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Characterizing the edge of chaos for a shear flow model
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We characterize the edge of chaos, the boundary which separates initial conditions which lead to chaotic
behavior from those which directly decay to the laminar state, for a nine-dimensional shear flow model. This
boundary is the eight-dimensional stable manifold of an unstable periodic orbit, whose properties are charac-
terized. Furthermore, we compute the probability that perturbations of a given energy will lead to transient
chaos before decaying to the laminar state, or to a nontrivial attractor for a range of Reynolds numbers. Finally,
we consider the relationship between the edge of chaos and linear transient growth, a mechanism which may
trigger nonlinear effects that lead to turbulence in shear flows.
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I. INTRODUCTION

The transition to turbulence in shear flows is a well stud-
ied but unsolved problem of great importance and interest
[1,2]. Much of the theoretical interest in this problem derives
from the fact that turbulence can occur despite stability of
the laminar state. For example, linear stability theory pre-
dicts that shear flows such as plane Couette and pipe flow
remain asymptotically stable for all Reynolds numbers [3].
However, in practice these flows can exhibit turbulent behav-
ior, and the turbulence arises abruptly: it does not develop
from laminar flow through a sequence of transitions to more
and more complicated behavior [3]. Interestingly, for such
flows, the governing equations can possess numerous
branches of unstable steady or traveling wave states that
arise from saddle node bifurcations [4-9]. Despite recent
progress [9-13], the relationship between these three-
dimensional solutions and turbulence has still not been clari-
fied.

For a shear flow for which the laminar state is stable but
(transient or sustained) turbulence coexists, one can ask if
there is a boundary for which all initial conditions starting on
one side will decay directly to the laminar state, and those on
the other side will lead to (transient or sustained) turbulence.
Furthermore, if there is such a boundary, what is its nature
and geometry? Such questions were considered in Ref. [10]
for a low-dimensional model for a parallel shear flow. For
this model, the boundary between laminar and turbulent be-
havior was found by measuring the lifetime of an initial con-
dition, i.e., the time it takes for an initial condition to lami-
narize. This boundary (called the edge of chaos), which
separates transient chaotic and transient nonchaotic behavior,
was found to be the stable manifold of an unstable periodic
orbit (called the edge state), at least for moderate Reynolds
numbers. Later, in Ref. [11], the edge of chaos for pipe flow
was found to be the stable manifold of a relative attractor,
and the edge state is dominated by streak and streamwise
vortices.
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This paper will focus on characterizing the edge of chaos
for the nine-dimensional model for sinusoidal shear flow
(SSF) from Refs. [14,15], which has trajectories that either
directly decay to the laminar state, become transiently cha-
otic before decaying to the laminar state, or become tran-
siently chaotic before moving towards a nontrivial attractor.
We hope that this study will help to clarify the issues which
we expect to be relevant for understanding the transition to
turbulence in other shear flows. In Sec. I we introduce the
model, compare turbulent statistics to direct numerical simu-
lation (DNS) data from plane Couette flow (PCF), and define
the energy in the system. The relevant behavior of the model
and properties of the edge of chaos are described in Sec. III.
We investigate the role of transient energy growth in deter-
mining whether or not initial conditions lead to transient
chaos for this model in Sec. IV. Finally, in Sec. V, we give
concluding remarks.

II. SSF MODEL

We consider SSF for an incompressible fluid and choose a
coordinate system such that x, y, and z, respectively, corre-
spond to the streamwise, wall-normal, and spanwise direc-
tions; see Fig. 1. The flow obeys the nondimensional equa-
tions

o 1,
at——(u-V)u—Vp+ReV u+F(y), (1)

V.u=0, (2)

where Re is the Reynolds number. The time independent
sinusoidal body force in the streamwise direction given by

E y - wall normal
: 9 )—» x - streamwise
Zﬁtminar profile

Z - spanwise

L.

L,

FIG. 1. Geometry for SSF.
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P
F(y) = ;Re sm(?)éx (3)

results in the laminar profile
U(y) =[2 sin(my/2),0,0], 4)

which is linearly stable for all Re [3]. Free-slip boundary

conditions

u, =0, %=%=O (5)
ay dy

are imposed at y=* 1, and the flow is assumed periodic in

the streamwise and spanwise directions, with lengths L, and

L, respectively.

