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Abstract We present an event-based feedback control
method for randomizing the asymptotic phase of oscillatory
neurons. Phase randomization is achieved by driving the neu-
ron’s state to its phaseless set, a point at which its phase is
undefined and is extremely sensitive to background noise.
We consider the biologically relevant case of a fixed mag-
nitude constraint on the stimulus signal, and show how the
control objective can be accomplished in minimum time. The
control synthesis problem is addressed using the minimum-
time-optimal Hamilton–Jacobi–Bellman framework, which
is quite general and can be applied to any spiking neuron
model in the conductance-based Hodgkin–Huxley formal-
ism. We also use this methodology to compute a feedback
control protocol for optimal spike rate increase. This frame-
work provides a straightforward means of visualizing isoch-
rons, without actually calculating them in the traditional way.
Finally, we present an extension of the phase randomizing
control scheme that is applied at the population level, to a net-
work of globally coupled neurons that are firing in synchrony.
The applied control signal desynchronizes the population in
a demand-controlled way.
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1 Introduction

The motor tremors symptomatic of Parkinson’s disease may
be linked to the synchronous periodic firing of neurons in the
brain (Pare et al. 1990; Nini et al. 1995). This pathological
behavior can be mitigated by the use of implanted stimulus
electrodes in a treatment called Electrical Deep Brain Stimu-
lation (EDBS) (Benabid et al. 1991). Inspired by the classical
ideas of Winfree (2001), we develop a feedback-based desyn-
chronizing control scheme for EDBS which takes advantage
of recent developments in nonlinear optimal control theory
to account for important biological constraints.

Traditionally, EDBS has utilized relatively high-frequency
(100+ Hz) periodic waveforms injected in an open-loop
fashion, which after empirically tuning stimulus parameters,
can mitigate the synchronous neural activity. The open-loop
nature of traditional EDBS is sub-optimal in that the system
is constantly stimulating the neurons, regardless of whether
they are firing in pathological synchrony or not.

There is much current interest in designing EDBS con-
trol systems that use additional feedback electrodes to make
the stimulus “demand-controlled” (Tass 1999, 2000). A feed-
back-based approach is attractive from a clinical perspective
in that the biological tissue is only stimulated when neces-
sary, thereby reducing the overall accumulation of negative
side effects of electrical stimulation.

Feedback control methods have been designed from a
dynamical systems perspective for neurons modeled as two-
dimensional oscillators near a Hopf bifurcation (Tass 1999,
2000; Popovych et al. 2006). One effective scheme uses two
precisely timed impulses (Tass 2000). Another uses a nonlin-
ear-delay feedback protocol with experimentally tuned stim-
ulation parameters (Popovych et al. 2006). Representing a
neuron as a two-dimensional oscillator near a Hopf bifurca-
tion is attractive because it allows one to use the so-called
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normal form of the dynamic equation, which is generally
much simpler than the underlying model of the particular
neuron. However, the phase response curves (a characteriza-
tion of the neuron’s response to stimulus) are symmetric for
such normal form models, which is contradictory to experi-
mental observations (Netoff et al. 2005).

In this article, we explore Winfree’s idea of using phase-
less sets to randomize the phase of each neuron in a
population, thereby desynchronizing their pathological firing
behavior. The central concept is that the phase of an oscil-
latory dynamical system can be effectively reset using an
impulsive stimulus to drive the state of the system to a point
where the phase is undefined (Winfree 2001). In the context
of oscillatory neurons, this phaseless set is a single point in
state space, which is an unstable equilibrium point “inside”
the periodic orbit. For more general cases, the phaseless set(s)
could also be an unstable periodic orbit (for a planar system),
or the stable manifold of an unstable periodic orbit (in higher
dimensions). These objects could form the boundary of the
basin of attraction of the stable periodic orbit.

There are three primary challenges to the use of electri-
cal stimulus to drive a neuron’s state to its phaseless set.
First, the Hodgkin–Huxley conductance-based formalism
(Hodgkin and Huxley 1952), a general modeling method-
ology in neuroscience, yields systems of continuous-time
ordinary differential equations (ODEs) that tend to be highly
nonlinear. Many traditional control designs require the con-
trolled system to be either linear or only weakly nonlinear.
A second challenge is that a control scheme cannot stim-
ulate biological tissue with arbitrarily large signals. The
magnitude of the electrical stimulus must be constrained,
invalidating the concept of purely impulsive inputs for bio-
logical implementation. The third challenge is the fact that
the only state that is directly observable is the membrane
voltage. A control system cannot measure the dynamic state
of the many ion channels that play a critical role in the
oscillatory behavior of neural spiking. This poses particular
problems for implementing traditional nonlinear feedback
control systems, which depend on continuous measurements
of state.

The proposed event-based feedback control scheme pre-
sented here addresses each of these challenges, and accom-
plishes the objective of driving a neuron to its phaseless
set using a magnitude-constrained stimulus signal in the
minimum possible time. Our method combines techniques
from modern control engineering, namely Lebesgue sam-
pling (i.e., event-based control) (Åström and Bernhardsson
2003), nonlinear optimal control theory (e.g., Athans and
Falb 1966), and a recent computational toolbox for solving
the resulting Hamilton–Jacobi–Bellman equations (Mitchell
2007). The method is quite general and can be applied to
any conductance-based neuron model that possesses a stable
limit cycle.

