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Eckhaus-Benjamin-Feir instability in systems with temporal modulation
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A general method for computing the generalized Eckhaus boundary for the complex Ginzburg-Landau
equation with a time-periodic control parameter is given. The case in which the control parameter undergoes
small sinusoidal oscillations about a constant value is worked out explicitly, and the frequency dependence of
the result is discussefiS1063-651X96)14611-0
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I. INTRODUCTION changes from a positive to a negative value, the parabola in
(k,u) space describing the generalized Eckhaus boundary
The Ginzburg-Landau equation shrinks in width, vanishing when#4a8=0. It should be
emphasized that this notion only pertains to the stability
A= uA+A— |AIPA properties of plane waves with respect to long wavelength

perturbations. For the real Ginzburg-Landau equation these

first arose in the context of superconductivi, and has are in fact the most dangerous pert_urbations; in the complex
since been derivef2—6] and tested experimental[ff—11] case the long wavelength perturbatlor]g need not 'be the most
as an amplitude equation describing the slinvboth space ~dangerous ones, and the above condition determines the sta-
and timé evolution of one-dimensional patterns near onsePilIty Properties of plane waves only in certain regions in the
of a steady-state pattern-forming instabilifg2]. In this (a,,B) plane[17]. The Eckh_aus_lnstablhty is re.sponS|bIe for
equationy is the control parameter and the complex amp"_(parnab wavelength §electlon in one—dlm_ensmnal systems,
tudeA(x,t) is related, for example, to a stream functigroy and_can Iead to spapo-temporal complexny. An example of
= eRe(A9) + O(e?). Herek, is the wave number of particular interest arises when spatial ramps are used to se-
the pattern at onset ane? is a small parameter denoting Iegt a wave number _outS|de of the Eckhaus-stable band; in
distance from the instability threshold. Near onset of a lon his case the system is forced to undergo repeated phase slips

- - o : hich may occur periodically or chaotically as a result of
wavelength oscillatory instabilitj12] the equation general- . ; X ’
izes to the complex Ginzburg-Landau equation repeated triggering of the Eckhaus instabilil,22. The
instability can also be triggered, in a less organized manner,

by subjecting the system to spatially varying noise[28]
the effect of additive stochastic fluctuations on the Eckhaus
boundary for the Swift-Hohenberg equation was examined; it
where « and g are real constants that describe linear andvas found that such fluctuatiortehich are not to be inter-
nonlinear dispersive effects. This equation also describes thereted as fluctuations in the control parametesiuse the
evolution of the amplitude of a traveling wave with finite band of stable wave numbers to be reduced. The effect of
wave numbelk. in a reference frame moving at the group stochastic fluctuations in the control parameter on the pri-
velocity of the wave. mary instability has also been considef@d] with a view to

In this paper we are interested in the stability properties otietermining the shift in the onset of the instability. However,
nonlinear plane wave solutions of both equations. Such sofluctuations inu have another effect as well. They change
lutions take the fornA=K (k)e'***'t and represent patterns the instantaneous width of the band of growing wave num-
with wave numbek.+ ek, i.e., patterns with a slightly dif- bers and so move a certain range of wave numbers repeat-
ferent wavelength from that selected at onset. The stability ogdly into and out of the Eckhaus stable region. The cumula-
such solutions has been studied for both the [E8d-15 and  tive effect of such oscillations is to shift the Eckhaus stability
complex[16—-18 Ginzburg-Landau equations; in the Hamil- boundary, and its description is the subject of this paper.
tonian case the corresponding analysis goes back to Ben- We focus on the effects of temporally periodic modula-
jamin and Feir[19,20. If <0 the only solution is the tion of the control parameter on the Eckhaus boundary. As is
trivial (i.e., spatially uniform stateA=0. If x>0 the trivial  well known, temporal modulation may shift the threshold for
state is linearly unstable to solutions of the formthe onset of the primary instabilif25—27, can lead to pat-
A=K (k)e" 1 whose wave number satisfikd< u. How-  tern selection[28—30, and, in the presence of noise, can
ever, if 14+ aB>0, these solutions are themselves unstablaffect transitions between attractdi®1,32. In the present
in the limit of infinite wavelength perturbations unless paper, we show that such modulation also affects the gener-
[(3+aB+2B%)I/(1+aB)]k®<u, with equality defining alized Eckhaus boundary, and obtain an analytic expression
what we will call the generalized Eckhaus boundary. Iffor the boundary for small amplitude sinusoidal modulation.
1+ aB<0 all solutions withk?< . are unstable. In particu- In the special case of the real Ginzburg-Landau equation
lar, if we fix  and continuously vany3 such that -«  with a sinusoidally modulated control parameter it is found

