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An Energy-Optimal Approach for Entrainment of Uncertain Circadian
Oscillators
Dan Wilson1,* and Jeff Moehlis1
1Department of Mechanical Engineering, University of California, Santa Barbara, California
ABSTRACT We develop an approach to find an energy-optimal stimulus that entrains an ensemble of uncertain, uncoupled
limit cycle oscillators. Furthermore, when entrainment occurs, the phase shift between oscillators is constrained to be less
than a predetermined amount. This approach is illustrated for a model of Drosophila circadian activity, for which it performs bet-
ter than a standard 24-h light-dark cycle. Because this method explicitly accounts for uncertainty in a given system and only re-
quires information that is experimentally obtainable, it is well suited for experimental implementation and could ultimately
represent what is believed to be a novel treatment for patients suffering from advanced/delayed sleep-phase syndrome.
INTRODUCTION
Synchronization and entrainment are important topics of
study with biological relevance including insulin secretion
in pancreatic cells (1,2), synchronization of neural spiking
in Parkinson’s disease (3–5), and circadian entrainment for
maintenance of rhythmic physiological functions (6–8). Re-
searchers studying circadian oscillations have found
entrainment particularly important, inasmuch as irregular-
ities in circadian regulation have been shown to be associ-
ated with a variety of maladies such as cancer, psychiatric
disorders, and cardiovascular disease (9–14).

Here, we focus our attention on a condition known as
advanced/delayed sleep-phase disorder in which individual
circadian rhythms display free-running periods that are too
different from normal. In the absence of external stimuli
such as light, most people display internal circadian oscilla-
tionswith natural periods that are close to 24 h. This similarity
to the earth’s rotational period allows one’s circadian oscilla-
tions to entrain to a 24-h cycle with external perturbations
from natural sunlight, or even controlled candlelight in an
experimental setting (15). However, few human circadian
clocks have an intrinsic period of exactly 24 h in the absence
of environmental cues. Indeed, the individual free-running
period of one’s circadian clock has been linked to his or her
self-identification as a ‘‘morning person’’ or ‘‘night owl’’
(16,17). It has also been suggested that abnormally long
free-running periods of oscillation may contribute to delayed
sleep-phase syndrome in adolescents (18), and far shorter
than usual free-running periods have been connected to famil-
ial advanced sleep-phase syndrome (19,20). Individuals
affected by these sleep disorders have a difficult time falling
asleep at a conventional time, leading to insomnia and exces-
sive daytime sleepiness, disrupting work and family life.
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In this article, we develop a mathematical procedure to
find an efficient, exogenous perturbation to entrain an
ensemble of uncertain circadian oscillators. Here, we take
the term ‘‘uncertain’’ to mean that the system parameters
are not fully known, as might be the case during in vivo
experimentation. We further require that when entrainment
is achieved, the phase difference is small when compared
to some reference oscillator. An advantage of this method
is that it does not need the full model dynamics, but actually
only requires approximate knowledge of the system’s infin-
itesimal phase-response curve (PRC) (6,21–25), which is
experimentally measurable by perturbing an oscillatory cy-
cle at different phases, and determining the change in timing
of an event (26).

Uncertainty in these models can lead to variation in both
the shape of the PRC and the free-running period of oscilla-
tion, and unlike Zlotnik and Li (27), this work explicitly al-
lows for uncertainty in the system with the additional
guarantee that the phase dynamics will be close to that of
a desired reference cycle. Also, unlike Bagheri et al.
(28,29), this method does not require feedback from the sys-
tem and can be administered in an open-loop manner.

The organization of this article is as follows: in Energy-
Optimal Entrainment with a Limited Phase Shift between
Oscillators, we develop a method for entraining an uncertain
oscillator to a desired reference oscillator. The Model de-
scribes the specific model we will used to illustrate this con-
trol strategy, with Results and Discussion presented next,
followed by Conclusion.
ENERGY-OPTIMAL ENTRAINMENT WITH A
LIMITED PHASE-SHIFT BETWEEN OSCILLATORS

Suppose we have two oscillators defined by

q_1 ¼ uo þ Zðq1ÞuðtÞ;
q_2 ¼ uo þ Duþ ðZðq2Þ þ DZðq2ÞÞuðtÞ;

(1)
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where q1 ˛[0,2p) is the phase of a nominal reference oscil-
lator with angular frequency uo, PRC Z(,), and external
control u(t) ¼ eu1(t), where u1(t) is of order 1 and e is a
small, positive constant; and q2 ˛[0,2p) is the phase of
another oscillator with natural frequency that may differ
from nominal by Du ˛[�Du�, Duþ], and PRC that may
differ from nominal by –E�(q) % DZ(q) % Eþ(q). Here,
the functions E_(q) and Eþ(q) define an envelope in which
the second oscillator’s PRC might exist (see Fig. 1). In
Eq. 1, q1 captures the nominal properties of the system
and q2 is necessary to account for uncertainty. We note
that q2 could also represent an expected range of properties
in a heterogeneous population of oscillators. In this sense,
the following analysis is valid for an ensemble of heteroge-
neous oscillators, each within the expected range; note that
we assume that Du is an O(e) term. Clearly if Du s 0, in
the absence of external stimuli these two oscillators will
not achieve frequency synchronization (i.e., q1 s q2), inas-
much as their natural frequencies differ. Suppose we want to
design a T-periodic, energy-optimal stimulus (in the sense
that

R
uðtÞ2 dt is minimized), which will stably entrain q1

and any q2 such that when the oscillators are entrained,
q2 � q1 O(e)˛D, where D h [Dq�, Dqþ]. In other words,
we want q2 � q1 to be at most within O(e) of D when the
oscillators are entrained. Note that in this article, we will
work exclusively with infinitesimal PRCs, as opposed to
finite PRCs. Finite PRCs describe the phase shift, Dq, that
results when a given (usually pulsed) input is applied at q.
Infinitesimal PRCs are related to the gradient of the phase
near the periodic orbit and are generally more useful than
finite PRCs because they are independent of the magnitude
of the control input, provided the control input is small
enough. For a more complete discussion on the distinction
between infinitesimal and finite PRCs, we refer the reader
to Izhikevich (25) and Sacré and Sepulchre (30).