We develop the event-based minimum-time optimal con-
trol algorithm for the case of a single deterministic neuron.
We show that when background noise is added to the con-
trolled neuron, the asymptotic phase of the neuron is indeed
randomized. The utility of this control protocol is extended
by considering a population-level event-based framework.
In the case of a globally coupled network with pathologi-
cal synchronous spiking, we show that this control scheme
desynchronizes the network, and the control is active only
when synchrony is detected.

The control design method developed here has several
other interesting applications. By changing a simple param-
eter in the design calculations, we can create a control signal
that will optimally increase the spike rate of the neuron. Also,
we can visualize the isochrons of the particular neuron model
by plotting level sets of an intermediate value function cal-
culated in the course of the stimulus design.

2 Neuron models

This article will present a mathematical framework for con-
trolling neurons which, in absence of stimulation, spike peri-
odically in time. We wish to consider an ODE model that
is general, widely known, and has dynamical characteris-
tics typical of spiking neurons. The Hodgkin–Huxley model,
in its four-dimensional “space-clamped” form, is a proto-
typical conductance-based ODE model in the mathemati-
cal neuroscience literature (Hodgkin and Huxley 1952). It
was originally developed to model the excitable membrane
voltage dynamics of the squid giant axon. In a large biologi-
cally relevant region of parameter space, the model possesses
a strongly attracting stable limit cycle which captures
the essential features of a periodically spiking membrane
voltage. We will use a two-dimensional reduction of the
original four-dimensional model that will enable easier visu-
alization of the mathematical objects used in our optimal
stimulus computational method. We note that our proposed
methods do not depend on the low dimensionality of the
model, and a planar reduction has been chosen only to facil-
itate the presentation. To illustrate the generality of our
method, we will also implement it on the two-dimensional
FitzHugh–Nagumo model, another canonical example from
the mathematical neuroscience literature (Keener and Sneyd
1998; FitzHugh 1961; Nagumo et al. 1962).

2.1 Two-dimensional Hodgkin–Huxley model

We consider the two-dimensional reduction of the Hodgkin–
Huxley model analyzed by, for example, Moehlis (2006) and
Keener and Sneyd (1998). The two states are the membrane
voltage V , and a dimensionless gating variable n, which
represents the fraction of ion channels that are open in the

123



Biol Cybern (2009) 101:387–399 389

membrane. The dynamics are represented by the following
ODE system:

V̇ =
(

I (t)+Dη(t)+ Ib− ḡNa[m∞(V )]3(0.8−n)(V−VNa)

−ḡKn4(V − VK)− ḡL(V − VL)
)

/C (1)

ṅ = αn(V )(1− n)− βn(V )n

where

αn(V ) = 0.01(V + 50)

1− exp[−(V + 55)/10]
βn(V ) = 0.125 exp[−(V + 65)/80]

m∞(V ) = αn(V )

αn(V )+ βn(V )

VNa = 50 mV, VK = 77 mV, VL = 54.4 mV,

C = 1 F/cm2, ḡNa = 120 mS/cm2,

ḡK = 36 mS/cm2, ḡL = 0.3 mS/cm2.

In this model, ḡNa, ḡK, and ḡL represent the conductances
of the sodium, potassium, and leakage channels, respectively.
The reversal potentials of these channels are VNa, VK, and VL.
We represent background noise as η(t), a zero-mean white
noise signal, with strength D.

Throughout this article, we will use a baseline current
Ib = 10 mA, for which the system has a stable periodic
orbit shown in Fig. 1. In the forthcoming theoretical develop-
ment, we will consider the noiseless deterministic case when
D = 0. We will return to the case of nonzero noise after we
have computed the optimal control stimulus. The membrane
capacitance is C = 1.0 in the units of (1), so for notational
convenience in the following section, we will incorporate it
into our input variable u(t) = I (t)/C .

Also, we will use the following shorthand notation for the
right-hand side of (1):

V̇ = fV (V, n)+ u

ṅ = fn(V, n)
(2)

2.2 Isochrons and phaseless sets

Our aim is to design a stimulus that will drive the state of
the model to regions of state space where the system is very
sensitive to noise. By “sensitive to noise” we mean that the
(asymptotic) phase can be easily altered by perturbations
to the membrane voltage state caused by the noise process
[Dη(t) in (1)]. The phase of an oscillator is a measure of
the time it has spent evolving since it last passed through the
marker event which defines zero phase. For neuron models,
the spiking point, which is the blue square shown in Fig. 1,
is taken as the marker event defining zero phase. Phase is an
important concept for studying periodically spiking neuron
models because it also indicates when the neuron will spike
next in the absence of stimulus. We seek to randomize the

Fig. 1 Stable periodic orbit for the reduced Hodgkin–Huxley model
with Ib = 10 mA (red curve). Isochrons, spaced uniformly in phase,
are shown as dashed lines. The location of the unstable equilibrium
point, where the isochrons converge, is shown by a black X. The spike
point (maximum membrane voltage) is shown by the blue square (color
online)

phase of a neuron model, but in so doing we will be stimulat-
ing the neuron and knocking it off of its periodic orbit. After
stimulus, the state will be drawn back in toward the limit
cycle, so we must consider an extension of phase that applies
to all points in the basin of attraction of the periodic orbit.
Following Josic et al. (2006), this extended concept of phase
is called asymptotic phase and can be defined as follows:

Consider an arbitrary autonomous ODE

ẋ = f (x), x ∈ R
p, p ≥ 2 (3)

with a stable hyperbolic limit cycle γ (t) with natural period
T , i.e., γ (t + T ) = γ (t) for all t . For each point x in the
basin of attraction of the limit cycle γ , there exists a unique
asymptotic phase φ(x) such that

lim
t→∞ |x(t)− γ (t + φ(x))| = 0. (4)

State space is foliated with (p − 1)-dimensional hyper-
surfaces called isochrons, which are level sets of asymptotic
phase (Guckenheimer 1975). For planar (p = 2) systems,
the isochrons are simply lines of equal asymptotic phase. A
set of isochrons for the reduced Hodgkin–Huxley model are
shown as dashed lines in Fig. 1. Points in state space where
phase is not defined are called phaseless sets.