A= uA+(L+ia)Ay— (1+iB)|A|%A,
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that the band of stable wave vectors is always reduced, wittvherea(x,t) is an infinitesimal perturbation of the form
lower modulation frequencies giving greater reduction. For o _

the complex Ginzburg-Landau equation the details are sen- a(x,t)=a’(he™+a (t)e '™

sitive to the values o#, 8, and the modulation frequency, as

elaborated further below. The linearized equations for the amplitude’s anda™ are

al =[pt)—iQ—(k+m)2(1+ia)—2(1+iB)p(t)]a*
Il. THE ECKHAUS-BENJAMIN-FEIR INSTABILITY _ -
WITH PERIODIC MODULATION —(1+ipg)p(Ha-, (4)

In this section we describe the technique we use to study a, =[u(t)+iQ—(k—m)?(1—ia)—2(1—iB)p(t)]a”
the effect of periodic modulation of the control parameter on ) N
the Eckhaus-Benjamin-Feir instability. We generalize the —(1=-ip)p(t)a’, 5

complex Ginzburg-Landau equation to where p(t)=(R(t))? is real. Note that ifa#0 and 8+0,
1) then taking the complex conjugates of these equations gives
two more independent equations. However, the equations for
a™ anda™ are uncoupled from those fa" anda™.
An important property ofp(t) is that in the long-time
limit it becomes periodic with the same period aét). To
fprove this we note that

A= p(DA+(L+ia)Ay—(1+iB)|APA,

where u(t) is assumed to be differentiable and
pu(t+T)=pw(t). Without loss of generalityu(t) can be
taken to be real. Also, for simplicity, the effect of the side-
walls is ignored, and it is assumed that the only effect o
modulation is on the control parameter. As already men- dp

tioned, a wide class of pattern-forming systems can be re- azZRRzZ[,u(t)—kz]p—sz,
duced to Eq(1) near the onset of instability. It is important

to observe that the time scale for the variation of the controbr, equivalently,

parameter is taken to be tlsameas that for the growth and

equilibration of the pattern-forming instability. In terms of dg 5
the parameters of the physical system this implies an appro- gr TAr®—kla=2, (6)
priately slow modulation of the control parameter. For solu-
tions of the form whereq(t)=1/p(t). Thus
A(x,t)zR(t)exp{ikanif Q(t’)dt’}, (2 A= a0+ (),

where

whereR(t) is real, we obtain t
qh(t>~exp[—2f [M(t’)—kz]dt'}
R=u(t)R—k’R—R3,
and

Q=—ak?®- BR2.

t
t)=2ex —zf t')—k? dt’}
Linearization about the trivial solutiorA=R=0) gives (1) 4 Lt |

| x ftexp{th,[u(t”)—kz]dt”

_ _ _ o o _ . The particular solutiorg, satisfies Eq.(6) at timest and
and since the integrand is periodic, the trivial solution ist+ T, so that

linearly unstable to solutions of the for(2) if the average

dt’.

t
R(t)~exp{ f [w(t")—k?]dt’

value of u(t) is greater thark?: d
w)is g %(t—kT)-I—Z[,u(t—kT)—kz]qp(t+T)=2
1(7 )
. L . . . . dgp
This condition generalizes the usual instability condition W(t)+2[,u(t)—k2]qp(t):2.
w>k? to the time-dependent case, and will be assumed in
what follows.