To begin, we define a new variable, f ¼ q2 � q1, so that

_f ¼ Duþ ½Zðq1 þ fÞ � Zðq1Þ þ DZðq1 þ fÞ�uðtÞ; (2)
FIGURE 1 (Solid line) Nominal PRC; (dot-dashed lines) boundaries of

the envelope within which the PRC of q2 exists.
and we asymptotically expand q1 as

q1 ¼ q
ð0Þ
1 ðtÞ þ eq

ð1Þ
1 ðtÞ þ e2q

ð2Þ
1 ðtÞ þ.: (3)

Recall that u(t) is O(e), so that Eq. 1 implies that q1
(0)(t) ¼
q1(0) þ uot and that q1(t) ¼ q1(0) þ uot þ O(e). For
simplicity, we take q1(0) ¼ 0, but note that the following
analysis can still be performed for q1(0) s 0. Substituting
Eq. 3 into Eq. 2, we Taylor-expand terms of the form Z(,)
in powers of e to yield

_f ¼ Duþ½Zðuotþ fÞ�ZðuotÞþDZðuot þfÞ�uðtÞþO
�
e2
�
:

(4)

Using averaging theory from Guckenheimer and Holmes

(31) and Sanders et al. (32) to approximate Eq. 4, we obtain

_4 ¼ Duþ 1

T

Z T

0

½Zðuot þ 4Þ � ZðuotÞ�uðtÞdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f ð4Þ

þ1

T

Z T

0

½DZðuotþ 4Þ�uðtÞdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
eð4Þ

þ1

T

Z T

0

O
�
e2
�
dt;

¼ Duþ f ð4Þ þ eð4Þ þ 1

T

Z T

0

O
�
e2
�
dt:

(5)

If Eq. 5 has a stable fixed point, then for small enough e,

Eq. 4 has a corresponding stable periodic orbit which re-
mains close toO(e) (32). Therefore, we can achieve our con-
trol objective by requiring that

d 40˛D such that 0 ¼ Duþ f ð40Þ þ eð40Þ

and
d

d4

���
4¼4o

ðf ð4Þ þ eð4ÞÞ<0:
(6)

Note that the second condition in Eq. 6 is a stability

requirement.

To proceed, we use a sufficient condition to achieve the
required control:

f ðDqþÞ þ eðDqþÞ<� Duþ (7)

f ð�Dq�Þ þ eð�Dq�Þ>Du�: (8)
If these conditions hold, then for any choice of q2,
_4ð�Dq�Þ ¼ f ð�Dq�Þ þ eð�Dq�Þ þ Du>0

and
_4ðDqþÞ ¼ f ðDqþÞ þ eðDqþÞ þ Du<0:

The condition in Eq. 6 follows as a consequence of the in-

termediate value theorem. An illustration of requirements
from Eqs. 7 and 8 is given in Fig. 2. Using Eq. 5, we rewrite
Eq. 7 as
Biophysical Journal 107(7) 1744–1755



FIGURE 2 Illustration of a sufficient condition for the control objective

(24) to hold. The function f(4) þ e(4) must cross both horizontal dotted

lines with a negative slope at some 4 ˛[�Dq�, Dqþ]. To ensure this hap-

pens, it is sufficient to require f(Dqþ) þ e(Dqþ) < Duþ and f(�Dq�) þ
e(�Dq�) < Du�.
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f ðDqþÞ þ eðDqþÞ<� Duþ;

f ð0Þ þ
Z Dqþ

0

f 0ðsÞdsþ eð0Þ þ
Z Dqþ

0

e0ðsÞds<� Duþ;

1

T

Z T

0

2
4
0
@Z Dqþ

0

Z0ðuot þ sÞds

1
AuðtÞ þ DZðuotÞuðtÞ

þ

0
@Z Dqþ

0

DZ0ðuot þ sÞds

1
AuðtÞ

3
5dt<� Duþ;

(9)

where 0 ¼ d/dq, and in the last line we use f(0)¼ 0. Next, we

make use of the equalityZ R

0

DZ0ðqþ sÞds ¼ DZðqþ RÞ � DZðqÞ

to yield
�E�ðqþ RÞ � DZðqÞ%
Z R

0

DZ0ðqþ sÞds

%Eþðqþ RÞ � DZðqÞ:
(10)

Letting
R Dqþ
0

Z0ðuot þ sÞdshgþðtÞ and using Eq. 10, we
conclude that if
1

T

Z T

0

��
gþðtÞ þ EpðuðtÞ;uot þ DqþÞ

�
uðtÞ

�
dt<� Duþ;

(11)

where
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Epðu; qÞ ¼
�
EþðqÞ; if uR0;
�E�ðqÞ; if u<0;

then Eq. 9, and hence Eq. 7, must hold. Similarly defining
g�ðtÞh
Z �Dq�

0

Z0ðuot þ sÞds;

we can conclude that
1

T

Z T

0

½ðg�ðtÞ � EmðuðtÞ;uot � Dq�ÞÞuðtÞ�dt>Du�; (12)

where
Emðu; qÞ ¼
�

E�ðqÞ; if uR0;
�EþðqÞ; if u<0

is a sufficient condition for Eq. 8 to be true.

