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Abstract. We present a novel Eulerian numerical method to compute global isochrons of a stable periodic orbit
in high dimensions. Our approach is to formulate the asymptotic phase as a solution to a first-
order boundary value problem and solve the resulting Hamilton–Jacobi equation with the parallel
fast sweeping method. All isochrons are then given as isocontours of the phase. We apply this
method to the Hodgkin–Huxley equations and a model of a dopaminergic neuron which exhibits
mixed mode oscillations. Our results show that this Eulerian scheme is an efficient, accurate method
for computing the asymptotic phase of a periodic dynamical system. Furthermore, by computing
the phase on a Cartesian grid, it is simple to compute the gradient of phase, and thus compute an
“almost phaseless” target set for the purposes of desynchronization of a system of oscillators.
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1. Introduction. A powerful technique for analyzing the dynamics of nonlinear oscillators
is phase reduction, with a single variable for an oscillator describing the phase of the oscil-
lation with respect to some reference state [28, 50, 18, 20]. The resulting reduction in the
dimensionality and complexity of a system often retains enough information to yield a useful
understanding of the system’s dynamics (see, e.g., [26, 2, 16, 6, 32]) and can allow for the
implementation of phase-based control algorithms (see, e.g., [43, 33, 48]).

Phase reduction is obtained through the partition of the basin of attraction of a stable
periodic orbit into isochrons, which are sets of points that give trajectories which converge
with the same phase on the periodic orbit [49]. Isochrons can be interpreted as the level sets
of an appropriate phase function. Since isochrons capture the phase properties of the system,
they provide a useful characterization of the system’s dynamics and its response to control
inputs.

Various methods for computing isochrons have been developed, with recent approaches
including [15, 37, 30, 19]. While such numerical techniques hold promise, they are challenged
by oscillator models with high dimensionality. The main problem stems from the “curse of

∗Received by the editors December 5, 2014; accepted for publication (in revised form) by H. Osinga May 4, 2016;
published electronically August 11, 2016.

http://www.siam.org/journals/siads/15-3/99861.html
Funding: This work was supported by the National Science Foundation grant NSF-1363243 and Office of Naval

Research grant ONR N00014-11-1-0027.
†Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (mdetrixhe@

engineering.ucsb.edu, mariondoubeck@yahoo.fr, moehlis@engineering.ucsb.edu).
‡Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, and Depart-

ment of Computer Science, University of California, Santa Barbara, CA 93106-5110 (fgibou@engineering.ucsb.edu).

1501

D
ow

nl
oa

de
d 

08
/1

1/
16

 to
 1

28
.1

11
.7

0.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siads/15-3/99861.html
mailto:mdetrixhe@engineering.ucsb.edu
mailto:mdetrixhe@engineering.ucsb.edu
mailto:mariondoubeck@yahoo.fr
mailto:moehlis@engineering.ucsb.edu
mailto:fgibou@engineering.ucsb.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1502 M. DETRIXHE, M. DOUBECK, J. MOEHLIS, AND F. GIBOU

dimensionality” as termed by Bellman [4]: the computational cost increases exponentially with
the dimension of the mathematical model. Existing computational approaches are severely
limited in the dimensionality of the problems they can feasibly analyze.

The two general approaches for solving for isochrons are to use either Lagrangian or
Eulerian methods. Lagrangian methods aim to compute the isochron explicitly, i.e., identify
all points that belong to a particular isochron. An Eulerian method computes the isochrons
implicitly as isocontours of the phase. Eulerian methods have the advantage that once the
phase field is computed, all isochrons are known implicitly. Explicit representations of the
isochrons can then be obtained by using an isocontouring algorithm during the postprocessing
stage (e.g., with MATLAB or ParaView). Often, the research goal is to have a picture of the
isochrons in a specific region. Lagrangian methods that propagate the isochron from the
boundary data will not have knowledge of a particular isochron’s point of intersection with
the orbit a priori. Further, Eulerian methods make it simple to compute derivatives of the
phase with finite differences. This can be useful for control applications and is demonstrated
in our results. Lagrangian methods, however, have the advantage that by computing a single
isochron at high accuracy, very fine details can be resolved (e.g., near the phaseless set).

Such grid-based methods, however, are limited by memory and computational expense
with increasing dimension. Applications that require the solution at only a few points can
avoid the use of a grid and employ Lagrangian methods to problems with much higher dimen-
sionality. Here we focus on applications where it is important to compute isochrons in the
entire domain, for which Lagrangian methods are much less efficient.

In this paper, we introduce a robust Eulerian computational method that enables the
efficient computation of isochrons in dimensions higher than is possible with current state-
of-the-art techniques. Our Eulerian technique has the added benefit that it allows for the
simple computation of the almost phaseless set for the purpose of desynchronizing control.
We mitigate the curse of dimensionality by first formulating the isochrons as isocontours of the
solution of a Hamilton–Jacobi (HJ) PDE and then coupling an efficient algorithm for solving
the HJ equation with parallel computer hardware. We demonstrate the method by analyzing
a three-dimensional (3D) model of a neuron which exhibits mixed mode oscillations and the
four-dimensional (4D) Hodgkin–Huxley (HH) model for neural dynamics and a particular
two-dimensional (2D) reduction. The results can be used to better understand the geometry
and phase dynamics of each system.

Much research has been done on solving static (time-independent) HJ problems. A march-
ing approach for solving linear PDEs was developed in [1]. Both the method of Tsitsiklis [45]
and the fast marching method (FMM) [40] were designed to solve the eikonal equation, which
is a specific static HJ equation. The FMM has been adapted into a family of ordered up-
wind methods (OUMs) [42, 41] that can be applied to many static HJ problems. These are
single-pass methods in which each grid point is computed in the order of its dependence on
the boundary data. The computational complexity of these methods is O(N logN), where N
is the total number of grid points.

The fast sweeping method (FSM) [52] was also developed to solve the eikonal equation
and was generalized to solve many other static HJ equations [44, 24, 38]. The FSM is an O(N)
method that does not exactly compute the dependence graph of all grid points as does the
FMM. Instead, the FSM builds on an older approach for linear PDEs [29] and HJ equations
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FAST EULERIAN METHOD FOR COMPUTING ISOCHRONS 1503

[5] which uses alternating Gauss–Seidel iterations. The FSM updates grid points in several
alternating orderings that, in a finite number of sweeps, will propagate information along all
possible directions of dependence to the entire domain. The number of sweeps is not strictly
grid independent for general PDEs (as shown in Remark 4.4 in [7]). However, in practice the
number of iterations to convergence is bounded by the geometry of the characteristic curves
of the underlying PDE. For this reason, the method is said to be of computational complexity
of O(N), even though a proof only exists for a subset of eikonal equations.