A nine-dimensional model, obtained by Galerkin projec-
tion of Eq. (1) onto important flow structures, was introduced
in Ref. [14]; see also Ref. [15]. Specifically, the velocity is
expanded as

9
u(xst) = 2 aj(t)uj(x)9 (6)
j=1

where the amplitudes a; are real and the modes u;, given in
Ref. [14], are orthogonal under the standard inner product.
Physically, u; is a mode representing the laminar profile
given in Eq. (4), u, is a streak mode, u; is a downstream
vortex mode, u, and us are spanwise flow modes, us and u;
are normal vortex modes, ug is a three-dimensional mode,
and ug gives a modification to the laminar profile. Inserting
Eq. (6) into Eq. (1) and projecting, we obtain a set of nine
coupled, nonlinear ordinary differential equations. This
model generalizes the eight-mode model of Ref. [16], with
the main improvement being the inclusion of a mode which
represents the lowest order modification of the mean profile
(4); other modes from the eight-mode model are modified
slightly so that they can couple to this new mode. The tran-
sition to turbulence for this nine-mode model is subcritical,
i.e., although the laminar state is stable for all Re, it is pos-
sible to get turbulentlike behavior for some Re. Furthermore,
if there is only transient turbulentlike behavior, the distribu-
tions of turbulent lifetimes, i.e., the duration of turbulence
before decay to the laminar state, are exponential, in agree-
ment with observations in many shear flows [14].

It is hoped that the knowledge gained from studying the
edge of chaos for SSF will be relevant to the laminar-
turbulent boundary dynamics for other shear flows. SSF rep-
resents a nontrivial shear flow whose geometry resembles
that of PCF but with free slip boundary conditions which
allow the modes u, ... ,uq to be written in terms of trigono-
metric functions. In Fig. 2, we compare statistics of fluctua-
tions from the laminar state for the stable periodic orbit for
the nine-mode model with turbulent DNS data for PCF from
Ref. [17], both at Re=400 with L,=1.757 and L,=1.27r. For
the wall-normal root mean square (RMS) fluctuations \(v'?)
and the Reynolds stress (u’v’) the trend is the same in terms
of the location of the peaks, but (u’'v’) for the nine-mode
model is smaller by an order of magnitude. We note that the
streamwise and spanwise RMS fluctuations differ more sub-
stantially for the two flows, which is consistent with the dif-
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FIG. 2. Comparison of turbulent statistics for the nine-mode
model for SSF (solid) and PCF with DNS data from Ref. [17]
(dashed).

ferent boundary conditions. Nonetheless, the agreement in
these quantities, and the work in Ref. [14] supports the idea
that this nine-mode model is a good representation and cap-
tures essential behaviors of typical shear flows.

In the following, the energy in the system is taken to be
the fluctuation energy with respect to the laminar profile, and
is defined as

9
E=(l-a)+2a. (7)
j=2

Note that the modes have been normalized so that the energy
contained in a given mode is simply the amplitude of the
mode squared. Throughout this paper, we consider a flow
domain with L,=1.757 and L,=1.27; for the related system
of PCF, these parameters correspond to the minimal flow
unit, the smallest domain which is found numerically to sus-
tain turbulence [18].

III. THE EDGE OF CHAOS
A. The unstable periodic orbit associated with the edge

For this system, there is an asymptotically stable fixed
point at a;=1, a,="+*=ay=0 for all Re which corresponds to
the laminar state. For Re<335 and 515=<Re<1000, this
fixed point is the global attractor for this model, so that all
trajectories will eventually end up at the laminar state fixed
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FIG. 3. Time evolution for the amplitude a4 for the nine-
dimensional model at Re=300 showing qualitatively different be-
haviors for two nearby initial conditions. The initial conditions for
the top and bottom trajectories were kept constant with the excep-
tion of a4(0), which only differ from each other by a quantity of
order 10713

