR

{su2 , su3 }: su2 + su3 = BR − 3CR

su2 s
u
3 = 2(C2

R + C2
I − BRCR − BICI )

v sv1 ≡ 2AR + BR − CR

{sv2 , sv3}: sv2 + sv3 = BR + 3CR

sv2s
v
3 = 2(C2

R + C2
I + BRCR + BICI )

w sw1 ≡ 2(AR + BR)

{sw2 , sw3 }: sw2 + sw3 = −2BR

sw2 s
w
3 = |B|2 − |C|2

ns sns1 ≡ 2AR + BR
[|C|2(|B|2 + |C|2)− 2(Re(BC̄))2

]+ CR(|B|2 − |C|2)Re(BC̄)

|B|2|C|2 − (Re(BC̄))2

Fig. 1. Distinct regions of parameter space withBR = −2.8 andCR = −1. The boundaries between regions I and II (given bysv2s
v
3 = 0), III

and IVw (given bysw2 s
w
3 = 0), and III and IVu (given bysu2 s

u
3 = 0) correspond to the condition for a pitchfork bifurcation of thev, w, andu

fixed points, respectively; this bifurcation leads to the creation or destruction ofns solutions which exist only in regions II and III. The boundary
between regions II and III corresponds to the condition that a heteroclinic orbit connecting twons solutions forms, creating or destroying the
qp solutions; the location of this boundary must be found numerically. Similar regions of parameter space exist for other values ofBR in the
range−3< BR < −1 withCR = −1.

andTτ is the period of the orbit (cf. [14]), and can take the form of either alibration (where after one period the
variableφ returns to its original value) or arotation (where after one period the variableφ increases by a nonzero
multiple ofπ ) [15].

Table 2 summarizes the linear stability properties of the fixed point solutions of the three-dimensional system
(3)–(5); note that in these equations the timeτ is used. The branches are radially stable (unstable) if they bifurcate
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Table 3
Existence and angular stability properties of all solutions for−3< BR < −1 andCR = −1. For given parameters the region is determined by
the values ofBI andCI (see Fig. 1). In this parameter range theqp solutions are attracting if they exist and hence are sinks within the associated
spherical system.

Region Solution Properties

I u Source
v Saddle
w Source
ns Absent
qp Sink

II u Source
v Sink
w Source
ns Saddle
qp Sink

III u Source
v Sink
w Source
ns Saddle
qp Absent

IVw u Source
v Sink
w Saddle
ns Absent
qp Absent

IVu u Saddle
v Sink
w Source
ns Absent
qp Absent

supercritically (subcritically) from the trivial state. The dependence of the angular eigenvalues of the solutions on
parameters can be simplified using the parameter symmetries and rescaling time to restrict attention to the parameter
range

−3< BR < −1, CR = −1.

We may also restrict attention to the caseBI < 0. Appendix A describes how to deduce the properties of solutions for
parameters which do not lie within this range. Note that the parameter symmetry can change a libration to a rotation
and vice versa. For fixedBR andCR the(BI , CI) plane may be divided into distinct regions (see Fig. 1); the stability
properties of the solutions in these regions are summarized in Table 3; typical phase portraits are shown in Fig. 12
of [10]. As BR → CR theqp solution may approach a heteroclinic orbit connecting a pair of symmetry-related
v fixed points (see Table 4), and asBR → 3CR theqp solution approaches au solution, with a Hopf bifurcation
occurring atBR = 3CR. The dependence of the radial stability on parameters for theu, v, andw solutions may be
easily deduced from the radial eigenvalues in Table 2; the resulting possibilities are shown in Fig. 5 of [10]. The
radial stability of thens andqp solutions is not discussed in [10] but may be understood through a combination of
analytical and numerical arguments, a summary of which appears in Appendix B. A useful observation is thatAR

may be thought of as controlling the radial stability of the solutions: asAR increases with all other parameters held
fixed it becomes more likely for any of the solutions to be subcritical.
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Table 4
Conditions for existence and stability of heteroclinic orbits in the associated spherical system connecting pairs ofu, v andwfixed points, obtained
by applying parameter symmetries to the results of [10]

Fixed points Conditions for existence Condition for angular stability

u BR + CR = 0 BR − 3CR < 0
|C|2 − BRCR − BICI < 0
| − 1

2BI + 3
2CI | < | 1

2BI + 1
2CI |

v BR − CR = 0 BR + 3CR < 0
|C|2 + BRCR + BICI < 0
| 1

2BI + 3
2CI | < | 1

2BI − 1
2CI |

w CR = 0 BR > 0
|BI | < |CI |
|B|2 < |C|2

4. Bursts in the imperfect system (1λ 6= 0,1ω 6= 01λ 6= 0,1ω 6= 01λ 6= 0,1ω 6= 0)

4.1. Burst mechanism

Because the associated spherical system (4) and (5) is two-dimensional when1λ = 1ω = 0 no complex
dynamics are possible in the perfect system unless theS1 normal form symmetry is broken as in the Faraday system
[16,17]. We do not pursue this possibility here, and instead focus on the effects of breaking theD4 symmetry; as
shown numerically in [11] this leads to the possibility of bursts for certain parameter values. Here we will elucidate
the mechanism by which these bursts occur.

For the equations with brokenD4 symmetry (1λ 6= 0 and/or1ω 6= 0) only the fixed points with even and odd
parity remain as primary branches; these are the analogs of thew fixed points for the three-dimensional perfect
system and are given by [11]
1. we solution (even)

u = v = 0, r = w = −λ−1λ

AR + BR
; θ = 0, (11)

2. wo solution (odd)

u = v = 0, r = −w = −λ+1λ

AR + BR
; θ = π. (12)

These solutions only exist forr > 0. The analogs of the remaining primary branches may bifurcate in secondary
bifurcations from these or they may form disconnected branches; they are most easily found numerically.

To make the large amplitude behavior associated with bursts more manageable we letρ = 1/r in Eqs. (3)–(5),
giving

dρ

dτ
= −ρ[2AR + BR(1 + cos2θ)+ CR sin2θ cos 2φ] − 2(λ+1λ cosθ)ρ2, (13)

dθ

dτ
= sinθ [ cosθ(−BR + CR cos 2φ)− CI sin 2φ] − 21λ sinθρ, (14)

dφ

dτ
= cosθ(BI − CI cos 2φ)− CR sin 2φ + 21ωρ. (15)
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These equations have an importantinvariant subspace6 ≡ {(ρ, θ, φ)|ρ = 0} corresponding toinfinite amplitude
states. The invariance of this subspace lies at the heart of the bursting mechanism described below. In this subspace
Eqs. (14) and (15) reduce to Eqs. (4) and (5) with1λ = 1ω = 0, i.e., to the perfect system. Thus the fixed points,
limit cycles and heteroclinic orbits in the associated spherical system that governs the dynamics of the perfect system
continue to exert significant effect on all large amplitude states of the imperfect system, and it is in this sense that
the perfect system organizes the dynamics of the imperfect one. In the following we label the infinite amplitude
fixed points by analogy to the (finite amplitude) fixed points for the perfect problem; for example,u∞ fixed points
haveρ = 0, cosθ = 0, cos 2φ = 1, etc.

Because of the above relation between the two systems the angular eigenvalues (Floquet multipliers) of any
infinite amplitude fixed points (limit cycles) in the imperfect system are identical to those of the corresponding
solution of the associated spherical system for the perfect problem already computed, i.e.,s

u∞
2 = su2 , s

u∞
3 = su3 ,

etc. Eqs. (3) and (13) show that the radial eigenvalue of an infinite amplitude fixed point in terms of theρ variable
is the negative of the radial eigenvalue of the corresponding finite amplitude fixed point in terms of ther variable.
Thus, if a finite amplitude fixed point in the perfect system is radially unstable the corresponding infinite amplitude
fixed point in the imperfect system is radially stable, and vice versa; a similar statement holds for theqp solutions.
In particular, if a solution branch is subcritical in the perfect system there is a corresponding infinite amplitude
solution of the imperfect system which is radially stable forλ > 0. In our scenario, a burst occurs forλ > 0
when a trajectory follows the stable manifold of a fixed point (or a limit cycle)B ∈ 6 that isunstablewithin
6. The instability within6 then kicks the trajectory towards another fixed point (or limit cycle)A ∈ 6. If this
point has an unstableρ eigenvalue the trajectory escapes from6 towards finite amplitudes, forming a burst. If
1λ and/or1ω 6= 0 a value ofλ may be found for which the unstable manifold ofA lies within the stable
manifold ofB forming a heteroclinic cycleB → A → B. The bursts then repeat. We now classify all cycles of
this type.

4.2. Codimension one heteroclinic cycles involving infinite amplitude solutions

Bursting behavior occurs for parameter values near those for which a heteroclinic cycle exists between infinite
amplitude solutions. To specify a heteroclinic cycle we identify symmetry-related solutions (technically, we identify
solutions with conjugate isotropy subgroups, i.e., solutions on the same group orbit [18]). Such a cycle between two
infinite amplitude (ρ = 0) solutionsA andB will exist if the following conditions hold:
(i) A is supercritical andB is subcritical for the perfect problem.