Intuitively, if the objective is to find states where asymp-
totic phase is very sensitive to noise, we can simply look for
areas where the isochrons become closely bunched together.
In Fig. 1, one can see that the isochrons are most dense near
the unstable equilibrium point at (Vs, ns)= (−59.6, 0.403).
This unstable equilibrium point does not have a well-defined
phase because it is not technically in the basin of attraction
of the limit cycle. It is the only phaseless set contained by the
basin of attraction of the periodic orbit and is an attractive
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target for phase randomization. We will show how to con-
struct a stimulus to reach an arbitrarily small neighborhood
of this point, then the noise process will randomly perturb
the state onto a nearby isochron, effectively randomizing the
asymptotic phase of the neuron.

2.3 Normalized model

We now introduce a simple affine coordinate transformation
to simplify the presentation, and to put our dynamical sys-
tem into a form necessary for the proposed stimulus design
method. A critical step in our method uses the Level Set
Methods Toolbox (ToolboxLS), a MATLAB-based partial
differential equation (PDE) solver (Mitchell 2008). This PDE
solver has the requirement that each component should be of
the same order of magnitude (Mitchell 2007) and the new
state-space coordinates must be centered at the target point,
T . The coordinate transformation is written as:

x1 = V − VT
Ks

x2 = n − nT .

(5)

Since the gating variable n lies in the interval [0, 1], we
choose the voltage scaling factor, Ks, such that the scaled
voltage coordinate x1 = O(1). For the reduced Hodgkin–
Huxley model, we use Ks = 80.

Under this transformation, the dynamics become

ẋ1 = 1

Ks
fV (Ksx1 + VT , x2 + nT )+ 1

Ks
u

ẋ2 = fn(Ksx1 + VT , x2 + nT )

(6)

To simplify notation further, we introduce the vector notation
x = [x1 x2]T with dynamics

ẋ = F(x)+
[ 1

Ks

0

]
u =

[
F1(x)

F2(x)

]
+

[ 1
Ks

0

]
u (7)

where

F1(x) = 1

Ks
fV (Ksx1 + VT , x2 + nT ) (8)

and

F2(x) = fn(Ksx1 + VT , x2 + nT ). (9)

We note that this change of coordinates will only be used to
simplify the mathematical presentation of the optimal stimu-
lus design method. When results are presented in Sect. 5, we
will revert back to the original variables V and n, and will
report stimulus signals as electrical currents, I (t).

3 Event-based control

From the perspective of classical feedback control, this con-
trol design problem is challenging in a number of important
ways. Conductance-based ODE models of spiking neurons,
such as the reduced Hodgkin–Huxley system (1), are com-
plex and highly nonlinear. Furthermore, the magnitude of the
stimulus is constrained by biological and hardware imple-
mentation limitations. In the case of a single neuron, mem-
brane voltage is the only directly measurable state, and often
the measurements are quite noisy. The only thing that can
be detected with any certainty is the time at which a volt-
age spike occurs. Due to such limited observability, classical
techniques such as feedback linearization (Khalil 2002) can-
not be used.

The fact that the only reliable state measurements are the
detection of voltage spikes leads us to employ a control meth-
odology known as event-based control. The concept of event-
based control, sometimes known as Lebesgue sampling, was
developed as an improvement to fixed sample-rate feedback
control for digital systems (Åström and Bernhardsson 2003).
As shown in previous study (Danzl and Moehlis 2007, 2008),
this methodology finds natural utility in systems involving
spiking neurons. In this study, we design a controller that
waits for a voltage spike (which we define to be the event)
then stimulates the neuron with a pre-computed waveform
designed to drive the neuron’s state close to the unstable fixed
point “inside” the periodic orbit, a point which is surrounded
with closely packed isochrons. We will also show that other
target sets can be used, which allows the controller to achieve
other objectives, like maximally increasing the spike rate.

3.1 Control objectives

From a theoretical standpoint, the objective of our control
system is to drive the system’s state to a pre-defined target
location T . By setting T to be the unstable equilibrium point,
the controller will cause asymptotic phase randomization. On
the other hand, if we set T to be the spiking point, the con-
troller will cause the neuron’s spike rate to increase as much
as possible, given a fixed stimulus magnitude constraint. To
keep our control stimulus design methodology general, we
will not specify T . In fact, any point in state space can be
chosen as a target set; although, it is not clear what the utility
of using points besides the unstable equilibrium and the spike
point might be. Recall that Eq. 5 translates the system by T
so that the coordinates are centered on the target set. Regard-
less of what is chosen for T , in the transformed coordinate
system the target is always the origin.

