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Abstract We use optimal control theory to design a
methodology to find locally optimal stimuli for desynchro-
nization of a model of neurons with extracellular stimula-
tion. This methodology yields stimuli which lead to positive
Lyapunov exponents, and hence desynchronizes a neural
population. We analyze this methodology in the presence of
interneuron coupling to make predictions about the strength
of stimulation required to overcome synchronizing effects
of coupling. This methodology suggests a powerful alterna-
tive to pulsatile stimuli for deep brain stimulation as it uses
less energy than pulsatile stimuli, and could eliminate the
time consuming tuning process.

Keywords Parkinson’s disease · Lyapunov exponent ·
Optimal control theory

1 Introduction

Pathological synchronization among bursting neurons in
the basal ganglia-cortical loop within the brain has been
hypothesized to play a contributing role in the tremors
seen in patients with Parkinson’s disease (Nini et al. 1995;
Brown and Marsden 1998; Levy et al. 2000; Chen et al.
2007; Pogosyan et al. 2010; Wichmann et al. 2011). Deep
Brain Stimulation (DBS) is a well-established technique
for alleviating these tremors. While the functional mech-
anism of DBS is not well understood, theoretical and
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experimental work suggest that DBS might desynchro-
nize these pathologically synchronized neurons through the
injection of high-frequency, pulsatile input into an appro-
priate region of the brain (Tass 2007; Hammond et al.
2007; Wilson et al. 2011). Viewing the problem of treat-
ing Parkinson’s disease through this lens has led to novel
treatments which have been successful in primates (Tass
2003; Tass et al. 2012). Theoretical work, e.g., Rosenblum
and Pikovsky (2004) and Popovych et al. (2005), show
that desynchronization can be achieved with delayed feed-
back control to counter the effects of mean field coupling
in a heterogeneous ensemble of oscillators. In Danzl et al.
(2009), a minimum time desynchronizing control based on
phase resetting for a coupled neural network was estab-
lished using a Hamilton-Jacobi-Bellman approach, which
was later extended by Nabi et al. (2013) to desynchronize
neurons using an energy-optimal criterion.

Typically, DBS is implemented with a high-frequency,
pulsatile stimulus, and because each patient with
Parkinson’s disease is different, a time intensive tuning
process is used to select appropriate stimulus parameters
to best mitigate symptoms. Despite attempts to better
understand and improve the in vivo tuning process (Kuncel
and Grill 2004; Volkmann et al. 2006), it remains somewhat
of an art form, and the resulting stimulus is not guaran-
teed to be optimal for alleviating Parkinson’s symptoms.
Furthermore, pulsatile stimuli are just a small subset of all
stimuli that can be administered by a signal generator. This
has motivated researchers to search for alternative stimuli
that consume less energy in order to prolong battery life
and to mitigate potential side effects of DBS including
speech problems, difficulty swallowing, and motor contrac-
tion (Benabid et al. 2009). Furthermore, alternative stimuli
may reduce the need to progressively increase the DBS
voltage over time.
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In Wilson and Moehlis (2014) we proposed a procedure
for finding an energy-optimal stimulus which gives a posi-
tive Lyapunov exponent, and hence desynchronization, for
a neural population. Unlike other proposed methods such as
Danzl et al. (2009), Nabi et al. (2013), the procedure does
not need the full model of the dynamics, and unlike Danzl
et al. (2010), only requires a single input. Furthermore, this
procedure is highly adaptable, and has the potential to be
applied to be applied to other models of neural activity, such
as those with bursting limit cycles oscillators (see Sherwood
and Guckenheimer (2010)) which are now thought to play a
crucial role in Parkinson’s disease (Bevan et al. 2006; Hahn
et al. 2008; Gale et al. 2009; Ammari et al. 2011; Tai et al.
2011).

However, a major drawback of our method from
Wilson and Moehlis (2014) is that it assumes charge-
injection through each individual neural membrane using,
for example, patch clamp techniques which are not feasi-
ble for neurons in vivo. Here we adapt the methodology
to work for extracellular neural stimulation (as is the case
for clinical DBS). We further adapt the model to limit
Faradaic reactions that can be responsible for aggregate
damage to the DBS probe and surrounding neural tissue for
chronic DBS patients (Merill et al. 2005). The goal of this
study is to move this methodology closer towards experi-
mentation by providing numerical evidence that it can be
implementedwithin a DBS framework.

In Section 2, we describe the model for extracellular
stimulation. Section 3 defines the Lyapunov exponent for
both a coupled and uncoupled system, and formulates a
control problem to optimize the trade-off between rele-
vant factors in the DBS stimulation such as total energy
use, rate of desynchronization, and rate of Faradaic reac-
tions. Section 4 gives results for this methodology applied
to a model of thalamic activity. Section 5 gives conclud-
ing remarks, and Appendices A and B contain supporting
simulations.

2 Model of extracellular stimulation

We approximate the bursting regime in a fast-slow model
of neural bursting (Ermentrout and Terman 2010) with a
periodically spiking model of thalamic neurons (Rubin and
Terman 2004):

V̇i =
[
Im,i + Iext (t)+ 1

N

N∑
i=1

σij (Vj − Vi)+ ηi(t)

]
/C,

(1)

where

Im,i = −IL(Vi)− INa(Vi , hi)− IK(Vi , hi )− IT (Vi , ri )+ ISM,

ḣi = (h∞(Vi)− hi)/τh(Vi),

ṙi = (r∞(Vi)− ri )/τr (Vi), i = 1, . . . , N.