(ii) There is a trajectoryB → A in the6 subspace; this is possible if, within this subspace, or equivalently, for the
perfect problem within the associated spherical system,
B = source andA= sink,
B = source andA= saddle,
B = saddle andA= sink, or
B = saddle andA= saddle.

Table 3 lists possible candidates forA andB when−3< BR < −1, CR = −1. The connecting trajectories are
structurally stable to changes inλ because the dynamics in theρ = 0 subspace are independent ofλ.

(iii) There is a trajectoryA → B out of the6 subspace which exists for some value of the bifurcation parameterλ.
The existence of such a trajectory must be demonstrated numerically.

Since the existence of the resulting heteroclinic cycle depends only on the parameterλ, it is a codimension one
phenomenon. To enumerate all situations for which a heteroclinic cycle of this type may exist, we restrict attention
to the parameter range−3< BR < −1, CR = −1. For this parameter range, periodic orbits and heteroclinic orbits
in the associated spherical system are considered to be sinks (see Tables 3 and 4) and we deduce that the only
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Fig. 2. All bifurcation diagrams for the perfect system with the connectionsB → A of the type required for the existence of heteroclinic cycles
involving infinite amplitude solutions when−3 < BR < −1, CR = −1 andBI andCI are chosen to be in (a) region IVw (A = w,B = u),
(b) region III (A = ns, B = u), (c) region I (A = qp,B = v), (d) region II (A = qp,B = ns). Solid (dashed) lines indicate stable (unstable)
solution branches. The signs of the eigenvalues are indicated by + and−, with the first indicating radial stability. Parameter symmetries allow
one to find possible heteroclinic connections involving other types of infinite amplitude solutions. For the heteroclinic cycle to exist there must
also be a trajectory fromA → B out of the6 subspace. The branch names are defined in Section 3.

possible ways to satisfy conditions (i) and (ii) are those shown in Fig. 2. By using parameter symmetries we can find
possible heteroclinic cycles between other types of infinite amplitude solutions. In particular since these symmetries
can change theqp solution from a libration present in the above parameter range to a rotation in other regimes
the parameter symmetries can be used to generate necessary conditions for heteroclinic cycles involving rotations.
However, since the trajectory fromA → B out of the6 subspace described in condition (iii) is not necessarily
preserved under the action of a parameter symmetry its presence must be demonstrated numerically for each set of
parameters. Note that no cycles involving the heteroclinic orbit separating librations and rotations in the associated
spherical system are possible.

We now briefly describe some manifestations of the presence of heteroclinic cycles involving infinite amplitude
solutions in the bifurcation diagrams; these are illustrated in the examples which follow. The heteroclinic cycles
may be analyzed within the three-dimensional system (3)–(5). First, suppose thatA andB are infinite amplitude
(ρ = 0) fixed points in this system. IfA (B) has complex (real) eigenvalues in6, a Shil’nikov-like analysis [19,20]
is possible. The analysis shows that a periodic solution branch may undergo an infinite number of saddle-node
bifurcations{λn} as the branch is followed to higher period, withλ2j → λc+ andλ2j+1 → λc− asj → ∞.
Hereλc is the parameter value at which the heteroclinic cycle forms. IfA is an infinite amplitude limit cycle (i.e.,
A = qp∞) andB is an infinite amplitude fixed point, an analysis along the lines of [21] becomes possible provided
parameters (such asCR) are chosen so thatA has just undergone a Hopf bifurcation. In the present problem,
the unstable (stable) manifold ofA (B) is a tubular (planar) two-dimensional surface out of6; we denote these
manifolds byWU(A) (WS(B)). Suppose that for a particularλ (sayλc1)WU(A) becomes tangent toWS(B). In the
presence of a (structurally stable) trajectoryB → A within 6 (see (ii) above) this tangency implies the formation
of a heteroclinic cycle atλc1. For slightly largerλ the tubeWU(A) will intersectWS(B) along two distinct lines
corresponding to the presence oftwo distinct heteroclinic cycles at the sameλ value. These cycles are structurally
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stable, but unlike the situation studied in [18] this does not depend on the presence of fixed-point subspaces ofA

andB. Finally, whenλ is increased far enough the tubeWU(A) emerges on the other side ofWS(B), forming a
last tangency at, say,λ = λc2 > λc1. Analysis of this process implies, cf. [21], that periodic solutions may undergo
an infinite number of saddle-node bifurcations atλ = {λn} as the branch is followed to higher period, with the
sequences{λ2j } and{λ2j+1} tending to the twodifferentvaluesλc1 andλc2 asj → ∞ (see, in particular, Fig. 5
of [21]). As the Hopf bifurcation ofA is approached (by varyingCR) these two heteroclinic cycles “merge” (the
tubularWU(A) shrinks to a line) and beyond the Hopf bifurcation only a single heteroclinic cycle exists (atλ = λc)
connecting the resulting infinite amplitude fixed points.

We call such infinite sequences of saddle-node bifurcations along a periodic solution branch “Shil’nikov-like
behavior” and describe several examples in Section 4.3. In addition, near each saddle-node bifurcation there is a
period-doubling bifurcation [22], or if the periodic orbit is reflection-symmetric a symmetry-breaking pitchfork
bifurcation [23]. The branch of periodic solutions that results may itself form a subsidiary heteroclinic cycle when
followed to higher period, or it may reconnect to the same branch at another period-doubling or symmetry-breaking
pitchfork bifurcation, forming a bifurcation “bubble” [24].

For branches which form heteroclinic cycles involving infinite amplitude solutions when followed to higher
period, we find numerically that the average value ofr, 〈r〉, may locally increase or decrease, but〈r〉 is larger at
the saddle-node bifurcation atλk+2 than atλk; in the resulting bifurcation diagrams〈r〉 versusλ the branch “spirals
off to infinity.” Sometimes, however, the oscillatory branch collides with a branch of finite amplitude fixed points;
if this finite amplitude fixed point has complex eigenvalues the resulting heteroclinic cycle may also give rise to
Shil’nikov-like behavior, while if it has real eigenvalues homoclinic explosions may be encountered [25]. When
such a global bifurcation is approached the periodic orbit on the branch spends more and more time near the fixed
point(s) and〈r〉 approaches the value ofr for these fixed point(s). This is in contrast to heteroclinic cycles involving
infinite amplitude solutions for which the trajectory reaches and returns from infinity in finite timet (see Appendix
C); such heteroclinic cycles thus describe bursts offiniteduration.

Finally, because symmetry-related solutions may have different physical manifestations it is also useful to consider
the heteroclinicnetwork, defined to be the set of all heteroclinic connections associated with a heteroclinic cycle
in which symmetry-related solutions arenot identified. This concept is important because on reaching an infinite
amplitude stateB that is a saddle in6 a trajectory can exit in one of two directions which take it to different but
symmetry-related statesA andA′. Some consequences of the presence of networks will be explored in the examples
below.

4.3. Numerical studies of the imperfect system

Following [12] we focus on parameter values for which the perfect system has subcriticalu solutions and su-
percriticalv, w solutions. The coefficientsB andC will be used to control whether thens and/orqp solutions
are also present. We use thedstool[26] simulation package to solve the differential equations with a fourth-order,
variable-step Runge–Kutta integration scheme, and AUTO [27] to follow solution branches and detect bifurca-
tions. For different purposes different variables are useful. For example, it is often easiest numerically to work in
the (ρ, θ, φ) coordinates because this makes the larger behavior associated with bursts more manageable. The
eigenvalues reported in this section are all calculated using Eqs. (13)–(15). However, the variables(u, v,w) high-
light the symmetry properties of the solutions and are therefore used in many of the phase space plots. Time
series showing the bursting behavior will be plotted asr = |z+|2 + |z−|2 = √

u2 + v2 + w2 = 1/ρ versus
t. Bursts are associated with smallρ values, or equivalently, with large excursions from the neighborhood of
(u, v,w) = (0,0,0). In the phase space plots plus signs, squares, and diamonds indicate saddles, sources, and sinks,
respectively.
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The bifurcation diagrams typically show

〈r〉 ≡ 1

T

∫ T

0
r dt = Tτ∫ Tτ

0 ρ dτ
(16)

as a function of the bifurcation parameterλ. HereT is the period of the solution in the original timet, andTτ is the
period of the solution to Eqs. (13)–(15) found in terms of the rescaled timeτ . Since the bursts are fast events in the
timet (see Appendix C), the average〈r〉 for a sequence of large amplitude bursts may in fact be quite small. However,
for heteroclinic cycles involving infinite amplitude solutions Eq. (16) shows that〈r〉 = ∞. The presence of such
heteroclinic cycles can have a dramatic effect as discussed in the examples that follow. In the bifurcation diagrams
solid (broken) lines indicate stable (unstable) solutions; circles, diamonds, squares, and triangles indicate Hopf,
saddle-node, period-doubling, and symmetry-breaking pitchfork bifurcations, respectively. Many period-doubled
branches are omitted. Often, saddle-node and period-doubling (or symmetry-breaking pitchfork) bifurcations occur
at nearly the same value ofλ due to rapid variation of one or more Floquet multipliers of the periodic solutions as the
solution branch is followed. If the remaining nontrivial Floquet multiplier has modulus less than one between such
a pair of bifurcations, there will be a small range ofλ values in which the solutions are stable. Moreover, branches
which arise from period-doubling (or symmetry-breaking pitchfork) bifurcations often undergo period-doubling
bifurcations themselves near theλ values at which they come into existence; if the other nontrivial Floquet multiplier
has modulus less than one between the subsequent period-doubling bifurcations, there will be a small range ofλ

values in which period-two solutions are stable. In the following we use RS (NRS) to indicate that a periodic or
chaotic solution to the three-dimensional system is symmetric (not symmetric) with respect to the symmetryκ1.
For a RS periodic orbit, the action ofκ1 is equivalent to time translation by half a period. The symmetries of chaotic
solutions may be thought of as symmetrieson average.