As mentioned in the preceding section, a challenge inher-
ent in controlling any biological system is that the magnitude
of the control signal is constrained. Mathematically, we for-
malize this constraint as
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|u(t)| ≤ µ (10)

where µ > 0 is given, and is determined by the limitations
imposed by the biology or by the available hardware for the
experimental implementation. To make the forthcoming ana-
lytical optimizations simple, we scale the input by the value
of the constraint by introducing

ũ = u

µ
. (11)

Equation 7 then becomes

ẋ = F(x)+ bũ (12)

where

b =
[ µ

Ks

0

]
. (13)

By defining an interval Ũ = [−1, 1], we can restate our
objective—find the control signal ũ(t) ∈ Ũ × [0,∞) that
drives the system from its initial state x0 to the target set
T (which is the origin x = 0 in our translated coordinate
framework) in minimum time. In the optimal control litera-
ture, this objective is often termed minimum-time-to-reach.
It should be noted that such a control signal is not guaranteed
to exist. As the magnitude constraint, µ, approaches zero it
becomes impossible to reach any point except for those on
the periodic orbit.

4 Optimal stimulus design

The optimal stimulus design method we present follows an
approach similar to that outlined in Mitchell (2007) as applied
to the classical double integrator example of Athans and Falb
(1966). The optimal control signal is found by first comput-
ing an approximation of the minimum-time-to-reach value
function, which is a viscosity solution of a Hamilton–Jacobi–
Bellman (HJB) PDE. The numerical approximation of the
value function is then used to generate the optimal state tra-
jectory and the optimal control signal by forward simulation.
We now elaborate on the theoretical details of this method.

We begin by defining the terminal time, tend ∈ [0,∞],
which is the minimum time at which the state reaches the
target set when starting from x(0) = x under the control
signal ũ(t). This is written precisely as

tend(x, ũ(t)) = min{t : x(t) ∈ T |x(0) = x}. (14)

The terminal time can be infinite when the trajectory x(t)
never reaches the target set. This can occur if the constraint in
(10) is so small that the controller does not have enough con-
trol authority to over-ride the system’s natural autonomous
dynamics. The terminal time is not known at the outset, and
is only found through calculating the optimal stimulus and
optimal state trajectories.

We now define the cost functional, J , of an (x(t), ũ(t))
trajectory starting at x(0) = x (over the time interval t ∈
[0, tend]) as

J (x, ũ(t)) =
tend∫

0

g(x(t), ũ(t))dt + q(x(tend)). (15)

Here, g(x(t), ũ(t)) ≥ 0 is the time-additive component of the
cost function, and q(x(tend)) is the terminal component. We
present Eq. 15 in full generality to be consistent with the
classical way of presenting this theoretical background.
However for our control objective, which corresponds to min-
imizing the time to reach the target point, these functions take
very simple forms:

g(x, ũ) = 1 (16)

and

q(x(tend)) = 0. (17)

Substituting these functions, Eq. 15 simplifies to

J (x, ũ(t)) = tend(x, ũ(t)) (18)

which is precisely equivalent to our objective of reaching the
target set in minimum time. Other functions could be used
for g(x(t), ũ(t)) and q(x(tend)) and would imply different
control objectives. Consider, for instance, g(x, ũ) = 1+ ũ2.
The control objective would now be a combination of min-
imizing tend and minimizing the total energy of the control
signal.

We compute the minimum-time-to-reach value function,
V(x), from state x at time t = 0 to the target set as

V(x) = inf
ũ(t)∈Ũ

J (x, ũ) = inf
ũ(t)∈Ũ

tend(x, ũ(t)). (19)

The value function can take infinite value at points in state
space from which the controller cannot drive the state to the
target set.

A fact from classical optimal control theory is that, in the
minimum-time-to-reach framework, the value function V(x)

is a viscosity solution of the following Hamilton–Jacobi–
Bellman equation:

0 = min
ũ∈Ũ
{1+ ∇V(x) · (F(x)+ bũ)} (20)

with the boundary condition

V(x) = 0 ∀x ∈ T . (21)

This equation represents a critical step in the theoreti-
cal foundation of our optimal control design process. We
refer the reader to (Bardia and Capuzzo-Dolcetta 1997) for a
detailed derivations and proofs of Eq. 20, and an introduction
to viscosity solutions of PDEs. If we can find a function V(x)

that satisfies Eq. 20 in the viscosity sense, the rest of the con-
trol design is quite straightforward. Unfortunately, equations
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of this form can be quite difficult to solve, and no general
methods exist.

We can, however, analytically simplify Eq. 20 by realiz-
ing that the only the last term, ∇V(x) · bũ, is involved in
the minimization. The value of ũ that minimizes Eq. 20 is
typically called the “H-minimal” control, or ũH (Athans and
Falb 1966). The vector b has only a single nonzero entry, so
we can easily perform the minimization to find

ũH = −sgn (∇V(x) · b) = −sgn

(
∂V
∂x1

)
, (22)

since µ and Ks are strictly positive. We see from Eq. 22
that ũH ∈ {−1,+1} which means the optimal control mag-
nitude will always be equal to its maximum value. In fact,
the solutions to all minimum-time optimal control problems
are of this “bang–bang” type, as follows from Pontryagin’s
Minimum Principle (Pontryagin et al. 1962).

We substitute (22) into (20), expand into components, and
recall that for a real number y, −y sgn(y) = −|y|. This
removes the minimization functional to yield a slightly sim-
pler expression of the Hamilton–Jacobi–Bellman equation:

0 = 1+ ∇V(x) · F(x)− |∇V(x) · b| (23)

The solution V(x) of Eq. 23, in the viscosity sense, enables
the computation of the optimal state-feedback (and ulti-
mately event-based open-loop) policies ũ∗ and the corre-
sponding state trajectories x∗ for any given starting state x .
Given V(x), the state-feedback form of the optimal control
policy ũ∗(x) is simply equal to the H-minimal control eval-
uated at x .