Thus, our control objective is now to design an input such

that Eqs. 11 and 12 are satisfied. Furthermore, if the absolute
positions of the oscillators, and not just their relative phases,
are important, it is useful to include the constraint

q1ð0Þ ¼ b;
q1ðTÞ ¼ 2pþ b;

(13)

where b represents the desired absolute position of q1 during

entrainment. We solve for the optimal control using a
Hamilton-Jacobi-Bellman (HJB) approach (33), by first
defining a new state variable, z so that

_z ¼

2
4 _a
_b
_q

3
5 ¼

2
666664
1

T

�
gþðtÞ þ EpðuðtÞ;uot þ DqþÞ

�
uðtÞ

1

T
ðg�ðtÞ � EmðuðtÞ;uot � Dq�ÞÞuðtÞ

uo þ ZðqÞuðtÞ

3
777775;

(14)

where a and b are auxiliary variables that come from con-

straints in Eqs. 11 and 12, respectively. For a given initial
state, z, the energy-optimal stimulus will minimize

Jðz; uðtÞÞ ¼
Z T

0

u2dt þ gqðzðTÞÞ; (15)

where
R T
0
u2dt represents the power consumed by the stim-
ulus; q(z(T)) is an end-point cost function, which will be
described in further detail in the Results and Discussion sec-
tion; and g is a penalizing scalar that determines the relative
importance of the terms. We note that Eq. 15 could be modi-
fied to include terms other than energy (see Wilson and
Moehlis (34) for an example). We consider bounds on the
inputs, which might occur during practical implementation,
given by umin % u % umax, where umin % 0 and umax R 0.
We define the cost-to-go function, also known as the value
function,
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Vðz; tÞ ¼ inf
umin%uðtÞ%umax

ct˛½t;T�

Jðz; uðtÞÞ: (16)

We can find the optimal stimulus for Eq. 15 by solving the
HJB equation (33),

0 ¼ vV
vt

ðz; tÞ þ min
umin%uðtÞ%umax

Hðz;VV; uÞ; (17)

where
Hðz;VV; uÞ ¼ ½uðtÞ�2 þ ½VVðzðtÞ; tÞ�T _z; (18)

and with end-point boundary condition
VðzðTÞ; tendÞ ¼ gqðzðTÞÞ: (19)

Here7V is the gradient of the value function with respect to

the state z. The resulting optimal control can be calculated
by taking the derivative of the Hamiltonian equation
(Eq. 18) with respect to u and setting the result equal to
zero, yielding two possibilities:
u�ðz; tÞ˛

8><
>:min

0
B@umax;max

0
B@� 1

2
½VVðzðtÞ; tÞ�T

2
64 gþðtÞ þ Eþðuot þ DqþÞ
g�ðtÞ � E�ðuot � Dq�Þ

ZðqÞ

3
75; 0

1
CA
1
CA;

max

0
B@umin;min

0
B@� 1

2
½VVðzðtÞ; tÞ�T

2
64 gþðtÞ � E�ðuot þ DqþÞ
g�ðtÞ þ Eþðuot � Dq�Þ

ZðqÞ

3
75; 0

1
CA
1
CA
9>=
>;:

(20)
The first possibility corresponds to the minimum of the
Hamiltonian (Eq. 18) when the stimulus is positive, and
the second corresponds to the minimum when the stimulus
is negative. The optimal control is the option that gives a
lower value of the Hamiltonian. Once Eq. 17 has been
solved for V(z(T),t), with appropriate end-point boundary
condition (Eq. 19), the optimal control can be obtained us-
ing the initial condition z(0) ¼ [0, 0, b]T.

In summary, the steps required to compute the optimal
control are as follows:

1. Evaluate the range of PRCs and natural periods in the
system.

2. In reference to a nominal (i.e., expected) oscillator, deter-
mine the range of Duo from Eq. 1, as well as Eþ(q), and
E�(q) (shown in Fig. 1).

3. Determine appropriate values of Dqþ and Dq�, and
compute gþ(t) and g�(t). Note that choosing a smaller
value of Dqþ and Dq� will result in a smaller phase dif-
ference between the entrained oscillators, at the expense
of using more energy.

4. Compute the cost-to-go function, V(z,t), by solving
Eq. 17 using an end-point cost based on required condi-
tions Eqs. 11–13.
5. Using V(z,t), compute the optimal control according to
Eq. 20 by solving Eq. 14 with initial condition z(0) ¼
[0, 0, b]T.

We caution that if Dqþ and Dq� values are chosen to be too
small (i.e., the required phase difference between the
entrained oscillators is too small), the resulting stimulus
u(t) may become large enough that the small input approx-
imation is invalidated. If this is the case, one must either
increase Dqþ and Dq�, or reduce the uncertainty in the
system.
MODEL

To illustrate the control strategies presented above, we use a
10-dimensional model that captures the circadian oscilla-
tions of Period (PER) and Timeless (TIM) proteins in
Drosophila (35) (commonly known as the fruit fly). For
the model’s dynamic equations, we refer the reader to the
Appendix. In this model, the presence of light influences
the system by increasing the value of the parameter vd, the
doubly phosphorylated TIM protein degradation rate. In
total darkness, this model exhibits a stable, nonlinear limit
cycle, which arises from negative feedback between the
PER and TIM proteins. The equations can be written as a
set of differential equations of the form

_x ¼ Fðx; pðtÞÞ; (21)

where x is the state of the system, and p(t) is a vector of pa-

rameters of the system. When p(t) is set to its nominal, con-
stant value, the model possesses a stable limit cycle with
oscillations of selected variables shown in the top panel of
Fig. 3.