point. Initial conditions for this range of Re exhibit two dis-
tinct behaviors: direct laminarization or a chaotic transient
before decaying to the laminar state. This behavior coincides
with the situation for the low-dimensional model considered
in Ref. [10]. Figure 3 shows the evolution of amplitude a, as
a function of time at Re=300 for two initial conditions near
the laminar state, which in this figure corresponds to a,=0.
The top panel corresponds to a trajectory which visits near
an unstable periodic orbit (UPO) before decaying to the
laminar state, and the bottom panel corresponds to a trajec-
tory which visits close to the same periodic orbit and under-
goes transient chaotic dynamics before laminarization. As
clarified below, the stable manifold of this periodic orbit
separates initial conditions which directly laminarize from
those which are transiently chaotic. Thus, the UPO visited by
such trajectories determines the edge of chaos.

The transient chaotic state in this system is associated
with a chaotic saddle near which trajectories stay for a finite
time before escaping. The duration of the chaotic transient is
very sensitive to initial conditions and Re as indicated by the
fractal nature of lifetimes [10,14,19], but the overall trend is
that it increases with Re. Figure 4 shows a schematic dia-
gram showing the UPO associated with the edge coexisting
with the asymptotically stable laminar state fixed point and
the chaotic saddle in phase space. The UPO is only unstable
in one direction, therefore, the stable manifold is the surface
which separates initial conditions which directly decay to the
laminar state (such as the one labeled @) from those which
visit near the chaotic saddle before laminarizing (such as the
one labeled b).

Our method for finding the edge of chaos is similar to that
used for a different model in Ref. [10]. The edge tracking
algorithm starts out with a randomly chosen initial condition.
One of the benefits of this algorithm is that it does not have
to start with a particular type of initial condition, that is, the
algorithm can find the edge of chaos when starting with an
initial condition which either decays directly to the laminar
state or shows chaotic behavior. We then systematically up-
date that initial condition along a one-dimensional curve in
phase space, near the laminar state fixed point, as follows: if
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FIG. 4. A schematic diagram showing the laminar state (L), the
unstable periodic orbit (UPO) associated with the edge, the chaotic
saddle (CS), the nontrivial attractor (NTA), and three initial condi-
tions which exhibit qualitatively distinct dynamics. The UPO, rep-
resented as a dot, has a one-dimensional unstable manifold labeled
Wi (UPO) and an eight-dimensional stable manifold labeled
W},.(UPO), which forms the edge of chaos. For Re<335 and 515
=Re <1000, the only attractor in the system is the laminar state
fixed point and initial conditions either (a) decay directly to the
laminar state (see top panel of Fig. 3) or (b) become transiently
chaotic before decaying to the laminar state (see bottom panel of
Fig. 3). For 335<Re=<515, initial conditions may tend towards a
nontrivial attractor as in (c) and Fig. 10.

the trajectory directly decays to the laminar state, we take an
initial condition on the curve further away from the laminar
state, and conversely, if the trajectory shows transient chaos,
we take an initial condition on the curve closer to the laminar
state. The points further/closer to the laminar state fixed
point are typically found by simultaneously varying up to
three of the amplitudes a;. By refining the initial conditions
via a bisection rule, we find trajectories which spend more
and more time in the neighborhood of the UPO whose stable
manifold forms the edge.

Figures 5 and 6 show the UPO associated with the edge of
chaos for this system which is visited by these trajectories.
Indeed, it is found numerically with AUTO, a software pro-
gram for numerical continuation bifurcation analysis [20],
that this periodic orbit has only one unstable direction. Its
eight-dimensional stable manifold separates initial conditions
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FIG. 5. The unstable periodic orbit associated with the edge of
chaos for Re=400 with period 7=13.60.