This is a conductance based model which reproduces the
firing properties of a single population of thalamic neurons
and has been used in previous modeling studies, for exam-
ple, (Feng et al. 2007; Dorval et al. 2010; Schiff 2010). We
emphasize that the following methodology is not limited to
Eq. (1) and can be applied to any model for which the phase
response curve can be found, as we have shown previously
in Wilson and Moehlis (2014). We have augmented the volt-
age equation by additively including electrotonic coupling
(Johnston and Wu 1995), DBS input, and Gaussian white
noise. Here, N is the total number of neurons, Vi, hi, and
ri are membrane voltage and gating variables for neuron
i, Im,i is the total membrane current for neuron i, Iext is
the external current from the electric field generated by the
DBS probe, σij characterizes the coupling strength between
electrotonically coupled neurons i and j , with σij = σji
and σii = 0 for all i, and ηi(t) = √

2DN (0, 1) is the
i.i.d. noise associated with each neuron, assumed to be
zero-mean Gaussian white noise with variance 2D. In this
equation ISM represents the baseline current which we take
to be 5μA/cm2 causing the neuron to fire with a period
T = 8.395 ms and C = 1μF/cm2 is the constant neural
membrane capacitance. For a full explanation of the func-
tions IL, INa, IK, It , h∞, τh, r∞ and τr , we refer the reader
to Rubin and Terman (2004).

In order to characterize the external current, we must
accurately describe the mechanisms of current flow through
the extracellular fluid within the brain. The equivalent
circuit for extracellular stimulation is shown in Fig. 1
(Robinson 1968; Merill et al. 2005; Joye et al. 2009; Franks
et al. 2005). The voltage source, Vp, represents the voltage-
controlled DBS probe. The mechanisms of charge trans-
fer between the DBS electrode and the extracellular fluid
fall into two categories: non-Faradaic and Faradaic. Non-
Faradaic charge transfer can be modeled as charge flowing

+
− Vp

R ct

R s

Cdl

+

−

Ve

Fig. 1 Equivalent circuit for extracellular stimulation
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through an electrical capacitor, referred to as the double-
layer capacitor, Cdl (Merill et al. 2005). This mechanism of
charge transfer involves the transport of charged ions within
the electrolyte, and is not typically associated with any
harmful side effects. Often, the double-layer capacitance is
represented as an equivalent impedance, Z = 1/(jωCdl)

n,
where n is a fitting parameter which usually takes values
slightly smaller than 1. Here we represent Cdl as a true
capacitance (i.e., n = 1). The DBS electrode can also
transfer charge through Faradaic oxidation and reduction
reactions. These reactions are not always reversible, and are
associated with corrosion of the DBS electrode and damage
to the surrounding neural tissue. For relatively low levels of
charge injection, the current from Faradaic reactions can be
modeled as a resistance to charge transfer, Rct (Merill et al.
2005). Current from the probe spreads through the extracel-
lular medium creating an extracellular potential that obeys
the Laplace equation,

∇ · σc∇V = 0, (2)

where V (z) is the voltage at spatial position z, and σc is
the conductivity of the extracellular medium, assumed to be
uniform. The effect of this spreading can be treated as an
equivalent resistance, Rs (Robinson 1968). We assume that
the neurons within the extracellular fluid do not influence
the circuit, allowing the equation for this circuit to follow
from Kirchhoff’s current law,

V̇e = V̇p + Vp − Ve

CdlRct

− Ve

CdlRs

, (3)

where Vp − Ve is the voltage across the double layer
capacitor, and Vp is the probe voltage.

The values of Cdl , Rct , and Rs are dependent on many
factors including probe size, geometry, material, and tem-
perature, and will vary widely between in vitro settings,

animal trials, and therapeutic DBS. For instance, the value
of Cdl can be manipulated through the selection of the mate-
rial, particularly using materials with surface oxide present
can increase this value. The value of Rs can be directly
calculated for some probe shapes (Robinson 1968), and
generally shrinks as the size of the voltage probe grows.
The parameter Rct depends on the reactions between the
probe and the extracellular medium. In this paper, we take
Cdl = 5 × 10−4F , Rs = 29�, and Rct = 2 × 105� to
be physiologically reasonable values which lie between the
properties of platinum and platinum black based on exper-
imental recordings from Franks et al. (2005). We note that
qualitative results are not dependent on the exact choices
of these parameters, but we have found numerically that a
larger value of Cdl relative to Rct is a design parameter
which allows for better control of Ve, since current does not
spread through the extracellular medium as quickly.

The effective current flow along each neuronal pro-
cess (i.e. axon or dendrite) is proportional to the second
spatial derivative of the voltage along each process, i.e.,
∂2V

∂z2 , where z points in the direction of the neural process
(Rattay 1986; McIntyre et al. 2004). Rather than examin-
ing each neural process individually with a compartmental
model, we note that DBS has the strongest influence on the
axon of each neuron (Wu et al. 2001; Nowak and Bullier
1998; McIntyre et al. 2004), so that the effective current

flow into the neuron is proportional to ∂2V

∂x2 , where x points
in the direction of the neuron’s axon. Furthermore, we
assume that x is the same for all neurons, which represents a
worst case scenario because a distribution in x among neu-
rons creates a distribution of effective inputs and hastens
desynchronization, as illustrated in Appendices A and B.
Without loss of generality, we take x perpendicular to a line
extending from the center of the probe to each neuron. The
potential generated in the extracellular medium is calculated
according to Eq. (2) and is shown in Fig. 2 for a spherical

Fig. 2 The left panel shows the
solution of Eq. (2) for a
spherical probe with 1 mm
diameter with Ve = −1V. The
right panel shows ∂2V

∂x2 for x
perpendicular to an imaginary
line extending from the center of
the probe to the neuron
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probe with 1 mm diameter and Ve, the voltage at the tip of
the probe, equal to -1V.

