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I. INTRODUCTION

The Ginzburg-Landau equation

At5mA1Axx2uAu2A

first arose in the context of superconductivity@1#, and has
since been derived@2–6# and tested experimentally@7–11#
as an amplitude equation describing the slow~in both space
and time! evolution of one-dimensional patterns near onset
of a steady-state pattern-forming instability@12#. In this
equationm is the control parameter and the complex ampli-
tudeA(x,t) is related, for example, to a stream functionc by
c5eRe(Aeikcx/e)1O(e2). Here kc is the wave number of
the pattern at onset ande2 is a small parameter denoting
distance from the instability threshold. Near onset of a long
wavelength oscillatory instability@12# the equation general-
izes to the complex Ginzburg-Landau equation

At5mA1~11 ia!Axx2~11 ib!uAu2A,

wherea and b are real constants that describe linear and
nonlinear dispersive effects. This equation also describes the
evolution of the amplitude of a traveling wave with finite
wave numberkc in a reference frame moving at the group
velocity of the wave.

In this paper we are interested in the stability properties of
nonlinearplane wave solutions of both equations. Such so-
lutions take the formA5K(k)eikx1 iVt and represent patterns
with wave numberkc1ek, i.e., patterns with a slightly dif-
ferent wavelength from that selected at onset. The stability of
such solutions has been studied for both the real@13–15# and
complex@16–18# Ginzburg-Landau equations; in the Hamil-
tonian case the corresponding analysis goes back to Ben-
jamin and Feir@19,20#. If m,0 the only solution is the
trivial ~i.e., spatially uniform! stateA50. If m.0 the trivial
state is linearly unstable to solutions of the form
A5K(k)eikx1 iVt whose wave number satisfiesk2<m. How-
ever, if 11ab.0, these solutions are themselves unstable
in the limit of infinite wavelength perturbations unless
@(31ab12b2)/(11ab)#k2<m, with equality defining
what we will call the generalized Eckhaus boundary. If
11ab,0 all solutions withk2<m are unstable. In particu-
lar, if we fix a and continuously varyb such that 11ab

changes from a positive to a negative value, the parabola in
(k,m) space describing the generalized Eckhaus boundary
shrinks in width, vanishing when 11ab50. It should be
emphasized that this notion only pertains to the stability
properties of plane waves with respect to long wavelength
perturbations. For the real Ginzburg-Landau equation these
are in fact the most dangerous perturbations; in the complex
case the long wavelength perturbations need not be the most
dangerous ones, and the above condition determines the sta-
bility properties of plane waves only in certain regions in the
(a,b) plane@17#. The Eckhaus instability is responsible for
~partial! wavelength selection in one-dimensional systems,
and can lead to spatio-temporal complexity. An example of
particular interest arises when spatial ramps are used to se-
lect a wave number outside of the Eckhaus-stable band; in
this case the system is forced to undergo repeated phase slips
which may occur periodically or chaotically as a result of
repeated triggering of the Eckhaus instability@21,22#. The
instability can also be triggered, in a less organized manner,
by subjecting the system to spatially varying noise. In@23#
the effect of additive stochastic fluctuations on the Eckhaus
boundary for the Swift-Hohenberg equation was examined; it
was found that such fluctuations~which are not to be inter-
preted as fluctuations in the control parameter! cause the
band of stable wave numbers to be reduced. The effect of
stochastic fluctuations in the control parameter on the pri-
mary instability has also been considered@24# with a view to
determining the shift in the onset of the instability. However,
fluctuations inm have another effect as well. They change
the instantaneous width of the band of growing wave num-
bers and so move a certain range of wave numbers repeat-
edly into and out of the Eckhaus stable region. The cumula-
tive effect of such oscillations is to shift the Eckhaus stability
boundary, and its description is the subject of this paper.

We focus on the effects of temporally periodic modula-
tion of the control parameter on the Eckhaus boundary. As is
well known, temporal modulation may shift the threshold for
the onset of the primary instability@25–27#, can lead to pat-
tern selection@28–30#, and, in the presence of noise, can
affect transitions between attractors@31,32#. In the present
paper, we show that such modulation also affects the gener-
alized Eckhaus boundary, and obtain an analytic expression
for the boundary for small amplitude sinusoidal modulation.
In the special case of the real Ginzburg-Landau equation
with a sinusoidally modulated control parameter it is found
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that the band of stable wave vectors is always reduced, with
lower modulation frequencies giving greater reduction. For
the complex Ginzburg-Landau equation the details are sen-
sitive to the values ofa, b, and the modulation frequency, as
elaborated further below.