036315-3



LINA KIM AND JEFF MOEHLIS

a1 0.9917
0.9916 t/T
0 02 0.4 06 0.8 1
az o017
0.016
0.015
t/T
0 0.2 0.4 0.6 0.8 1
x10°°
as
_1-58\/\/
16 t)T
0 02 0.4 06 0.8 1
0.04
aq
0.02
0
~0.02
~0.04 t/T
0 0.2 0.4 06 0.8 1
0.04
as
0.02
0
~0.02
~0.04 t/T
0 0.2 0.4 06 0.8 1
0.05
ag
0
-0.05 ‘ ‘ ‘ : t/T
0 02 0.4 06 0.8 1
ay 0%
0/\/
~0.05 : : ‘ : t/T
0 02 0.4 06 0.8 1
x10_4
as 5
0
5
t/T
0 0.2 0.4 06 0.8 1
x107
a
9 g2
9.4
{7
0 02 0.4 06 0.8 1

FIG. 6. Time series for the amplitudes of the edge periodic orbit
for Re=400 over one period.

which directly decay to the laminar state from those which
exhibit transiently chaotic behavior, and forms the edge of
chaos. We also confirmed that this remains the periodic orbit
associated with the edge of chaos by finding the edge using
the bisection method at other Re. Moreover, we verified that
our edge tracking algorithm converges to the same orbit re-
gardless of the initial conditions used to begin the bisection
algorithm and the direction we choose for the one dimen-
sional curve which intersects its stable manifold. We note
that for Re=250, this periodic orbit has the smallest mean
perturbation energy of all the periodic orbits found for this

PHYSICAL REVIEW E 78, 036315 (2008)

FIG. 7. The average values for the energy and the amplitudes
corresponding to the streaks (a,) and streamwise vortices (az) of
the UPO associated with the edge of chaos as a function of Re. (top)
The average energy of the UPO (solid) scales as Re™? (dashed). A
scaling analysis reveals that (bottom) {(a,) (upper solid curve) scales
as Re™! (upper dashed line) while (a5} (lower solid curve) scales as
Re~2 (lower dashed line).

system [14,15]. For Re=<250, the only periodic orbits with
smaller mean perturbation energy arise in a bifurcation from
this periodic orbit branch.

From Fig. 6, which shows the evolution of the modes for
the UPO associated with the edge of chaos for Re=400, we
see that there is a difference between the group of modes
which represent the instability in the streaks and the three-
dimensional flow S, :{as,as,as,a7,ag} and the modes corre-
sponding to the basic profile, streamwise vortices, and
streaks Sg:{a;,a,,a3,a0}. In particular, the period of the
modes in group Sp is twice that of the modes in group Sy.
Furthermore, the modes in group S, have larger peak-to-peak
amplitudes than those in group Sp: the peak-to-peak ampli-
tudes of the modes in group S, are approximately 50-2500
times larger than the peak-to-peak amplitudes of the modes
in group Sp, with the exception of the streak mode with
amplitude a, whose peak-to-peak amplitude was comparable
to those of the modes in S,. This implies that the dynamics
of the unstable periodic orbit associated with the edge of
chaos are dominated by the streak and streak instability
modes.

Using AUTO [20], a scaling analysis was conducted by
calculating the average values of the energy, streak ampli-
tude, and streamwise vortex amplitude in the UPO associated
with the edge of chaos; see Fig. 7. The average energy, streak
and streamwise vortex modes scale as Re™2,Re™' ,Re ™2, re-
spectively. These scalings are different from comparable re-
sults found in Ref. [9] which finds that for the lower branch
state for PCF, the amplitudes of the streaks and streamwise
vortices scale as Re’,Re™!, respectively. A possible explana-
tion for the difference in the scalings is the different bound-
ary conditions for the two flows. However, we note that the
ratio between the scalings of the vortices and streaks is the

036315-4



CHARACTERIZING THE EDGE OF CHAOS FOR A SHEAR ...

same, i.e., 7y ~Re~!, which indicates that for both PCF and
the nine- mode model for SSF the streamwise vortices be-
come relatively weaker as Re increases.

As noted in Ref. [15], the model for SSF is equivariant
[21,22] with respect to the group D,={ld.7; 5.7} ;.
7 2L ). These group elements respectively correspond to
the 1dent1ty element, translation by L,/2 in the streamwise
direction, translation by L,/2 in the spanwise direction, and
the application of both such translations. The action of ,TL\JZ
on the unstable periodic orbit associated with the edge of
chaos gives a time shift of half of a period; thus, this periodic
orbit is (setwise) invariant under TL 1»- The action of ’TL 5 On
this periodic orbit gives a distinct, symmetry -related unstable
periodic orbit, which is also (setwise) invariant under TL /2
(The periodic orbit obtained by the action of 7; J2.Lj2 0N the
original unstable periodic orbit is related to the latter one by
a time shift of half a period.) Thus, there are two symmetry-
related unstable periodic solutions, each with its own eight-
dimensional stable manifold which forms an edge of chaos.
By uniqueness of solutions backwards in time, these stable
manifolds cannot intersect.