ũ∗(x) = arg min{1+∇V(x) · (F(x)+ bũ)}
= ũH(x) = −sgn

(
∂V
∂x1

∣∣∣∣
x

)
(24)

The optimal state trajectories satisfy the system dynamics
driven by the optimal state-feedback control law:

ẋ∗(t) = F(x∗(t))+ bũ∗(x∗(t))

= F(x∗(t))− b sgn

(
∂V
∂x1

∣∣
x∗(t)

)
. (25)

We can then compute the open-loop optimal control sig-
nal ũ∗(x0, t) for all t ∈ [0, tend(x0)] by simulating Eq. 25
starting from initial position x(0) = x0 until x reaches the
target set T at time t = tend(x0) = V(x0). The simulation
provides the optimal x trajectory, which we use to calculate
the optimum control through Eq. 24. Thus, given any initial
condition x0 we have all the necessary tools to calculate a
variable-time-length open-loop control signal ũ∗(x0, t).

In our event-based framework, only the spiking state,
shown as a blue square in Fig. 1, is observable and its detec-
tion triggers the execution of the pre-computed open-loop
optimal control signal ũ∗(xspike, t).

The crucial component of this machinery is an accurate
solution or approximation of the cost function V(x) over
the entire domain of x . Nonlinear Hamilton–Jacobi–Bell-
man PDEs are notoriously difficult to solve, especially in
stationary form as Eq. 23.

4.1 Numerical methods

Our goal is to solve Eq. 23, with boundary conditions in
(21), to obtain an approximation to the minimum-time-to-
reach value function V(x). This PDE is both stationary and
discontinuous, which renders its solution nontrivial. Com-
putational tools exist for solving time-dependent PDEs, in
particular Mitchell (2008) provides a package to solve HJB
equations of the following form (among others):

0 = ∂φ

∂t
(x, t)+ H(x, t, φ,∇φ) (26)

using level set methods. Following Mitchell (2007) and Osher
(1993), we seek an auxiliary form of our original HJB Equa-
tions 23 and 21 that converts them into a quasi-time-depen-
dent form.

We define a function

G(x,∇V(x)) = 1+∇V(x) · F(x)− |∇V(x) · b| (27)

which allows us to write our HJB equation (23) as

G(x,∇V(x)) = 0 on D\∂T
V(x) = 0 on ∂T

(28)

where ∂T is the boundary of our target set T , and D is the
spatial domain.

We introduce a time-like variable s ∈ R≥0, an auxiliary
function φ(x, s), and perform the following coordinate trans-
formation:

V(x)← s

∇V(x)← ∇φ(x, s)
∂φ
∂s (x, s)

(29)

which is valid as long as the following technical condition is
satisfied (Osher 1993):

d∑
i=1

pi
∂G(x, p)

∂pi

= 0 on ∂T . (30)

This condition essentially states that the boundary conditions
must be noncharacteristic.

This allows us to cast the Hamilton–Jacobi–Bellman
Eq. 28 into the form of Eq. 26 which is compatible with
ToolboxLS (Mitchell 2007). The resulting auxiliary PDE is:

0 = ∂φ

∂s
(x, s)+ (∇φ(x, s) · F(x)− |∇φ(x, s) · b|) . (31)
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with boundary conditions

φ(x, 0) = 0 for x ∈ ∂T
φ(x, 0) < 0 for x ∈ T \∂T (32)

φ(x, 0) > 0 for x ∈ D\T .

Our new objective is to solve (31) for φ(x, s). Then we
can extract the cost function

V(x) = {s | φ(x, s) = 0}. (33)

Solving HJB PDEs of this type using ToolboxLS requires
a target set of nonzero area, and our target is always the ori-
gin, so we approximate the target by a small ε-ball (disk)
around the origin.

An approximation of φ(x, s) is solved by creating a uni-
form grid over a rectangular region of state space enclosing
the periodic orbit. ToolboxLS solves (31) using a Lax–Fried-
richs scheme for the spatial dimension and a Runge–Kutta
time stepping scheme. The value function V(x) is extracted,
using Eq. 33, by interpolation in the quasi-time variable s.

5 Results

Numerical computations were implemented in the scaled and
translated x-coordinate system using ToolboxLS. However,
for clarity of presentation, all following results will be pre-
sented in the original coordinates, and control signals will be
plotted as un-scaled control currents in milliAmperes (recall
I (t) = u(t)/C = µũ(t)/C).

5.1 Phase randomization: single neuron results

We seek a phase-randomizing control scheme, so we choose
the target set to be the unstable equilibrium point inside the
periodic orbit, shown as the black X in Fig. 1. A particular
challenge of the reduced Hodgkin–Huxley model is that this
unstable fixed point is near the periodic orbit. This situation
requires the radius of the target set approximating circle ε to
be quite small, which in turn drives the need for a fine grid on
which to compute the solution of the Hamilton–Jacobi–Bell-
man PDE. The following set of calculations uses ε = 0.005
and µ = 10 mA on a 151 × 151 grid, uniformly spaced in
the scaled x coordinates.

Figure 2 shows uniformly spaced level sets of the resulting
approximation of the value function surface over the domain
of interest. Recall that the value of this surface V(x) at a point
x is the minimum time it will take the system to reach the
target set under optimal control. At the spike point, the value
is 6.88 which indicates that when the event-based control-
ler is activated, it will drive the neuron to the target set in
approximately 6.88 ms.