For simplicity of notation, let

F(d) = ∂2V

∂x2
(d) when Ve = −1V, (4)

where d is the distance from the neuron to the center of the
probe. We note that F(d) is an approximation to the effec-
tive stimulus the neurons receive when the voltage at the tip
of the probe is -1V. Note that the solution of Eq. (2) can be
scaled by a positive constant, meaning that the magnitude of
the effective strength plot in Fig. 2 scales with Ve. Effective
extracellular inputs can be characterized as in Rattay (1986)

Iext (t) = ∂2V

∂x2

1

Ri

= −F(d)Ve

Ri

, (5)

where Ri is the effective intra-axonal resistance.

3 Optimal control of Lyapunov exponents

Ultimately, we wish to find a control, Iext (t) which has
the effect of desynchronizing the neural network given by
Eq. (1). In order to simplify the model of a periodically spik-
ing neuron from Eq. (1), we employ the phase reduction
following e.g., Brown et al. (2004),

dθ

dt
= ω + Z(θ)ue(t), (6)

where θ is the phase of the neuron and is 2π periodic on
[0, 2π). By convention θ = 0 corresponds to the time at
which the neuron spikes. Here, ω gives the neuron’s base-
line dynamics, determined from its natural period T as ω =
2π/T , Z(θ) is the neuron’s phase response curve (PRC),
and

ue(t) ≡ Iext (t)

C
= −F(d)Ve(t)

RiC
(7)

represents the control input from the electric field. Previ-
ously, we derived an expression for the finite time Lyapunov
exponent, 
(τ) for a particular signal to be Wilson and
Moehlis (2014)


(τ) =
∫ a+τ

a Z′(θ(s))u(s)ds
τ

, (8)

where ′ = d/dθ . The finite time Lyapunov exponent
describes the exponential divergence of two identical neu-
rons with two similar initial conditions. Larger values of

 > 0 correspond to a faster desynchronizing influence of
the applied signal. Recall from Section 2 that we only have
control over the probe voltage, Vp, which influences the cir-
cuit according to Eq. (3). In order to conveniently compare

the neuron’s response to the electric field to the control input
at the probe, we define

up(t) ≡ −F(d)Vp(t)

RiC
(9)

as the voltage-controlled probe input. Note that because up
and ue are merely constant scalings of Vp and Ve, Eq. (3)
still applies. In the analysis that follows, we assume that
all neurons are located at d = 1mm from the probe so
that F(d)/F(1) = 1. Clearly, in a more realistic setting,
there will be a heterogeneous distance and position distri-
bution of neurons from the probe, but ultimately, as we
provide evidence for in Appendix A, a homogeneous distri-
bution of neurons represents a worst case scenario in terms
of desynchronization.

Suppose we want to find the stimulus that minimizes the
cost function

G[Vp(t)] =
∫ t1

0
[(ue(t))2 + α(u̇p(t))

2 − βZ′(θ)ue(t)

+ γ (up(t)− ue(t))
2]dt. (10)

Here,
∫ t1

0 [ue(t)2]dt is proportional to the square of the cur-
rent created by the voltage source, and hence the power
consumed by the stimulus,

∫ t1
0 [u̇p(t)2]dt is a quantity that

limits the rate at which the probe voltage can vary and is
necessary so that the optimal control problem is not singu-
lar (Kirk 1998),

∫ t1
0 [(up − ue)

2]dt represents the Faradaic
charge transfer, assuming that all Faradaic reactions are irre-
versible, and α, β, and γ are positive constants used to
determine the relative importance of each term. We note
that a true approximation of Faradaic current would be∫ t1

0 |up − ue|dt , but for computational reasons, we use∫ t1
0 [(up − ue)

2]dt to accomplish the same goal of keeping
Faradaic current low. We apply calculus of variations (Kirk
1998) to minimize C[�(t), �̇(t), up(t)] =

∫ t1
0 M[up(t)]dt

where

M[up(t)] = (ue(t))
2 + α(u̇p(t))

2 − βZ′(θ)ue(t)
+ γ (up(t)− ue(t))

2

+ [λ1 λ2]
[
u̇e − u̇p − up−ue

CdlRct
+ ue

CdlRs

θ̇ − ω − Z(θ)ue

]
,(11)

and �(t) = [θ, ue(t), λ1, λ2]T . The Lagrange multipliers
λ1 and λ2 force the dynamics to satisfy Eqs. (3) and (6). The
associated Euler-Lagrange equations are

∂M
∂up

= d

dt

(
∂M
∂u̇p

)
,

∂M
∂�

= d

dt

(
∂M
∂�̇

)
, (12)
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which yield the set of ordinary differential equations,
written in standard form:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 2α 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 −1 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Ẋ1

Ẋ2

θ̇

u̇e
λ̇1

λ̇2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X2

2γ (X1 − ue)− λ1
CdlRct−(βZ′′(θ)+ λ2Z
′(θ))ue

2ue − βZ′(θ)− 2γ (X1 − ue)− λ2Z(θ)+ λ1(
1

CdlRct
+ 1

CdlRs
)

ue
CdlRs

− X1−ue
CdlRct

ω + Z(θ)ue

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where X1 = up, and X2 = u̇p . We solve Eq. (13) subject
to starting boundary conditions X1(0) = X2(0) = θ(0) =
ue(0) = 0 and end-point boundary conditions X1(t1) =
ue(t1) = 0. This can be done numerically by finding an ini-
tial condition for the Lagrange multipliers λ1 and λ2 that
satisfies the boundary conditions, which is solved using
a double bisection algorithm as described in Danzl et al.
(2010). We note that this methodology provides a locally
optimal solution for the control input ue(t) and does not pre-
clude the existence of a different stimulus that is globally
optimal. However, for all results presented in this paper, we
search for plausible solutions with initial Lagrange multipli-
ers until they yield control inputs with large control inputs
that invalidate the phase reduction Eq. (6), i.e., the control
inputs become so large that they take the system far from
the limit cycle.