B. Probabilistic analysis of the edge of chaos

Since a complete characterization of the edge is not pos-
sible, due to its high dimensionality, a more practical way to
study and describe it is by the following probabilistic ap-
proach. We calculate the probability that an initial condition
with a given energy will lead to chaotic behavior by drawing
sets of 2000 uniformly distributed initial conditions with the
same energy from the surface of a nine-dimensional hyper-
sphere whose radius is the square root of the initial energy in
the system, which ranges from E(0)=5X107> to 5X 1073
(See Ref. [23] for details of the algorithm for finding appro-
priate initial conditions.) We integrate these initial conditions
for a sufficiently long time to determine whether or not they
lead to a solution which exhibits chaotic behavior. Note that
as Re increases, the time it takes for trajectories to reach the
chaotic saddle (associated with transient chaos) also in-
creases, so we increase the integration time as appropriate.
For this analysis, we track the amplitude of the basic mode
a; as our indicator of chaotic behavior in the system. The
laminar state corresponds to a;=1, which differs signifi-
cantly from the value of the amplitude in the chaotic saddle
(a;=0.5). Therefore, we are able to determine if a trajectory
becomes chaotic by monitoring whether a; crosses the
threshold a;=0.5.

Figure 8 shows that the probability of transient chaos in-
creases with Reynolds number and perturbation amplitude.
We find that these probability curves agree well with the
average value of the energy of the UPO associated with the
edge of chaos. In particular, superimposing the average en-
ergy in the orbit on the contour plot, we see that the curve is
in the 96%-97% probability range; see the thick black curve
in Fig. 8. Furthermore, a scaling analysis determined that the
contours scale as ~Re™2. This result agrees well with the
Reynolds number scaling analysis performed for the UPO
associated with the edge of chaos.

PHYSICAL REVIEW E 78, 036315 (2008)
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FIG. 8. Probability of transient chaos as a function of the Rey-
nolds number and initial perturbation energy. The contour lines rep-
resent probability increments of 10% with the upper contour being
the 90% curve. The thick black curve represents the average energy
in the UPO associated with the edge of chaos.

C. Basin boundary of the nontrivial attractor

For 335<Re=>515, there is a coexisting stable, non-
trivial attractor. In Ref. [15] it is shown that this attractor
captures signatures of the self-sustaining process identified in
Ref. [16,24,25]; for this reason, we associate the nontrivial
attractor with sustained turbulence in this paper. The attractor
can be chaotic (for 335<Re=355), periodic (for 355<Re
=508), or quasiperiodic (for 508 <Re=>515), and in all
cases explores similar regions of phase space; see Fig. 9. In
Fig. 10, we show the time series for the evolution of the
amplitude a, for an initial condition near the laminar state
fixed point for Re=400. Recall that the laminar state has
a,=0. Here, the system again visits near the same UPO
found in Fig. 3 (but for a different Re value), then displays
transient chaotic behavior, and finally goes to the nontrivial
attractor. This corresponds to the initial condition labelled ¢
in Fig. 4. We found that initial conditions which give tran-

340 400 460 520

FIG. 9. Bifurcation diagram showing the instantaneous value of
a; whenever the trajectory pierces the Poincaré section defined by
a,=0 with a,<<0. This plot is generated by adiabatically changing
the value of Re, omitting transients. For 335 <Re =< 355, the attrac-
tor is typically chaotic (shown in the bottom left inset for Re
=345), for 355<Re=<3508 the attractor is a stable periodic orbit
(shown in the top center inset for Re=400), and for 508 <Re
<515 the attractor is quasiperiodic (shown in the bottom right inset
for Re=510) and in all cases explores similar regions in phase
space. For more detail for 335 <Re=<360, see Fig. 21 of Ref. [15].
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FIG. 10. Time evolution for the amplitude a4 for the nine-
dimensional model at Re=400 showing a qualitatively different be-
havior from Fig. 3 for an initial condition near the laminar state.
Behaviors analogous to those shown in Fig. 3 occur for initial con-
ditions which differ in a, by a quantity of order 1071,

sient chaos before decaying to the laminar state and initial
conditions which give transient chaos before reaching the
nontrivial attractor are extremely close together in phase
space.