Fig. 2 Level sets of the numerical approximation of the value function
V with the periodic orbit (red line) and the target set (purple circle).
The value of V represents the minimum time to reach the phaseless set,
starting at a point (V, n) using a control signal bounded by µ= 10 (color
online)

The plot of the state-feedback form of the optimal control
law is shown in Fig. 3a. As mentioned in Sect. 4, the optimal
control law takes only two values, {−µ,+µ}, with the sign
determined by simply checking the sign of the value func-
tion’s x1-directional derivative, per (22). The optimal trajec-
tory, shown as a blue dashed line in Fig. 3a, was computed
by simulating the dynamical system beginning at the spike
point shown as the blue square. At each time step, the optimal
control signal (which depends only on the current location in
state-space) is applied to the system. Under influence of the
optimal control signal, the system initially follows the upper
lobe of its periodic orbit, then begins to deviate to the left as
it approaches the lower left knee of the orbit, at which point
it cuts across the orbit to reach the target set in approximately
6.88 ms.

Figure 3b shows the time profile of the optimal trajec-
tory, as well as the optimal control signal, which was simply
recorded point-by-point during the simulation. This optimal
control signal will be the open-loop waveform that is used
by the event-based controller to randomize the phase of the
neuron.

5.2 Phase randomization: ensemble results

In the previous section, we showed that the optimal control
signal does, in fact, drive the system to the target set. We now
examine the effectiveness of this control scheme as a phase
randomizer. Consider an ensemble of 105 identical uncou-
pled neurons, now each under the influence of independent
identically distributed process noise Dη(t), where we set
D = 1 mA. Each neuron is simulated, starting at the spiking
state, and the time of the next spike is recorded as tnext. This
spike time is converted to phase by the following equation:
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Fig. 3 a State-feedback optimal control law (grayscale background)
with the periodic orbit (red line), optimal state trajectory (blue dashed
line) and the target set (purple circle). Gray regions signify maximum
control in the negative direction (I = −10 mA), and white regions
signify maximum control in the positive direction (I = +10 mA).
b Optimal voltage (black line) and gating variable (green line) trajecto-
ries (top) and the optimal control signal (bottom) for reaching the target
set, an ε-ball centered at the unstable fixed point, starting from the spike
point, in minimal time (tend ≈ 6.88 ms) (color online)

θ = 2π(tnextmodT )

T
(34)

where the mod operator handles the case where the neuron
is driven so close to the unstable equilibrium point that is
slowly spins around and away from it for longer than the
natural period before returning to the stable periodic orbit.

Figure 4a shows a histogram representing the distribution
of phases caused by the noise process Dη(t) without any
control input. Note the tight unimodal shape of this distri-
bution is to be expected given the attractive strength of the
periodic orbit and that D is small.

The simulations are repeated, but now we add the opti-
mal control signal as input to each neuron, in addition to the
background noise. The resulting phase histogram is shown in
Fig. 4b. The control scheme greatly widens the phase distri-
bution of the ensemble after a single application. If the phase
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Fig. 4 Ensemble asymptotic phase results for 105 uncoupled neurons,
each starting from the spiking point. a Neurons are exposed only to unit-
magnitude noise, b neurons are also exposed to the phase randomizing
control signal; a control off, b control on

randomization was perfect, we would expect a uniform dis-
tribution, but in Fig. 4b we see a nonuniform bimodal distri-
bution. This arises from the fact that we have approximated
the phaseless set, which is a single point, by a small ε-ball.
Due to the geometry of the ODE’s vector field around the tar-
get set, optimal trajectories tend to approach this ε-ball non-
uniformly, which for this particular case results in a bimodal
distribution. The precise shape of the distribution is governed
by the underlying ODE, the value of ε, the magnitude of the
noise D, and the magnitude constraint µ.

Complete phase randomization after a single application
of the optimal control signal is not necessary. As long as the
phase distribution is significantly spread out, we can simply
apply the control signal multiple times. We will illustrate this
in the context of a globally coupled network in Sect. 6.
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Fig. 5 Level sets of the numerical approximation of the value func-
tion V for optimal spike-rate-increasing control. Superimposed are the
periodic orbit (red line) and the target set (purple ellipse). Again, we
consider µ = 10 (color online)

5.3 Spike rate control

By applying the optimal minimum-time control design
method using the spike point as a target, the firing rate of the
neuron can be increased. Targeting the spike point is equiva-
lent to asking how to make the neuron spike again as soon as
possible given the constraint on the control magnitude. Here,
we use µ = 10 and ε = 0.01.

Figure 5 shows the level sets of the value function for
this example. The state-feedback control law and optimal
state trajectories are shown in Fig. 6a and b. The opti-
mal control signal, shown in Fig. 6b, is interesting in that
it is not simply using the maximum magnitude control in
a single direction, which would be equivalent to increas-
ing the baseline current. To optimally increase the firing
rate of this neuron, the controller switches between +µ

and −µ. We see that the optimal state trajectory, the blue
dashed line on Fig. 6a, stays quite close to the unperturbed
periodic orbit, so the control is not radically altering the
dynamics, just speeding up the spiking from its uncon-
trolled natural period of 11.84 ms to a controlled period of
7.74 ms.