Using th iodicit t), th ti ield
The stability of solutions of the forr(®) is investigated by sing the periodicity ofu(t), these equations yie

considering the solution d
Gilap(t+ T =ap()]=—2[ (1) —KI[ap(t+T) —qp(1)]

and hence

A(x,t)=ex+kx+i j Q(t’)dt’}[R(t)Jra(x,t)],
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t boundary. Thusyege=0 whenu,=0. When modulation is
qp(t+T)—Qp(t)~eXF{ —ZJ [M(t')—kz]dt'} present we expect that the Eckhaus boundary will be shifted
relative to Eq(11), and consequently thagzgr# 0. We now
explain how we calculateyggg.
For reasons already mentioned, the required calculation
needs to be carried to fourth order in the parameétewe
first calculate the quantitp(t) in powers ofé,

It follows, from condition(3), that ast—o, q(t)—qy(t),
and thatg,(t) is T-periodic in this limit, and correspondingly
that p(t) is alsoT-periodic.

Equations(4) and(5) can be simplified by setting

=P+ 5p 5p 12
a+(t)=ex;{ft[z,u(t’)—2k2—3p(t’)—m2—2iakm]dt’} P(D=Pot py(t)+ &pa(t)+ -, a3

wherepo=o—k? andp,(t),p,(t), ... areO(1). Explicit

X, ™ expressions for thé)'j , J=1,....,4, in thelong-time limit
h can be found in Appendix A. Substituting Eq9), (10), and
whence (12) into Eq.(8) and collecting powers of, we obtain
- |du 272 2 _—
Cie + a_[ﬂ(t)_k] +4mi p(t) =k =p(t)] cii + 2 6ijt(t) c*=0, (13
i=o
—Am?k?+ a’m*+ 2aBm?p(t) |c* where f, (t),f1 (1), ... areO(1). We solve this equation

using the method of multiple scales. Thus, we let
—2im{=* am[ u(t)— k2= p(t)]+2akm?

+2Bkp(t)}c* c* (=2 8¢ (To, T T, ),

=0. tS)
where T,=6". Equation (13) then vyields a hierarchy of
Since bothu andp areT-periodic in the long-time limit, we ~€9uations for the;™ (see Appendix Bwith solution of the

see that, in this limit, Eq(8) is a differential equation of form
Mathieu type, with(compleX periodic coefficients. Only

whena=B8=0 is the equation foc™ real. + ot +
We nO\[/;v restrict ourqattention to the case where the con- ¢ (To. T Tz, - .)—ex;{i_zo S Tijyi(To) (49

trol parameter is undergoing small oscillations about a con-

stant value. Since the time scale for the evolution of theHere they,” are T-periodic in the fast variabl@, and the

instability a distanceD(m?) from the generalized Eckhaus s are(Flogue) exponents which remain to be determined.

boundary scales a®(m~*), wherem is the perturbation Note that there are in fact two Floquet exponents for both

wave number, we anticipate that nontrivial effects will arisec* andc™, but for the stability analysis it suffices to restrict

in this region when the modulation effects occur precisely orattention to the one with the greatest real part. To determine

this time scale. We introduce a small parameteneasuring the growth rate of the perturbatioas (t) we note that

the amplitude of the modulation of the control parameter and

consider perturbation wave numbersof order &,

t
f [2u(t")—2k?—3p(t")—m?—2i akm]dt’

m= 5%, (9) o0
o N =u(t)+ 2> 5T, (15)
wherem is O(1). Here § is defined in terms of the expan- i=0
sion
whereu(t+T)=u(t), and hence using Eq7) that
w(t) =g+ Spa(t)+ %o+ - - -, (10 oo
.~ a“(t)=ex 8(5+5)t|v™(1),
wherefig, w1 (t), 25, ... areO(1) and ® L{Eo (&i+87) }v ®
~  (3+ap+2p?) , where
M= Tiap a1y