We now examine a number of examples chosen to illustrate different types of dynamical behavior. The eigenvalues
and Floquet multipliers of the infinite amplitude solutions involved in heteroclinic cycles in the examples that follow
are summarized in Table 5.

4.3.1. Example 1(a)
When

A = 1 − 1.5i, B = −2.8 + 5i, C = 1 + i; 1λ = 1ω = 0,

theusolutions are subcritical, thev,w, andqp solutions are supercritical, and thens solutions are absent. Application
of the parameter symmetryP2 brings these parameters into the range−3 < BR < −1, CR = −1 and region I of
parameter space; this corresponds to case (c) of Fig. 2, suggesting the possibility of a heteroclinic cycle involving
infinite amplitude solutions. In the original parameters this translates to the possibility of a heteroclinic cycle
involving theu∞ (saddle within6) and qp∞ (sink within 6) solutions. The (partial) bifurcation diagram for
1λ = 0.03,1ω = 0.02 is compared with the bifurcation diagram for1λ = 1ω = 0 in Fig. 3. As|λ| becomes
large, the behavior of the imperfect system approaches the behavior of the perfect system. In particular, thewe and
wo branches given by Eqs. (11) and (12) approach thew branch for the perfect problem. In addition to the two
primary bifurcations responsible for thewe,o branches the bifurcation diagram reveals the presence of adisconnected
branch of fixed points. This branch, labeledu/v, must be computed numerically; asλ → −∞ (+∞) the fixed
points on this branch approach theu (v) fixed points for the perfect system (hence the name). Finally, the Hopf
bifurcation atλ = 0.180681 gives rise to a stable periodic orbit which approaches the stableqp solution for the
perfect problem asλ → ∞.
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Table 5
Eigenvalues and Floquet multipliers from Eqs. (13)–(15) for the infinite amplitude solutions involved in heteroclinic cycles for the examples of
Section 4.3. The eigenvalues and Floquet multipliers with subscripts 1 (2,3) correspond to perturbations out of (within) the6 subspace. All are
independent ofλ and hence are identical for all heteroclinic cycles that exist.

Example B A

u∞ qp∞
1(a) s

u∞
1 = −0.200 FM1=57.46
s
u∞
2 = −5.868 FM2=1.000
s
u∞
3 = 0.0682 FM3=0.604

u∞ qp∞
1(b) s

u∞
1 = −0.150 FM1=45.19
s
u∞
2 = −5.801 FM2=1.000
s
u∞
3 = 0.151 FM3=0.894

u∞ v∞
2 s

u∞
1 = −0.100 s

v∞
1 = 1.700

s
u∞
2 = −5.734 s

v∞
2 = −0.05+ 2.929i

s
u∞
3 = 0.234 s

v∞
3 = −0.05− 2.929i

ns∞ qp∞
3 s

ns∞
1 = −0.164 FM1=77.97
s
ns∞
2 = −5.723 FM2=1.000
s
ns∞
3 = 0.0319 FM3=0.581

ns∞ v∞
4 s

ns∞
1 = −0.0322 s

v∞
1 = 1.730

s
ns∞
2 = −5.384 s

v∞
2 = −0.005+ 2.598i

s
ns∞
3 = 0.0870 s

v∞
3 = −0.005− 2.598i

Fig. 3. Partial bifurcation diagram forA = 1 − 1.5i,B = −2.8 + 5i, C = 1 + i and1λ = 0.03,1ω = 0.02. The Hopf bifurcations on thewe

branch atλ = 0.00857143 and on theu/v branch atλ = 0.100750 are indicated but the resulting branches are omitted (see Fig. 4). In contrast
to the perfect system (inset) with a stableqp primary branch, the stable primary branch in the imperfect system is thewe branch.
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Fig. 4. Detailed bifurcation diagram for the parametersA = 1 − 1.5i,B = −2.8 + 5i, C = 1 + i, and1λ = 0.03,1ω = 0.02. Not all
period-doubled branches are shown.

Fig. 4 shows the results of a detailed bifurcation study for these parameters [12]; however, not all period-doubled
branches are shown. Thew1

e branch arises from the Hopf bifurcation on thewe branch atλ = 0.00857143; each
trajectory on this branch visits the vicinity of different (but symmetry-related)u∞ fixed points. These solutions
are rotations. Theu/v1 branch is born in a Hopf bifurcation on theu/v branch atλ = 0.100750; each trajectory
along this branch visits repeatedly the vicinity ofsameinfinite amplitude fixed point. These solutions are librations.
The g1 branch will be described later. Notice that thew1

e solutions are stable for large ranges ofλ values (for
example, for 0.0885< λ < 0.1065) while theu/v1 solutions are stable for much smaller ranges (for example, for
0.1250< λ < 0.1256). In fact, for this range the stableu/v1 solutions coexist with stableu/v solutions which are
more likely to be observed ifλ is ramped upwards from below 0.1250. We now describe the major characteristics
of this bifurcation diagram.

(a)Heteroclinic cycle involving infinite amplitude solutions. As argued above, this example offers the possibility
of a heteroclinic cycle involving theu∞ andqp∞ solutions. Examples of such cycles are shown in Fig. 5. Here the
effect of these cycles is local; the branches which might be expected to be affected by the heteroclinic cycles (e.g.,
thew1

e andu/v1 branches) in fact terminate in global bifurcations involving finite amplitudeu/v fixed points, i.e.,
instead of undergoing an infinite number of saddle-node bifurcations as they are followed to higher period, these
branches only undergo afinitenumber before colliding with the finite amplitudeu/v fixed points.

(b) Global bifurcations involving finite amplitude fixed points. Theu/v fixed points do not lie in the reflection-
invariant subspace Fix(〈κ1〉) ≡ {(u, v,w)|u = v = 0}; thus there are twou/v solutions related byκ1. Consequently,
RS heteroclinicorbits connecting the twoκ1-relatedu/v fixed points or twoκ1-relatedhomoclinicorbits to the
κ1-relatedu/v fixed points are both possible. The existence of these orbits is suggested by following many solution
branches (e.g., thew1

e and u/v1 branches) to very high period. As such a homoclinic or heteroclinic orbit is
approached, the periodic orbit spends more and more time near theu/v fixed point(s) so that〈r〉 approaches the
value ofr for these fixed point(s) (see Fig. 6).
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Fig. 5. (a) A numerically calculated heteroclinic cycle involving the infinite amplitude fixed pointu∞ and the infinite amplitude limit cycle
qp∞ atλ = 0.0974. (b) Another heteroclinic cycle exists atλ = 0.110. (c) Sketch of the resulting complete heteroclinic network showing all
connections.

Fig. 7 shows aheteroclinicorbit for λ = 0.0964187 connecting twou/v fixed points related byκ1; another such
orbit exists forλ = 0.09654768. At these global bifurcations theu/v fixed points have purely real eigenvalues
s1 > s2 > 0 > s3 (see Fig. 8); since|s2/s3| < 1 we expect that the global bifurcations will lead to homoclinic
explosions as for the Lorenz equations (but with time reversed from the case which is typically studied) [20,25].
We have located a solution branch which is born in one of these global bifurcations and terminates in the other. An
example of a stable solution on this branch (which we call ag1 solution; such a solution is RS) and a bifurcation
diagram is shown in Fig. 9. Finally, Fig. 10 shows twoκ1-relatedhomoclinicorbits which exist forλ = 0.0962724;
similar orbits exist also forλ = 0.0964974. Because there is only one homoclinic orbit for each fixed point, these
global bifurcations do not produce homoclinic explosions [20].