At Re=~515, the nontrivial attractor undergoes a crisis
[26], and for higher Re it ceases to exist. This is apparently
due to the boundary of the basin of attraction of the attractor
colliding with one of the many unstable periodic orbits for
this model, see Ref. [15]. This implies that all trajectories
beyond this critical Reynolds number will eventually decay
to the laminar state; however, they can display transient
chaos before this decay. The situation for 515 =Re <1000 is
thus similar that of Re=<335 and to the situation for a differ-
ent low-dimensional model considered in Ref. [10].

Figure 11 shows the probability that perturbations of a
given initial energy lead to the nontrivial attractor for 335
<Re=515. The first sharp contour line indicates a 10%
probability of reaching the nontrivial attractor, and the last
contour line corresponds to a 60% probability. Below Re
~335, there is no nontrivial attractor, and all trajectories
approach the laminar state fixed point. A numerical scaling
analysis shows that each of the contour lines in Fig. 11 scales
as

E(0) =c(Re—-Re,)?, (8)

where ¢ is a constant whose value for this fit is always
5% 1073, This fit has two important parameters: Re, which
is the Reynolds number to which the probability contours

0.6
0.5
0.4
0.3
0.2

0.1

335 400 450 500

FIG. 11. Probability of reaching the nontrivial attractor associ-
ated with sustained turbulence as a function of the Reynolds num-
ber and initial perturbation energy.
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asymptotically tend, and o which is the scaling factor for
each curve. We find Re,={349,357,362,380,405,450} for
the 10%—-60% contours, respectively. The values of the scal-
ing factor o={-1.6,-1.3,-0.85,-0.73,-0.65,-0.55} are
comparable to the turbulent threshold exponent for other
shear flows, such as PCF and plane Poiseuille flow; see, e.g.,
Refs. [27,28].

The relationship between the edge of chaos and the basin
boundary is explored in Fig. 12, at Re=400. This figure
shows that the stable manifold of the UPO associated with
the edge of chaos smoothly and sharply separates (gray) di-
rect decay to the laminar state from (black and white) tran-
sient chaotic behavior. This is in contrast to the basin struc-
ture between initial conditions which lead to the laminar
state fixed point or the non-trivial attractor, as seen in the
black and white speckled region in the figure. The basin
boundary between these two behaviors, as shown in Fig. 12,
is not smooth similar to the edge of chaos, but rather appar-
ently fractal in nature. The fact that trajectories can come
back to the laminar state after a chaotic transient is interest-
ing. A possible explanation is that the stable manifold of the
UPO could be a closed, nonorientable surface with neither an
inside or an outside.

IV. TRANSIENT ENERGY GROWTH

It has been suggested that transient growth due to linear
mechanisms is important for the transition to turbulence,
since it can lead to large perturbations from the laminar state
which may trigger nonlinear effects that lead to turbulence
[1,27-30]. We investigate this issue for the present model by
comparing the initial conditions which give the largest tran-
sient energy growth in the system and initial conditions
which lie in the basin of attraction of the nontrivial attractor
that we associate with sustained turbulence.