- v (=exu(h] X Jy; ()
Thus the time-independent quantiiy= «, indicates the dis- =0

tance from the generalized Eckhaus bounddry). In the
following we will vary 7 in order to explore the vicinity of
this boundary, and in particular to search for the values w

nege at which the growth rate of the instability vanishes. S:ZE 5GE+5). (16)
Recall that whenu,=0 this occurs along the Eckhaus i=0 o

is T-periodic. Thus, thécomplex growth rate ofa™(t) is
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Ill. AN EXAMPLE: A SMALL AMPLITUDE SINUSOIDAL
PERTURBATION TO A CONSTANT
CONTROL PARAMETER

The growth ratess; and S, and hences®™, depend on
n,m,k, and the nature of the modulation, such as its fre-
quency. Once explicit expressions fef are known, the
shift in the generalized Eckhaus boundargge, follows

from the equation Re{")=0. Sinces™ is determined per-
turbatively it suffices to calculate R&f) at the lowest non-
vanishing order. Note that &+ 0, 8+ 0, a similar analysis
starting with the complex conjugates of Edqd) and (5)

shows that the growth rates af* ares”, i.e., the above

As an example we consider the case of small sinusoidal
oscillations aboutu= o+ 6?7 and takeu,=sinwt. Thus
the amplitude of the oscillations i8, and this amplitude is
larger than the adopte@(5%) distance from the generalized
Eckhaus boundary.= . We restrict attention to the case

calculation yields the complete stability information re- 1+ «a3>0 for which this boundary is present. From Appen-

quired.

dix A, we obtain

2(1+ B2)k2

pO:W,

4(1+pAHK?
PO = Tg 3 g%+ (17 ap)Pa?

(1+ B?)K?sinwt— (1+ aB) w coswt],

with similar expressions fap,(t), Ps(t), andp4(t) In particularp,(t) equals the constant termplus terms proportional to
sin(2wt) and cos(at). Moreover, p3(t) andPy(t) only contain terms proportional to simft) and cosfiwt), with n=1 and
n=3 for p; andn=2 andn=4 for p,. We now substitute the expansions foft) andp(t), along withm= ém, into Eq.(8)

to obtain thef;” . For brevity, we only listf, andf; :

fo="fo=

fr)=f ()=

—4(1+ %)%k
(1+ap)?

=—\?(say),

—8iB(1+ BHK’M+ w(1+ aB)coswt—4(1+ B )k23|nwt

In terms of the notatiorD;=4/JT; the equation forc, is
thus (see Appendix B

1+ ap

so thatS; =S, =2i8mk. To go to next order, we need to
solve forcj (t) subject to the solvability condition. Ignoring
the solution to the homogeneous equation, we find that

D3cy —N%cy =0,
+ —2y A= yi0 1
so that ci(t)= me ocogwTyp)
=A(T,, Ty, .. )0+ B*(T,, Ty, ... )e Mo, 291N — Y0 .
(TuTer) (Tl ot o e osin(wTy),
If we choosex>0, then in the long-time limit the second
term becomes vanishingly small relative to the first term angvherey; and y, are both proportional t&=(Ty,T,, .. .).

so is of no interest for the stability analysis; without loss ofHence the growth rate @f is the same as the growth rate of

generality we therefore takB™=0. Thus, according to the
notation in Eq(14), S; =S, =\. At next order we obtain the
inhomogeneous problem

. )e)\TO

Dacy —A\2cy =—fr (DAT(T,, Ty, ..

—2xerToD A,

At each order the solvability condition is that thg do not
contain terms proportional td@ye*"0. Such terms would
come from inhomogeneous terms proportionaletde, but
not from terms proportional to sie{ye'® and
cos@To)eTo. The solvability condition at this order is thus

D,A* =2i BTKA,

. In fact, to all orders the; have the same growth rate, as
indicated in Eq.(14). The quantitiess; , S; , ands; are
calculated in a similar way, and complete the calculation of
the dominant Floquet multipliers @f* to the required order.
We omit the details of this calculation.