II. THE ECKHAUS-BENJAMIN-FEIR INSTABILITY
WITH PERIODIC MODULATION

In this section we describe the technique we use to study
the effect of periodic modulation of the control parameter on
the Eckhaus-Benjamin-Feir instability. We generalize the
complex Ginzburg-Landau equation to

At5m~ t !A1~11 ia!Axx2~11 ib!uAu2A, ~1!

where m(t) is assumed to be differentiable and
m(t1T)5m(t). Without loss of generalitym(t) can be
taken to be real. Also, for simplicity, the effect of the side-
walls is ignored, and it is assumed that the only effect of
modulation is on the control parameter. As already men-
tioned, a wide class of pattern-forming systems can be re-
duced to Eq.~1! near the onset of instability. It is important
to observe that the time scale for the variation of the control
parameter is taken to be thesameas that for the growth and
equilibration of the pattern-forming instability. In terms of
the parameters of the physical system this implies an appro-
priately slow modulation of the control parameter. For solu-
tions of the form

A~x,t !5R~ t !expF ikx1 i E V~ t8!dt8G , ~2!

whereR(t) is real, we obtain

Rt5m~ t !R2k2R2R3,

V52ak22bR2.

Linearization about the trivial solution (A5R50) gives

R~ t !;expF E t

@m~ t8!2k2#dt8G ,
and since the integrand is periodic, the trivial solution is
linearly unstable to solutions of the form~2! if the average
value ofm(t) is greater thank2:

1

TE0
T

m~ t !dt.k2. ~3!

This condition generalizes the usual instability condition
m.k2 to the time-dependent case, and will be assumed in
what follows.

The stability of solutions of the form~2! is investigated by
considering the solution

A~x,t !5expF ikx1 i E V~ t8!dt8G@R~ t !1a~x,t !#,

wherea(x,t) is an infinitesimal perturbation of the form

a~x,t !5a1~ t !eimx1ā2~ t !e2 imx.

The linearized equations for the amplitudesa1 anda2 are

at
15@m~ t !2 iV2~k1m!2~11 ia!22~11 ib!p~ t !#a1

2~11 ib!p~ t !a2, ~4!

at
25@m~ t !1 iV2~k2m!2~12 ia!22~12 ib!p~ t !#a2

2~12 ib!p~ t !a1, ~5!

where p(t)[„R(t)…2 is real. Note that ifaÞ0 andbÞ0,
then taking the complex conjugates of these equations gives
two more independent equations. However, the equations for
a1 anda2 are uncoupled from those forā1 and ā2.

An important property ofp(t) is that in the long-time
limit it becomes periodic with the same period asm(t). To
prove this we note that

dp

dt
52RRt52@m~ t !2k2#p22p2,

or, equivalently,

dq

dt
12@m~ t !2k2#q52, ~6!

whereq(t)[1/p(t). Thus

q~ t !5qh~ t !1qp~ t !,

where

qh~ t !;expF22E t

@m~ t8!2k2#dt8G
and

qp~ t !52expF22E t

@m~ t8!2k2#dt8G
3E t

expF2E t8
@m~ t9!2k2#dt9Gdt8.

The particular solutionqp satisfies Eq.~6! at times t and
t1T, so that

dqp
dt

~ t1T!12@m~ t1T!2k2#qp~ t1T!52

and

dqp
dt

~ t !12@m~ t !2k2#qp~ t !52.

Using the periodicity ofm(t), these equations yield

d

dt
@qp~ t1T!2qp~ t !#522@m~ t !2k2#@qp~ t1T!2qp~ t !#

and hence
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qp~ t1T!2qp~ t !;expF22E t

@m~ t8!2k2#dt8G .
It follows, from condition ~3!, that ast→`, q(t)→qp(t),
and thatqp(t) is T-periodic in this limit, and correspondingly
that p(t) is alsoT-periodic.