5.4 Connection to isochrons

The same numerical techniques used to calculate the optimal
spike rate increasing control stimulus can be used to visual-
ize an approximation of the model’s isochrons in a straight-
forward manner. If we were to set the stimulus magnitude
constraint µ = 0 and repeat the optimal spike rate increase
stimulus design procedure discussed in the previous section,
we would be exactly calculating isochrons. To understand
why this is the case, consider the meaning of the value func-
tion. For the control objective of driving the system to the

Fig. 6 a State-feedback optimal control law for optimal spike rate
increase. Notation in this figure is the same as Fig. 3. b Optimal volt-
age and gating variable trajectories (top) and the optimal control signal
(bottom). Here, the objective is to reach an ε-ball centered at the spike
point in minimal time starting from the spike point. This control pro-
tocol decreases the interspike interval neuron from 11.84 to 7.74 ms,
resulting the fastest spiking rate possible with a stimulus constrained
by 10 mA (color online)

spiking point, the value function is the time it takes, under
optimal stimulus, for the system to be driven from position
x to the spiking point. Now, if the control magnitude bounds
are zero, we have eliminated the controller’s ability to affect
the dynamics of the system. So the value function in the case
of µ = 0 can be interpreted as the time it takes, under no stim-
ulus, for the system to evolve from position x to the spiking
point under its natural dynamics. Level sets of this value func-
tion are, therefore, curves connecting points in phase space
that will reach the spiking point at the same time, in absence
of stimulus, i.e., the isochrons.

There are numerical difficulties with setting µ = 0 so
we create approximations to isochrons by calculating level
sets of the value function for the case of small µ. Fig-
ure 7 shows the isochron approximation calculated using
µ = 1. This compares well with the isochrons shown in
Fig. 1 that were calculated accurately using backward inte-
gration techniques as by Campbell et al. (1989) and Josic
et al. (2006).

123



396 Biol Cybern (2009) 101:387–399

Fig. 7 Level sets approximating isochrons for the reduced Hodgkin–
Huxley model generated using parameters ε = 0.01,µ= 1 (color online)

5.5 FitzHugh–Nagumo model

The proposed method is not dependent on the details of the
particular model, such as how close the unstable fixed point
is to the periodic orbit. To illustrate the broad applicability of
the optimal stimulus design method, we select another clas-
sical neural model, the FitzHugh–Nagumo model (FitzHugh
1961; Nagumo et al. 1962) in a dimensionless form taken
from Keener and Sneyd (1998):

δ V̇ = V (V + a)(1− V )− w + u

ẇ = V − 0.5w.
(35)

We take the time scale separation variable δ = 0.01, and
set the parameter a = 0.6 to position the unstable fixed
point near the center of the region enclosed by the periodic
orbit, which is encircled by the purple ε-radius target circle
in Fig. 9a. Its worth noting that this neuron model has very
different time, input, and voltage scaling than the Hodgkin–
Huxley model. Since the unstable equilibrium point is far
inside the periodic orbit, this model would be particularly
difficult to control using a timed impulse to instantaneously
kick the state from the limit cycle to unstable equilibrium,
as proposed by Winfree (2001). By employing the control
synthesis method presented above, we can precisely calcu-
late the optimal control signal to drive the FitzHugh–Na-
gumo model from its spiking point to an ε disk centered
at the unstable fixed point. We take this target radius to be
ε = 0.01, compute the value function, and plot its level sets
in Fig. 8. Figure 9 shows the optimal trajectories and the opti-
mal control stimulus when the control magnitude constraint
µ = 0.2.

Fig. 8 Level sets of the numerical approximation of the value function
V with the periodic orbit (red line) and the target set (purple line) for
the FitzHugh–Nagumo model. The value of V represents the minimum
time to reach the phaseless set, starting at a point (V, w) using a control
signal bounded by µ = 0.2 (color online)

Fig. 9 a State-feedback optimal control law, optimal state trajectory,
and the target set for the FitzHugh–Nagumo model with µ = 0.2. Nota-
tion in this figure is the same as in Fig. 3. b Optimal voltage and gating
variable trajectories (top) and the optimal control signal (bottom) for
reaching the target set, an ε-ball centered at the unstable fixed point, in
minimal time (tend ≈ 0.5 ms) (color online)
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6 Extension: globally coupled networks

We now apply our control scheme in a more biologically
relevant context. We consider a network of N neurons with
all-to-all electrotonic coupling in a noisy environment.

By applying the optimal phase randomizing control stimu-
lus, we seek to desynchronize the spike times of the network.
Following Keener and Sneyd (1998), we write dynamical
equations for a network of Hodgkin–Huxley neurons obey-
ing (1) as

ẋi =F(xi )+e1(Dηi+ I (t))/C+ k

N
M1

N∑
j=1

(x j−xi ) (36)

where xi = [Vi , ni ]T is the state vector of the i th neuron, ηi

is uncorrelated white noise input to the i th neuron, and D is
the magnitude of the noise. The vector e1 = [1, 0]T and the
matrix

M1 =
[

1 0
0 0

]

account for the fact that the neurons are stimulated and cou-
pled only through the voltage component of the state. The
variable k is the coupling strength, which we take to be small.

Here, I (t) is the control stimulus which is applied to all
neurons simultaneously. Again we use an event-based feed-
back framework, but in the network context we need a pop-
ulation-level event definition. To this end, we introduce the
concept of a network observable—a quantity from which we
can infer the level of synchrony in the network. We use the
average voltage as our network observable, written simply as

V̄ (t) = 1

N

N∑
i=1

Vi (t). (37)

Were these neurons modeled as phase oscillators, we could
simply use Kuramoto’s order parameter, as used by Danzl
et al. (2008). In this context, however, phase is unknown—
only voltages are measurable.

We envision a simplified representation of electrical deep
brain stimulation with two electrodes. One electrode is an
input that stimulates each neuron with the same control sig-
nal I (t). The other electrode is an output that measures the
average voltage V̄ (t) of the population (a simplification of
local field potential where we neglect spatial weighting).