(c) Complicated behavior for0.065< λ < 0.092. The range 0.065< λ < 0.092 contains much complicated
behavior including period-doubling cascades to strange attractors, periodic windows, and symmetry-increasing
bifurcations of strange attractors [28]. These are conveniently described using (approximately one-dimensional)
Poincaré maps which take into account the reflection symmetry. We let
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Fig. 6. Bifurcation diagram showing global bifurcations involving the finite amplitudeu/v fixed points. Theu/v2a andu/v2b branches arise
from period-doubling bifurcations from theu/v1 branch, while thew2b

e , w
2c
e , g

2a, andg2b branches arise from symmetry-breaking pitchfork
bifurcations from thew1

e andg1 branches.

Fig. 7. The RS heteroclinic orbit connecting twoκ1-relatedu/v fixed points atλ = 0.0964187 withrmax ≈ 166. The frame at right shows a
blow-up of the frame at left. Another RS heteroclinic orbit exists atλ = 0.09654768 withrmax ≈ 7378. Herermax denotes the maximum value
of r along the orbit.

6+ = {(u, v,w)|u = v, u > 0},

6− = {(u, v,w)|u = v, u < 0},

and define the Poincaré mapsP : 6+ → 6+, P̃ : 6+ → 6−. All periodic orbits which pierce6+ are fixed points
of P . Because of theκ1 symmetry the map from6− to6+ is identical toP̃ so thatP = P̃ · P̃ . For a RS periodic
orbit the action ofP̃ is the same as the action ofκ1; thus RS periodic orbits are fixed points ofκ1 · P̃ in addition to
being fixed points ofP. On the other hand, NRS orbits are fixed points ofP but not ofκ1 · P̃ . There may be RS and
NRS periodic orbits embedded in a RS strange attractor; however, only NRS periodic orbits may be embedded in a
NRS strange attractor, so for such attractors we expect that the mapκ1 · P̃ will not have any fixed points.
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Fig. 8. Eigenvaluess1, s2, ands3 of theu/v fixed points; the former are real for 0.0950< λ < 0.0967. The vertical dashed (dotted) lines show
theλ values for heteroclinic (homoclinic) bifurcations involving the finite amplitudeu/v fixed points.

Fig. 11(a) shows a partial bifurcation diagram for 0.065 < λ < 0.080. The RSw1
e branch is born at a Hopf

bifurcation on thewe branch whenλ = 0.00857143, and is stable until a symmetry-breaking pitchfork bifurcation
at λ = 0.0672409. This bifurcation gives rise to twoκ1-related stable NRS periodic solutions which we call
w2

e solutions; for these solutions successive bursts differ in amplitude (see Fig. 12(a)). Thew2
e solutions undergo

identical period-doubling cascades which accumulate atλ ≈ 0.06975 and lead to twoκ1-related NRS strange
attractors. Asλ is increased to 0.0701 a period 6 window (defined according to the number of successive bursts
with distinct amplitudes) is formed with a periodic NRS orbit as shown in Fig. 12(b). Asλ is increased further the
period 6 orbit itself undergoes a period-doubling cascade so that byλ = 0.07013 there are again twoκ1-related
NRS strange attractors. Atλ ≈ 0.070319 these strange attractors merge in a symmetry-increasing bifurcation as
illustrated in Fig. 13. Asλ is increased to 0.0707 a period 5 window is formed with a periodic RS orbit. This
periodic orbit undergoes a symmetry-breaking pitchfork bifurcation and the resulting NRS periodic orbits then
undergo period-doubling cascades leading to twoκ1-related NRS strange attractors. These attractors merge at
λ ≈ 0.070779 giving a RS strange attractor. Similar behavior is found asλ is increased further, with other periodic
windows (such as a period 7 window nearλ = 0.07454) which are destroyed in ways similar to those described
above. There is a reverse period-doubling cascade which accumulates atλ ≈ 0.0762. Atλ = 0.0769685 thew2

e
solutions regain stability.

Thew2
e solutions remain stable asλ is increased to 0.0852558 at which point they undergo a period-doubling

bifurcation. In Fig. 11(b) we show the bifurcation diagram for 0.085< λ < 0.092. In this range there are again
period-doubling cascades, periodic windows (including a period 3 window atλ = 0.088), and symmetry-increasing
bifurcations in which NRS strange attractors merge to form a RS strange attractor. A unique feature for this portion
of the bifurcation diagram is the presence of many saddle-node and period-doubling bifurcations for 0.0858< λ <

0.0865; the origin of this behavior has not been determined. Atλ = 0.0884534 thew2
e branch reconnects with the

w1
e branch in a symmetry-restoring pitchfork bifurcation.
Complicated behavior such as that described here also occurs for appropriateλ values for the remaining examples,

but will not be emphasized.
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Fig. 9. (a) Stableg1 solution forλ = 0.1109354 with〈r〉 ≈ 2.045. The frame at right shows a blow-up of the frame at left. (b) Bifurcation
diagram showing theg1 branch and the branches which bifurcate off theg1 branch in symmetry-breaking pitchfork bifurcations. All subsequent
period-doubled branches are omitted. Inset shows detail of (b).

Fig. 10. The twoκ1-related homoclinic orbits to theκ1-relatedu/v fixed points atλ = 0.0962724 withrmax ≈ 18.2. The frame at right shows a
blow-up of the frame at left. Such homoclinic orbits also exist atλ = 0.0964974 withrmax ≈ 991.
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Fig. 11. Detail of the bifurcation diagram for (a) 0.065< λ < 0.080 and (b) 0.085< λ < 0.092. Not all period-doubled branches are shown.

4.3.2. Example 1(b)
We now decrease the value ofCR choosing

A = 1 − 1.5i, B = −2.8 + 5i, C = 0.95+ i.



282 J. Moehlis, E. Knobloch / Physica D 135 (2000) 263–304

Fig. 12. (a) Two stableκ1-related NRSw2
e solutions atλ = 0.0675 with〈r〉 ≈ 0.665. At right is the time series for one of these solutions.

(b) Stable NRS period 6 orbit and burst sequence atλ = 0.0701. Theκ1-related orbit is omitted.

Fig. 13. The maps (a)κ1 · P̃ and (b)P for the twoκ1-related NRS strange attractors whenλ = 0.07013. The gap near(κ1 · P̃ ) · u = u in (a)
indicates that there are no RS periodic solutions embedded in these attractors. The two fixed points in (b) correspond toκ1-related NRS periodic
solutions. Whenλ is increased to 0.070319 a symmetry-increasing bifurcation occurs, and theκ1 · P̃ map (c) has a fixed point indicating a RS
periodic solution embedded in the strange attractor. TheP map (d) has three fixed points, one corresponding to this RS periodic solution and the
other two corresponding toκ1-related NRS periodic solutions.
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Fig. 14. Bifurcation diagram for the parametersA = 1 − 1.5i,B = −2.8 + 5i,C = 0.95+ i,1λ = 0.03,1ω = 0.02 for comparison with Fig.
4. Not all period-doubled branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system.

When1λ = 1ω = 0 theu solutions are still subcritical, thev,w, andqp solutions supercritical and thens solutions
absent. As before we take1λ = 0.03,1ω = 0.02. Holding the other parameters fixed, thev∞ solutions undergo a
subcritical Hopf bifurcation which destroys theqp∞ solutions asCR decreases through−BR/3 = 14/15 ≈ 0.93333;
for the above parameter values theqp∞ solution therefore still exists but the system is closer to a Hopf bifurcation.
As in Example 1(a) application of the parameter symmetryP2 and rescaling of time brings these parameters into the
range−3< BR < −1, CR = −1 and region I of parameter space, i.e., to case (c) of Fig. 2. The resulting bifurcation
diagram is shown in Fig. 14, with branch names defined as in Example 1(a). The main point to be emphasized here
is that although theu/v1 branch terminates in a global bifurcation involving the finite amplitudeu/v fixed points
as in Example 1(a), thew1

e branch does not; instead, it undergoes Shil’nikov-like behavior due to a heteroclinic
cycle involving theu∞ andqp∞ solutions. In this case the saddle-node bifurcations on thew1

e solution branch
accumulate, in the notation of Section 4.2, toλc1 ≈ 0.089 andλc2 ≈ 0.095. Fig. 15 shows the periodTτ /2 between
successive bursts on thew1

e branch as a function ofλ together with projections of the solution at two successive
saddle-node bifurcations. As the period increases the number of turns nearqp∞ increases and the solutions become
better and better approximations to heteroclinic cycles consisting of a trajectory connecting au∞ fixed point to a
qp∞ solution within6, followed by return trajectory lying outside6 to anotheru∞ fixed point shifted inφ by π
from the first one. Branches which arise from symmetry-breaking pitchfork and period-doubling bifurcations from
thew1

e andu/v1 branches, respectively, also show Shil’nikov-like behavior.