Equations~4! and ~5! can be simplified by setting

a6~ t !5expF E t

@2m~ t8!22k223p~ t8!2m222iakm#dt8G
3c6~ t !, ~7!

whence

ctt
61Fdm

dt
2@m~ t !2k2#274mk@m~ t !2k22p~ t !#

24m2k21a2m412abm2p~ t !Gc6

22im$6am@m~ t !2k22p~ t !#12akm2

12bkp~ t !%c6

50. ~8!

Since bothm andp areT-periodic in the long-time limit, we
see that, in this limit, Eq.~8! is a differential equation of
Mathieu type, with ~complex! periodic coefficients. Only
whena5b50 is the equation forc6 real.

We now restrict our attention to the case where the con-
trol parameter is undergoing small oscillations about a con-
stant value. Since the time scale for the evolution of the
instability a distanceO(m2) from the generalized Eckhaus
boundary scales asO(m24), wherem is the perturbation
wave number, we anticipate that nontrivial effects will arise
in this region when the modulation effects occur precisely on
this time scale. We introduce a small parameterd measuring
the amplitude of the modulation of the control parameter and
consider perturbation wave numbersm of orderd,

m5dm̃, ~9!

wherem̃ is O(1). Hered is defined in terms of the expan-
sion

m~ t !5m̃01dm̃1~ t !1d2m̃21•••, ~10!

wherem̃0 ,m̃1(t),m̃2 , . . . areO(1) and

m̃05
~31ab12b2!

11ab
k2. ~11!

Thus the time-independent quantityh[m̃2 indicates the dis-
tance from the generalized Eckhaus boundary~11!. In the
following we will vary h in order to explore the vicinity of
this boundary, and in particular to search for the values
hEBF at which the growth rate of the instability vanishes.
Recall that whenm̃150 this occurs along the Eckhaus

boundary. ThushEBF50 whenm̃150. When modulation is
present we expect that the Eckhaus boundary will be shifted
relative to Eq.~11!, and consequently thathEBFÞ0. We now
explain how we calculatehEBF.

For reasons already mentioned, the required calculation
needs to be carried to fourth order in the parameterd. We
first calculate the quantityp(t) in powers ofd,

p~ t !5 p̃01d p̃1~ t !1d2p̃2~ t !1•••, ~12!

where p̃05m̃02k2 and p̃1(t),p̃2(t), . . . areO(1). Explicit
expressions for thep̃ j , j51, . . . ,4, in thelong-time limit
can be found in Appendix A. Substituting Eqs.~9!, ~10!, and
~12! into Eq. ~8! and collecting powers ofd, we obtain

ctt
61F (

j50

`

d j f j
6~ t !Gc650, ~13!

where f 0
6(t), f 1

6(t), . . . areO(1). We solve this equation
using the method of multiple scales. Thus, we let

c6~ t !5(
i50

`

d ici
6~T0 ,T1 ,T2 , . . . !,

where Tn[dnt. Equation ~13! then yields a hierarchy of
equations for theci

6 ~see Appendix B! with solution of the
form

cj
6~T0 ,T1 ,T2 , . . . !5expF(

i50

`

ŝi
6Ti Gyj6~T0!. ~14!

Here theyi
6 areT-periodic in the fast variableT0 and the

ŝi
6 are ~Floquet! exponents which remain to be determined.
Note that there are in fact two Floquet exponents for both
c1 andc2, but for the stability analysis it suffices to restrict
attention to the one with the greatest real part. To determine
the growth rate of the perturbationsa6(t) we note that

E t

@2m~ t8!22k223p~ t8!2m222iakm#dt8

5u~ t !1(
i50

`

s̃iTi , ~15!

whereu(t1T)5u(t), and hence using Eq.~7! that

a6~ t !5expF(
i50

`

d i~ s̃i1 ŝi
6!tGv6~ t !,

where

v6~ t !5exp@u~ t !#(
j50

`

d j y j
6~ t !

is T-periodic. Thus, the~complex! growth rate ofa6(t) is

s65(
i50

`

d i~ s̃i1 ŝi
6!. ~16!
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The growth ratess̃i and ŝi
6 , and hences6, depend on

h,m̃,k, and the nature of the modulation, such as its fre-
quency. Once explicit expressions fors6 are known, the
shift in the generalized Eckhaus boundary,hEBF, follows
from the equation Re(s6)50. Sinces6 is determined per-
turbatively it suffices to calculate Re(s6) at the lowest non-
vanishing order. Note that ifaÞ0, bÞ0, a similar analysis
starting with the complex conjugates of Eqs.~4! and ~5!
shows that the growth rates ofā6 are s̄6, i.e., the above
calculation yields the complete stability information re-
quired.