To apply the methodology presented in the previous sec-
tion, we need equations of the form of Eq. 1. To this end, we
let p(t) ¼ po þ Dp(t), where po represents the nominal
parameter set, and Dp(t) represents a small time-varying
perturbation. Equation 21 can be rewritten as

dx

dt
¼ Fðx; po þ DpðtÞÞ ¼ Fðx; poÞ þ

X
i

vF

vpi
DpiðtÞ: (22)

Performing a phase reduction around the periodic orbit
yields (compare to Taylor et al. (36))
Biophysical Journal 107(7) 1744–1755



FIGURE 3 (Top panel) Limit cycle oscillations

of the concentration of PER mRNA (Mp) and total

amount of PER proteins (Pt) for the nominal

parameter set. (Bottom-left panel) Nominal period

plotted against the value of the parameter k3
(when all other parameters remain at their nominal

values). (Bottom-right panel) Similar plot when

kdN is varied. (Horizontal dotted line) Period for

the nominal parameter set.
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dq

dt
¼ vq

vx
,
dx

dt
;

¼ vq

vx
,

"
Fðx; poÞ þ

X
i

vF

vpi
DpiðtÞ

#
;

¼ uþ
P
i

P
i

vq

vxj
,

vF

vpi
DpiðtÞ;

¼ uþ pPRCðqÞ ,DpðtÞ;

(23)

where

pPRCiðqÞ ¼ vq

vpi
¼

X
j

vq

vxj
,
vFj

vpi

is the ith component of the parameter phase response curve
(pPRC); q ˛[0,2p] is the phase of oscillation; u ¼ 2p/T,
with T being the period of oscillation; and vq/vx is a vector
of PRC corresponding to each state variable in the model.
We note that Eq. 23 is of an appropriate form to use the
methods from Energy-Optimal Entrainment with a Limited
Phase Shift between Oscillators.

In this study, we are interested in entraining an ensemble
of uncertain oscillators. To include heterogeneity in the
natural periods in this model, we allow for variation in
either k3 or kdN, which correspond to the rate constant for
the formation of the PER-TIM complex, and the rate con-
stant for the degradation of the nuclear PER-TIM complex,
respectively. The bottom panels of Fig. 3 show the effect of
modifying these parameters on the natural period of oscil-
lation. Increasing kdN shortens the natural period whereas
decreasing k3 lengthens the natural period. A more com-
plete discussion of this model is given in Leloup and
Goldbeter (35).
Biophysical Journal 107(7) 1744–1755
RESULTS AND DISCUSSION

We induce long- and short-period phenotypes in themodel of
Drosophila circadian rhythms by decreasing the nominal
value of the parameter k3 and increasing the nominal value
of kdN, respectively (See Tables 1 and 2 for parameter
sets). For values of k3 ˛[0.3, 1.2] nM�1 h�1 and all other
parameters at nominal, the free-running circadian period
takes values Tl ˛[24.14, 29.72] h, with the period
increasing monotonically with decreasing k3. For values of
kdN ˛[0.01, 0.45] h�1 and all other parameters at nominal,
the free-running circadian period takes values Ts ˛[18.03,
24.14] h, with the period decreasing monotonically with
increasing kdN.

To design a stimulus that can better entrain these circa-
dian oscillators using procedures from the Methods, we first
calculate PRCs using XPPAUT (37), and then calculate
pPRC of the form of Eq. 23. For this study, we take the
time at which the total amount of the PER protein is at its
minimum value to correspond to q¼ 0. A few representative
pPRCs are shown in Fig. 4. We see from the plot that pPRCs
for short phenotypes (red curves) have much more vari-
ability than those with long-period phenotypes (blue
curves). For our control strategy, we would intuitively like
a phase response with little variability and large magnitude,
inasmuch as increased variability will degrade the overall
control, and a large magnitude will allow for stronger effect
of control. In terms of our control objective, we would like
to minimize and maximize the left-hand sides of Eqs. 11 and
12, respectively, using the smallest possible deviation from
nominal parameters. With this in mind, we define two new
values for each parameter pi,

cpi ¼
1

10
pnomi

Z 2p

0

½SðEþðqÞ;E�ðqÞ; gþðqÞ;DqþÞ�dq; (24)



FIGURE 4 Representative parameter PRCs for long- and short-period

mutant phenotypes of the Drosophila circadian rhythm. (Black, blue, and

red lines) The pPRCs for nominal, long, and short phenotypes. To see

this figure in color, go online.
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1
Z 2p
kpi ¼ 10
pnomi

0

½ � SðEþðqÞ;E�ðqÞ; g�ðqÞ;�Dq�Þ�dq;

(25)

where S(A(q), B(q), C(q), D)h (C(q) þ A(q þ D),�C(q)þ

B(q þ D)), gþ(q), Eþ(q), E�(q), Dqþ, and �Dq� are func-
tions and parameters defined in Methods using the pPRCs
for pi, and pi

nom is the nominal value of that parameter. Intu-
itively, Eq. 24 (respectively, Eq. 25) gives the minimum
(respectively, maximum) value of the left-hand side of
Eq. 11 (respectively, Eq. 12) when the magnitude of the
perturbation is constrained to be exactly 10% of the value
of pi. For a given set of PRCs, these values give a quick nu-
merical estimate of the ability to entrain a reference oscil-
lator without solving the more costly HJB equation
(Eq. 17). Of the parameters in this model, vs, the rate of syn-
thesis of PER and TIM mRNA is found to be the best candi-
date for an entraining stimulus, with�

cvs ; kvs
�
¼ ð�0:113; 0:195Þ:

