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Abstract: Oscillators - dynamical systems with stable periodic orbits - arise in many systems
of physical, technological, and biological interest. The standard phase reduction, a model
reduction technique based on isochrons, can be unsuitable for oscillators which have a small-
magnitude negative nontrivial Floquet exponent. This necessitates the use of the augmented
phase reduction, a recently devised two-dimensional reduction technique based on isochrons
and isostables. In this article, we calculate analytical expressions for the augmented phase
reduction for two dynamically different planar systems: periodic orbits born out of homoclinic
bifurcation, and relaxation oscillators. To validate our calculations, we simulate models in
these dynamic regimes, and compare their numerically computed augmented phase reduction
with the derived analytical expressions. These analytical and numerical calculations help us
to understand conditions for which the use of augmented phase reduction over the standard
phase reduction can be advantageous.

Key Words: isostables, isochrons, bifurcation theory, isostable response curve, phase response
curve

1. Introduction
Periodic orbits are fundamentally important in dynamical systems theory, and they are intimately tied
to other fundamental concepts such as bifurcations and chaos. Beyond their theoretical interest, they
arise in many crucial physical, biological, and technological applications, from mechanical oscillations
to electrical circuits to circadian rhythms to neural activity. Standard phase reduction [1–4], a classical
reduction technique based on isochrons [2], has been instrumental in understanding such oscillatory
systems. It reduces the dimensionality of a dynamical system with a periodic orbit to a single phase
variable, and captures the oscillator’s phase change due to an external perturbation through the
phase response curve (PRC). This can make the analysis of high dimensional systems more tractable,
and their control [5–10] experimentally implementable; see e.g., [7, 11–13]. This is because although
the whole state space dynamics of the system may not be known, the PRC can often be measured
experimentally; see e.g., [9, 14].
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Standard phase reduction is valid only in a small neighborhood of the periodic orbit. Consequently,
the magnitude of the allowable perturbation is limited by the nontrivial Floquet exponents [15] of
the periodic orbit: in systems with a small-magnitude negative nontrivial Floquet exponent, even
a relatively small perturbation can lead to a trajectory which stays away from the periodic orbit,
rendering the phase reduction inaccurate and phase reduction based control ineffective. This necessi-
tates the use of a new reduction technique called augmented phase reduction [16], a two-dimensional
reduction based on both isochrons and isostables [17]. While the first dimension captures the phase
of the oscillator along the periodic orbit, like the standard phase reduction, the second dimension
captures the oscillator’s transversal approach to the periodic orbit. This reduction ascertains the
effect of an external stimulus on the oscillator’s phase change through the PRC, and the change in
its transversal distance to the periodic orbit through the isostable response curve (IRC). A similar
reduction was derived in [18] using Koopman operator techniques. We follow the reduction derived
in [16] for our analysis in this article. Control algorithms based on the augmented phase reduction
are expected to be more effective [16, 19], as they can be designed to allow a larger stimulus without
the risk of driving the oscillator too far away from the periodic orbit. We envision that IRCs can be
measured experimentally just like PRCs, making the control based on the augmented phase reduction
experimentally amenable as well.

To understand dynamic regimes for which it could be advantageneous to use the augmented phase
reduction over the standard phase reduction, it is useful to analyze phase reduction for distinct
dynamical systems that give rise to a periodic orbit. To simplify our analysis, we restrict to planar
dynamical systems, and note that our analysis could be extended to higher dimensional systems
with appropriate modifications. In [10], we derived analytical expressions for the augmented phase
reduction for four such dynamical systems: λ − ω systems, the normal form for a supercritical Hopf
bifurcation, the normal form of a Bautin bifurcation which has a saddle-node bifurcation of limit
cycles, and simple two-dimensional models undergoing SNIPER bifurcations. Our contribution there
was the analytical calculation of IRCs and the nontrivial Floquet exponent for each of these systems,
and the PRC for a simple model undergoing a SNIPER bifurcation. That study showed that λ− ω,
Hopf, and Bautin normal form systems have sinusoidal PRCs and IRCs. Moreover, for the model
near a SNIPER bifurcation, the PRC never changes sign, while the IRC looks like a skewed sinusoid.
From such calculations, we concluded that it is advantageous to use augmented phase reduction over
the standard phase reduction for systems having dynamics similar to these dynamical systems.

In this paper we consider two additional dynamical systems, distinct from the aforementioned
dynamical systems analyzed in [10]: systems in which periodic orbits are born out of homoclinic
bifurcations, and relaxation oscillators. The first of these represents another way in which a stable
periodic orbit can arise from a codimension one bifurcation [15, 20], and the second is a common type
of oscillation for systems of biological interest [21]. Our contribution in this paper is the analytical
calculation of IRCs and the nontrivial Floquet exponent for each of these two systems. Our approach
for the IRC calculation for a relaxation oscillator is in line with Izhikevich’s analysis [22] for the
calculation of the PRC for such systems. To validate our calculations, we simulate examples of
such systems, and compare their numerically computed augmented phase reduction with the derived
analytical expressions. These results together with the results in [10] give a useful catalog of analytical
results for the augmented phase reduction for planar dynamical systems having a stable periodic orbit.

This article is organized as follows. In Section 2, we introduce standard and augmented phase
reduction. In Section 3, we analytically calculate the augmented phase reduction for the two systems,
and simulate two different models under the appropriate regimes to validate our calculations. Sec-
tion 4 concludes the article by summarizing the derived analytical expressions and discussing their
implications.

