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A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the

transition between high and low power output levels. It is shown that the presence of a chaotic

attractor is a sufficient condition to predict high power output, though there are relatively small

areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a

product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight

into the development of the chaotic region as the input power level is varied, as well as the

intermixed periodic windows.VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943172]

Vibrational energy harvesting allows small amounts of
power to be extracted from the environment or a device’s
operation. Capturing this energy can provide a power
source for small electronic devices without the need for
batteries or external power supplies, thus potentially
reducing installation and maintenance costs. This article
provides a detailed dynamical systems analysis of a model
for a buckled beam vibrational energy harvester, identi-
fying transitions to chaos and other bifurcations which
lead to high energy output over a range of vibration fre-
quencies. Such an analysis will be useful for determining
if a parameter change in the system design results in
increased bandwidth for high energy output, an impor-
tant step for system optimization.

I. INTRODUCTION

Harvesting energy from ambient vibrational energy sour-

ces using piezoelectric beams is an area of much current inter-

est, as can be seen from the multitude of recent articles

regarding such devices as reviewed in Ref. 1. These devices

can be used to provide an energy source in environments

where running power lines or replacing batteries is not a prac-

tical option. Though conversion efficiencies are typically quite

small, i.e., milliwatt power generation from watts of vibra-

tional energy, scavenging any otherwise wasted energy is a

worthwhile pursuit. Often, energy harvesting devices are

designed as linear resonant devices, which are only capable of

harvesting energy from a very narrow bandwidth of excitation

frequencies.13 Increasing the bandwidth of excitation frequen-

cies from which the device can extract energy can offer a sig-

nificant improvement in response to time varying signals.

Buckled beams characterized by a double well potential have

been utilized by many researchers to broaden the bandwidth

of energy output as compared to devices which display linear

resonance. Simple models demonstrating bi-stability and cha-

otic response have been demonstrated,2,3 but typically these

models are developed from a single mode Galerkin Projection

which requires that the beam pass through the unstable central

equilibrium position in a straight configuration, invalidating

the small strain assumption if the transverse displacements are

even moderately large in comparison to the dimensions of the

beam.4 Some dynamic analysis of this type of model has been

done,2 but the authors cite these as proof of concept models

and do not attempt to make accurate identifications of the

underlying cause of bifurcations, leaving this as an area

requiring further investigation.

Recently, a model has been generated4 which demon-

strates reasonable and conservative agreement with an ex-

perimental device in both power output and bandwidth,

while also agreeing well with qualitative examinations of

the behavior in different regimes around the high power

output region. Providing a detailed dynamic analysis of

the transitions to relatively high power output can help pro-

vide understanding about why these transitions occur and

provide a framework for optimizing the output power in

response to a known vibration source. The beam under

investigation is constructed by the union of a bimorph pie-

zoelectric beam and a single layer piezoelectric beam, both

available commercially from Advanced Cerametrics.5 The

joint is glued with approximately 10mm of overlap, and

both ends are clamped to prevent rotation or displacement

in relation to the clamping surface. The mounts are then

moved closer together than the natural length of the beam

until a buckled state is realized. The entire structure is then

subjected to a vibration in a direction perpendicular to the

mounting surfaces. A sketch demonstrating the fundamen-

tal beam construction is shown in Figure 1. Additional

details of the experimental setup and methods can be found

in Ref. 6.

In the present paper, examinations are made of the tran-

sitions between single well and double well behavior, includ-

ing identification and tracing of the responsible bifurcation

branches. Several methods are used, including time averages,

Poincar�e maps, bifurcation diagrams, and numerical bifurca-

tion analysis to specifically identify types and locations of

bifurcations. The transition to high power output is found to

be closely related to this transition between single well and

double well behavior, but there are regions where relativelya)louis01@umail.ucsb.edu
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high power output is achieved without snap-through behav-

ior between the wells, and the underlying cause of this phe-

nomenon is also examined.