The associated pPRCs are shown in the top-left panel of
TABLE 1 Relevant parameters for entrainment using vs

Parameter set

kdN ˛[0.01, 0.1] h�1, kdN ¼ 0.01 h�1,

k3 ¼ 1.2 nM�1 h�1, k3 ˛[0.5, 1.2] nM�1 h�1
Fig. 4. For the parameter that is affected by external light,
with pPRCs shown in the bottom-left panel of Fig. 4,�

cvd
; kvd

�
¼ ð�0:042; 0:162Þ:

Also, corresponding to the parameter in the bottom-right
Natural period T ˛[21, 27.6] h

uo 0.260 h�1

Duþ 0.0389 h�1

Du� 0.0326 h�1

Dqþ 0.52 (2 h)
corner of Fig. 4,�
ck1

; kk1
�
¼ ð0:021; 0:028Þ;

meaning that there is so much uncertainty in the pPRC that
Dq� 0.52 (2 h)

we do not expect to be able to find a stimulus corresponding
to this parameter with good entrainment properties.
Because vs was found to be the best candidate for an en-
training stimulus, we use this parameter to implement the
control strategy detailed in Energy-Optimal Entrainment
with a Limited Phase Shift between Oscillators. To deter-
mine the envelope Em and Ep, we assume that the oscillator
can have both long and short free-running periods. For this
illustration, we use a subset of the possible long- and short-
period phenotypes. The nominal parameters for the short
phenotypes include kdN ˛[0.01, 0.1] h�1 with k3 ¼
1.2 nM�1 h�1, with the shortest free-running period
being 21 h (see Tables 1 and 2 for parameter sets). The nom-
inal parameters for the long-period phenotypes include
k3˛[0.5, 1.2] nM�1 h�1 with kdN ¼ 0.01 h�1, with the
longest free-running being 27.6 h. The nominal free-running
period is taken to be 24.14 h. A summary of important
values for solving the optimal control problem is given in
Table 1. For this example, because there is a relatively large
amount of uncertainty, we allow for a relatively large Dq� ¼
Dqþ ¼ 0.52, which corresponds to a trapping region of52 h
from nominal. The HJB (Eq. 17) is solved using umin ¼
�0.25 nM/h, umax¼ 0.25 nM/h, g¼ 1.5, and end-point cost,

qðaðTÞ; bðTÞ; qðTÞÞ ¼ Pq þ Pa;b; (26)
where 	� � ��

Pq ¼ 1 1� exp � 5ðqðTÞ � 2pÞ2 ;

Pa;b ¼ 1=ð1þ expð � 5ðDðaðTÞ; bðTÞÞ � 0:7ÞÞÞ;
and

Dða; bÞ ¼
�
�dðða; bÞ; T cÞ ifða; bÞ˛T
dðða; bÞ; T Þ ifða; bÞ˛T c:
Here d(y,U) ¼ infw˛Ud(y,w), where d is taken to be the 2-
norm, and U is a set of points, T ¼ {(a,b)ja < �Duþ and
b > Du�}, and T c is its complement. Note that D(a,b) is
the signed distance between (a,b) and the target set. Using
this end-point cost gives one penalty for not reaching the
desired final value of q and an independent penalty for not
reaching the desired values of a and b mandated by Eqs.
11 and 12. Note that in this example, we have taken b

from Eq. 13 to be zero. In the results that follow, we use
Biophysical Journal 107(7) 1744–1755
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Dpi to represent the deviation of the parameter pi from its
nominal value.

Results are shown in Fig. 5. The top-left panel shows the
envelope for which the pPRCs for the parameter vs can exist
as a shaded region, with the nominal PRC plotted as a solid
line. The top-right panel shows the resulting optimal con-
trol. The middle panel plots the time-averaged, periodic
function

f



244

2p

�
þ e



244

2p

�
for various oscillators with allowed long- and short-period
mutants. Note that 244/2p gives the phase difference

measured in hours. For this problem, Duþ and Du� corre-
spond to 0.0389 h�1, and 0.0326 h�1, respectively, and are
represented as horizontal dashed lines. Note that all of the
averaged curves cross these horizontal thresholds within a
52 h phase difference. The bottom-right panel shows the
phase difference between various mutant phenotypes and
nominal using Eq. 2 with control applied repeatedly. Our
control strategy guarantees the existence of a stable periodic
orbit, approximately satisfying

�2<
244

2p
<2 h;

and we see that this is the case for all of these oscillators.
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Next, we apply the optimal control to the full system of
equations, and compare to natural entrainment by sunlight.
Results are shown in Fig. 6. We find that when sunlight is
used to modulate vd, there is an ~7 h difference between
the phase of the fastest oscillator and the slowest oscillator.
When the optimal control of vs is used in the absence of sun-
light, there is an ~3 h difference between the fastest and
slowest oscillators. We note that the free-running periods
vary by a large amount (between 21 and 27.6 h), and that
even tighter control could be obtained if there was less vari-
ability in either the natural frequencies or the PRCs.

We then use control of vd, as might be implemented with
light pulses, to determine an optimal control for a set of
short-period phenotypes. We note that vd is a more difficult
parameter to use, because light pulses can only increase the
value of vd so that umin ¼ 0. Also, as can be seen in the
lower-left panel of Fig. 4, the pPRC varies by a large
amount as the parameters in the model change. Neverthe-
less, light is a convenient and noninvasive way to influence
a circadian oscillator.