4.3.3. Example 2
WhenCR is decreased even further theqp∞ solution is destroyed in a Hopf bifurcation on thev∞ solution. Thus,

when

A = 1 − 1.5i, B = −2.8 + 5i, C = 0.9 + i, 1λ = 1ω = 0,
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Fig. 15. (a) The periodTτ /2 between successive bursts on thew1
e branch as a function ofλ. (b) Trajectories for the points labeled 1 and 2 in

(a). These approximate the two distinct heteroclinic cycles between the infinite amplitude fixed pointsu∞ and the infinite amplitude periodic
solutionsqp∞, cf. Fig. 5, withλ ≡ λc1 ≈ 0.089 andλ ≡ λc2 ≈ 0.095.

the u solutions are subcritical, thev andw solutions are supercritical, but thens andqp solutions are now both
absent. Application of the parameter symmetryP3 ·P1 and a rescaling of time brings these parameters into the range
−3< BR < −1, CR = −1 and region IVw of parameter space, i.e., to case (a) of Fig. 2. In the original parameters,
this translates to the possibility of a heteroclinic cycle involving theu∞ andv∞ solutions. The bifurcation diagram
for1λ = 0.03,1ω = 0.02 is shown in Fig. 16 and includes (a) a heteroclinic cycle involving the infinite amplitude
u∞ andv∞ solutions nearλ = 0.08461 (see Fig. 17), and (b) global bifurcations involving finite amplitude fixed
points. Because of the periodicity inφ the heteroclinic network consists of two basic units, as illustrated in Fig. 18.
This is because on arriving atu∞ a trajectory can go, within6, to either of twov∞ fixed points that are related by
periodicity inφ. In fact, since the trajectory out of6 is the same for both units as sketched in Fig. 18(c) and (d), the
periods along theu/v1 andw1

e branches become infinite at thesameλ value. Subsidiary heteroclinicities, sketched
in Fig. 19, are also present but form at differentλ values.
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Fig. 16. Bifurcation diagram for the parametersA = 1 − 1.5i,B = −2.8 + 5i,C = 0.9 + i,1λ = 0.03,1ω = 0.02 for comparison with Fig.
14. Not all period-doubled branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system.

Fig. 17. (a) A numerically calculated heteroclinic cycle involving the infinite amplitude fixed pointsu∞ andv∞ atλ = 0.08461. (b) Sketch of
the complete heteroclinic network showing all connections.
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Fig. 18. (a) Theu/v1 and (b) thew1
e solution branches as a function ofλ. The time between successive bursts in terms of theτ time isTτ (Tτ /2)

for theu/v1 (w1
e) branch. The accompanying phase space projections show the approach to the two basic units of the heteroclinic network,

sketched in (c) and (d) as solid lines. The cycle forms atλc = 0.08461.

It is also possible to find global bifurcations which involve one or both of theu/v fixed points. For example, for
λ = 0.08208 there are twoκ1-related homoclinic orbits toκ1-relatedu/v fixed points, while forλ = 0.0795 there is
a RS heteroclinic orbit connecting the twou/v fixed points. Fig. 20 shows the eigenvaluess1, s2, s̄2 for theu/v fixed
points for theλ range of interest; both of these global bifurcations occur with|Re(s2)/s1| < 1, so Shil’nikov-like
behavior occurs (but with time reversed from the case which is typically studied because Re(s2) > 0) [22,20]. We
have located a solution branch (which we call thes1 branch) which terminates at both ends in the global bifurcation
atλ ≈ 0.0795 (see Fig. 21).
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Fig. 18. (Continued).
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Fig. 19. Sketches of several subsidiary heteroclinic cycles arising from a period-doubling bifurcation on (a) theu/v1 branch and (b) thew1
e

branch, respectively; (c) shows a further possibility not detected numerically. Solid lines indicate the basic units for each cycle.

4.3.4. Example 3
When

A = 1 − 1.5i, B = −2.8 + 5i, C = 1 + 0.92i, 1λ = 1ω = 0

the u and ns solutions are subcritical, and thev, w and theqp solutions are supercritical. Application of the
parameter symmetryP2 and a rescaling of time brings these parameters into the range−3< BR < −1, CR = −1
and region II of parameter space, i.e., case (d) of Fig. 2. The bifurcation diagram for1λ = 0.03,1ω = 0.02
is shown in Fig. 22(a). In this example thew1

e branch undergoes Shil’nikov-like behavior with the saddle-node
bifurcations clearly accumulating at two differentλ valuesλc1 ≈ 0.1047 andλc2 ≈ 0.1181; see Fig. 22(b). Also,
the branches which arise from symmetry-breaking pitchfork bifurcations from thew1

e branch do not form subsidiary
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Fig. 20. The eigenvaluess1, s2, s̄2 of theu/v fixed points as a function ofλ. The vertical dashed (dotted) lines show theλ values at which the
heteroclinic (homoclinic) bifurcations involving the finite amplitudeu/v fixed points occur.

heteroclinicities (see Fig. 22(c)). In addition, theu/v1 branch now terminates in a global bifurcation involving the
u/v solutions; numerically, this occurs at the point at which theu/v solutions undergo a saddle-node bifurcation.

4.3.5. Example 4
When

A = 1 − 1.5i, B = −2.8 + 4.5i, C = 0.93+ 0.94i, 1λ = 1ω = 0

the u andns solutions are subcritical, thev andw solutions supercritical, andqp solutions absent. Application
of the parameter symmetryP3 · P1 and a rescaling of time brings these parameters into the range−3 < BR <

−1, CR = −1 and region III of parameter space and hence case (b) of Fig. 2. The bifurcation diagram for1λ =
0.03,1ω = 0.02 is shown in Fig. 23. Thew1

e branch again exhibits Shil’nikov-like behavior, as do the branches
born in symmetry-breaking pitchfork bifurcations on thew1

e branch (only one such branch is shown in Fig. 23). For
theλ values studied, theu/v branch does not undergo a Hopf bifurcation and nou/v1 branch is present.

We conclude our brief survey of the dynamics of Eqs. (1) and (2) by listing the eigenvalues and Floquet multipliers
for the infinite amplitude solutions involved in heteroclinic cycles for the above examples (see Table 5). In the next
section we discuss the effects of changing the magnitude of the forced symmetry-breaking and, given the large
amplitude of the bursts, of including higher order terms in these equations.

5. Robustness of results

5.1. Symmetry-breaking parameters

We focus on Eqs. (1) and (2) with parameters as in Example 1(a) but different values of1ω. The Hopf bifurcation
on thewe branch that gives rise to thew1

e solution occurs when

2λ+ (2AR + BR)rwe = 0
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Fig. 21. (a) Bifurcation diagram for thes1 solution branch. This branch terminates at both ends in the global bifurcation atλ ≈ 0.0795. Branches
which bifurcate from thes1 branch in symmetry-breaking pitchfork bifurcations are not shown. (b) Stable RSs1 solution atλ = 0.0795
with Tτ /2 ≈ 28.7. (c) Stable NRS periodic orbit atλ = 0.0794, arising from a symmetry-breaking pitchfork bifurcation on thes1 branch at
λ = 0.07945762. (d) One of the NRS strange attractors atλ = 0.07935. (e) A RS strange attractor atλ = 0.0793 produced from twoκ1-related
NRS attractors in a symmetry-increasing bifurcation atλ = 0.0793499.

provided

∣∣∣∣ 2λ+ (2AR + BR + CR)rwe −21ω − (BI + CI)rwe

21ω + (BI − CI)rwe 2λ+ (2AR + BR − CR)rwe

∣∣∣∣ > 0.



J. Moehlis, E. Knobloch / Physica D 135 (2000) 263–304 291

Fig. 22. (a) Bifurcation diagram for the parametersA = 1− 1.5i,B = −2.8+ 5i,C = 0.92+ i,1λ = 0.03,1ω = 0.02. Not all period-doubled
branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system. (b) Shil’nikov-like behavior on thew1

e branch
with saddle-node bifurcations accumulating atλc1 ≈ 0.1047 andλc2 ≈ 0.1181. (c) The branch arising from a symmetry-breaking bifurcation
on thew1

e branch atλ = 0.09878,〈r〉 = 2.545, terminating atλ = 0.1173,〈r〉 = 3.001.

Hererwe is given by (11). Thus1ω does not affect the location of this bifurcation which continues to occur at
λ = 0.00857143, although it does affect the resulting Hopf frequency. Bifurcation diagrams for1ω = 0.1 and
1ω = 0.5 are shown in Fig. 24. We see that thew1

e branch still terminates at a global bifurcation involving the
finite amplitudeu/v solutions; however, this occurs at higherλ values than for1ω = 0.02. Moreover, theu/v1

solutions no longer exist. As1ω increases the phaseφ slips more and more rapidly, cf. Eq. (5), and averaging then
eliminates the parameterC from Eqs. (3) and (4), giving

r = − 2λ

2AR + BR
, θ = cos−1

(
−21λ

rBR

)
.
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Fig. 23. Bifurcation diagram for the parametersA = 1−1.5i,B = −2.8+4.5i,C = 0.93+0.94i,1λ = 0.03,1ω = 0.02. Not all period-doubled
branches are shown. The inset shows the corresponding bifurcation diagram for the perfect system.