III. AN EXAMPLE: A SMALL AMPLITUDE SINUSOIDAL
PERTURBATION TO A CONSTANT

CONTROL PARAMETER

As an example we consider the case of small sinusoidal
oscillations aboutm5m̃01d2h and takem̃15sinvt. Thus
the amplitude of the oscillations isd, and this amplitude is
larger than the adoptedO(d2) distance from the generalized
Eckhaus boundarym5m̃0. We restrict attention to the case
11ab.0 for which this boundary is present. From Appen-
dix A, we obtain

p̃05
2~11b2!k2

11ab
,

p̃1~ t !5
4~11b2!k2

16~11b2!2k41~11ab!2v2 @4~11b2!k2sinvt2~11ab!v cosvt#,

with similar expressions forp̃2(t), p̃3(t), andp̃4(t). In particularp̃2(t) equals the constant termh plus terms proportional to
sin(2vt) and cos(2vt). Moreover,p̃3(t) and p̃4(t) only contain terms proportional to sin(nvt) and cos(nvt), with n51 and
n53 for p̃3 andn52 andn54 for p̃4. We now substitute the expansions form(t) andp(t), along withm5dm̃, into Eq.~8!
to obtain thef i

6 . For brevity, we only listf 0
6 and f 1

6 :

f 0
15 f 0

25
24~11b2!2k4

~11ab!2
[2l2~say!,

f 1
1~ t !5 f 1

2~ t !5
28ib~11b2!k3m̃1v~11ab!cosvt24~11b2!k2sinvt

11ab
.

In terms of the notationDi[]/]Ti the equation forc0
6 is

thus ~see Appendix B!

D0
2c0

62l2c0
650,

so that

c0
65A6~T1 ,T2 , . . . !e

lT01B6~T1 ,T2 , . . . !e
2lT0.

If we choosel.0, then in the long-time limit the second
term becomes vanishingly small relative to the first term and
so is of no interest for the stability analysis; without loss of
generality we therefore takeB650. Thus, according to the
notation in Eq.~14!, ŝ0

15 ŝ0
25l. At next order we obtain the

inhomogeneous problem

D0
2c1

62l2c1
652 f 1

6~ t !A6~T1 ,T2 , . . . !e
lT0

22lelT0D1A
6.

At each order the solvability condition is that theci
6 do not

contain terms proportional toT0e
lT0. Such terms would

come from inhomogeneous terms proportional toelT0, but
not from terms proportional to sin(vT0)e

lT0 and
cos(vT0)e

lT0. The solvability condition at this order is thus

D1A
652ibm̃kA6,

so that ŝ1
15 ŝ1

252ibm̃k. To go to next order, we need to
solve forc1

6(t) subject to the solvability condition. Ignoring
the solution to the homogeneous equation, we find that

c1
6~ t !5

22g2l2g1v

4l2v1v3 elT0cos~vT0!

1
2g1l2g2v

4l2v1v3 e
lT0sin~vT0!,

whereg1 andg2 are both proportional toA6(T1 ,T2 , . . . ).
Hence the growth rate ofc1

6 is the same as the growth rate of
c0

6 . In fact, to all orders theci have the same growth rate, as
indicated in Eq.~14!. The quantitiesŝ2

6 , ŝ3
6 , and ŝ4

6 are
calculated in a similar way, and complete the calculation of
the dominant Floquet multipliers ofc6 to the required order.
We omit the details of this calculation.

In order to compute the growth rate of the perturbations of
interest, namelya6, we next calculate the corresponding
multipliers from the prefactor in Eq.~7!. From the integral in
Eq. ~15!, we obtain

s̃052l,

s̃1522iam̃k,

s̃252~h1m̃2!,
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s̃35 s̃450.