II. MODEL GENERATION

For simplicity, our analysis of the model from Ref. 4

deals with sinusoidal excitations. Due to the complexity of

the system, analytic modes are not available about the non-

linear buckled equilibrium state,4 so finite element analysis

was used to determine mode shapes. The Green-Lagrange

strain tensor was used to approximate the axial strain under

assumptions of small strain and moderate rotation, with the

dependent variables as the mode amplitudes. From this, an

Euler-Lagrange energy function was developed and used to

construct equations of motion based on the mode amplitudes.

The primary shape mode is called the equilibrium mode, and

named “a0,” which is defined as having amplitude 61 at the

equilibrium positions, with all other modes equal to zero.

The presence of two equilibrium positions gives the system a

double well character, which is exploited to increase the

bandwidth compared to a single well system. Three addi-

tional vibrational modes were defined to complete the basis

for projecting the beam dynamics onto. Deriving a model

using a buckled equilibrium shape plus the first three mode

shapes, we found equations of the form

€ai�1 ¼ bði;1Þ a0 þ bði;2Þ a
3
0 þ bði;3Þ a1 þ bði;4Þ a0 a

2
1 þ bði;5Þ a

3
1

þ bði;6Þ a2 þ bði;7Þ a0 a1 a2 þ bði;8Þ a
2
1 a2 þ bði;9Þ a0 a

2
2

þ bði;10Þ a1 a
2
2 þ bði;11Þ a

3
2 þ bði;12Þ a3 þ bði;13Þ a0 a1 a3

þ bði;14Þ a
2
1 a3 þ bði;15Þ a0 a2 a3 þ bði;16Þ a

2
2 a3

þ bði;17Þ a0 a
2
3 þ bði;18Þ a1 a

2
3 þ bði;19Þ a2 a

2
3 þ bði;20Þ a

3
3

þ bði;21Þ Ax
2 sinxtþ bði;22Þ vB þ bði;23Þ a0 vS

þ bði;24Þ a1 vS þ bði;25Þ a2 vS þ bði;26Þ a3 vS

þ bði;27Þ _a0 þ bði;28Þ _a1 þ bði;29Þ _a2 þ bði;30Þ _a3; (1)

_vB ¼ d0 _a0 þ d1 _a1 þ d2 _a2 þ d3 _a3 þ d4 vB; (2)

_vS ¼ _a0ðh0 a0 þ h1 a1 þ h2 a2 þ h3 a3Þ

þ _a1ðh4 a0 þ h5 a1 þ h6 a2 þ h7 a3Þ

þ _a2ðh8 a0 þ h9 a1 þ h10 a2 þ h11 a3Þ

þ _a3ðh12 a0 þ h13 a1 þ h14 a2 þ h15 a3Þ þ h16 vS; (3)

where b is a matrix of coefficients with as many rows as

shape functions, d and h are vectors of coefficients, and i

runs from 1 to 4. The parameters x, A, vB, and vS are the

forcing frequency in radians/s, excitation amplitude, voltage

in the bimorph section, and voltage in the single layer beam,

respectively. Further details about the model generation are

presented in Ref. 4.

III. ANALYSIS OF THE MODEL

We propose that the critical parameters for examining a

nonlinear energy harvesting system are the forcing power

level and the frequency and/or bandwidth of excitation.

Commonly, comparisons are made using the amplitude of the

acceleration of the forcing signal, without regard to the fact

that the forcing power level is not constant or linear as the fre-

quency is changed when the acceleration amplitude is kept

constant. This results in higher frequency tests being done at

significantly higher forcing power levels which can skew the

results to appear that the device works just as well or better at

higher frequencies, particularly damaging the perception of

output bandwidth. The lack of superposition in nonlinear

devices compounds this phenomenon. Sweeps at constant

acceleration often result in overlapping power levels with

another sweep which is presented as a separate result, and

interpolation or normalization are not possible. Only compar-

ing signals produced by the same input power level allows for

a fair comparison of output root mean squared (RMS) values

without any skew based on frequency of excitation.