For these examples, we choose two separate families of
long- and short-period mutant phenotypes and assume that
we do not know the exact free-running period or the exact
pPRC. We take short-period oscillators to have kdN ˛
[0.05, 0.1] h�1. The resulting free-running periods are
between 21.0 and 22.5 h, and we take the nominal
period to be 21.7 h so that uo ¼ 0.290 h�1. We also take
FIGURE 5 Optimal control for a family of long-

and short-period mutants. Long- and short-period

mutants are obtained from the parameter set in Ta-

ble 1. (Top-left panel) Envelope for which the

pPRCs for the parameter vs can exist (shaded re-

gion), with the nominal PRC plotted (solid line).

(Top-right panel) Resulting optimal control, where

Dvs is the size of the perturbation from the nominal

value of vs. Note that the x axis of the top-left panel

has been scaled to facilitate comparison with the

top-right panel. (Middle panel) Time-averaged,

periodic function f(244/2p) þ e(244/2p) for

various oscillators with long- and short-period

mutants. (Horizontal, dashed lines) Targets that

the averaged function must reach with 244/2p

between 52 to achieve the desired control. (Bot-

tom-left panel) Phase of various mutant phenotypes

(q2 from Eq. 1) simulated with control applied

repeatedly; (bottom-right panel) plots of 4 from

Eq. 2 for the phenotypes with the fastest and slow-

est natural period.



FIGURE 6 Control of long and short phenotypes

using vs. (Top two panels) Time evolution of Pt for

long (blue curves), short (red curves), and normal

(black curve) phenotypes when they are entrained

by sunlight through modulation of vd. (Bottom

two panels) Time evolution of Pt for long (blue

curves), short (red curves), and normal (black

curve) phenotypes when they are entrained through

periodic, optimal modulation of the parameter vs
from nominal, without sunlight modulation.

(Gray-shaded regions) Distribution of when the

phase, q, reaches zero on one cycle. All plots are

shown after oscillations have reached steady state.

To see this figure in color, go online.
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Dq� ¼ Dqþ ¼ 0.26, corresponding to a trapping region of
51 h from nominal. For the family of long-period oscilla-
tors, we take k3 ˛[0.7, 0.9] nM�1 h�1. The resulting free-
running periods are between 25.2 and 26.2 h, and we take
the nominal period be 25.7 h so that uo ¼ 0.245 h�1. We
also take Dq� ¼ Dqþ ¼ 0.13, corresponding to a trapping
region of 50.5 h from nominal. A summary of important
values for solving the optimal control problem are listed
in Table 2. The HJB equation (Eq. 17) is solved using umin¼
0 nM/h, umax ¼ 1 nM/h, and g ¼ 15, and umin ¼ 0 nM/h,
umax ¼ 0.7 nM/h, and g ¼ 15 for the short- and long-period
phenotype end-point costs (Eq. 26), respectively. Results are
shown in Fig. 7, with the left and right sides corresponding
to the control problem for the short-and long-period pheno-
types, respectively. The top-left panels of each side give the
TABLE 2 Relevant parameters for entrainment using vd

Parameter set

Short-period phenotypes Long-period phenotypes

kdN ˛[0.05, 0.1] h�1,

k3 ¼ 1.2 nM�1 h�1
kdN 0.01 h�1,

k3 ˛[0.7, 0.9] nM�1 h�1

Natural period T ˛[21, 22.5] h T ˛[25.2, 26.2] h

uo 0.290 h�1 0.245 h�1

Duþ 0.010 h�1 0.005 h�1

Du� 0.010 h�1 0.004 h�1

Dqþ 0.26 (1 h) 0.13 (0.5 h)

Dq� 0.26 (1 h) 0.13 (0.5 h)
envelopes for which the pPRCs for the parameter vd can
exist as a shaded region, with the nominal PRC plotted as
a solid line.

Note that compared to the previous example, the target vd
is not as ideal for entraining these oscillators, and the vari-
ability in the family of oscillators that can be entrained
has been limited accordingly. The top-right panels of each
side show the resulting optimal stimulus. Note that the
optimal control for the long and short phenotypes is qualita-
tively similar, with the short-period phenotypes receiving a
larger relative stimulus during subjective dusk to slow down
the oscillations, and the long-period phenotypes receiving a
larger relative stimulus in the subjective early morning to
speed up the oscillations. Both pulses are important, how-
ever, to account for uncertainty, for which we will give an
intuitive explanation later. The middle panel of both sides
shows the time-averaged periodic function

f



244

2p

�
þ e



244

2p

�

for three different oscillators, with horizontal lines repre-

senting Duþ and Du� for the short-period phenotypes,
and within a 50.5 h phase difference for the long-period
phenotypes. The bottom-left panel of each side shows the
phase of various mutant phenotypes (q2 from Eq. 1) simu-
lated with control applied repeatedly, and the bottom-right
Biophysical Journal 107(7) 1744–1755



FIGURE 7 (Left) Optimal control for a family of short-period mutants. (Right) Optimal control for a family of long-period mutants. The structure of the left

and right sides is identical to that of Fig. 5. Recall that the control guarantees a stable periodic orbit approximately satisfying�1< 244/2p< 1 h and�0.5<

244/2p < 0.5 h for the short-and long-period phenotypes, respectively.
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panel of each side shows plots of f from Eq. 2 for the fastest
and slowest phenotype from each simulation.

Finally, we apply the optimal control to the full system of
equations, and compare to the entrainment caused by a 24-h
light-dark cycle, with results shown in Fig. 8. When the os-
cillators are entrained to a 24-h light-dark cycle, the short
(respectively, long) period oscillators lead (respectively,
lag) the normal period oscillator by as much as 4 h (respec-
tively, 1 h) at q ¼ 0. When the short (respectively, long)
period oscillators are entrained to their respective optimal
control, the phase differs from the normal period oscillator
by only 1.5 h (respectively, 0.2 h) at q ¼ 0.