The final growth rates fora6(t) follow from Eq. ~16!, and
are

s15s25ds11d3s31d4s41O~d5!, ~17!

where

s152i ~b2a!m̃k,

s352 im̃H ~11ab!~b2a!m̃2

~11b2!k

1
2b~11ab!2k

@16~11b2!2k41~11ab!2v2#
1

bk

v2 J ,
and

s45r1m̃
21r2m̃

4,

with

r15~11ab!H 32~11ab!2~11b2!k4

@16~11b2!2k41~11ab!2v2#2

2
@2b2k21v2~11ab!h#

2~11b2!k2v2 J ,
r25

~11ab!~212a214ab25b213a2b224ab3!

4~11b2!2k2
.

We see that, as expected, the lowest nonvanishing order of
the real part ofs6 isO(d4) and is independent of the6. The
quantitys4 thus determines the solution stability, and in par-
ticular the shifthEBF in the generalized Eckhaus boundary.

These results may be compared with those form5dm̃
and an unmodulated control parameterm5@(31ab1
2b2)/(11ab)#k21d2h in the limit d→0. In this case, the
growth rates fora6 are

s15s25ds1
u1d3s3

u1d4s4
u1O~d5!,

where

s1
u5s1 , s3

u52 i
~11ab!~b2a!m̃3

~11b2!k
,

s4
u5r1

um̃21r2
um̃4,

and

r1
u52

~11ab!2h

2~11b2!k2
, r2

u5r2 .

In particular, these growth rates are equal to the growth rates
for the modulated case in the limit that the modulation fre-
quencyv→`. Sinces4

u determines the stability and since
r1
u and r2

u may be positive or negative depending on the
values ofh, a, andb, the dependence ofs4

u on m̃ is com-
pletely analogous to the modulated case. In both cases the

singular behavior of the growth rate ask→0 is a conse-
quence of our assumption thatm!k, which forms the basis
of our expansion scheme.

There are four generic cases for the dependence ofs4 on
m̃ corresponding to the four possible combinations of signs
of r1 and r2. Specifically, ~a! if r2,0 and r1,0, then
s4,0 for all m̃. ~b! If r2,0 and r1.0, thens4.0 for
0,m̃,m̃u , ands4,0 for m̃.m̃u , where

m̃u5S 2
r1
r2

D 1/2 . ~18!

Also, the value ofm̃ corresponding to the maximum growth
rate is

m̃g[S 2
r1
2r2

D 1/25
1

A2
m̃u .

~c! If r2.0 and r1,0, thens4,0 for 0,m̃,m̃u , and
s4.0 for m̃.m̃u , wherem̃u is again given by Eq.~18!. ~d!
If r2.0 andr1.0, thens4.0 for all m̃.

Note that the sign ofr2 is independent ofk. Thus fora
andb such thatr2,0 ~see Fig. 1! the modulational instabil-
ity first occurs in the limit of smallm̃, and its threshold is
then given byr150, or equivalently,h5hEBF, where

hEBF5
64~11ab!~11b2!2k6

@16~11b2!2k41~11ab!2v2#2
2

2b2k2

~11ab!v2 .

~19!

Typical growth rates as a function ofm̃ are shown in Fig. 2.
In the original variables the generalized Eckhaus bound-

ary takes the explicit form

m5mEBF~k;v![m̃01d2hEBF ~20!

and may lie inside or outside the original boundarym5m̃0
depending on whetherhEBF.0 or hEBF,0. Thus the band
of stable wave numbers may decrease or increase~or remain
unchanged! depending on the values ofa, b, andv. It is
easiest to determine which of these applies by plottingm̃0
andmEBF versusk for the parameters of interest~see Fig. 3!.
An important special case for whichr2,0 is a5b50,
which gives

mE~k;v!53k21
64k6d2

~16k41v2!2
~21!