If we have knowledge of how the neurons are coupled
to each other, and if the influence of the intercellular cou-
pling is similar to that of the extracellular stimulation, we
can include the influence of coupling in the optimization
process. Consider two deterministic neurons from Eq. (1)
which are similar in phase so that θ1 ≈ θ2 ≡ θ . The phase

reduction for these two neurons within the larger population
of N neurons is given by

dθj

dt
= ω + Z(θj (t))u(t) + 1

N
Z(θj (t))

N∑
i=1

σij (f (θi(t))

−f (θj (t))), j = 1, 2, (13)

where f (θ) gives the transmembrane voltage as a function
of θ assuming the trajectory is on the periodic orbit. We take
the coupling to be all-to-all with σij = σ for all i �= j .
Letting φ = |θ2 − θ1|, we obtain from the Taylor expansion

dφ

dt
=

[
Z′(θ)

(
u+ σ

N∑
i=1

(f (θi)− f (θ))

)

− N − 1

N
σf ′(θ)Z(θ)

]
φ +O(φ2), (14)

where ′ = d
dθ

. Note that we have dropped explicit time
dependence for simplicity of notation. We assume solutions
of the form φ ∼ e
t and further simplify Eq. (14) by assum-
ing N is large enough so that N−1

N
≈ 1 to yield the finite

time Lyapunov exponent


c(τ) = log(φ(τ))

τ
=

∫ a+τ

a

[
Z′(θ)

(
u+ σ

∑N
i=1(f (θi)− f (θ))

)
− σf ′(θ)Z(θ)

]
dt

τ
. (15)

The critical difference between Eq. (8) and (15) is that 
c

provides a precise measure of the desynchronizing effect of
the control signal. A signal yielding 
c(t) > 0 will guar-
antee desynchronization for the coupled system, whereas

(t) must be large enough to counteract coupling in order
to desynchronize the system; this immediately leads to the
question, “how large is large enough?” that can only be
answered ad hoc as in Wilson and Moehlis (2014).

For the model Eq. (1), we find that f ′(θ)Z(θ) > 0 for
most values of θ , meaning that for positive values of σ , the
electrotonic coupling serves to reduce the overall Lyapunov
exponent. In the absence of external control, 
c will be
negative, serving to exponentially synchronize the system.

Equation (15) is difficult to use within the framework of
calculus of variations, because it assumes explicit knowl-
edge of the phase distribution. However, if we focus on
desynchronizing neurons that are close to the maximum of
the distribution, and assume that the distribution is sym-
metric around the maximum, we find numerically that∑N

i (f (θi) − f (θ)) ≈ 0, except when θ ≈ 2π . For-
tunately, for many neural models, Z′(2π) is small, and
thus, we can accurately approximate the Lyapunov exponent
as


c(τ) ≈
∫ a+τ

a

[
Z′(θ)u− σf ′(θ)Z(θ)

]
dt

τ
. (16)
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Using Eq. (16), it is simple to recast the optimal
control problem to account for interneuronal
coupling. We applycalculus of variations to
minimize G[�(t), �̇(t), up(t)] = ∫ t1

0

[M[up(t)] + σf ′

(θ)Z(θ)] dt where M[up(t)] was defined as part of
our original control problem in Eq. (11). The new
set of Euler-Lagrange equations, written in standard
form are

Table 1 Basic set of
parameters used for simulation
in Section 4

Parameter Symbol Nominal Value

Neural Membrane Capacitance C 1 μF/cm2

Baseline current ISM 5 μA/cm2

Electrotonic coupling strength σ 0.07

Gaussian white noise variance 2D 0.7

Spreading resistance Rs 29�

Charge transfer resistance Rct 2 × 105�

Double layer capacitance Cdl 5 × 10−4 F

Neural distance from voltage probe d 1 mm

Probe voltage derivative weighting parameter α 0.2

Lyapunov exponent weighting parameter β 50

Faradaic current weighting parameter γ 8

Optimal stimulus duration t1 8.02 ms

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 2α 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 −1 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Ẋ1

Ẋ2

θ̇

u̇e
λ̇1

λ̇2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X2

2γ (X1 − ue)− λ1
CdlRct−(βZ′′(θ)+ λ2Z

′(θ))ue + βσ(f ′′(θ)Z(θ)+ f ′(θ)Z′(θ))
2ue − βZ′(θ)− 2γ (X1 − ue)− λ2Z(θ)+ λ1(

1
CdlRct

+ 1
CdlRs

)
ue

CdlRs
− X1−ue

CdlRct

ω + Z(θ)ue

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

Note the subtle difference between Eq. (13) and (17),
which differ by extra terms in the third row of the right hand
side.

4 Results and discussion

4.1 Neglecting the influence of interneuron coupling
in calculating the optimal stimulus

All calculations from Section 4 were performed with basic
parameters listed in Table 1. It may be difficult to accu-
rately characterize the interneuron coupling for control
purposes. Here, we show that even if the coupling function
is unknown, we can still solve for stimuli that can desyn-
chronize a pathologically synchronized neural network. For
a single neuron described by Eq. (1), the baseline current
causes it to spike with a period T = 8.395ms. To obtain
the optimal control, we take t1 = 8.02ms (corresponding to

θ = 6.0 on the limit cycle), β = 50, α = 0.2 and a range
of different values of γ . We take t1 slightly smaller than the
full period of a single neuron. If we were to take t1 to be
the full period of a neuron, it is more likely for neurons to
spike before the optimal stimulus is finished. Note that t1
can be chosen differently provided it is sufficiently smaller
than T .