In order to compute the growth rate of the perturbations of
interest, namelya™, we next calculate the corresponding
multipliers from the prefactor in Eq7). From the integral in
Eq. (15), we obtain
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$3=35,=0. singular behavior of the growth rate &s-0 is a conse-
quence of our assumption that<k, which forms the basis
The final growth rates foa™(t) follow from Eq. (16), and  of our expansion scheme.

are There are four generic cases for the dependenee, @n
m corresponding to the four possible combinations of signs
s"=s"=60,+ %03+ 8%y +0(8°), (17 of p, and p,. Specifically, (@) if p,<0 and p;<0, then
0,<0 for all m. (b) If p,<0 andp,>0, theno,>0 for
where 0<mM<fh,, anda,<O0 for m>m,, where
01=2i(B— a)mk, N PREL:
m=—-— . (18
[ (1+ap)(B— )i &
73T (1+ B2k Also, the value ofm corresponding to the maximum growth
rate is
2B(1+ apB)?k Bk
[161+ %K'+ (1+ap)e?] o]’ _ p M1
2 ™
and

(c) If p,>0 andp,;<0, theno,<0 for 0<m<m,, and
o,>0 for m>m,, wherem, is again given by Eq(18). (d)
If p,>0 andp,>0, theno,>0 for all m.
Note that the sign of, is independent ok. Thus fora
32(1+ 201+ g2)K4 and g such thafp,<0 (see Fig. 1the modulational instabil-
p1=(1+ aﬁ){ ( > g'[i) (1+5°) = ity first occurs in the limit of smalf, and its threshold is
[16(1+ )K"+ (1+ af) w’] then given byp,=0, or equivalently, = 7ggr, Where
_[2B%+ w(1+aB) 7]

2(1+ B2 K’w?

_ w2 =4
04=p1M°+ poMm~,

with

_ B41+ap)(1+B%)%K° 28%k?
TEBFTT16(1+ B2) 2K+ (1+ aB)2w??  (1+aB)w?’
(19

)

(1+aB)(—1—a?+4aB—5B°+3a’B2—4aB?)
p2= 4(1+ B%)%K2 : Typical growth rates as a function of are shown in Fig. 2.
In the original variables the generalized Eckhaus bound-
We see that, as expected, the lowest nonvanishing order afy takes the explicit form
the real part 06™ is O(8%) and is independent of the. The _ )
quantity o, thus determines the solution stability, and in par- = pepe K 0) = po+ 6 megr (20
ticular the shiftygge in the generalized Eckhaus boundary.
These results may be compared with those rfoe sm
and an unmodulated control parametgr=[(3+ a8+
282)/(1+ aB)]k?+ 827 in the limit 5—0. In this case, the
growth rates fora™ are

and may lie inside or outside the original boundary:
depending on whethepgge>0 or 7gge<0. Thus the band
of stable wave numbers may decrease or incréasgemain
unchangeg depending on the values af, 8, andw. It is
easiest to determine which of these applies by plotiing
and wege versusk for the parameters of intere&ee Fig. 3.

t e — u u u 5
s'=s"=d0i+ 805+ 50} +0(8), An important special case for which,<0 is a=5=0,

where which gives
~ 64k° 52
o (aB) (B ek @) =31+ g 2D
1= 01, O3 (1+ Bk ' @
_ _ [see Fig. 4a)]. In this case the band of stable wave numbers
oh=pim+ pym’?, is always reduced, with lower frequencies giving greater re-
duction. Forp,>0 [see Fig. 4b)], all solutions of the form
and (2) are unstable, although the instability sets in for fimitef