@see Fig. 4~a!#. In this case the band of stable wave numbers
is always reduced, with lower frequencies giving greater re-
duction. Forr2.0 @see Fig. 4~b!#, all solutions of the form
~2! are unstable, although the instability sets in for finitem̃ if
r1,0. In this case the expansion is not able to capture the
most unstable wave numbers although we expect stabiliza-
tion for large enoughm; in particular, there is noresonant
sideband instability withO(1) wave numbers excited in re-
sponse toO(d) modulation of the control parameter because
theO(d) growth rateŝ of c6 due to such a resonance cannot
compete with theO(1) decay rates̃. Note, finally, that in the
limit v→0 the Eckhaus boundaryh5hEBF does not reduce
to the conditionhEBF50 appropriate to the unmodulated
problem (m̃150); the multiple scales expansion breaks
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down in this limit. However, as in other problems of this
type, e.g.,@33#, one doesnot expect to recover in this limit
the results for the unmodulated problem. In particular, when
the modulation frequency is low, the Eckhaus boundary is
shifted quasistatically. Since the growth rate of the instability
for finite d is finite, the instability will be triggered and have
time to grow to finite amplitude before the sign ofm2m̃0
reverses. Thus in the limitv→0 we expect the generalized
Eckhaus boundary to be shifted byO(d), and notO(d2),
i.e., by a substantially larger amount than in the finitev case.
The singular behavior ofhEBF found above asv→0 sup-
ports this expectation, but suggests that the physical argu-
ment requires modification whenb50.

IV. CONCLUSION

In this paper, we have described a general method for
obtaining the effect of modulation of the control parameter
on the generalized Eckhaus boundary, with emphasis on the
case when the control parameter is undergoing asymptoti-
cally small sinusoidal oscillations about a constant value. For
this example, it was found that the band of stable wave vec-
tors may be expanded or reduced depending on the values of
a and b, while in the special casea5b50 the band is
always reduced, with lower frequencies giving greater reduc-
tion. We have found no evidence for resonant excitation of
the Eckhaus-Benjamin-Feir instability. We anticipate that the
evolution of the long wavelength instability~when present!
will continue to be governed by the Kuramoto-Sivashinsky
equation withs4 determining the coefficients of the second
and fourth spatial derivatives, whiles1 and s3 contribute
drift ~first derivatives! and dispersion~third derivatives!.
Only if the modulation time scale isO(d24) will the evolu-
tion of the instability be described by the Kuramoto-
Sivashinsky equation with a fluctuating control parameter.

The stability results obtained are in qualitative agreement
with those of Herna´ndez-Garcı´a et al. @23# on the effects of
fluctuations near the Eckhaus boundary in the Swift-
Hohenberg equation, who found through direct numerical
simulation that the fluctuations decrease the effective width
of the Eckhaus-stable band. This conclusion is to be com-

pared with our results fora5b50. Although experimental
confirmation of this conclusion appears to be lacking, the
a5b50 case could be tested in Rayleigh-Be´nard convec-
tion with either oscillatory temperature of the lower and/or
upper plates or oscillating gravitational acceleration. A simi-
lar experiment on Taylor vortex flow with the modulation
arising from oscillations in the angular speed of the inner
cylinder appears feasible. The effect on the generalized Eck-
haus boundary of combined periodic modulation and either
additive stochastic noise or noise in the control parameter
itself is also of interest, cf.@32#.

FIG. 1. The sign ofr2 in the ~a,b! plane. Only the region 11
a b . 0 is of interest; if 11 a b , 0 no Eckhaus boundary is
present.

FIG. 2. The growth rates4 as a function of the perturbation
wave numberm̃, showing the four generic possibilities. Herev51,
k50.5 and~a! a 5 b 5 0, h 5 0.5 ~r1 , 0, r2 , 0!, ~b! a 5 b
5 0, h 5 0 ~r1 . 0, r2 , 0!, ~c! a 5 2, b 5 1, h 5 0 ~r1 ,
0, r2 . 0!, and~d! a 5 2, b 5 1, h 5 20.2 ~r1.0, r2.0!.
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APPENDIX A: EXPANSION OF p„t…