To begin examination of the model, we produce a plot of

power output over the parameter space of frequency and

available forcing power. This can be seen in Figure 2. Here,

the forcing power is calculated as the forcing amplitude

squared multiplied with the forcing frequency in radians/

second cubed. This represents the maximum amplitude of the

acceleration multiplied with the maximum value of the veloc-

ity, providing a measure of mechanical power. Though these

quantities are never at their maxima at the same instant, it pro-

vides a consistent and easily calculable reference for which to

compare forcing power levels, which we will denote as the

available input power. The output power is the sum of the

RMS voltage output divided by the resistive load in kilo-ohms

for both the single layer and bimorph sections of the beam.

Note that there is a region of the parameter space where

the power output is significantly higher. This region begins at

approximately 5 W of available input power and a forcing

frequency of 41Hz, where the bandwidth is quite small. As the

available input power is increased, there is a significant

increase of the bandwidth of the high power region.

Interestingly, around 7 W of available input power there is a

region where the bandwidth shrinks. This phenomenon is due

to the existence of a non-attracting set of high power orbits

that settles to a small amplitude orbit after a period of high

power transients, as will be shown in more detail later in this

paper. The high power region is associated with the beam

entering into a behavior which transitions between the two sta-

ble equilibria of the buckled beam, which we will call a snap-

through behavior. The region of parameter space where the

beam exhibits this snap-through behavior can be determined

FIG. 1. A sketch of the beam demonstrating the construction, direction of

vibration, and approximate buckled shape. The stiffer bimorph beam is on

the left, and the single layer beam is on the right. The beam is clamped in a

fixture, and vibrated in the plane of the page, assuming that any motion in

and out of the page is negligible.
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by examining the long-time average of the amplitude of the

equilibrium mode.7 When the beam is settled into single well

behavior, the time average is very close to positive or negative

one, while during snap-through behavior the time average

approaches zero. The black trace in Figure 2 represents the

boundary of the region where the snap-through behavior repre-

sents the attracting set, and all orbits inside the region make

well-to-well transitions. Note that while this encompasses a

large portion of the high power region, there is a significant

slice on the high frequency side where high power output is

realized without snap-through behavior, as well as a small lobe

on the low frequency side. These regions will be examined

later in the paper.

We note that there are small regions of this parameter

space where multiple stable trajectories exist, generally hav-

ing different levels of power output. These regions are nar-

row bands near the transition between low and high power

output which can be accessed by choosing appropriate initial

conditions. However, these regions are small enough in com-

parison to the parameter space that they make no significant

difference in the visualization of the power output. Once the

system has transitioned to snap-through behavior, randomly

chosen initial conditions demonstrate convergence to the

high power attractor. Global stability cannot be guaranteed,

due to the small strain assumption used to generate the

model. If the mode amplitudes get large enough, this

assumption will be invalidated and any results obtained from

this model will be invalid.

A. Bifurcation diagrams

For a specified available input power level, a bifurcation

diagram can be created. To do so, a range of frequencies is

selected with adequate density to catch interesting phenom-

ena, and a time series is run at each chosen excitation fre-

quency. After discarding any transient portion, a Poincar�e

section is created by strobing the time series once per forcing

period. Selecting one representative function and plotting the

amplitude of that function across the frequency range, a bifur-

cation diagram is generated; see Figure 3. For this example,

an available input power level of 6 W has been selected, and

the function we are examining is the amplitude of the equilib-

rium mode, a0. Periodic behavior is expected to have all of

the Poincar�e iterates lie on top of each other, and are therefore

expected to correspond to a point or a well defined set of

points at the respective frequency. Beginning at the far right

of the diagram, a period one oscillation is noted for which a

demonstrative time series can be seen in Figure 4(a).