) p1<0. In this case the expansion is not able to capture the
u_ _ (1+ap)y u_ most unstable wave numbers although we expect stabiliza-
PIm T+ poKe PP tion for large enoughm; in particular, there is neesonant
sideband instability wittD(1) wave numbers excited in re-
In particular, these growth rates are equal to the growth ratesponse td () modulation of the control parameter because
for the modulated case in the limit that the modulation fre'the 0(6) growth rateé of Ci due to such a resonance cannot
quency w—x=. Since g, determines the stability and since compete with th@(1) decay rat&. Note, finally, that in the
pi and p; may be positive or negative depending on thelimit w—0 the Eckhaus boundary= 7gg does not reduce
values ofy, a, andp, the dependence ef; onm is com-  to the condition7gge=0 appropriate to the unmodulated
pletely analogous to the modulated case. In both cases thgoblem {u;=0); the multiple scales expansion breaks
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1o} T4
4 e
2 2r
-3 -
0 4+
-5
2+ 0
. p2 >0 04 T 7 T T T T
! I 0
2 15 -1 <05 0 01 i (b) ]
FIG. 1. The sign ofp, in the (,B) plane. Only the region % 0.2 : :
a B > 0is of interest; if 1+ « B < 0 no Eckhaus boundary is o 4
present. 03k _
1 | I | 1 [
down in this limit. However, as in other problems of this 0 02 04 06 08 1 12 m
type, e.g.[33], one doesot expect to recover in this limit
the results for the unmodulated problem. In particular, when 04 T T T | |
the modulation frequency is low, the Eckhaus boundary is 0.3 (c) .
shifted quasistatically. Since the growth rate of the instability 02 L
for finite & is finite, the instability will be triggered and have ) ]
time to grow to finite amplitude before the sign pf-u, 0.1 ]
reverses. Thus in the limib— 0 we expect the generalized 0
Eckhaus boundary to be shifted (), and notO(&?),
: : i - 0.1 | .
i.e., by a substantially larger amount than in the fimitease.
The singular behavior ofzgr found above aso—0 sup- -0.2 : : ' ' [ —
ports this expectation, but suggests that the physical argu- 0 02 04 06 08 1 12 m
ment requires modification whe®=0. ' :
os F T T T T ]
IV. CONCLUSION Z I
In this paper, we have described a general method for 5
obtaining the effect of modulation of the control parameter 4r
on the generalized Eckhaus boundary, with emphasis on the 3
case when the control parameter is undergoing asymptoti- 2r
cally small sinusoidal oscillations about a constant value. For ; B .

this example, it was found that the band of stable wave vec-
tors may be expanded or reduced depending on the values of
a and B, while in the special casee=8=0 the band is
always reduced, with lower frequencies giving greater reduc-
tion. We have found no evidence for resonant excitation o
the Eckhaus-Benjamin-Feir instability. We anticipate that the_ _ i _ z
evolution of the long wavelength instabilityhen present ZB)Oa(;)é(;% 2922<BO);(? “ —:Zng—(l,;yo— O>g))1 =
will continue to be governed by the Kuramoto-Sivashinsky P2 ' ' 7 B
equation witho, determining the coefficients of the second
and fourth spatial derivatives, while; and o3 contribute  pared with our results fox=8=0. Although experimental
drift (first derivative$ and dispersion(third derivativey. ~ confirmation of this conclusion appears to be lacking, the
Only if the modulation time scale ©(5~ %) will the evolu- a=pB=0 case could be tested in RayleighrBed convec-
tion of the instability be described by the Kuramoto- tion with either oscillatory temperature of the lower and/or
Sivashinsky equation with a fluctuating control parameter. upper plates or oscillating gravitational acceleration. A simi-
The stability results obtained are in qualitative agreemenlar experiment on Taylor vortex flow with the modulation
with those of Hernadez-Gara et al. [23] on the effects of arising from oscillations in the angular speed of the inner
fluctuations near the Eckhaus boundary in the Swift-cylinder appears feasible. The effect on the generalized Eck-
Hohenberg equation, who found through direct numericahaus boundary of combined periodic modulation and either
simulation that the fluctuations decrease the effective widtladditive stochastic noise or noise in the control parameter
of the Eckhaus-stable band. This conclusion is to be comitself is also of interest, cf.32].