The left and right panels of Fig. 3 show the PRC and its
first derivative for a single neuron from Eq. (1), obtained
numerically using the software X-Windows Phase Plane
(XPP) (Ermentrout 2002). Figure 4 gives the obtained
locally optimal stimuli obtained from solving Eq. (13) for
varying values of γ . Lyapunov exponents for each signal
as calculated from Eq. (8) are 0.097, 0.077, 0.054, 0.040,
0.028, and 0.021 for γ = 0, 8, 32, 64, 120, and 180,
respectively. Recall that a larger value of γ corresponds to a
smaller toleration for Faradaic current. We note that during
each stimulation, θ(t) ≈ ωt , and it can be seen by compar-
ing Fig. 4 to Fig. 3 that as γ increases, the current from the
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Fig. 3 Left and right panels
show the PRC and its first
derivative for a single neuron
from Eq. (1)
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optimal stimulus becomes concentrated around the extrema
of Z′(θ), where the system is most susceptible to desynchro-
nization. This result agrees with intuition that can be gained
from the impedance properties of the circuit from Fig. 1. We
find that

(Vp − Ve)(s)

Vs(s)
= Rct

Rct + Rs(RctCdls + 1)
. (18)

A quick pulse of current at Vp will be transmitted through
the filter to Ve without much loss, while a slower pulse will
lose much of its amplitude through the filter. Since Faradaic
current is proportional to Vp−Ve, a quicker pulse will create
less Faradaic current.

We now apply the optimal control found for γ = 8 to
a network of N = 100 coupled, noisy neurons with iden-
tical coupling σij = 0.07 and i.i.d. noise with D = 0.7 in
order to test the desynchronizing effects on the full model.
We define the mean voltage as our system observable,
V (t) = 1

N

∑N
i=1 Vi(t). The controller has two states: active

and inactive. When the controller is active, a new stimu-
lus is triggered when V > −45mV and V̇ < 0. Once V

no longer spikes above -45mV, the controller switches to an
inactive state. It changes back to an active state if V registers
above -40mV. We call this event-based control because the
controller is only triggered when the mean voltage crosses
a certain threshold. We use the algorithm presented in
Honeycutt (1992) to simulate the noisy system. Figure 5
shows the results of this simulation. The top panel shows
that the network remains synchronized in the absence of
control. The second panel shows the voltage traces of each
neuron and the average voltage for a network with the opti-
mal control applied according to the algorithm given above.
The third panel shows the control input over time. We find
that the optimal control is effective at keeping the average
voltage of the network below the target voltage, shown as a
horizontal line, and must only apply a few stimuli approx-
imately once every 100ms. The desynchronizing effect of
the stimulus can clearly be seen from the raster plot.

For comparison, we show the results for a network with a
continuously applied, pulsatile stimulus as is currently used
in DBS to treat Parkinson’s disease. The stimulus is charge-
balanced and biphasic, with a pulse width of 0.2ms for each

Fig. 4 Optimal stimuli and
Faradaic current for different
values of γ . As γ increases, the
current from the optimal
stimulus becomes concentrated
where the system is most
susceptible to
desynchronization, i.e. at the
extrema of Z′(θ)
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Fig. 5 Results for a population
of N = 100 noisy, coupled
neurons. The first panel shows
results in the absence of control.
The second and third panels
show results for the same
network with the event-based
control applied. Traces give the
mean voltages for the system
and the horizontal line shows the
control activation threshold.
Substantial desynchronization
can be seen from the raster plot
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phase, a period of 4 ms giving a frequency of approxi-
mately twice the firing rate of the neurons, and an amplitude
of up = 98V/�F . These parameters were found by
systematically simulating Eq. (1) with pulsatile stimuli of
varying amplitudes, frequencies, and pulse widths and eval-
uating the desynchronization in the network. We note that
this strategy of finding an effective desynchronizing stim-
ulus is not unlike the time intensive process of tuning
DBS parameters to an individual patient with Parkinson’s
disease and that this is the best combination of parame-
ters found using this strategy based on overall efficacy of
the stimulus and stimulus magnitude. The top panel of
Fig. 6 shows the individual voltage traces of each neuron as
well as the average voltage of the network, and the second

panel shows the control input over time. The pulsatile stim-
ulus desynchronizes the network by eventually separating
the neurons into two groups, firing out of phase with each
other.

For long-term DBS stimulation for treatment of Parkin-
son’s disease, the total energy used by the DBS probe and
rate of Faradaic reactions are important considerations for
longevity of the implanted battery, and aggregate damage
to the DBS probe and surrounding neural tissue. Through-
out each 300ms simulation, the total energy injected into
the brain is calculated as

∫
u2
edt and is found to be 124

and 304000 units for the optimal stimulus and the pulsatile
stimulus respectively. While both stimuli are able to cause
network desynchronization, the optimal stimulus does so

Fig. 6 The top and middle
panels show results for a
population of N = 100 noisy,
coupled neurons with a pulsatile
control. Traces give the mean
voltages for the system. The
raster plot shows that the
pulsatile stimulus
desynchronizes by splitting the
network into two groups of
neurons firing out of phase
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Fig. 7 The top and bottom panels show Faradaic current (measured
as (up − ue)/Rct ) from the simulations shown in Figs. 5 and 6,
respectively

with 3 orders of magnitude less energy injected into the
brain, representing a tremendous savings in energy. We also
consider Faradaic reactions for each simulation, shown in
Fig. 7. The total Faradaic current for the optimal stimulus
and pulsatile stimulus, calculated as