Using the same model of Drosophila circadian rhythms,
Bagheri et al. (29) report that short- and long-period mutant
phenotypes are best entrained to a 24-h cycle with bright
light after subjective dusk and early subjective morning,
respectively. These external stimuli are effective because
they are appropriately timed to speed up the oscillation of
the long-period phenotype and slow down the oscillation
of the short-period phenotype. These strategies are appro-
priate for a closed-loop control strategy where small errors
can be fed back to the controller and corrected by the control
algorithm. In this study, it is somewhat unexpected to find
that for an open loop control strategy, it is important
to administer light at subjective dusk and subjective morn-
ing for both short- and long-period phenotypes. Further-
more, for a short (respectively, long) phenotype, it is
important for the pulse at subjective dusk (respectively,
early morning) to be more intense than the pulse at subjec-
tive early morning (respectively, dusk). The more intense
Biophysical Journal 107(7) 1744–1755
pulse has the effect of correctly advancing or delaying the
oscillation, but both pulses are important to allow for uncer-
tainty in the system’s natural period. The intuition behind
this apparently new control strategy is best explained by
considering a heterogeneous group of oscillators. This con-
trol strategy works by applying a positive stimulus at phases
q where Z0(q) is expected to be negative for all oscillators in
the ensemble. Doing so will yield a negative Lyapunov
exponent (compare to Eq. 5) causing the trajectories of
each oscillator to exponentially converge. Upon entrain-
ment, the exponential convergence caused by the stimulus
balances the linear divergence caused by the Du term.

It is interesting to note the similarities between our findings
and those of Pfeuty et al. (38), which reports circadian oscil-
lators can be robustly entrained to varying light pulses when
their PRCs have dead zones (i.e., zones in which Z(q) ¼ 0),
punctuated by zones in which the derivative of the PRC
changes rapidly. Themethod of robust entrainment described
in this article requires that the derivatives of the PRCs are
large at various locations relative to the uncertainty in the
PRC envelope. If the derivatives are too small compared to
the uncertainty, cpi from Eq. 24 could be too large or kpi
from Eq. 25 could be too small to find an entraining stimulus
(we found this to be the case with the pPRC for k1).

We note that the optimal light stimuli for light perturba-
tions are similar to skeleton photoperiods commonly used
in experiments on circadian entrainment. Skeleton photope-
riods have been used for half a century (39,40) in experi-
mental studies to maintain entrainment while limiting the
direct effects of light on an organism. Although this study



FIGURE 8 Control of long and short phenotypes using vd. (Left) Optimal control for a family of short-periodmutants. (Right) Optimal control for a family of

long-period mutants. The structure of the left and right sides is identical to that of Fig. 6 (red, blue, and thick black lines correspond to short, long, and nominal

phenotypes, respectively). (Gray-shaded regions) Distribution of when the phase, q, reaches zero in one cycle; (vertical dotted line) time at which the phase of

the nominal oscillator reaches zero. Note that the nominal value of vd is 2 nM/h, and all plots are shown after oscillations have reached steady state.We find that

the optimal control for the long and short phenotypes is qualitatively similar, with the short-period phenotypes receiving a larger relative stimulus during sub-

jective dusk and the long-period phenotypes receiving a larger relative stimulus in the subjective early morning. To see this figure in color, go online.
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was performed using a Drosophilamodel of circadian activ-
ity, the PRCs to light of many organisms are qualitatively
similar to the PRCs of Drosophila, and would yield similar
optimal entraining controls. We postulate that the optimal
qualities of skeleton photoperiods for entraining uncertain
circadian oscillators have helped it remain a useful experi-
mental methodology decades after its inception.
CONCLUSION

We have presented a methodology for entraining an uncer-
tain circadian oscillator to an external stimulus with a guar-
antee that the phase difference between oscillators is close
to a predetermined amount. Using phase reduction (25)
and averaging techniques (31,32), we are able to determine
conditions for which stable entrainment is guaranteed in a
given region (Eqs. 11 and 12). Then, using HJB techniques,
we can solve for the optimal stimulus which entrains the
required group of oscillators. Using this method, we are
also able to find stimuli which entrain groups of uncoupled
long- and short-period mutant oscillators and perform better
than natural sunlight in keeping the phase of oscillation
close to a nominal oscillator.

This method is relatively flexible and can be adapted to
handle other important considerations by adding extra terms
to the optimization. For instance, the stimuli calculated in
this article may be difficult to implement during in vivo
experimentation. If it is desired to use a continuous wave-
form as the control, Eq. 1 could be modified to include a
Du(t) term to allow for uncertainty in the administration
of the stimulus. Doing so would add a second error term
to the optimization, which could be handled with a simple
modification to Eq. 4. Also, this method could be adapted
to include predetermined time-dependent perturbations,
such as a sinusoidal natural light-dark cycle. We note that
if these time-dependent perturbations are of large amplitude,
it may be helpful to use methods detailed in Kurebayashi
et al. (41), which define PRCs not only for small amplitude
perturbations, but also for large-amplitude, slowly varying
perturbations. Furthermore, if it is desired to implement a
control strategy with a series of discrete pulses instead of
a continuous u(t), it would be appropriate to use dynamic
programming (33), the discrete analog to the Hamilton-Ja-
cobi-Bellman approach described in this article, to mini-
mize the cost function (Eq. 15).