Decreasing the forcing frequency results in this behavior split-

ting into a period two oscillation, as seen in Figure 4(b), sug-

gesting the existence of a period doubling cascade, which will

be examined shortly. Moving further down in frequency, cha-

otic response is found first in just one well, panel (c), then the

attractor expands until it fills the well, then snap-through

behavior begins with the attractor visiting both wells indis-

criminately, see panel (d). This behavior suggests that the

transition from single well behavior to snap-through behavior

is governed by an attractor merging crisis8 of the symmetry

related attractors in each well. Traveling for a while through

the chaotic zone, suddenly a periodic window is encountered.

A time series with Poincar�e map can be seen in panel (e) of

Figure 4. Further reduction in frequency carries us through

several more chaotic zones and periodic windows before we

return to a period one oscillation.

Note that at approximately 42.7Hz in Figure 3 there is a

discontinuity in the bifurcation branch of the period one

orbit. To determine the cause of this irregularity, we can use

the numerical bifurcation software AUTO9 to follow the de-

velopment of the period one orbit as we move through this

range of forcing frequencies. We will start on the stable pe-

riod one orbit above the discontinuity and follow the orbit as

the forcing frequency is decreased. We find that there is a

region where multiple saddle-node bifurcations create multi-

ple stable orbits. Figure 5 shows the evolution of the orbit

through this frequency range. The red portions of the trace

are the unstable branch of the period one orbit, while the

blue portions are stable. The vertical axis represents the L2

norm of the voltage produced by this orbit, so higher values

are associated with higher power output. We note that

between 42.39 and 42.71Hz, there are multiple stable instan-

ces of this period one orbit, connected through 4 saddle-node

bifurcations (marked with black triangles on the figure).

While the intermediate stable orbit is not easily discovered

with a time series exploration, the low power and high power

branches are both easily observed, and the switch between

them is what causes the discontinuity observed in Figure 3.

Moreover, this jump between stable orbits is the cause of the

FIG. 2. Summed RMS power output in

mW of both single layer beam and

bimorph beam. Note the sharp transi-

tion between low and high power on

the high frequency side of the tongue.

Also note the “bite” that seems to be

taken out of the high power region on

the low frequency side. The black line

indicates a transition between single

well and double well behavior, demon-

strating that snap-through is typically

associated with relatively high power

output.
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sudden jump in output power noted at the high frequency

side of the high power region in Figure 2. The stable high

power branch of the orbit does not exist for long before it

loses stability at a period doubling bifurcation (such bifurca-

tions are marked with black squares). The period doubled

stable solution can be traced to a second period doubling

bifurcation, where a new branch leads to a third bifurcation,

and quickly the orbit becomes too complex and the bifurca-

tions too close together to identify any further, accumulating

at approximately 42.075Hz. Recall that the Feigenbaum

number (d) can be calculated as

lim
n!1

kn � kn�1

knþ1 � kn
¼ d ! 4:6692016;

where kn represents the frequency at which the nth bifurca-

tion occurs.10,11 For the present model, this is calculated as

4.5 for the fourth period doubling bifurcation (n¼ 4), which

is reasonably close to the Feigenbaum number, suggesting

that this period doubling cascade obeys the universal scaling

expected of a period doubling transition to chaotic behavior.

The period one orbit can be traced through the high

power region, where it remains unstable, until stability is

regained as we drop back into single well oscillations near a

saddle-node bifurcation on the low frequency side of the high

power region, corresponding to 39.6Hz with 6 W of available

input power. The saddle-node bifurcation appears to trace the

boundary, as can be seen in Figure 7, along the low frequency

side of the snap-through region. However, this bifurcation

branch is not responsible for the transition. There is a very

small region where both the stable period one orbit, which

undergoes the saddle-node bifurcation, and the chaotic attrac-

tor coexist. A time series including the transient portion can

be seen in Figure 6. The transient portion produces snap-

through behavior in a manner similar to trajectories where

snap-through is the attracting behavior. The overlap of stable

period one and chaotic regions combined with the presence of

transient chaos indicates that an unstable orbit has collided

with the chaotic attractor, creating a boundary crisis.12 The

chaotic set becomes non-attracting, but orbits near the bound-

ary are able to jump onto this set for a short period of time

FIG. 3. Bifurcation diagram created by

strobing the system at the forcing fre-

quency. The selected function is the

equilibrium amplitude a0, and the avail-

able input power is 6 W. Frequencies

with well defined discrete points have

periodic solutions, while frequencies

where the Poincar�e intersections fill in

vertical bands of parameter space are

chaotic.