All of the above fast methods require grid points to be updated in a specific order, so
parallelization is not trivial. The fast iterative method [21] is a parallel marching method
for the eikonal equation that gives good speedups on CPUs and GPUs for certain problems.
Two parallel sweeping methods were developed in [53], but are limited. The first is limited
to a small number of parallel threads, and the second drastically increases the number of
iterations to converge. An efficient parallel sweeping method for the eikonal equation in
arbitrary dimensions was developed in [13]. In addition to sweeping and marching methods,
there exists a family of two-scale methods [7] and their parallel versions [8] designed to combine
the best features of marching and sweeping, while also exhibiting excellent parallel scalability.

We are currently developing a more powerful parallel FSM [12] designed for use on modern
supercomputers. The HJ problem being considered here could be solved with a marching,
sweeping, or two-scale method, but for the above reason, we chose to develop the FSM for
the computation of isochrons. The significance of this work is that by combining the HJ
formulation with a highly parallel algorithm, we can solve problems that are intractable with
previously existing methods.

This paper is organized as follows. We first rigorously set up the mathematical framework
and provide definitions in section 2. In section 3, we formulate the asymptotic phase as a
solution to an HJ boundary value problem. Then we describe the FSM for the computation of
isochrons in section 4 and the parallelization in section 5. In section 6 we provide the various
dynamical system models we will study, including the HH model for neural dynamics. We
then present and discuss the numerical results of the example problems in section 7 before
discussing the computational expense in section 8. Finally, we make concluding remarks in
section 9.

2. Definitions. Consider an autonomous vector field

(1)
dx

dt
= F(x), x ∈ Rn (n ≥ 2),

having a stable hyperbolic periodic orbit xγ(t) with period T . We define the set of all points
on the stable orbit as Γ and the basin of attraction as B. For each point x∗ in B there exists
a unique θ(x∗) such that

(2) lim
t→∞

∣∣∣∣x(t)− xγ
(
t+

T

2π
θ(x∗)

)∣∣∣∣ = 0,

where x(t) is a trajectory starting with the initial point x∗. The function θ(x) is called the
asymptotic phase of x and takes values in [0, 2π). Other conventions, related to this through a
simple rescaling, define the asymptotic phase to take values in [0, T ) or in [0, 1). Let γ0 ∈ Γ be
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1504 M. DETRIXHE, M. DOUBECK, J. MOEHLIS, AND F. GIBOU

the point where the phase is zero. Our convention is to choose γ0 as the global maximum of Γ
with respect to the first coordinate. An isochron is a level set of θ(x), that is, the collection of
all points in the basin of attraction of xγ with the same asymptotic phase. Isochrons extend
the notion of phase of a stable periodic orbit to the basin of attraction of the periodic orbit.
It is conventional to define isochrons so that the phase of a trajectory on the periodic orbit
advances linearly in time, so that

(3)
dθ

dt
=

2π

T

both on and off the periodic orbit. Points at which isochrons of a periodic orbit cannot be
defined form the phaseless set.

Isochrons can be shown to exist for any stable hyperbolic periodic orbit. They are codi-
mension one manifolds as smooth as the vector field, and transversal to the periodic orbit xγ .
Their union covers an open neighborhood of xγ . This can be proved directly by using the
implicit function theorem [9, 14] and is also a consequence of results on normally hyperbolic
invariant manifolds [46].

The “almost phaseless set” of a system is a region (often near the phaseless set) in which
the isochrons are sufficiently close for small perturbations (in practice, ambient noise) to lead
to phase randomization. A measure of the “closeness” of isochrons is the magnitude of the
gradient of phase: |∇θ|. The threshold on |∇θ| which defines the almost phaseless set will
depend on the system and the perturbations it is subjected to. For the purposes of this paper,
we define the almost phaseless set A as

(4) A = {x ∈ B | |∇θ| > τ},

where τ is an application-dependent threshold value.

3. Hamilton–Jacobi formulation. We study systems of first-order ordinary differential
equations (1), where the dynamics F are given by the specific model and x is the state. Since
xγ(t) is a hyperbolic attractor, as t → ∞ the state converges to the periodic orbit. We can
assume after a sufficiently long time, denoted by T∞, that the state will be arbitrarily close
to the orbit for any initial condition not in the phaseless set and in a finite region of interest
Ω′ within the basin of attraction:

inf
y∈Γ
‖x(T∞)− y‖ ≤ ε ∀ x0 ∈ Ω′ ⊆ B,

where ε is a small parameter. To compute isochrons, it becomes advantageous to formulate
the problem as a static HJ boundary value problem. We do this by applying the chain rule
to (3),

dθ

dt
=
∂θ

∂x
· dx
dt

=
2π

T
,

and substituting (1):

∇θ · F(x) =
2π

T
.
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FAST EULERIAN METHOD FOR COMPUTING ISOCHRONS 1505

The above is a first-order hyperbolic PDE. Since the characteristics emanate from any point
near the periodic orbit to the rest of B, the above equation will have a unique solution for all
points in the basin of attraction if we impose boundary conditions on a small neighborhood
near Γ. We define this set as

(5) Γ+ = {x | inf
y∈Γ
‖x− y‖ ≤ r},

where r is a small parameter. Finally, the time-independent (static) HJ formulation for the
asymptotic phase is given:

∇θ · F(x) =
2π

T
∀ x ∈ B,(6)

θ(γ) = f(γ) ∀ γ ∈ Γ+,

where f is the phase along the periodic orbit and can be found by evolving a single trajectory
according to (1) until it is sufficiently close to Γ and applying the definition of asymptotic
phase from section 2. Since isochrons are just contours of constant phase, by solving (6), we
solve for all isochrons simultaneously. Any isochron can be visualized by simply taking an
isocontour of the function θ(x).

4. Fast sweeping method. A numerical method for solving static HJ equations must have
two parts. The first is a consistent discretization of the underlying PDE, and the second is a
method for solving the system of equations. In this section, we describe the Godunov finite
difference discretization and the iterative FSM for computing the numerical solution.

4.1. Discretization. In this section we describe the discretization in two dimensions
and discuss the extension to higher dimensions. Consider a domain Ω = [xmin, xmax] ×
[ymin, ymax] ∈ R2 discretized by a uniform Cartesian grid with Nx + 1 and Ny + 1 equally
spaced grid points in the x and y directions, respectively. The discrete locations of the points
on the grid are given by xi = xmin + i∆x and yj = ymin + j∆y, where ∆x,∆y are the grid
spacings. We will use the notation θi,j to denote θ(xi, yj).