Although circadian entrainment is an important biolog-
ical concern, it can also be important to correct circadian
misalignment, commonly referred to as ‘‘jet lag’’, which
can be caused by travel through multiple time zones. It
has been shown that the application of appropriately timed
light pulses can help correct this misalignment, which has
led researchers to search for optimal time schedules to
Biophysical Journal 107(7) 1744–1755
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quickly reset a misaligned rhythm. For instance, Zhang et al.
(42) proposes a control algorithm to correct circadian
misalignment in the minimum possible time, and Serkh
and Forger (43) developed a separate minimum-time control
algorithm that is found to be robust to noise and interindi-
vidual variation. Although the problems of designing stim-
uli to mitigate circadian misalignment and to entrain
oscillators to a desired cycle are different from a control
perspective, both biological maladies manifest in short-
term tiredness and sleep disturbance, and can lead to more
serious health consequences in the long term.

This method was illustrated in a model of Drosophila
circadian dynamics and has potential applications to the
treatment of advanced/delayed sleep-phase syndrome in hu-
mans. By designing stimuli to allow long- and short-period
phenotypes to maintain closer circadian synchrony to their
normal counterparts, it is conceivable that such treatments
could alleviate the insomnia and daytime sleepiness associ-
ated with this syndrome. There are many different stimuli
other than light that have been shown to promote circadian
entrainment in animal and human studies, including tem-
perature fluctuations (44,45), melatonin treatments
(46,47), and scheduled feeding (48,49). Using a combina-
tion of these could be useful for implementing this control
strategy in vivo. Furthermore, this methodology could have
further applications to other biological problems where
entrainment is important, such as in the synchronization
of pancreatic cells (1,2) for insulin secretion. This method-
ology could also be adapted to desynchronize a population
of pathologically entrained oscillators, which is thought to
be important in the treatment of Parkinson’s disease
(4,34,50).

A major benefit of the method detailed in this article is
that it explicitly accounts for uncertainties in the PRC
and natural period of the oscillator. In an experimental
setting, there will always be uncertainty in these measure-
ments, but this method still guarantees an adequate stim-
ulus provided the measurements can be taken with
sufficient precision. Furthermore, because this method
only requires knowledge of the system that has been shown
to be experimentally measurable for control purposes (51),
we expect it could be successfully tested in a laboratory
setting.
APPENDIX: DROSOPHILA CIRCADIAN RHYTHM
MODEL EQUATIONS

The dynamic equations for the Drosophila model for circadian oscillations

are

Mp
_ ¼ vsP

Kn
IP

Kn
IP þ Cn

N

� vmP
MP

KmP þMP

� kdMP;

_ P0 P1

P0 ¼ ksPMP � VIP

KIP þ P0

þ V2P
K2P þ P1

� kdP0;
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_ P0 P1 P1

P1 ¼ VIP

KIP þ P0

� V2P
K2P þ P1

� V3P
K3P þ P1

þV4P

P2

K4P þ P2

� kdP1;

P2
_ ¼ V3P

P1

K3P þ P1

� V4P

P2

K4P þ P2

� k3P2T2 þ k4C

�vdP
P2

KdP þ P2

� kdP2;

MT
_ ¼ vsT

Kn
IT

Kn
IT þ Cn

N

� vmT
MT

KmT þMT

� kdMT ;

T0
_ ¼ ksTMT � V1T

T0

K1T þ T0

þ V2T

T1

K2T þ T1

� kdT0;

T1
_ ¼ V1T

T0

K1T þ T0

� V2T

T1

K2T þ T1

� V3T

T1

K3T þ T1

þV4T

T2

K4T þ T2

� kdT1;

T2
_ ¼ V3T

T1

K3T þ T1

� V4T

T2

K4T þ T2

� k3P2T2 þ k4C

�vdT
T2

KdT þ T2

� kdT2;

_C ¼ k3P2T2 � k4C� k1Cþ k2CN � kdCC;

CN
_ ¼ k1C� k2CN � kdNCN;

(27)

with total amounts of Period (PER) and Timeless (TIM) proteins, Pt and Tt,

given by
Pt ¼ P0 þ P1 þ P2 þ Cþ CN;
Tt ¼ T0 þ T1 þ T2 þ Cþ CN:

Unless otherwise stated, parameters are symmetrical for the steps

involving PER and TIM, with individual values given in Fig. 2 of Leloup

and Goldbeter (35).
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48. Ángeles-Castellanos,M., J.M.Amaya,., C. Escobar. 2011. Scheduled
food hastens re-entrainment more than melatonin does after a 6-h phase
advance of the light-dark cycle in rats. J. Biol. Rhythms. 26:324–334.

49. Castillo, M. R., K. J. Hochstetler,., A. Bult-Ito. 2004. Entrainment of
the master circadian clock by scheduled feeding. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 287:R551–R555.

50. Hammond, C., H. Bergman, and P. Brown. 2007. Pathological synchro-
nization in Parkinson’s disease: networks, models and treatments.
Trends Neurosci. 30:357–364.

51. Nabi, A., T. Stigen, ., T. Netoff. 2013. Minimum energy control for
in vitro neurons. J. Neural Eng. 10. 036005.
Biophysical Journal 107(7) 1744–1755

http://dx.doi.org/10.1109/CDC.2012.6426226
http://dx.doi.org/10.1109/CDC.2012.6426226

	An Energy-Optimal Approach for Entrainment of Uncertain Circadian Oscillators
	Introduction
	Energy-Optimal Entrainment with a Limited Phase-Shift Between Oscillators
	Model
	Results and Discussion
	Conclusion
	Appendix: Drosophila Circadian Rhythm Model Equations
	References