0 0.2 04 06 0.8 1 1.2 m

FIG. 2. The growth rater, as a function of the perturbation
ave numbem, showing the four generic possibilities. Hape=1,
=0.5and@ a=8=0, =05 (p; <0, p,<0),(b)a= B
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1.6 T T T T T T
14 | ;LEBF(k;w = 0.5) _—
,uEBF(k;w = 0.75) —_
1.2 - ~
Ho —
1 -
0.8 |- stable
0.6 + _
0.4 unstable e "
0.2 -
0 ja ] ]
0 01 02 03 04 05 0.6 k

FIG. 3. An example of the frequency dependence of the gener-
alized Eckhaus boundary with sinusoidal modulation where 0.5
andg = 0.5 (so thatp, < 0). Notice, for example, that fogg = 1,
the band of stable wave numbers is increaseddfor 0.5 and
reduced forow = 0.75 with respect to the unmodulated Eckhaus
boundary. The dotted line is the boundary for the primary instabil-
ity. This figure is plotted with§ = 1 for clarity.
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APPENDIX A: EXPANSION OF p(t)

The terms in the expansidii2) are found by expanding
q(t)y=1/p(t) as
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4.5 T T
4 k2 .
flo —
3.5 -
UE e
3 -
2.5 =
2 < 0 -
1.5 p > 04
1 -
0.5 =
0 ] 1
0.5 1k

-1 -0.5 0

FIG. 4. (a) The Eckhaus boundary in the system with external

sinusoidal modulatiortheavy ling compared with the boundary in

the absence of modulatidmtermediate thickness linend the re-

q(t) =Go+ 8G4(t) + %qa(t) + - - -,

and a =

solving Eqg.(6) order by order in the long-time limit, and
expressing the results in terms of fhgt)’s. This gives

gion of primary instability(thin line). The parameters ar@ = 1,

B = 0 (p, < 0), corresponding to the real Ginzburg-
Landau equation with modulatioh) o = 1, a =2, B8=1 (p,

> 0). Here the heavy line does not represent the Eckhaus boundary

because all solutions of the forif2) are unstable, although for

Po= o~k

indicated ands = 1 for clarity.

and

B(h=r(+ S(Lffthmtvg(t')dt',
where
g(t)=exd 2(jo—k*)t]
andr;(t) andh;(t) depend orp;_1(t),pi_o(t), . .. ,po. For

reference, we give the following formulas for(t) and
hi(t), i=1,2,3,4:

ry(t)=0,
[P0
r2(t)_ '50 y

_ 20101 2[Pu(1)]
Po Po

ra(t)

[P2(D]* 3[Pa(DI*Pa(t)

ryt)y=—=3

Po 53
N [P2(1) 1%+ 2P (1) Pa(t)
Po

()
Po

hy(t)=

~ Ha(t) pa(O)Pa(t)
R

3(t)

3 Ho()Py(t) N
Po

Po

()
0

'53

p1<<0 the instability sets in at finiten (see text The signs op, are

_ ([’510)]2 Pa(t)
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Ta(t)  wa(H)PL(t) P.(1)7? t
ha(t) = M%( ) Ms(N)erl( )+M2(t)<[pi( )] _p_ffz_))
0 Po Po Po
_ P 2p.()Pa(t) Palt
+M1(t)(_[p54)] n p1(~)3pz() pi(z)).
0 Po Po

APPENDIX B: MULTIPLE SCALES ANALYSIS
OF EQ. (13)

In terms of the notatiorD;=4/JT; the multiple scale
analysis of Eq(13) leads to the following hierarchy of equa-
tions:

Dicg +foCo =0,

Dacy +fgcy =—fycg —2D1Docy,

JEFF MOEHLIS AND EDGAR KNOBLOCH

Dac, +foc, =—frcy —fyc5 —Dicy —2D,Docy
—2D;Dgcy,
Dic+fycy=—ficy; —fyci —f3c5 —D2cy —2D3Docy
—2D,D;¢y —2D,Dgc; —2D;DgC;,
Dacy +focy;=—frcy—fyc; —fycy —fycg—Dics

—D3cy —2D,4Docy —2D3Dscy
—2D3Doc; —2D,D;c; —2D,Dgc;,
—2DyDc5.

at

These are obtained by terms

0(1),0(6), ...,0(8%, respectively.
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