Sincer is now constant in time the bursts fade away with increasing1ω and are replaced by smaller amplitude,
higher frequency states (see Table 6). However, even for extreme values of1ω it is apparently still possible to
chooseλ values so that bursts of large dynamic range occur (see Fig. 25).

We next consider the parameters of Example 1(a) but with1ω = −0.02. The resulting bifurcation diagram is
shown in Fig. 26. Bothw1

e andu/v1 branches undergo Shil’nikov-like behavior, with the saddle-node bifurcations
accumulating toλc1 ≈ 0.02554 andλc2 ≈ 0.03642. New types of solutions found for these parameter values
include stable chaotic states which visit the vicinity of the same infinite amplitude fixed point (see Fig. 27(a)) and
stable chaotic states which are characterized by successive visits to the vicinity of the6 subspace sometimes near
thesameand sometimes near adifferentbut symmetry-related infinite amplitude fixed point (see Fig. 27(b)), much
as already described by Rodriguez and Schell [29].1 Fig. 27(c) demonstrates that forλc1 < λ < λc2 two distinct
heteroclinic cycles exist for thesameλ value, as expected from Section 4.2.

When1ω is held fixed instead bursts persist for a range of1λ values as well. However, we have not attempted
a detailed classification of the properties of Eqs. (1) and (2) for arbitrary values of1λ and1ω.

5.2. Higher order terms

Thus far we have studied Eqs. (1) and (2) which have been truncated at third order in the amplitudesz+ and
z−. The presence of bursts of large amplitude requires, however, that we reexamine the truncation that led us to
these equations. Recall that in the derivation that leads to these equations thephysicalamplitudes areε1/2z±,
whereε measures the distance above threshold. It follows that the physical amplitudes remain small provided

1 The term−0.75r3
1 in Eq. (4b) of [29] should be−0.75r3

1ρ.
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Fig. 24. Bifurcation diagrams for the parametersA = 1 − 1.5i,B = −2.8 + 5i,C = 1 + i,1λ = 0.03 and (a)1ω = 0.1, (b)1ω = 0.5.

ε1/2|z±|max � 1. Under these conditions all fifth-order terms in Eqs. (1) and (2) enter the derivation with
O(ε) coefficients and remain small relative to the cubic terms retained. However, the presence of even small
fifth-order terms has an effect: if such terms are stabilizing the solutions responsible for the bursting behavior
cannot reach arbitrarily large amplitude and instead have large butfinite amplitudes. As an example we consider
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Table 6
Maximum burst amplitude (rmax) and time between bursts (Tb) for stable periodic solutions whenA = 1 − 1.5i,B = −2.8 + 5i,C = 1 + i,
λ = 0.1,1λ = 0.03, and different values of1ω

1ω rmax Tb

0.02 7.649 29.27
0.1 0.763 7.85
0.5 0.296 2.69

Fig. 25. Bursts with large dynamic range atλ = 15 andA = 1 − 1.5i,B = −2.8 + 5i,C = 1 + i,1λ = 0.03 and1ω = 10.

Fig. 26. Bifurcation diagram for the parametersA = 1 − 1.5i,B = −2.8 + 5i,C = 1 + i,1λ = 0.03,1ω = −0.02. The bifurcation diagram
for the perfect system is shown in the inset of Fig. 3.

the system

ż+ = [λ+1λ+ i(ω +1ω)]z+ + A(|z+|2 + |z−|2)z+ + B|z+|2z+ + Cz̄+z2
− +D|z+|4z+,

ż− = [λ−1λ+ i(ω −1ω)]z− + A(|z+|2 + |z−|2)z− + B|z−|2z− + Cz̄−z2
+ +D|z−|4z−
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Fig. 27. (a) Stable chaotic state with repeated visits to the vicinity of the same infinite amplitude states forA = 1 − 1.5i, B = −2.8 + 5i,
C = 1+ i,1λ = 0.03,1ω = −0.02 and λ = 0.04. (b) Stable chaotic state atλ = 0.03 which makes repeated visits to either the same infinite
amplitude state or symmetry-related ones. (c) Two distinct heteroclinic cycles exist forλ = 0.03 which lies betweenλc1 andλc2.

and analyze the consequences of the new terms, choosing theO(ε) coefficientD ≡ DR + iDI such that the
subcritical branch undergoes a saddle-node bifurcation. In this case solutions on this branch exist even forλ > 0.
Eqs. (13)–(15) become

dρ

dτ
= −ρ[2AR + BR(1 + cos2θ)+ CR sin2θ cos 2φ] − 2(λ+1λ cosθ)ρ2 − 5

4
DR − 3

4
DR cos 2θ,

dθ

dτ
= sinθ [ cosθ(−BR + CR cos 2φ)− CI sin 2φ] − 21λ sinθρ − DR

ρ
cosθ sinθ,

dφ

dτ
= cosθ(BI − CI cos 2φ)− CR sin 2φ + 21ωρ + DI cosθ

ρ
.

We consider the parameter values from Example 2 with(DR,DI) = ε(−1,1) and focus our discussion on the
u/v1 branch; similar results hold for other branches. Whenε = 0.01 theu∞ fixed points have moved out of theρ = 0
plane which is no longer invariant; we call theseufinite fixed points. For example, whenλ = 0.1 the coordinates
of ufinite are(ρ, θ, φ) = (0.0460,1.5770,−0.0136+ mπ), wherem is an integer. Fixed points analogous to the
v∞ fixed points do not exist for these parameters. Bursts now occur when the trajectory makes visits near the large
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Fig. 28. Bifurcation diagrams for theu/v1 branch for (a,b)ε = 0.01, (c)ε = 0.00001, and (d)ε = 0. Forε > 0 theu/v1 solution collides with
a newufinite fixed point; this global bifurcation manifests itself as a vertical branch in the bifurcation diagrams. At the same time〈r〉 approaches
the value ofr for the new fixed point.

but finite amplitudeufinite fixed points. Fig. 28 compares the bifurcation diagrams forε = 0.01,ε = 0.00001 and
ε = 0, and demonstrates that asε decreases the system behavior approaches that forε = 0, i.e., the limitε → 0
captures the mechanism responsible for the generation of bursts near threshold of the primary instability. Moreover,
in this example, the “complexity” of the dynamical behavior increases with decreasingε, in contrast with typical
situations in the study of the transition to complex behavior where the “complexity” of a system increases with the
distance above threshold.

Finally, it should also be noted that whenρ is small anyD4-breaking terms omitted from the cubic terms in
Eqs. (1) and (2) may also become significant and change the detailed dynamics nearρ = 0.

6. Conclusion

In this paper we described a simple geometrical mechanism responsible for the presence of bursts, both periodic
and nonperiodic, very close to threshold of an oscillatory instability in systems with brokenD4 symmetry. The
mechanism relies on the presence of structurally stable connections in an invariant subspace6 corresponding to
infinite amplitude states together with a connection6 to6 and is of codimension one.

This geometrical picture is not specific to this system, although the presence of exactD4 symmetry in this subspace
greatly facilitates the analysis. Indeed, in the context of near Hamiltonian systems with an indefinite Hamiltonian
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a related scenario was suggested already by Newell et al. [30,31]. In fact any dynamical system onRN with an
invariant subspace6 that contains at least two invariant setsA andB, one of which (B) is nonstable in6 and
the other (A) attracting in6 can generate this type of mechanism provided thatB is attracting andA nonstable
in RN\6. If the unstable manifold ofA is one-dimensional the resulting mechanism will be of codimension one
and hence readily observable. Note that neitherA nor B need to be chaotic in order that the resulting dynamics
be chaotic. This type of set-up, discussed already by Knobloch and Moore [32,33], has much in common with
recent studies of on–off and in–out intermittency [34,35] but differs in several respects. In on–off intermittency a
strange attractor in an invariant space6 loses stability in the transverse direction when a parameterλ is varied
but the dynamics in6 do not depend onλ. This is so for our infinite amplitude states although in our case the
dynamics in6 are simple. In in–out intermittency there may be several invariant sets in6, possibly nonchaotic,
with different transverse stability properties all of which vary with the parameterλ. The bursts that result do not
require per se proximity to a heteroclinic connection (although such a bifurcation is inevitably in the background)
and hence have a finite dynamic range determined by the global reinjection mechanism. The resulting bursts are
therefore of finite duration. Our scenario differs in that the bursts are associated with visits to the invariant subspace,
not away from it, and have arbitrarily large dynamic range. Moreover the bursts have finite duration despite their
association with a heteroclinic cycle. In addition our problem has the skew product structure of on–off intermittency
but chaotic bursts are produced despite the absence of a chaotic attractor in6. Because of these differences we
were able to study explicitly the sequence of bifurcations responsible for the generation of the bursts. Moreover,
because the existence of the bursts is a consequence of weak breaking of theD4 symmetry our bursts occur very
close to onset of the oscillatory instability, and their presence can therefore be viewed as amanifestationof forced
symmetry-breaking. However, the dynamics of the system without forced-symmetry breaking are still crucial for
understanding the dynamics in the imperfect system. We have seen that as the magnitude of the symmetry breaking
is increased for fixedλ the bursts decrease in amplitude and increase in frequency. It appears, however, that some
type of bursting remains in appropriate ranges ofλ values further from threshold. As in other problems of this type
forced symmetry-breaking has a particularly dramatic effect when both supercritical and subcritical branches are
present.