Equation (6) can be rewritten in two dimensions as

(7)
∂θ

∂x
F1 +

∂θ

∂y
F2 =

2π

T
,

where the components of the vector F are {F1, F2}. The Godunov discretization of the
Hamilton–Jacobi–Bellman (HJB) equation for optimal control was introduced in [10] and
later used in [24]. Our equation is a specific case of the HJB equation, so we use the same
discretization. In fact, (6) is a linear PDE with characteristic directions prescribed by F, so the
discretization becomes much simpler. The first-order forward and backward finite differences
for the approximation of derivatives are

Dx
+θ =

θi+1,j − θi,j
∆x

, Dx
−θ =

θi,j − θi−1,j

∆x
,(8)

Dy
+θ =

θi,j+1 − θi,j
∆y

, Dy
−θ =

θi,j − θi,j−1

∆y
.
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1506 M. DETRIXHE, M. DOUBECK, J. MOEHLIS, AND F. GIBOU

The significance of the Godunov discretization is the notion of the “upwind” direction.
The derivative approximation is chosen such that information propagates from the correct
characteristic direction. In this case, information is flowing backwards along the characteristics
of the time-dependent problem of (1). That is, we initialize at the limit cycle (where all states
converge as t→∞) and sweep information backwards along the characteristics to the rest of
the domain. That is, if F1 is positive, we use forward difference Dx

+, and if F1 is negative,
the backward difference approximation Dx

− is used. The Godunov numerical discretization of
(7) is

(9) Dx
+θ F

+
1 +Dx

−θ F
−
1 +Dy

+θ F
+
2 +Dy

−θ F
−
2 −

2π

T
= 0,

where we use the notation a+ = max(0, a) and a− = min(0, a). Equation (9) is the discrete
form to be solved simultaneously for all grid points. The following section details the method
for solving this system of equations.

Remark 1. A caveat must be made regarding finite difference approximations of the deriva-
tive of phase. Since a phase is a periodic quantity and is constrained to exist in [0, 2π), one
must account for that when computing derivatives. We do this at each point by checking that
all values in the stencil are continuous. If they are not, then we temporarily add either 2π or
−2π to the value so that the function is continuous for all points in the numerical stencil and
compute derivatives with the temporary values. In two dimensions, the continuity is enforced
by computing the temporary value θ̃ as follows:

θ̃k,l =


θk,l + 2π if |θk,l + 2π − θi,j | < |θk,l − θi,j |,
θk,l − 2π if |θk,l − 2π − θi,j | < |θk,l − θi,j |,
θk,l otherwise

(10)

∀ (k, l) ∈ {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}.

Remark 2. Equation (6) is true for all x ∈ B, and in section 4.1, we define the com-
putational domain Ω as a box. For this method to produce a robust solution, Ω ⊆ B is
required. There exist dynamical systems for which that requirement is not met. For instance,
the Morris–Lecar model [34] of a barnacle giant muscle fiber is an often studied periodic sys-
tem. When the parameters are such that the Morris–Lecar equations are near the homoclinic
bifurcation [39], the basin of attraction shrinks so that there does not exist a bounding box
of the periodic orbit that is a subset of the basin of attraction. However, for many practical
systems, including the Morris–Lecar model away from the bifurcation, this requirement is met
and our method can be applied.

4.2. Initialization. The algorithm begins by initializing the points that lie in the boundary
set Γ+ with a known solution and assigning an arbitrary value to all other points. This
requires computing the phase on the periodic orbit f(γ). We do this by selecting any initial
point x0 ∈ B and numerically integrating (1) for sufficient time (T∞) such that the trajectory
is near the periodic orbit. This can be done with any standard numerical ODE integration
software. For all examples herein, we use the MATLAB solver ode15s. Then γ0 is chosen
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FAST EULERIAN METHOD FOR COMPUTING ISOCHRONS 1507

from all points in the trajectory according to its definition in section 2. Finally, with γ0 as
the initial point, (1) is integrated once more, forward in time for exactly one period. This
directly provides T , and the phase on the orbit is simply computed by its definition: θ = 2πt

T .
Since the method is first-order accurate, a first-order accurate approximation of the phase

for points in Γ+ is sufficient. We choose to extend the phase from the orbit to the nearby
points by constant extrapolation from the nearest point on the orbit:

θi,j = f(γmin(xi,j)) ∀ xi,j ∈ Γ+,

θi,j =2π ∀ xi,j /∈ Γ+,(11)

where

γmin(xi,j) = arg min
γ∈Γ

(‖xi,j − γ‖) .

For γmin to be unique, ∆x must be sufficiently small to resolve sharp features in Γ. In
practice we choose a neighborhood width on the order of ∆x, i.e., in (5), r = ∆x. For a formal
proof of the accuracy of the approximation in (11), see Appendix A.

Figure 1 illustrates the initialization procedure on a 2D and a 3D example.1 In the figure,
the stable orbits are indicated by green curves and Γ+ is shaded gray. The insets show grid
points within Γ+ in blue and those outside Γ+ in red. All points are initialized according to
(11). The figure graphically shows that initializing in a tube with r ≈ ∆x creates a band of
boundary points from which the computed solution can propagate.

4.3. Iterative updating. The FSM is an iterative method that takes advantage of the
underlying causality of the HJ PDE. Information propagates along characteristic curves from
the boundary data to the rest of the domain. The FSM updates grid points in a specific order
that allows for information to propagate through the entire domain along a single characteristic
direction with a single sweep. The ordered list of grid point vertices for each of the four
sweeping orderings for the 2D case is given below:

1 i = {0, 1, . . . , Nx}, j = {0, 1, . . . , Ny}, ↗
2 i = {Nx, Nx − 1, . . . , 0}, j = {0, 1, . . . , Ny}, ↖(12)

3 i = {Nx, Nx − 1, . . . , 0}, j = {Ny, Ny − 1, . . . , 0}, ↙
4 i = {0, 1, . . . , Nx}, j = {Ny, Ny − 1, . . . , 0}. ↘

The arrows indicate that a particular sweep accesses grid points in that general direction
and propagates the solution along a family of characteristic curves. The arrows ↗, ↖, ↙,
↘ denote a family of characteristic curves with vector components of sign (+,+), (−,+),
(−,−), (+,−), respectively. A visualization of this procedure is shown in Figure 2. The
example problem has a circular periodic orbit shown in green, and its characteristic directions
are indicated by the black vectors. The problem is fully specified in section 6.1. Notice
that after each sweep, information has propagated to grid points along the corresponding

1The specifics of the two dynamical systems will be introduced in section 6.D
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(a) Initialization of a 2D example (reduced HH model from section 6.2).