To do this, we define the dot product between the initial
condition which gives the largest overall transient energy
growth a7® and any initial condition a with the same energy
as

170 . |
I'(a) = W. 9)

Note that for this analysis, we normalize the vectors so that
I' e[0,1]. A large value for I" indicates that the vectors are
roughly parallel, while a small value indicates that they are
almost perpendicular. Figure 13 shows probability density
functions for initial conditions that have a particular value of
I" which are in the basin of attraction of the nontrivial attrac-
tor and for random initial conditions. For this analysis, we
sampled 5000 random initial conditions uniformly distrib-
uted on spheres of constant perturbation energies E(0)={5
X 107°,5 X 10™*,5 %X 1073} and Re={400,510}. For all cases,
the analysis suggests that initial conditions in the basin of
attraction of the nontrivial attractor are correlated with the
initial condition that yields the optimal transient energy
growth. However, that correlation is only strong when the
initial energy in the system is very small and diminishes as
we move farther way from the laminar state.
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as(0)

FIG. 12. A two-dimensional visualization of the edge of chaos
showing initial conditions which (gray) directly decay to the lami-
nar state, (black) become transiently chaotic before decaying to the
laminar state, and (white) are transiently chaotic and then tend to-
wards the nontrivial attractor corresponding the stable periodic orbit
at Re=400. The center and bottom panels show successive
magnifications.

However, many initial conditions are in the basin of at-
traction of the nontrivial attractor but do not point in the
direction of the largest transient growth. This is illustrated in
the velocity reconstructions shown in Fig. 14 for Re=400,

PHYSICAL REVIEW E 78, 036315 (2008)
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FIG. 13. Probability density functions for the dot product I"
between the initial condition which gives the largest overall tran-
sient growth and (dashed) any arbitrary initial condition, (solid)
initial conditions in the basin of attraction of the nontrivial attractor
for Re=400, (bold solid) initial conditions in the basin of attraction
of the nontrivial attractor for Re=510 for three different initial en-
ergies: (a) E(0)=5X 107>, (b) E(0)=5X107%, (c) E(0)=5X1073.

where the initial condition on the top is that which gives
maximum transient growth (for the linearization about the
laminar state), and the initial condition on the bottom is a
typical one which lies in the basin of attraction of the non-
trivial attractor. Both panels show the downstream vortices
along half the length of the channel, where the velocity fields
are represented by vectors for the components shown on the
plane and the grayscale represents the streamwise velocity.
We see that the initial condition with optimal transient
growth has stronger streamwise vortices and weaker streaks,
whereas the initial condition in the basin of attraction of the
nontrivial attractor has the bulk of the energy in the streaks
rather than the vortices.
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FIG. 14. Velocity fields along half the channel length for (top)
the initial condition which gives the largest transient energy growth
for the linearization about the laminar state and (bottom) a typical
initial condition in the basin of attraction of the nontrivial attractor
for Re=400 and E(0)=5 X 107°.

V. CONCLUSION

The edge of chaos serves as a boundary between laminar
and chaotic behavior, in the sense that initial conditions start-
ing on one side directly decay to the laminar profile, and
initial conditions on the other side exhibit transiently chaotic
behavior. We characterized the edge of chaos for a nine-
dimensional model for sinusoidal shear flow as the eight-
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dimensional stable manifold of an unstable periodic orbit,
whose properties were described in detail. For this model, for
335=<Re=515 sustained turbulence is associated with a
nontrivial attractor, which could be chaotic, a periodic orbit,
or a quasiperiodic attractor. For 515 =Re <1000, there is no
longer a nontrivial attractor and the stable manifold of the
unstable periodic orbit associated with the edge of chaos
separates initial conditions which directly decay to the lami-
nar state from those which give a chaotic transient. Further-
more, we determined the probability that perturbations of a
given energy lead to transient chaos before decay to the lami-
nar state, or to a nontrivial attractor.

A scaling analysis of the probability that an initial condi-
tion with a particular energy and at a particular Re leads to a
nontrivial attractor gave reasonable agreement with scalings
for similar shear flows. We also found a correlation between
initial conditions in the basin of attraction of the nontrivial
attractor and the initial condition that yields optimal transient
growth. However, there are many initial conditions which
show only a weak correlation to optimal transient growth but
still lead to the nontrivial attractor; indeed, many initial con-
ditions leading to the nontrivial attractor have more energy in
the streaks rather than the streamwise vortices, which con-
trasts with initial conditions for optimal transient growth
which have more energy in the streamwise vortices than the
streaks, cf. Ref. [31]. This provides evidence that the study
of transient growth is of limited usefulness for understanding
transition to turbulence.
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