The mechanism we have described finds a number of natural applications in physical systems of interest. This
is because brokenD4 symmetry can arise in several different ways. The most straightforward is in systems with
approximate square geometry undergoing an oscillatory instability. As examples we mention three-dimensional
overstable convection (such as binary fluid convection) in containers of nearly square cross-section [36,37] and
more generally any partial differential equation on a nearly square domain describing the evolution of an oscillatory
instability (cf. [38]). Other systems where such equations arise are four coupled oscillators with nearly identical
coupling [10,39,40] and the related problem of spring-supported fluid-conveying tubes [41].

BrokenD4 symmetry also arises in slender systems undergoing an oscillatory instability. If such a system has
left–right reflection symmetry (the symmetryκ1) the first modes that set in typically have opposite parity. Moreover,
because the neutral stability curve for the unbounded system usually has a parabolic minimum these set in in close
succession as the bifurcation parameter is increased. Since, as first argued in [11], the equations for the formally
infinite system cannot distinguish between these two modes, the amplitude equations must in this limit also be
equivariant with respect to mode interchange (the symmetryκ2). Since in any finite domain the two modes do not
generically set in simultaneously theD4 symmetry generated byκ1 andκ2 is inevitably broken. The resulting bursts
take the form of either blinking states (rotations) or winking states (librations) and bear substantial resemblance to
the bursts observed in binary fluid convection very close to threshold [42] as discussed in [12]. Systems featuring
competition between two nearly degenerate oscillatory modes form a further class of systems to which the present
mechanism is likely to be relevant. As examples we mention the Faraday system in a nearly square container [43],
and models of the solar magnetic cycle [44,45]. Finally, since the normal form for a Hopf bifurcation with the
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symmetry of the quaternion group is identical to the normal form for a Hopf bifurcation withD4 symmetry [46],
bursts might also occur in systems with weakly broken quaternion symmetry.
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Appendix A. Parameter symmetries

Suppose that the original parameters do not lie in the wedge in parameter space given by 3CR < BR < CR;
then it is possible to act with parameter symmetries to bring the parameters into this wedge with the phase space
suitably relabeled. Time may then be rescaled so thatCR = −1. The existence and stability results in the main text
for solutions with−3 < BR < −1 andCR = −1 may then be applied to the transformed system. By “undoing”
the relabeling of phase space we can deduce the existence and stability properties for the original parameters. Note
that care should be used in determining the stability properties because the parameter symmetryP3 reverses time,
thereby changing the signs of the eigenvalues; also, changing the sign of the radial eigenvalue changes subcritical
branches into supercritical branches and vice versa. For given values ofBR andCR, Fig. 29 shows the necessary
action to bring the parameters into the wedge 3C′

R < B ′
R < C′

R. Note that if after this actionB ′
I > 0 a further action

of P4 will makeB ′
I < 0, if desired.

We illustrate the use of parameter symmetries with an example. SupposeA = 1 − 1.5i, B = −2.8 + 5i, and
C = 1 + i (the system behavior for these parameters is studied carefully in Example 1(a) of Section 4.3). Since
BR = −2.8, CR = 1, from Fig. 29 the actionP2 brings the parameters into the desired wedge in parameter space.
This givesB ′

I > 0 so we then act withP4. Overall

Fig. 29. The parameter symmetries required to transform different regions of the parameter space into the wedge 3C′
R < B ′

R < C′
R.
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P4 · P2 : (u, v,w) → (v, u,w) ≡ (u′, v′, w′)
(A,B,C) = (1 − 1.5i,−2.8 + 5i,1 + i) → (1 + 1.5i,−2.8 − 5i,−1 + i) ≡ (A′, B ′, C′).

SinceC′
R = −1 it is not necessary to rescale time to apply the results from the main text. We find (see Fig. 1) that

the transformed parameters lie just within region I of parameter space. Lettingu′ solutions be fixed point solutions
with v′ = w′ = 0, etc., we find that theu′, v′, andw′ solutions are, respectively, a source, saddle, and source
in the associated spherical system (see Table 3); also thev′ solutions are subcritical anduuu′ andw′ solutions are
supercritical. A supercriticalqp′ solution also exists enclosing theu′ solution in the associated spherical system.
As an example of “undoing” the relabeling of phase space, consider theu′ solutions. Since these solutions satisfy
v′ = w′ = 0, in the original parameters they correspond to solutions withu = w = 0, i.e.,v solutions. The stability
properties of thev solutions in the original parameters are identical to the stability properties of theu′ solutions in
the transformed parameters. We thus conclude that forA = 1− 1.5i, B = −2.8+ 5i, andC = 1+ i theu solution
is a subcritical saddle and that thev,w solutions are supercritical sources. There is also a supercriticalqp libration
around thev solution.

As noted in the main text, the parameter symmetryP1 applies only if we restrict attention to the reduced phase
space(u, v,w); that is, the equation forψ is not equivariant under this parameter symmetry. However, this does not
affect our use of parameter symmetries to establish the existence and stability properties of new solutions because
these depend only on the dynamics in the three-dimensional system from which theψ equation decouples.

Appendix B. Radial stability of nsnsns andqpqpqp solutions

For the parameter range−3< BR < −1, CR = −1 we can place the following restrictions on the radial stabilities
of thens andqp solutions. Recall that these solutions are radially stable (unstable) if they bifurcate supercritically
(subcritically) from the trivial state.
(i) Suppose thatns solutions exist. If thev solutions are supercritical, then thens solutions must also be supercritical.

If thew solutions are subcritical, then thens solutions must also be subcritical.
These results follow from the observations that whensv1 = 0, the conditionsv2s

v
3 = 0 is identical to the

conditionsns1 = 0, and similarly, whensw1 = 0, the conditionsw2 s
w
3 = 0 is identical to the conditionsns1 = 0. In

other words, this says that whenAR is chosen so that the radial stability of thev orw solution is degenerate, the
condition for the pitchfork bifurcation which causes the creation or destruction of thens solutions is identical
to the condition that the radial stability of thens solutions is degenerate. Using this result and a numerical study
of how the curvesns1 = 0 varies in(BI , CI) space withAR, we verify (i) (see Fig. 30).

(ii) Supposeqp solutions exist. If theu solutions are subcritical then theqp solutions are also subcritical.
We write

F̄ = 2AR + 1

Tτ

∫ Tτ

0
G(θ∗(τ ′), φ∗(τ ′))dτ ′ ≡ 2AR + Ḡ,

where

G(θ, φ) = BR(1 + cos2θ)+ CR sin2θ sin 2φ,

and defineA∗
R = A∗

R(BR, BI , CR, CI) to be the value ofAR for which F̄ = 0 (so that ifA∗
R > AR(< AR) the

qp branch is supercritical (subcritical)). Thus,

A∗
R = −Ḡ

2
.
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Fig. 30. WhenBR = −2,CR = −1 the radial eigenvalues1 of thev, u andw solutions vanishes forAR = 0.5, 1.5 and 2.0, respectively. (a) The
dotted (dashed) lines show wheresns1 = 0 for AR = 0.4 (0.6). ForAR = 0.4, sns1 < 0 in regions II and III (the only regions in which thens
solutions exist) and thens solutions are always supercritical. ForAR = 0.6 the curvesns1 = 0 has moved beyond the boundary between regions
I and II and thens solutions may be supercritical or subcritical depending on the values ofBI andCI . (b) The dot-dashed, dashed, and dotted
lines show wheresns1 switches signs forAR = 1.5, 1.8, and 2.2, respectively. ForAR = 1.5, sns1 < 0 only outside regions I and II. ForAR = 1.8
thens solutions may be supercritical or subcritical depending on the values ofBI andCI . ForAR = 2.2 the curvesns1 = 0 has moved beyond
the boundary between regions III and IVw; sincens solutions only exist in regions II and III thens solutions are now always subcritical. Similar
behavior is found for other values ofBR in the range−3< BR < −1.

Fig. 31. The dependence ofA∗
R onBI for different fixed values ofCI with BR = −2 andCR = −1. These data points are extracted from the

Floquet multipliers calculated by AUTO. For a particular value ofCI , the maximum value ofBI is reached when theqp solution collides with
thens solutions, corresponding to the boundary between regions II and III. The dotted lines atA∗

R = 0.5,1.5, and 2.0 are for the respectiveAR

values at which the radial stabilities of thev, u, andw solutions are degenerate. Similar behavior is found for other values ofBR in the range
−3< BR < −1.