(b) Initialization of a 3D example (Wilson–Callaway model from section 6.3).

Figure 1. Illustration of the initialization procedure on a (a) 2D and (b) 3D example. The stable orbits are
indicated by the green curves. The nearby region Γ+ is shaded in gray. Discrete grid points are initialized by
(11) and shown in the inset as blue (inside Γ+) or red (outside Γ+).

characteristic directions. This particular example was computed on a grid withNx = Ny = 320
and converged in six iterations. Each of the sweeping directions is performed during each
iteration. So there are 4, 8, and 16 sweeps in each iteration in two, three, and four dimensions,
respectively.

The formula to update each grid point comes directly from the discretization (9). Substi-
tuting equations (8) and rearranging, we get the following 2D update formula:

θi+1,j − θi,j
∆x

F+
1 +

θi,j − θi−1,j

∆x
F−1 +

θi,j+1 − θi,j
∆y

F+
2 +

θi,j − θi,j−1

∆y
θ F−2 −

2π

T
= 0,

−θi,j
(
|F1|
∆x

+
|F2|
∆y

)
+
θi+1,jF

+
1 − θi−1,jF

−
1

∆x
+
θi,j+1F

+
2 − θi,j−1F

−
2

∆y
− 2π

T
= 0,
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Figure 2. Visualization of the solution procedure of the FSM on an example problem (to be introduced
in section 6.1) with its circular periodic orbit shown in green. The characteristic directions are indicated by
the black vector field. Panel (a) shows the initialized domain. Panels (b), (c), (d), and (e) show the updated
solution after the ↗,↖,↙,↘ sweeps, respectively, during the first iteration. Panel (f) shows the solution after
convergence (6 iterations). This particular grid is 3202.

(13) θi,j =

θi+1,jF
+
1 −θi−1,jF

−
1

∆x +
θi,j+1F

+
2 −θi,j−1F

−
2

∆y − 2π
T(

|F1|
∆x + |F2|

∆y

) .

The higher dimensional update formulas can be derived similarly. For the sake of brevity, the
only additional update formula we provide is for the 3D case:

(14) θi,j,k =

θi+1,j,kF
+
1 −θi−1,j,kF

−
1

∆x +
θi,j+1,kF

+
2 −θi,j−1,kF

−
2

∆y +
θi,j,k+1F

+
3 −θi,j,k−1F

−
3

∆z − 2π
T(

|F1|
∆x + |F2|

∆y + |F3|
∆z

) .

The illustration in Figure 2 is typical for a fast sweeping problem. On the first sweep,
information is only propagated from the boundary in the↗ direction, but the update formula
is applied to all grid points. This leads to a significant number of unnecessary computations.
In [3], the authors propose the locking sweeping method (LSM) as a variant on the FSM.
The algorithm only updates grid points with neighbors that have changed since the previous
iteration. This method is simple to implement and provides a significant reduction in total
computations. In practice we implement the LSM variant on the FSM.
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We sweep over all the grid points iteratively applying the update formula, with alternat-
ing orderings until convergence is reached. Our criterion for convergence is that no value
changes more than a small threshold between two successive iterations. In practice we choose
a threshold that is of the order of machine epsilon.

Remark 3. In certain cases, points on the boundary of the domain must be treated in a
special manner. If the following inequality is satisfied, then all characteristics of (1) point into
the computational domain and the update formulas can be applied unmodified:

(F · n̂ ≤ 0) ∀ x ∈ ∂Ω.

Here, n̂ is an outward-pointing vector normal to the computational boundary ∂Ω. However,
if the above inequality is not satisfied for a grid point, then characteristics point out of the
domain and the update formula is undefined since it depends on a point outside the domain.
In this case, we set the offending component of F equal to 0 and update as usual. Finally,
we must check that that this modification does not propagate incorrect solutions to the region
in which we are interested. Without loss of generality, say we are interested in isochrons
in a region Ω′ ⊂ Ω. The method will converge if all trajectories originating in Ω′ never
leave Ω for all t > 0. This can be done computationally by sampling points along ∂Ω′ and
testing their trajectories against Ω. In practice, we use an ad hoc method, setting Ω′ = Ω
and checking whether F · n̂ ≤ 0. If that inequality is not satisfied, then we increase the size
of Ω incrementally until the θ values inside converge to within a given threshold. Note that θ
will not converge near the phaseless set, so the convergence check should only apply to values
not near the phaseless set. We acknowledge that there can exist pathological cases where an
infinitely large domain would be necessary to compute accurate isochrons, but this was not the
case for any of the examples we tested.

4.4. Algorithm overview. Algorithm 1 shows a pseudocode listing of the entire algorithm
for the 2D problem. The extension to higher dimensions has been covered in the text.

5. Parallelization. There exists an efficient parallelization of the FSM. The computa-
tional cost and memory footprint of the FSM are both O(Nd

x ), where Nx = Ny = · · · . The
exponential growth with dimension is referred to as the curse of dimensionality. For problems
in many dimensions, the computational cost quickly exceeds the capabilities of a single CPU.
By using state-of-the-art hardware (e.g., large distributed memory clusters and/or graph-
ics processing units (GPUs)) along with our novel algorithm, we can compute isochrons for
many-dimensional dynamical systems that were intractable using existing methods.

In [13], the authors developed the parallel FSM for the eikonal equation. The parallel
method is based on the dependence tree of points on a uniform grid linked by a 5-point
stencil. Since our discretization for the computation of isochrons uses a 5-point stencil (in
two dimensions), the parallel method can be directly applied to this application. We have
implemented this parallel method and use it for all of the numerical examples in this article.
A numerical study of the parallel performance is included in section 8. A hybrid method [12]
is currently in development and will allow for parallelization of this and other problems at a
much larger scale.
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Algorithm 1 Solve (6) in two dimensions with the FSM.