The terms in the expansion~12! are found by expanding
q(t)[1/p(t) as

q~ t !5q̃01dq̃1~ t !1d2q̃2~ t !1•••,

solving Eq. ~6! order by order in the long-time limit, and
expressing the results in terms of thep̃i(t)’s. This gives

p̃05m̃02k2

and

p̃i~ t !5r i~ t !1
2p̃ 0

2

g~ t !E
t

hi~ t8!g~ t8!dt8,

where

g~ t !5exp@2~m̃02k2!t#

and r i(t) andhi(t) depend onp̃i21(t),p̃i22(t), . . . ,p̃0. For
reference, we give the following formulas forr i(t) and
hi(t), i51,2,3,4:

r 1~ t !50,

r 2~ t !5
@ p̃1~ t !#

2

p̃0
,

r 3~ t !5
2p̃1~ t ! p̃2~ t !

p̃0
2
2@ p̃1~ t !#

3

p̃ 0
2 ,

r 4~ t !5
@ p̃1~ t !#

4

p̃ 0
3 2

3@ p̃1~ t !#
2p̃2~ t !

p̃ 0
2

1
@ p̃2~ t !#

212p̃1~ t ! p̃3~ t !

p̃0
,

h1~ t !5
m̃1~ t !

p̃0
,

h2~ t !5
m̃2~ t !

p̃0
2

m̃1~ t ! p̃1~ t !

p̃ 0
2 ,

h3~ t !5
m̃3~ t !

p̃0
2

m̃2~ t ! p̃1~ t !

p̃ 0
2 1m̃1~ t !S @ p̃1~ t !#

2

p̃ 0
3 2

p̃2~ t !

p̃ 0
2 D ,

FIG. 3. An example of the frequency dependence of the gener-
alized Eckhaus boundary with sinusoidal modulation wherea 5 0.5
andb 5 0.5 ~so thatr2 , 0!. Notice, for example, that form̃0 5 1,
the band of stable wave numbers is increased forv 5 0.5 and
reduced forv 5 0.75 with respect to the unmodulated Eckhaus
boundary. The dotted line is the boundary for the primary instabil-
ity. This figure is plotted withd 5 1 for clarity.

FIG. 4. ~a! The Eckhaus boundary in the system with external
sinusoidal modulation~heavy line! compared with the boundary in
the absence of modulation~intermediate thickness line! and the re-
gion of primary instability~thin line!. The parameters arev 5 1,
and a 5 b 5 0 ~r2 , 0!, corresponding to the real Ginzburg-
Landau equation with modulation.~b! v 5 1, a 5 2, b 5 1 ~r2
. 0!. Here the heavy line does not represent the Eckhaus boundary
because all solutions of the form~2! are unstable, although for
r1,0 the instability sets in at finitem̃ ~see text!. The signs ofr1 are
indicated andd 5 1 for clarity.
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h4~ t !5
m̃4~ t !

p̃0
2

m̃3~ t ! p̃1~ t !

p̃ 0
2 1m̃2~ t !S @ p̃1~ t !#

2

p̃ 0
3 2

p̃2~ t !

p̃ 0
2 D

1m̃1~ t !S 2
@ p̃1~ t !#

3

p̃ 0
4 1

2p̃1~ t ! p̃2~ t !

p̃ 0
3 2

p̃3~ t !

p̃ 0
2 D .

APPENDIX B: MULTIPLE SCALES ANALYSIS
OF EQ. „13…

In terms of the notationDi[]/]Ti the multiple scale
analysis of Eq.~13! leads to the following hierarchy of equa-
tions:

D0
2c0

61 f 0
6c0

650,

D0
2c1

61 f 0
6c1

652 f 1
6c0

622D1D0c0
6,

D0
2c2

61 f 0
6c2

652 f 1
6c1

62 f 2
6c0

62D1
2c0

622D2D0c0
6

22D1D0c1
6,

D0
2c1 f 0

6c3
652 f 1

6c2
62 f 2

6c1
62 f 3

6c0
62D1

2c1
622D3D0c0

6

22D2D1c0
622D2D0c1

622D1D0c2
6,

D0
2c4

61 f 0
6c4

652 f 1
6c3

62 f 2
6c2

62 f 3
6c1

62 f 4
6c0

62D1
2c2

6

2D2
2c0

622D4D0c0
622D3D1c0

6

22D3D0c1
622D2D1c1

622D2D0c2
6

22D0D1c3
6.

These are obtained by equating terms at
O(1),O(d), . . . ,O(d4), respectively.
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