∫ |up − ue|/Rctdt , is
0.00067 and 0.00224 units, respectively. The total Faradaic
charge transfer is similar for both stimuli, which is ini-
tially surprising. The optimal stimulus is applied over a
longer time scale than a pulsed stimulus, which, accord-
ing to the transfer function from Eq. (18), should result in
large amounts of Faradaic current. However, for the pul-
satile stimulus, the value up − ue begins to drift downward
when no energy is being applied by the controller, creat-
ing a small, but persistent, Faradaic current. This drift is
not as prevalent in the simulation for the optimal stim-
ulus because we required that ue = up in the solu-
tion to the optimization Eq. (13). Also, the magnitude of
the optimal stimulus is much smaller than the pulsatile

stimulus, which further reduces Faradaic charge transfer.
Overall, we find that the optimal stimulus desynchronizes
the network by injecting much less energy into the brain
and using a comparable amount of Faradaic charge as a
pulsatile stimulus.

It is worth noting that in Section 2 we assumed
that all neurons were equidistant and oriented in the
same way in reference to the probe. In reality, there
will be a distribution of distances from the probe of
each neuron, which will manifest in different values
of F(d) for each neuron’s external current from the
DBS probe. Fortunately, as might be expected by from
the work of Winfree, (Winfree 1967; 2001), heterogeneity
in the distances from the probe, leading to heterogeneity
in the effective inputs, only serves to hasten desynchro-
nization of a neural network Eq. (1) (see Appendices), and
the formulation from Section 2 represents a worst case
scenario.

4.2 Accounting for coupling in calculating the optimal
stimulus

We have found that if we do not take coupling into account,
either because it is difficult to characterize mathematically
or we simply do not know how the neurons are cou-
pled, the optimization procedure can still give a stimulus
that is quite effective at desynchronizing a pathologically
synchronized population of neurons. But if we know that
the interneuron coupling is electrotonic, we can give a more
precise measurement of the Lyapunov exponent Eq. (15).
First, in order to verify the validity of the approximation
of the Lyapunov exponent with coupling given by Eq. (16),
we simulate the system Eq. (1) in the absence of noise or
external stimulation. Choosing the coupling strength to be
σ = 0.07 we expect 
c(T ) = 0.0443, calculated from
Eq. (16). Figure 8 shows the result of this simulation. As
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Fig. 8 The top panel shows a network Eq. (1) in the absence of
noise and external stimuli. The black lines show the voltage traces of
each individual neuron in the network. We monitor the phase of two
individual neurons, shown as red and blue traces in the top panel.

The numerically obtained phase difference (solid line) and expected
phase difference (dashed line) calculated from 
c Eq. (16) are in good
agreement
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Fig. 9 Comparing the solution
to Eq. (13) and Eq. (17), shown
as dashed and solid lines,
respectively, for different values
of γ . We find that the two
solutions are nearly
indistinguishable
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expected, we find in the top panel that the coupling synchro-
nizes the identical neurons until they are nearly in phase.
We also infer the phase of two different neurons (shown
as red and blue traces in the top panel) at each time step
by simulating each neuron separately in the absence of
DBS input and noise to determine when it spikes next.
The numerically determined phase difference is shown as a
solid line in the bottom panel of Fig. 8, and the expected
phase difference based on the calculated Lyapunov expo-
nent from Eq. (16) is shown as a dashed line. We see
good agreement between the expected and numerical phase
differences.

The locally optimal stimuli from Section 4.1 mini-
mized the cost function Eq. (11) where coupling was not
taken into account. Here, we would like to know if
we can find an even better stimulus when we know
the coupling explicitly. We solve Eq. (17) with the
same boundary conditions and parameters as before to
investigate how the solution changes when we account
for coupling. We find that including the influence of
coupling in the optimization has relatively little impact
on the obtained solution. For instance, Fig. 9 shows
the solution to Eq. (17) for various values of γ . The
corresponding optimization without considering coupling
is shown as a gray, dashed line for reference. Including
coupling in the optimization yields a slightly larger
bias towards positive stimulus when θ ≈ 4.5, corre-
sponding to the peak of the PRC, shown in Fig. 3. This
positive bias acts to speed up the dynamics when the
synchronizing effects of coupling are strongest. However,

the overall solutions to Eq. (13) and (17) are nearly
indistinguishable. It is much more energy-efficient to
desynchronize by exploiting the phase model dynamics
than it is to mitigate the effect of interneural coupling
for this network model of thalamic neurons.