. Initialization
T∞ = 100 . Find a sufficiently large time a priori
x0 = {0, 0} . Choose an (arbitrary) initial condition inside B
x(t)=integrate dynamics(T∞,x0) . Compute trajectory from x0 until t = T∞
γ0 = compute point of zero phase(x(t)) . See definition of γ0 in section 2
[f, T ] = integrate single orbit(γ0)
for all xi,j ∈ Ω do

if xi,j ∈ Γ+ then
γmin = compute nearest point on orbit(xi,j) . See (11)
θi,j = f(γmin)

else
θi,j = 2π

end if
end for

. Sweeping
for iteration= 0 :max iterations do

θold = θ
for ordering= 1 : 4 do . 4 sweeping orderings in 2D

choose sweep direction(ordering) . Sweep in correct order (12)
for all xi,j ∈ Ω do

if xi,j /∈ Γ+ then
θ(i, j) = update function(xi,j , θi−1,j , θi+1,j , θi,j−1, θi,j+1) . Equation (13)

end if
end for

end for
if convergence(θ, θold) then

break
end if

end for

6. Example systems.

6.1. Simple circular orbit. The first system we study is one which has an analytic solution,
which we will use to validate the computational method. This particular example comes from
[50]. Written in polar coordinates (r, φ), the dynamics are

ṙ = 5r2(1− r),
φ̇ = r.

This system has a circular periodic orbit with radius 1 and is centered at the origin. The orbit
is a hyperbolic attractor with B = R2 \ {(0, 0)}. The period is T = 2π and the asymptotic
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1512 M. DETRIXHE, M. DOUBECK, J. MOEHLIS, AND F. GIBOU

phase is given exactly by

(15) θ(r, φ) = φ− 1

5r
+ 0.2.

A coordinate transform to the x-y plane gives the dynamics

(16) F =

(
ẋ
ẏ

)
=

(
5r2(1− r) cosφ− r2 sinφ
5r2(1− r) sinφ+ r2 cosφ

)
,

where the standard polar coordinate definitions apply: r = r(x, y) =
√
x2 + y2 and φ =

φ(x, y) = arctan(y/x).

6.2. Hodgkin–Huxley models. In 1952, Alan Hodgkin and Andrew Huxley presented a
mathematical model for the generation of action potentials for a squid giant axon based on
the dynamical interplay between ionic conductances and electrical activity [17]. This model,
which is widely used in active research on the dynamics of neurons, consists of the following
ODEs:

(17)



C
dV

dt
= Ib + I − ḡNam3h(V − VNa)− ḡKn4(V − VK)− gL(V − VL),

dn

dt
= αn(V )(1− n)− βn(V )n,

dm

dt
= αm(V )(1−m)− βm(V )m,

dh

dt
= αh(V )(1− h)− βh(V )h,

where

αn(V ) =
0.01(V + 55)

1− exp[−(V + 55)/10]
, βn(V ) = 0.125 exp[−(V + 65)/80],

αm(V ) =
0.1(V + 40)

1− exp[−(V + 40)/10]
, βm(V ) = 4 exp[−(V + 65)/18],

αh(V ) = 0.07 exp[−(V + 65)/20], βh(V ) =
1

1 + exp[−(V + 35)/10]
.

Here V is the transmembrane potential (the voltage inside the axon minus that outside the
axon), I is the current injected into the neuron from a microelectrode, and n, m, and h
are dimensionless gating variables with values in [0, 1], which correspond to the state of the
membrane’s ion channels. Ib is the baseline current, which represents the effects of other
parts of the brain on the neuron and can be viewed as a bifurcation parameter that controls
whether the neuron is in an excitable or an oscillatory regime. In these equations, voltages are
measured in mV , current density in µA/cm2, capacitance density in µF/cm2, and time in ms.

D
ow

nl
oa

de
d 

08
/1

1/
16

 to
 1

28
.1

11
.7

0.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST EULERIAN METHOD FOR COMPUTING ISOCHRONS 1513

ḡNa, ḡk, gL are the conductances of the sodium, potassium, and leakage channels, respectively.
VNa, VK , VL represent respective reversal potentials for these channels, and C the constant
membrane capacitance.

In a previous study [25], the 4D Hodgkin–Huxley (HH) equations were reduced to a set
of two coupled (but still highly nonlinear) ODEs. This reduction leads to equations whose
dynamics approximate the dynamics of the full HH equations, and which allow an intuitive
understanding of the mathematics of action potential generation without the need to solve
the full 4D model. The equations for the gating variables n, m, and h can be written as

(18) τx(V )
dx

dt
= x∞(V )− x,

where

(19) x∞(V ) =
αx(V )

αx(V ) + βx(V )
and τx(V ) =

1

αx(V ) + βx(V )
,

with x ∈ {n,m, h}. It is found that the time constant τm is much smaller than τn and τh over
the entire relevant range of V . Thus, m evolves faster than n or h. This suggests that m(t) in
the HH equations can be reduced to a function of the voltage and given by its time-asymptotic
value: m∞(V (t)). This approximation has been shown to be reasonable through numerical
simulations. Next, it is observed numerically that when the solutions to the HH equations
correspond to periodic action potentials, the following equation approximately holds:

(20) n(t) + h(t) ≈ 0.8.

Note that (20) should be viewed as an observation; it has no rigorous mathematical or bio-
logical basis. With these simplifications, the following 2D system of equations is obtained:

(21)

C
dV

dt
= Ib + I − ḡNa[m∞(V )]3(0.8− n)(V − VNa)

−ḡKn4(V − VK)− gL(V − VL),

dn

dt
= αn(V )(1− n)− βn(V )n.

We use the following parameter values for all numerical experiments for both HH models:
Ib = 10, I = 0, ḡNa = 120, ḡk = 36, gL = 0.3, VNa = 50, VK = −77, VL = −54.4, C = 1.

6.3. Wilson–Callaway model. We also consider a version of the Wilson–Callaway model
of the dopaminergic neuron [47]. The authors proposed a model that describes the firing
dynamics of dopaminergic neurons in the mammalian brain stem with a chain of strongly
coupled oscillators. In [31], the authors studied the Wilson–Callaway model for a range of
parameters and found that oscillators in a regime near the Andronov–Hopf bifurcation exhibit
mixed mode oscillatory behavior. The authors of [27] study the Wilson–Callaway model for
the case of two compartments (a 4D system). They note the strong diffusive coupling and
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reduce the system to a 3D model to study its dynamics in the context of canard-induced
MMOs. We study this 3D system:

(22)



ε
dv

dt
= a(E2 − v)[f(v)− z],

dz

dt
= ω̄g1(v)(E1 − v)− ω2

1 + ω2
2

τ(ω1 + ω2)
z − ω1 − ω2

2τ
w,

dw

dt
= −ω1ω2

τ ω̄

(
ω1 − ω2

ω1 + ω2
z + w

)
,

where

f(v) =
g1(v)(E1 − v) + ḡ3(E3 − v)

a(E2 − v)
+
b

a
,

and

g1(v) =
ḡ1

1 + exp−(v − c1)/c2
.