FIG. 4. A set of time series demon-

strating qualitatively different behav-

iors. All plots are of the equilibrium

mode amplitude, with red dots overlaid

at the Poincar�e sections used to create

the bifurcation diagrams. Panel (a)

demonstrates a simple period 1 orbit

which exists at 42.3Hz. As the fre-

quency is decreased to 42.14Hz, the

orbit becomes period 2, as seen in

panel (b). Chaos is first noted in a sin-

gle well, as shown in panel (c) at

42.05Hz. Quickly this chaotic attractor

merges with the attractor existing in

the other well, and snap-through

behavior is noted, as seen in panel (d)

at 41.9Hz. Moving down in forcing

frequency through the chaotic zone, a

periodic window is encountered, as

seen in panel (e) at 41.65Hz.
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before moving off to a stable period one orbit. Therefore, we

see a high power output transient that settles to a low power

output long term behavior. Presumably small perturbations to

the system could result in returning to the high power non-

attracting set through this region.

Though all of this bifurcation analysis has been devel-

oped at an available input power level of 6 W, these phenom-

ena persist across the span of the high power region. Using

AUTO to trace the bifurcation branches through the fre-

quency/available power parameter space and plot them on

top of the power output allows us to trace the boundaries of

the high power region very accurately. Figure 7 shows this,

where saddle node branches are traced in black, period dou-

bling branches in red, and the region of transient chaos high-

lighted in brown. Note that the region of transient chaos fills

in the “bite” of low power output noted around 7–8 W of

available input power. There is a high power lobe that occurs

outside of the snap-through region on the low frequency

side, between about 5 and 7 W of available input power.

This is also traced by a saddle-node bifurcation, indicating

that there is a sudden change from a low power output

behavior to a high power output behavior.

B. Periodic windows

It is informative to examine the periodic windows that

exist within the chaotic region. Reviewing Figure 3, we note

that there are several windows where the period is quite

high. By measuring the time elapsed between crossings of

the equilibrium mode through zero in the positive direction,

and averaging over a comparatively long time period we can

define an average crossing frequency. Plotting this for a

sweep at 6 W of available input power, and overlaying inte-

ger multiples of the forcing frequency produces Figure 8.

Note that there are several regions where the frequency of

the well-to-well oscillations is locked to the forcing fre-

quency. This is particularly obvious in this figure between 40

and 40.5Hz, where the oscillations are locked at 9 periods of

the forcing cycle. Note also that Figure 3 indicates that the

periodic windows exist at the same frequencies which indi-

cate a lock between the forcing frequency and the response

FIG. 6. On the low frequency side of the high power region, transient snap-

through behavior can be observed before the system settles into a single well

oscillation. This time series plots the equilibrium mode amplitude, with a

forcing frequency of 39.7Hz, and an available input power of 6 W.

FIG. 5. Evolution of the period one

orbit at the high frequency side of the

high power region. Blue traces indicate

regions of stability of the period one

orbit; the green trace is a stable period

two orbit, while the red lines indicate

unstable branches. Saddle node bifurca-

tions are marked with black triangles,

while period doubling bifurcations are

marked with black squares. The exis-

tence of multiple stable orbits at differ-

ent power output levels provides insight

to the sudden change of output power

observed here. The period doubling cas-

cade at the far left of the figure indicates

the transition to chaotic behavior.