For the thalamus model Eq. (1), including coupling
in the formulation of the optimal control problem
does not significantly change the resulting signal. How-
ever, the ability to more precisely characterize the overall
rate of desynchronization with 
c is much more useful.
Table 2 lists the values of 
(T ) and 
c(T ) for some
of the stimuli shown in Fig. 4. Based on the derivation
of Eq. (16), for 
c, we to expect be able to quantita-
tively predict the rate of desynchronization of a system of
neurons for a given stimulus. However, in practice we
find that in phase space, the neurons stray from the peri-
odic orbit when the optimal control is applied, leading to
small changes in the value of f (θ), the transmembrane
voltage as a function of θ assuming the trajectory is on
the periodic orbit, and influences the effective strength
of the coupling. For Eq. (1), this has the effect of decreas-
ing the effect of coupling when the phase differences
are small. However, Fig. 10 shows that we can still
make qualitative predictions about the overall desynchro-
nizing ability of a stimulus. The top, middle, and bottom
panels show simulations of Eq. (1) without noise for
stimuli from Fig. 4 with γ = 8, 64, and 180, respectively.
Left panels show voltage traces for each neuron, and
right panels show the phase difference φ(t) for the
neurons highlighted in the left panels, as well

Table 2 Stimulus properties
from Fig. 9 γ 
(T ) 
c(T ) Numerically determined 


8 0.0773 0.0286 0.0690

64 0.0399 −0.0077 Desynchronization Not Exponential

180 0.0214 −0.0253 −0.010
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Fig. 10 The top, middle and bottom panels show simulations of
Eq. (1) without noise for stimuli with 
c = 0.0286,−0.0077, and
−0.0253, respectively. Left panels show voltage traces for each neu-
ron, and right panels show φ(t) for the highlighted neurons in the left
panels, as well as exponential functions fit to the data. We find that 
c

underestimates the overall rate of desynchronization for each stimu-
lus. However, calculation of 
c allows for qualitative prediction of the

overall desynchronizing capabilities of a stimulus. For 
c sufficiently
larger than 0, we should see marked exponential desynchronization.
For 
c sufficiently smaller than 0, coupling will dominate, and we
will not have desynchronization. For 
c ≈ 0, we may or may
not see desynchronization, but φ(t) may not be characterized by an
exponential function

as exponential functions fit to the data if appli-
cable. For the stimulation in the top panel,

c = 0.0286, and we find that neurons exhibit a
strong overall exponential desynchronization, with a
numerically calculated Lyapunov exponent of 0.069.
The middle panel shows results using a stimulus
with 
c = −0.0077. For this simulation, the neurons
do desynchronize, but the desynchronization is clearly
not exponential. The bottom panel shows results for a
stimulus with 
c = −0.0253, which yields desyn-
chronization with a numerically determined Lyapunov
exponent of -0.010. In each case, 
c underestimates the
desynchronizing capability of the stimulus, but can give
a good qualitative prediction of whether a given stim-
ulus can desynchronize the system. For 
c sufficiently
larger than 0, we should see strong exponential desyn-
chronization. For 
c sufficiently smaller than 0, coupling
will dominate, and we will not have desynchronization.
For 
c ≈ 0, we may or may not see desynchronization,
and φ(t) may not be characterized by an exponential
function. In Appendix B, we show similar desynchroniz-
ing effects of our stimuli when neurons are synaptically
coupled.

5 Conclusion

In this paper, we present an adaptation of the methodol-
ogy presented in Wilson and Moehlis (2014) to locally,
optimally maximize the Lyapunov exponent Eq. (8) while
taking into account factors such as overall energy used and
Faradaic charge transfer for a model of extracellular stimu-
lation. We have also investigated the effects of electrotonic
coupling on a large system of neurons in an attempt to more
precisely characterize the rate of desynchronization as deter-
mined by a Lyapunov exponent. We find from numerical
simulation that this methodology provides a locally optimal
stimulus that has the ability to desynchronize a popula-
tion of neurons by injecting three orders of magnitude less
energy in to the brain when compared to a pulsatile stimulus
while generating similar levels of Faradaic charge transfer.
Furthermore, the implementation of this methodology only
requires knowledge of a system’s phase response curve,
which is experimentally measurable in vitro, and as shown
previously (Wilson and Moehlis 2014) is robust to inaccu-
racies. For these reasons, we believe that this methodology
could be successfully tested on an in vitro population of
neurons.
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Limitations of this work include a neglect of energy
considerations of processing power required to implement
the control logic as detailed in the text. While there is a
tremendous savings in energy injected into the brain as com-
pared with a pulsatile stimulus, the continuous observation
of the system may require a significant amount of energy,
which we have not addressed here. Furthermore, we do not
directly address the way in which the average transmem-
brane voltage of a population can be measured. We posit
that the local field potential might be used as a proxy for
the average voltage, as there is evidence that the two are
correlated (Shimamoto A et al. 2013), but its efficacy as an
observable for control problems remains to be seen. Also,
in order to formulate a tractable control problem, we take
the voltage probe’s effect on each neuron as the second spa-
tial derivative of the voltage, which is an approximation of
the actual effect on a more detailed compartmental model.
Future studies could be performed to address the effect of
this assumption in compartmental models of neural activity.

While this study provides numerical evidence that the
method described in Wilson and Moehlis (2014) can be
implemented with an extracellular DBS framework, further
refinement may be required before it can be implemented
as a treatment for Parkinson’s disease. For instance, corre-
lated pathological bursting at a cellular level may contribute
to the symptoms of Parkinson’s disease (Bevan et al. 2006).
Indeed, viewing Parkinson’s disease from this perspective
has led to new hypotheses about the functional mecha-
nism of DBS. For instance, (Gale et al. 2009) posits that
DBS may disrupt burst synchronization and restore neural
information carrying capacity. Other works which impli-
cate the important role that bursting plays in Parkinson’s
disease include (Tai et al. 2011) which suggests that total
charge delivered by DBS may be an important factor in
inhibiting neural bursting and improving the symptoms of
Parkinson’s disease, (Hahn et al. 2008) which reports that
the amount of bursting is reduced during therapeutic DBS,
and Ammari et al. (2011) which investigates the genesis of
bursting in Parkinson’s disease and the effect of DBS on
burst transmission. If disruption of burst synchronization is
an important goal of theraputic DBS, this method could be
applied to bursting models of neural activity by identifying
a bursting limit cycle and subsequent PRC (Sherwood and
Guckenheimer 2010).