For a rigorous description of the system and its reduction to three dimensions, see [27]. For
all numerical experiments herein, we use the following parameters: a = −0.9569, b = −0.7241,
c1 = −0.35, c2 = 0.07, d = 4444, E1 = 1.0, E2 = −0.9, E3 = −0.5, ḡ1 = 0.8, ḡ3 = 1.0,
ε = 0.013, ω1 = 1.0, ω2 = 16.0, ω̄ = (ω1 + ω2)/2.

7. Numerical results. In this section we present numerical results for the four example
systems described in section 6. The first example is one with an analytic solution for the
purpose of validating the computational method. It is described in section 6.1. The second
and third examples are the 2D and 4D HH models discussed in section 6.2. The fourth example
is the 3D system with MMOs from section 6.3. In each case, we present the numerical solution
and discuss the results. The timing data and other relevant details of each of these tests is
given in Table 2 at the end of section 8.

7.1. 2D analytic example. To confirm that the numerical scheme is indeed consistent and
first-order accurate, we consider a problem with a known exact solution. We described this
system in section 6.1. Figure 3 shows the exact solution to the example problem. Notice that
in this example, the phaseless set is the origin. We applied our computational technique to
this problem and compared the results with the exact solution given by (15). A solution does
not exist at the origin, so we compute errors at all points outside of a small neighborhood
near the phaseless set (

√
x2 + y2 > 0.05). Figure 4 shows that as the grid is refined, the

computed solution converges to the exact solution. In the asymptotic regime, the error in the
maximum norm decreases at a first-order rate. This confirms that the method is consistent
and first-order accurate (i.e., error ∝ ∆x1).
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Figure 3. The exact solution to the first example
problem as indicated by the color. The periodic orbit
is indicated by the green line, and the characteristic
directions are shown as black vectors. Also shown are
50 equally spaced isochrons (white).

Figure 4. Error in computational solution as
a function of grid size. The blue line is included
for reference and indicates a first-order convergence
rate.

Figure 5. 100 evenly spaced isochrons of the 2D HH
model computed with the FSM on a 16002 grid.

−80 −60 −40 −20 0 20 40
0.3
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0.5

0.6

0.7

0.8

 

 

0

0.2

0.4

0.6

0.8

1.0

γ0

V

n

Figure 6. Isochrons of the 2D HH model as com-
puted with the continuation-based method of [37].

7.2. 2D Hodgkin–Huxley model. We applied the method to the reduced HH model of
(21). Figure 5 shows the asymptotic phase for the computational domain along with 100
evenly spaced isochrons and the periodic orbit. The results from the method of [37] are shown
in Figure 6 for comparison. The two results are in good agreement.

For further validation of our method’s numerical accuracy, we did an error convergence
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Figure 7. Four test points at which our method is
compared to the continuation-based method of [37]. A
and B exist on the θ = 0.1π isochron (cyan), and C
and D exist on the θ = 0 isochron (magenta). The
backward streamlines from each point are also shown.

Figure 8. The magnitude of difference in phase
between our method and the continuation-based
method of [37] as the grid is refined. The black line
indicates a first-order convergence rate.

analysis on the reduced HH model. We obtained the isochron data as computed by the
continuation-based method of [37]. Because the continuation method gives the isochrons ex-
plicitly and our method does so implicitly, we cannot compare the two methods directly.
However, for any point in Ω, we can interpolate our grid-valued results to give a value
for phase. In this manner we can compute a difference in phase between our method and
the continuation-based method for a point on an isochron. We chose four points at which
to measure the difference between the two methods: A = (−30.69, 0.692), B = (100, 0.650),
C = (−43.53, 0.486), D = (100, 0.452). A and B are along the θ = 0 isochron, while C and D
are on the θ = 0.1π isochron. At each point we computed the phase of our method using
bilinear interpolation from the surrounding grid points. Figure 7 shows the four test points,
their respective streamlines, the two relevant isochrons, and the periodic orbit. Figure 8 shows
the absolute value of difference in phase of the two methods as the computational grid is re-
fined. The black line is for reference and indicates a first-order convergence rate. The figure
indicates that our method converges to the same solution as that of the continuation-based
method at roughly a first-order rate. The convergence stops when the absolute error reaches
a value of ≈ 10−3. This is, presumably, the error in the benchmark method.

We acknowledge that the Lagrangian approach of [37] allows for very detailed computation
of isochrons as they spiral toward the phaseless set. Computing these fine details with our
approach on a uniform grid would be computationally expensive, but it may be possible using
adaptively refined grids. Adaptive grid techniques for computing isochrons with our Eulerian
approach is a topic we are pursuing, but is outside the scope of this paper.
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= 10

= 30

= 40

= 20

Figure 9. The outlines of the almost phaseless set for a range of threshold values τ .

One application that depends on knowledge of the isochrons of the system is desynchro-
nization of neurons. In [11, 35], the authors present optimal methods for driving the system
to a region near the phaseless set. Once there, noise leads to phase randomization. This is
sufficient because points near the phaseless set lie inside the almost phaseless set. Figure 9
shows the almost phaseless set for a range of threshold values. One of the advantages of our
Eulerian method for computing phase is that once the phase is known on the Cartesian grid, it
is simple to compute the gradient (and its magnitude) with finite differences. This method of
computing the almost phaseless set may produce a larger target set and, as a result, a means
for calculating a more useful optimal control for desynchronizing the system.

7.3. 4D Hodgkin–Huxley model. We also applied the method to the 4D HH model of
(17). The tests were done at the highest resolution possible with the workstation we used
(1604 grid points). Figure 10 shows two views of the isochrons projected onto a reduced
subspace. The isochrons are projected onto m = m∞(V ); i.e., we show the isochrons for
{(V, n,m, n)|m = m∞(V )}. For the 2D slice, the isochrons are projected onto m = m∞(V )
and h = 0.8 − n, i.e., {(V, n,m, h)|m = m∞(V ), h = 0.8 − n}. We note that the isochron
geometry on the 2D subspace is similar to that of the isochrons of the reduced 2D system of
Figure 5. The rotated view in Figure 10 (right) shows interesting isochron structure that is
lost in the 2D reduced model.