FIG. 7. Power output over the parame-

ter space, with bifurcation sets shown.

Black lines are associated with saddle-

node bifurcations, and the red line is a

period doubling bifurcation at the start

of the period doubling cascade. The

brown highlighting indicates regions

of transient chaos. The majority of the

high power output region is enclosed

by the saddle-node bifurcations.
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of the system. Moreover, the integer relation to the forcing

frequency is coincident with the periodicity of the associated

window. This phenomenon can be visualized through Figure 9,

where the periodic windows have been highlighted in a color

pattern consistent with their periodicity as determined from

the locking behavior. In this plot, we have stacked multiple

bifurcation diagrams together to give a sense of the develop-

ment of the periodic windows and snap-through regions

throughout the parameter space. Interestingly, we note that

the relatively low period orbits only occur at higher power

levels, with higher periodicities being present at lower avail-

able power levels. The expansion of the chaotic region with

its interspersed periodic windows is clearly apparent from

this perspective. The development of the chaotic region is

closely associated with snap-through behavior, as evidenced

by the fact that nearly all chaotic frequencies have strobe

points in both wells. Therefore, it is reasonable to assume

that for this beam, the chaotic attractor becoming stable

results in high power output, though it is possible to achieve

high power output without a chaotic attractor.

The transition between periodic and chaotic behavior

within the chaotic attractor deserves some attention. A time

series of a period 5 window with overlaid Poincar�e map and

a time series of a chaotic response very close in frequency is

displayed in Figure 10. The phase portraits associated with

each trajectory are also presented. The chaotic time series

has sections that appear to behave in a very similar way to

the periodic time series. However, there are intermittent

bursts of aperiodic behavior that prevent the Poincar�e map

from repeating as it does in the periodic case. From this, it

can be inferred that the transition between periodic behavior

and chaotic behavior is governed by an intermittency transi-

tion around these periodic windows.

IV. CONCLUSIONS

Analysis of this beam model indicates that the presence

of the chaotic attractor results in a relatively high power out-

put. The chaotic attractor is associated with a period dou-

bling cascade, an intermittency transition, and a crisis where

an unstable period one orbit collides with the attractor. There

are regions where the power output increases without a cha-

otic attractor, but these areas are bounded by saddle-node

bifurcations which are the start of a transformation of behav-

ior which will result in a chaotic attractor when the parame-

ter of interest continues to evolve. The resulting high power

bandwidth is much greater than can be realized with a linear

oscillator. This model performs quite well in comparison

with other nonlinear energy harvesting devices, though the

lack of a well defined and properly normalized performance

metric for other studies makes quantitative comparison very

difficult. Analysis of the single-forcing frequency model pro-

vides understanding of which transitions result in high power

output, allowing models with different physical parameters

FIG. 8. Frequency locking in the well-to-well oscillation zone. Any time we

are experiencing well-to-well oscillations, this frequency is non-zero. Note

the regions where the crossing frequency locks to the forcing frequency.

Locked oscillations of several different periods are present, ranging from 5

forcing cycles up to 11.

FIG. 9. Stacked bifurcation diagrams of the equilibrium mode show the evo-

lution of the snap-through region. Here, some of the major periodic windows

are highlighted: yellow corresponds to a period 5 oscillation, green to a pe-

riod 7, and red to a period 9. As the available input power level is decreased,

the trend is towards higher period periodic windows.
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to be examined to determine how to go about optimizing the

output power bandwidth, which is certainly an area worthy

of further investigation.
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FIG. 10. Upper panels show time series

of periodic response at 41.47Hz, and

chaotic response at 41.49Hz. Lower

panels phase space of period 5 oscilla-

tion at 41.47Hz, and the response at

41.49Hz where the Poincar�e sections

no longer form a periodic orbit. Note

that the behavior of the chaotic series is

very similar to the periodic response

with bursts of different behavior inter-

spersed that prevents the Poincar�e map

from repeating.
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