This methodology is relatively flexible, as the cost func-
tion can be adapted as necessary to include other quantities
(e.g. hardware limitations or biological considerations) that
are relevant to DBS. This methodology not only has the
potential to extend the implanted battery life of the DBS
probe, but might also eliminate the painstaking process of
manually tuning DBS parameters to suit each patient, and
could represent a tremendous advance in the technology of
DBS for Parkinson’s disease.
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Appendix A Network simulations with heterogeneous
probe distances and electrotonic coupling

All neurons from network simulations shown in the body of
the main text are assumed to be located at a distance of 1
mm from the tip of the voltage probe. Clearly, this would
not be the case in a real network of neurons, and we show
another network of neurons with a heterogeneous distance d
from the voltage probe. Here, our population of neurons has
a distribution of distances given by d = 1 + N (0, ϑ)mm,
where N (0, ϑ) is a normal distribution with a mean of 0 and
a standard deviation of ϑ . Heterogeneity in d is accounted
for by modifying Eq. (1) as follows,

V̇i =
[
Im,i + I iext (t, d)+

1

N

N∑
i=1

σij (Vj − Vi)+ ηi(t)

]
/C. (19)

Equation (19) differs from Eq. (1) in the main text through
the spatial dependence in the term I iext (t, d). We calculate
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Fig. 11 Results for a population of N = 100 noisy neurons with
electrotonic coupling and a heterogeneous distribution of distances, d,
from the probe found using ϑ = 0.2. The first panel shows results in
the absence of control. The second and third panels show results for
the same network with the event-based control applied. Traces give the
mean voltages for the system and the horizontal line shows the control
activation threshold. Substantial desynchronization can be seen from
the raster plot
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Fig. 12 Power consumption over 1000 milliseconds is plotted for dif-
ferent values ϑ . Overall, power consumption tends to decrease as ϑ

increases, indicating that more heterogeneity in the spatial distribu-
tion of neural distances increases the efficacy of the desynchronizing
control

I iext (t, d) using Eq. (5) in the main text. Here, a neuron’s
distance, d , from the probe determines the relative strength
of the external current, F(d), shown in Fig. 2 of the main
text. We use the optimal desynchronizing stimulus asso-
ciated with γ = 8 from the text. Results for a network
of N = 100 neurons are shown in Fig. 11. Comparing
with Fig. 5 from the main text, we find that for the hetero-
geneous case, desynchronization occurs faster, with fewer
applications of the optimal stimulus

To further investigate the effect of increased heterogene-
ity in the spatial position of the neurons, we simulate the
system for many values of ϑ , and after allowing the con-
troller to initially desynchronize the neurons, we measure
the power output from the controller over the next 1000 mil-
liseconds as

∫
u2
edt . Results are given in Fig. 12. Using a

linear fit to the data shows that the controller tends to use
less power as the variance of the distribution in distances
is increased. This phenomenon can be seen in individ-
ual simulations by comparing the applied control between
simulations in Figs. 5 and 11.

Appendix B Network simulations with excitatory
synaptic coupling

Electrotonic coupling is used in the main text as a simple
representation of neural coupling because it is amenable to
direct calculation of its influence on the Lyapunov expo-
nent. Here we present further simulations where neurons
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Fig. 13 Results for a population of N = 100 noisy neurons with
synaptic coupling and a homogeneous distribution of distances from
the probe. The first panel shows results in the absence of control.
The second and third panels show results for the same network with
the event-based control applied. Traces give the mean voltages for the
system and the horizontal line shows the control activation threshold.
Substantial desynchronization can be seen from the raster plot
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Fig. 14 Results for a population of N = 100 noisy neurons with
synaptic coupling and a heterogeneous distribution of distances from
the probe found using ϑ = 0.2. The first panel shows results in the
absence of control. The second and third panels show results for the
same network with the event-based control applied. Traces give the
mean voltages for the system and the horizontal line shows the control
activation threshold. Substantial desynchronization can be seen from
the raster plot
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are synaptically coupled (Ermentrout and Terman 2010).
We incorporate synaptic coupling by modifying Eq. (1) as
follows:

V̇i =
⎡
⎣Im,i+I iext (t, d)+

(VG→G − Vi)

N

N∑
j=1

gj (t− tj )σij + ηi (t)

⎤
⎦ /C. (20)

This equation differs from both Eq. (1) from the main text
and Eq. (19) in the term (VG→G−Vi)

N

∑N
j=1 gj (t − tj )σij .

Here, σij = 2 characterizes the synaptic coupling strength
between neurons, VG→G = 0 mV represents the neuro-
transmitter reversal potential, and gj (t − tj ) represents a
conductance-like term with tj being the time that the j th

neuron last spiked. To mimic the sudden rise and expo-
nential decay of synaptic currents (Ermentrout and Terman
2010), we take gj (t) = t

τ
exp(−t/τ ) where τ = 0.3 is the

synaptic time scale. We note that the synaptic coupling is
all-to-all and excitatory. We use the optimal desynchroniz-
ing stimulus associated with γ = 8 from the text. Results
for a network of N = 100 neurons, each d = 1 mm
from the voltage probe are shown in Fig. 13. The same net-
work simulation with a distribution of distances given by
d = 1 + N (0, ϑ)mm, where N (0, ϑ) is a normal distri-
bution with a mean of 0 and a standard deviation of ϑ is
shown in Fig. 14. In both simulations, the optimal control
is able to sufficiently desynchronize the population, but in
simulations for the network with a heterogeneous distribu-
tion of distances, the optimal control desynchronizes much
more effectively.
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