With knowledge of the asymptotic phase of the 4D HH model, we can also compute the
almost phaseless set according to (4). Figure 11 shows the almost phaseless set projected onto
the 3D subspace. For reference, the 2D reduced subspace and the isochrons are included in the

D
ow

nl
oa

de
d 

08
/1

1/
16

 to
 1

28
.1

11
.7

0.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1518 M. DETRIXHE, M. DOUBECK, J. MOEHLIS, AND F. GIBOU

Figure 10. Two views of the isochrons of the 4D HH model projected onto the (V, n,m∞(V ), h) subspace.
The diagonal 2D slice is the projection onto the (V, n,m∞(V ), h(n)) subspace. 100 equally spaced isochrons are
shown on the 2D slice, and every fourth isochron (25 total) is shown in three dimensions. The accompanying
animation (99861 01.gif [local/web 1.68MB]) shows the isochrons in three dimensions with a rotating view.

Figure 11. Two views of the almost phaseless set (gray) of the 4D HH model projected onto the
(V, n,m∞(V ), h) subspace for τ = 30. The diagonal 2D slice is the projection onto the (V, n,m∞(V ), h(n))
subspace. 100 equally spaced isochrons are shown on the 2D slice. The accompanying animation (99861 02.gif
[local/web 2.94MB]) shows the almost phaseless set for a varying threshold value.

figure. It can be seen that the intersection of the almost phaseless set in Figure 11 with the 2D
subspace qualitatively agrees with the almost phaseless set of the 2D model shown in Figure 9.
However, the almost phaseless set does vary in the h direction. Even though it is difficult to
visualize the geometry of the isochrons and almost phaseless set in dimensions greater than
three, it is simple to compute them and describe them numerically. For the application of
desynchronizing neurons (e.g., for possible DBS treatment of Parkinson’s disease [35]) the
knowledge of this higher dimensional target set may allow for a more useful optimal control
stimulus to be computed.

7.4. Wilson–Callaway model. The model of a dopaminergic neuron from section 6.3 has
more complex firing dynamics than the HH model; it exhibits MMOs. This is a good example
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Figure 12. Stable periodic orbit of the Wilson–
Callaway model. Color indicates asymptotic phase.

Figure 13. Voltage-time series for the limit
cycle of the 3D Wilson–Callaway model.

Figure 14. Two cutaway views of the isochrons of the 3D Wilson–Callaway model. The periodic orbit is
shown as a tube and colored by phase. 20 equally spaced isochrons are shown on each 2D slice, and 20 isochrons
are shown in the 3D half-space.

to show the versatility of the method. Figure 12 shows the limit cycle and the phase along
it, and Figure 13 shows the voltage-time series. This system is characterized by a large, fast
voltage spike followed by a series of slow spikes with smaller magnitude.

Figure 14 shows two cutaway views of the isochrons of the system superimposed with the
periodic orbit. The cuts in Figure 14 (left) and 14 (right) are located at z = 1.1163 and
w = 1.035, respectively. The isochrons on the 2D plane cuts are shown in white, and the
isochrons in the rest of the cutaway domain are colored by phase.

This picture of the isochrons of the Wilson–Callaway model allows us to better understand
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Figure 15. Closeup view of isochrons near the
limit cycle on a slice (z = 1.1163). The limit cycle
intersects the plane at A and is represented by the
green curve. Point A is on the limit cycle with phase
θ = π

2
, point B represents a small perturbation (∆v =

0.09) from the limit cycle, and point C represents a
slightly larger perturbation (∆v = 0.11).

Figure 16. Evolution of the Wilson–Callaway
model subject to a perturbation in the +v direction
with two different magnitudes.

the behavior of the system. For example, we can look closely at the isochrons near the limit
cycle and predict the effect that a perturbation will have on the system. Figure 15 shows the
isochrons on a subset of our computational domain on a slice z = 1.1163. The periodic orbit is
shown going through the slice at point A. Point A lies on the intersection of the limit cycle with
the z = 1.1163 plane and has phase θ = π

2 and coordinates (v, z, w) = (−0.563, 1.1163, 1.0505).
Point B represents a perturbation of ∆v = 0.09; i.e., v(B)−v(A) = 0.09. Similarly, point C is
the result of perturbing the system by ∆v = 0.11 from point A. By looking at the phase and
isochrons surrounding the three points, we can predict the effect these perturbations will have
on the evolution of the system. The perturbation from A to B does not result in a large change
in the asymptotic phase, so we predict that it will have a small effect on the evolution of the
system. However, the perturbation from A to C results in a significant jump in phase and
crosses a concentrated region of isochrons. This small perturbation will immediately move the
system to a phase near the spike at θ = 2π. We carried out these perturbation experiments
numerically. Their results are shown in Figure 16. We first evolve the system along the limit
cycle for two full periods, and then, when θ = π

2 , we apply the perturbation. We then evolve
the system for one more period. The small perturbation (∆v = 0.09) does indeed have a small
effect on the evolution of the system. Also, as predicted by the isochron analysis, the slightly
larger perturbation has a dramatic effect on the system, immediately initiating the spike.

8. Computational expense. Here, we provide details about the efficiency of the numerical
method. All tests were run on a single compute node of the Stampede compute cluster at
the Texas Advanced Computing Center. Each standard node has two Intel Xeon E5-2680
processors with 32GB of host memory, and each processor has eight cores. Large memory
nodes have 32 cores and 1TB of host memory. The code was written in C++ and parallelized
with OpenMP.
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Figure 17. Parallel speedup for the 4D HH model
on a uniform grid with 1404 points.

Figure 18. Parallel efficiency for the 4D HH
model on a uniform grid with 1404 points.

One can characterize the viability of a parallel method by analyzing the parallel speedup
and comparing it to the ideal case. Parallel speedup is given by

(23) S =
T1

Tp
,

where T1 is the execution time of the serial method and Tp is the execution time of the parallel
method on p cores. For the ideal case, S = p. Parallel efficiency is given by

(24) Ep =
Sp
p

=
T1

pTp
,

where Sp is the speedup on p cores.
Since the 4D HH model is the most computationally expensive test in this paper, we

analyze the parallel speedup and efficiency for that example. We conducted parallel speedup
tests on a large memory node of stampede with a computational grid of 1404 grid points.
Figure 17 shows the parallel speedup on up to 32 cores with a maximum speedup of about
14. The parallel speedup is very good on up to 8 cores and continues to increase on 16 and 32
cores. Figure 18 shows that parallel efficiency is nearly 80% up to 8 cores before dropping off
to a still useful 43% on 32 cores. The reduction in efficiency on 16 and 32 cores is related to
the hardware architecture. Communication costs between processors are higher than within
each 8-core processor.