We define an event as the value of the network observable
crossing some threshold, indicating that most of the neu-
rons are spiking at the same time. This threshold is a tunable
parameter, generally greater than zero for a network of two-
dimensional Hodgkin–Huxley neurons.

In the uncontrolled system with uniform initial distribu-
tion, the neurons become synchronized due to coupling, even
in the presence of moderate noise. One can view this as a sim-
ple example of pathological neural synchronization, linked to

the symptoms of neural disorders such as Parkinson’s disease
(Benabid et al. 1991) and epilepsy (Steriade 2003).

To demonstrate the effectiveness of the proposed control
scheme, we simulate the network represented by Eq. 36 for
N = 100 neurons, each starting synchronized at the spike
point. This corresponds to the pathological spike synchroni-
zation described above. The synchronous spiking is detected
by a super-threshold value of V̄ (t), our network observable.
Super-threshold average voltage constitutes an event, which
triggers the controller to stimulate all the neurons with the
optimal control waveform calculated in Sect. 5.1. Recall that
in the absence of coupling, this stimulus causes the neu-
rons’ states to approach the phase randomizing unstable fixed
point. If the coupling is relatively weak, the controller is
still able to drive the neurons close enough to the unstable
equilibrium for the phase randomization to be effective. The
neurons’ phases are randomized by the stimulus, thus dimin-
ishing the value of the network observable V̄ (t). The con-
troller then shuts off until the coupling draws the network
back toward synchronous spiking (V̄ (t) ≥ Vthresh) at which
point the optimal stimulus is again triggered. We note that
if the system does not develop synchronized spiking again,
the controller will continue to remain off, thus achieving
demand-controlled desynchronization similar to Popovych
et al. (2006).

Figure 10a shows results for a population of 100 neurons
globally coupled with uniform coupling strength k = 0.01 and
each under the influence of independently drawn white noise
with magnitude D = 1.0. We have kept the control magni-
tude constraint µ= 10 mA and used the exact optimal stimu-
lus waveform calculated in Sect. 5.1.

In this simulation, we begin with the controller switched
off, to illustrate the synchronous spiking of the network. We
turn the controller on at t = 20 ms, but recall that this is an
event-based controller, so it remains inactive until the popula-
tion level observable, the average voltage, crosses the thresh-
old Vthresh. The first population-level spiking event detected
by the controller occurs at t ≈ 23 ms, at which point the
open-loop optimal stimulus waveform is triggered. After a
single application, there is still a significant level of spiking
synchrony, closely related to the bimodal distribution caused
by the randomization described in Sect. 5.2. The controller is
triggered again at t ≈ 37 ms, and again the open-loop stimu-
lus is activated. This time, the spike times of the population
are randomized to a much greater degree, which can be eas-
ily visualized by constructing a raster plot of the spike times
across the population, shown in Fig. 10b.

We note that the resulting distribution of spike times is not
uniform; there are loose vertical “bands” of spiking activity in
the raster plot after the control is turned on. This is due to two
factors—the coupling and the approximation of the target set
by a disk rather than a point (which is related to the change
in distribution due to a single application of the controller, as
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Fig. 10 a Network results for N = 100 globally coupled Hodgkin–
Huxley neurons, k = 0.01, D = 1.0, µ = 10. Top panel shows voltage
traces for each neuron. Middle panel shows the control signal applied to
the population. Controller is activated at t = 20 ms indicated by the ver-
tical dashed line. Bottom panel is the population-level observable V̄ (t)
with the threshold Vthresh = 0 shown as a red dashed line. b Raster
plot of spike times for the network showing desynchronization (color
online)

discussed in Sect. 5.2). However, the pathology is primarily
due to synchronized spiking, shown as the tightly synchro-
nized vertical stripes in the raster plot before the controller
is activated. The event-based controller destroys this type of
synchronization, which may provide therapeutic utility for
pathological synchronization.

7 Summary and discussion

In this article, we have developed an event-based control
system that can drive a neuron’s state to reach a target set
in minimum time under stimulus magnitude constraints. By
choosing the unstable equilibrium as the target set, we have
shown that this control system can effectively randomize the
phase of an oscillatory neuron. If computed using the spike
point as the target set, this control protocol can maximally

increase the firing rate for a given stimulus magnitude con-
straint.

We have illustrated this method using two-dimensional
neuron models so that the resulting value function can be
easily visualized as level sets in the plane, but we remark here
that the method is not limited to planar systems. While the
computational time for the Hamilton–Jacobi–Bellman PDE
grows with dimension, it is still quite feasible to consider
models with higher dimensions.

Furthermore, by targeting the spiking point and setting the
magnitude constraint to be small (ideally zero), the numerical
viscosity solutions of the Hamilton–Jacobi–Bellmann PDE
can be used to visualize isochrons—a useful tool for charac-
terizing the phase space of spiking neuron ODE models.

We have shown that the control system can be extended
to a network of globally coupled neurons. In this extended
form, the event-based controller is triggered by a network
observable. In the case of weak coupling, we have shown
that this controller can successfully mitigate pathologically
synchronized spiking.

An important concern with this design method is that it
depends strongly on having a good model for the neuron,
which in practice, can be challenging. In future study, we seek
to combine the optimal stimulus design procedure outlined
here with ongoing research in model identification. We also
plan to examine the influence of network size and coupling
strength on the effectiveness of the phase desynchronizing
control scheme presented here.
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