The value ofḠ for a periodic orbit can be calculated by numerical integration or extracted from the Floquet
multipliers calculated by AUTO [27]. In Fig. 31 we plot the dependence ofA∗

R onBI for different values ofCI

(hereBR = −2, CR = −1 are fixed; the results also hold for other values ofBR in the range−3< BR < −1).
We see thatA∗

R is always less than the values ofAR for which the radial stabilities of theu solutions are
degenerate; thus, if theu solutions are subcritical then theqp solutions are also subcritical.

(iii) Let CI = C′
I be fixed, and defineB ′

I to be the value ofBI for which (B ′
I , C

′
I) lies on the boundary between

regions II and III. If thens solutions are supercritical with(BI , CI) = (B ′
I , C

′
I), then theqp solutions will be

supercritical for all values of(BI , C
′
I) for which they exist.
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Without loss of generality we considerBI < 0. Numerical calculations show thatA∗
R is a monotonically

decreasing function ofBI (see Fig. 31); forCI = C′
I it reaches its minimum valueA∗

R,min whenBI = B ′
I because

for larger values ofBI theqp solutions do not exist. For(BI , CI) = (B ′
I , C

′
I) the periodic orbit has become a

heteroclinic orbit connectingns solutions; thereforēF is dominated by thens solutions so that

Ḡ = F(θns, φns)− 2AR

and hence

A∗
R,min = AR − 1

2
F(θns, φns).

But in this equationF(θns, φns) < 0 because thens solutions are supercritical for(BI , CI) = (B ′
I , C

′
I); thus

A∗
R,min > AR. But for all other values ofBI for which qp solutions existA∗

R > A∗
R,min so thatA∗

R > AR;
therefore theqp solutions are supercritical.

This leads to the following restrictions on the possible radial stabilities of the solutions. First, we know
numerically that if thens solutions are supercritical anywhere in region II withCI = C′

I they will also be
supercritical at(BI , CI) = (B ′

I , C
′
I) (see, e.g., Fig. 30(a)); thus, if thens andqp solutions exist and thens

solutions are supercritical, then theqp solutions must also be supercritical. Second, ifAR, BR, andCR have
been chosen so that thev solutions are supercritical, then from (i) thens solutions with the same values of these
parameters will be supercritical; in particular, they will be supercritical with(BI , CI) = (B ′

I , C
′
I) so that theqp

solutions must be supercritical.
(iv) Suppose that theuandv solutions are subcritical, andns solutions exist and are supercritical. Thenqp solutions

cannot exist.
Consider the valueAR = −(BR + CR)/2 for which the radial stability of theu solution is degenerate; then

sns1 = BI + CI

BRCI − BICR
(|C|2 − Re(BC̄)).

In order forns solutions to exist it is necessary that|C|2−Re(BC̄) > 0. Thus, the curves defined byBI +CI = 0
orBRCI −BICR = 0 divide the(BI , CI) plane into regions in whichsns1 is positive or negative (see Fig. 30(b)).
Numerically it is seen thatsns1 < 0 only outside of the regions I and II; in other words, ifns solutions are
supercritical thenqp solutions cannot exist. Based on a numerical study of how the curvesns1 = 0 varies in
(BI , CI) space withAR (Fig. 30), we conclude that this also cannot happen for larger values ofAR for which
theu solutions are subcritical.

All possibilities for the radial stability of thens andqp solutions which do not violate the restrictions (i)–(iv)
occur for open regions of parameter space with−3< CR < −1 andCR = −1.

Appendix C. Proof that heteroclinic cycles involving infinite amplitude solutions are traced out in finite time

Consider a heteroclinic cycle involving the two infinite amplitude fixed pointsA andB as shown in Fig. 32. Near
B, local coordinates are chosen so that

dx1

dτ
= sB

3 x1,
dρ

dτ
= sB

1 ρ,
dz1

dτ
= sB

2 z1, (17)

wheresB
3 > 0, sB

1 < 0, andsB
2 < 0. NearA, local coordinates are chosen so that

dx2

dτ
= αx2 + βz2,

dρ

dτ
= sA

1 ρ,
dz2

dτ
= −βx2 + αz2, (18)
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Fig. 32. Heteroclinic cycle involving theA andB infinite amplitude fixed points. The cross-sections501,511,502, and512 are defined in the
text.

whereα < 0,sA
1 > 0, andβ > 0. As shown in Fig. 32, we construct cross-sections nearB defined by501 ≡ {ρ = ε}

and511 ≡ {x1 = ε}, and cross-sections nearA defined by502 ≡ {z2 = 0} and512 ≡ {ρ = ε}. The parameter
ε is small but finite and is chosen so that the mappings from501 → 511 and from502 → 512 may be suitably
approximated by the linearization of the flow about the fixed pointsB andA, respectively. In terms of the timeτ ,
the heteroclinic cycle is traced out in infinite time. However, in terms of the original timet the situation is more
subtle because the transformation dt/dτ = ρ fails for ρ = 0; thus, we consider a limiting procedure in which a
trajectory approaches the heteroclinic cycle between the infinite amplitude fixed points. This consists of four parts.
(i) PL01 : 501 → 511

Suppose that atτ = 0 a trajectory passes through501 with coordinates(x1, ρ, z1) = (x01, ε, z01), with
x01 = z01 = 0 denoting the point on the heteroclinic cycle. From Eq. (17),

x1(τ ) = x01 es
B
3 τ , ρ(τ ) = ε es

B
1 τ , z1(τ ) = z01 es

B
2 τ .

The timeτ for the trajectory to go from501 to511 (determined by the time required forx1 to go fromx01 to ε)
is τ = (1/sB

3 )(logε/x01), a quantity which diverges asx01 → 0 (i.e., as the heteroclinic cycle is approached).
If, however, we work in the original timet defined by dt/dτ = ρ, Eqs. (17) become

dx1

dt
= sB

3 x1

ρ
,

dρ

dt
= sB

1 ,
dz1

dt
= sB

2 z1

ρ
,

with solution

x1(t) = x01

(
sB
1 t + ε

ε

)sB3 /sB1
, ρ(t) = sB

1 t + ε, z1(t) = z01

(
sB
1 t + ε

ε

)sB2 /sB1
.
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The timet to go from501 to511 is thus

t = ε

sB
1

[(x01

ε

)|sB1 /sB3 | − 1

]
.

In the limit x01 → 0 (i.e., as the heteroclinic cycle is approached)t → ε/|sB
1 |, i.e., a finite time in the original

time variable.
(ii) PL11 : 511 → 502

Reset time so that atτ = 0 the trajectory passes through511 with coordinates(x1, ρ, z1) = (ε, ρ11, z11),
with the trajectory on the heteroclinic cycle ifρ11 = z11 = 0. Using the timeτ , it takes a finite timeTτ to go
from511 to502. Using the timet, this takes a time

T =
∫ T

0
dt =

∫ Tτ

0
ρ dτ ≤ ρmax

∫ Tτ

0
dτ = ρmaxTτ ,

whereρmax is the maximumρ value of the trajectory between511 and502. Thus, sinceTτ is finite, so isT. In
fact,ρmax → 0 in the limitρ11 → 0, z11 → 0; thus, in the limit as the trajectory approaches the heteroclinic
cycle, the time of flight from511 to502 is zeroin the original time variable.

(iii) PL02 : 502 → 512

We now reset time so that atτ = 0 the trajectory passes through502 with coordinates(x2, ρ, z2) =
(x02, ρ02,0) chosen such that the heteroclinic cycle forms whenρ02 = 0 andx02 takes an appropriate value.
From Eq. (18),ρ(τ) = ρ02 es

A
1 τ . The timeτ for the trajectory to go from502 to512 (determined by the time

required forρ to go fromρ02 to ε) is τ = (1/sA
1 )(logε/ρ02) which diverges asρ02 → 0. If, however, we work

in the original timet, then dρ/dt = sA
1 with solutionρ(t) = sA

1 t + ρ02. The timet to go from502 to512 is
thust = (ε − ρ02)/s

A
1 . In the limit ρ02 → 0 (i.e., as the heteroclinic cycle is approached)t → ε/sA

1 , afinite
time in the original time variable.

(iv) PL12 : 512 → 501

Using the timeτ , it takes a finite timeTτ to go from512 to501. As for case (ii), using the timet this takes
a timeT ≤ ρmaxTτ whereρmax is the maximumρ value of the trajectory between512 and501. SinceTτ is
finite, so isT.

Since each part of the heteroclinic cycle is traced out in finite or zero time the whole cycle is traced out in
finite time. A similar argument holds for heteroclinic cycles involving an infinite amplitude limit cycle.
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