The following is an analysis of the total computational resources used in a numerical ex-
periment. These results are for the 4D HH model over a range of problem sizes on 16 cores.
Table 1 shows the execution time and memory used to compute the asymptotic phase for
the 4D HH model. For this problem, the memory required becomes prohibitive before the
computation time becomes exceedingly large. In order to solve larger problems, one would
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Table 1
Computational resources used to compute the asymptotic phase on the 4D HH model.

Number of grid points Execution time (s) Memory (GB)

204 1.46 0.0038

404 17.25 0.061

604 77.86 0.311

804 247.7 0.983

1004 541.6 2.40

1204 1094 4.97

Table 2
Implementation details and timing results for the numerical experiments conducted throughout this work.
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(16) d = 2 [−2, 2]2 Ω′ = Ω N = 3202 7 16 0.20 2

(21) d = 2 [−195, 165] [−150, 90] N = 16002 71 16 69.7 5, 7, 9

×[0.06, 1.05] ×[0.15, 0.95]

(17) d = 4 [−0.0020, 0.0015] [−90, 60] N = 1604 80 32 27,100 10, 11

×[0.025, 1.117] ×[0.30, 0.80]

×[−0.106, 0.218] ×[−0.03, 0.15]

×[−0.321, 0.850] ×[0.00, 0.50]

(22) d = 3 [−1.92, 1.16] [−0.9, 0.15] N = 3203 100 16 4865 12, 14, 15

×[−0.39, 3.26] ×[0.8, 2.0]

×[0.96, 1.11] ×[1.01, 1.06]

have to make use of a compute node with a large amount of memory or employ a domain de-
composition strategy. A hybrid method employing domain decomposition and shared memory
parallelization is outside the scope of this paper, but is something we are actively researching
[12].

Finally, Table 2 provides details about the numerical experiments discussed in the previous
section.

9. Conclusion. We have introduced a novel numerical method to compute global isochrons
of dynamical systems. This method is significant in that it computes all isochrons as isocon-
tours of the solution of a Hamilton–Jacobi PDE, and it does so with an efficient method
that can utilize state-of-the-art parallel computer hardware. Our method has an advantage
over existing Lagrangian methods (e.g., [37, 19]) in that it computes all isochrons implicitly
and the mathematics and numerics are simple to extend to high dimensions. The continua-
tion method [37] does, however, make it possible to compute very fine features of isochrons

D
ow

nl
oa

de
d 

08
/1

1/
16

 to
 1

28
.1

11
.7

0.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST EULERIAN METHOD FOR COMPUTING ISOCHRONS 1523

(e.g., near the phaseless set) and is embarrassingly parallel in that numerous isochrons can be
computed simultaneously. A future topic of interest is to explore this Eulerian technique on
adaptive tree-based grids to better compute the fine details that are currently more practical
with Lagrangian methods. Another possible area of future research is to explore using higher
order discretizations (e.g., ENO and WENO schemes [36, 23, 22]) to obtain a more accurate
solution. This was studied for some static HJ equations in [51]. These techniques present their
own challenges, including the need for a better approximation of θ near Γ, a larger stencil,
and an increased number of iterations to convergence which could all have implications for an
efficient parallel implementation.

Since our methodology is easily extendable to high dimensions, it enables us to analyze
both the 4D Hodgkin–Huxley model and the 2D reduced model. We used our results to
compute the almost phaseless sets of both models. This information could impact control
strategies for the desynchronization of a population of neurons for the treatment of Parkinson’s
disease. We also computed the isochrons of a 3D model of a dopaminergic neuron with MMOs
to show the versatility of this model. It is our hope that this efficient and parallel method
will allow for the analysis of more complex and higher dimensional models.

Appendix A. Proof of initialization procedure accuracy. In section 4.2, we presented
our technique for initializing the FSM with constant extrapolation of the asymptotic phase
from the periodic orbit to nearby grid points. Here, we prove that this method is first-order
accurate, i.e., the error is O(∆x).

Consider the static HJ formulation (equation (6)) for asymptotic phase of a dynamical
system with a periodic orbit. Without loss of generality, assume isotropic grid spacing ∆x =
∆y = h and that the system exists in R2. Figure 19 depicts a point xi,j near the periodic
orbit Γ and the corresponding nearest point on the orbit γmin. We choose to represent these
points in the orthonormal reference frame (n, τ) with basis vectors normal to Γ and tangent
to Γ and their origin at γmin. The dynamics F necessarily lie tangent to Γ because it is
a hyperbolic attractor. To verify the accuracy of the approximation used to initialize the
method (equation (11)), we begin by constructing a Taylor expansion of θ(n, τ) at the origin
and evaluating at our test point xi,j :

(25) θ(n, τ) = θ(0, 0) + n
∂θ

∂n

∣∣∣∣
(n,τ)

+ τ
∂θ

∂τ

∣∣∣∣
(n,τ)

+ H.O.T.

We assume that the curve Γ is sampled by points γ such that the distance between
successive points is much smaller than h. Then we can state that the test point in the (n, τ)
coordinate system is equal to xi,j = (∆n, 0):

(26) θ(∆n, 0) = θ(0, 0) + ∆n
∂θ

∂n
+ H.O.T.

From (6), the definition of the inner product, and the relationship cosα = sinβ, we have

2π

T
= ∇θ · F,
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Figure 19. Schematic of a test point xi,j near the periodic orbit represented in a coordinate system normal
and tangent to Γ.

2π

T
= ‖∇θ‖‖F‖ cosα,

‖∇θ‖ =
2π

T‖F‖ sinβ
.(27)

The directional derivative of θ in the n direction is

∂θ

∂n
= ∇θ · n̂,

∂θ

∂n
= ‖∇θ‖ cosβ,(28)

where n̂ is the normalized basis vector in the n direction. The error e in our approximation
is given by

(29) e =
∣∣θ(∆n, 0)− θapprox

∣∣.
Using our constant extrapolation approximation θapprox = θ(0, 0), substituting equations (26),
(27), and (28) into (29), and dropping the higher order terms gives the following expression
for the error:

(30) e =

∣∣∣∣2π∆n cotβ

T‖F‖

∣∣∣∣.
Recall that we choose the width of the narrow band r = h, so necessarily ∆n ≤ h. F is nonzero
on Γ and independent of grid spacing. Equation (6) guarantees that the vectors ∇θ and F
are nonorthogonal; therefore, cotβ is bounded and is also independent of grid spacing. Thus,
the initialization procedure of (11) is first-order accurate in the asymptotic regime h→ 0:

(31) e = h
2π
∣∣cotβ

∣∣
T‖F‖

= O(h).
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