2. Standard and augmented phase reduction

In this section, we give background on the concepts of isochrons, isostables, and standard and aug-
mented phase reduction. These concepts will be used to calculate the IRC expressions in Section 3.
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2.1 Standard phase reduction
The standard phase reduction is a classical technique used to describe dynamics near a periodic orbit
by reducing the dimensionality of a dynamical system to a single phase variable θ [1, 3]. Consider a
general n-dimensional dynamical system given by

dx
dt

= F (x), x ∈ R
n, (n ≥ 2). (1)

Suppose this system has a stable periodic orbit γ(t) with period T . For each point x∗ in the basin of
attraction of the periodic orbit, there exists a corresponding phase θ(x∗) such that [1–4, 10]

lim
t→∞

∣∣∣∣x(t) − γ

(
t+

T

2π
θ(x∗)

)∣∣∣∣ = 0, (2)

where x(t) is the flow of the initial point x∗ under the given vector field. The function θ(x) is called
the asymptotic phase of x, and takes values in [0, 2π). Isochrons are level sets of this phase function.
It is typical to define isochrons so that the phase of a trajectory advances linearly in time. This
implies

dθ

dt
=

2π
T

≡ ω (3)

both on and off the periodic orbit. Now consider the system

dx
dt

= F (x) + U(t), x ∈ R
n, (4)

where U(t) ∈ R
n is an external perturbation. Standard phase reduction can be used to reduce this

system to a one dimensional system given by [4]:

θ̇ = ω + Z(θ)TU(t). (5)

Here Z(θ) ≡ ∇γ(t)θ ∈ R
n is the gradient of phase variable θ evaluated on the periodic orbit and is

referred to as the (infinitesimal) phase response curve (PRC). It quantifies the effect of an external
perturbation on the phase of a periodic orbit. The PRC can be found by solving an adjoint equation
numerically [4, 23, 24]:

d∇γ(t)θ

dt
= −DFT (γ(t))∇γ(t)θ, (6)

subject to the initial condition

∇γ(0)θ · F (γ(0)) = ω. (7)

Here DF is the Jacobian of F evaluated on the periodic orbit. Since ∇γ(t)θ evolves in R
n, (7) supplies

only one of n required initial conditions; the rest arise from requiring that the solution ∇γ(t)θ to (6)
be T -periodic. This adjoint equation can be solved numerically with the program XPP [25] to find
the PRC QXPP. Since XPP computes the PRC in terms of the change in time instead of the change
in phase, we rescale the XPP PRC QXPP as

∇γθ = ωQXPP.

Equation (5) is valid only in a small neighborhood of the periodic orbit, and diverges from the true
dynamics as one goes further away from the periodic orbit. Therefore, the amplitude of an external
perturbation has to be small enough so that it does not drive the system far away from the periodic
orbit where the phase reduction is not accurate. This limitation becomes even more important if the
nontrivial Floquet exponent of the periodic orbit is a negative number small in magnitude [19]. This
limits the achievement of certain control objectives and thus necessitates the use of the augmented
phase reduction.
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Fig. 1. Isostables for a periodic orbit. The left panel shows the Poincaré map
P on the isochron Γ0 of the periodic orbit γ(t). The trajectory starting from
x on the isochron lands back on the isochron at P (x) after one period. The
right panel visualizes the isostables as giving a sense of transversal distance
from the periodic orbit by showing two isostable level sets ψ1 and ψ2.

2.2 Augmented phase reduction
For systems which have a stable fixed point, it can be useful to define isostables [17], which are
sets of points in phase space that approach the fixed point together and are analogous to isochrons
for asymptotically periodic systems. Isostables are related to the eigenfunctions of the Koopman
operator [17]. Such a notion of isostables was recently adapted for systems having a stable periodic
orbit [16], where isostables were defined to be the set of points that approach a periodic orbit together.
They give a sense of the distance in directions transverse to the periodic orbit, visualized in the right
panel of Fig. 1. Standard phase reduction can be augmented with these coordinates as follows.

Consider a point x0 on the periodic orbit γ(t) with the corresponding isochron Γ0. The transient
behavior of the system (1) near x0 can be analyzed by a Poincaré map P on Γ0,

P : Γ0 → Γ0; x → P (x). (8)

This is shown in the left panel of Fig. 1. Here x0 is a fixed point of this map, and we can approximate
P in a small neighborhood of x0 as

P (x) = x0 +DP (x− x0) +O(||x − x0||2), (9)

where DP = dP/dx|x0 . Suppose DP is diagonalizable with V ∈ R
n×n as a matrix with columns

of unit length eigenvectors {vi|i = 1, . . . , n} and the associated real eigenvalues {λi|i = 1, . . . , n} of
DP . These eigenvalues λi are the Floquet multipliers of the periodic orbit. (Since we will focus
our analysis on planar dynamical systems in this paper, our assumption that the Floquet multipliers
are real will always hold. One could modify the analysis in line with [26] to account for complex
Floquet multipliers in higher dimensional systems.) For every nontrivial Floquet multiplier λi, with
the corresponding eigenvector vi, the set of isostable coordinates is defined as [16]

ψi(x) = eT
i V

−1(xΓ − x0) exp(− log(λi)tΓ/T ), (10)

where i = 1, . . . , n− 1. Here xΓ and tΓ ∈ [0, T ) are defined to be the position and the time at which
the trajectory first returns to the isochron Γ0, and ei is a vector with 1 in the ith position and 0
elsewhere. As shown in [16], we get the following equations for ψi and its gradient ∇γ(t)ψi under the
flow ẋ = F (x):

ψ̇i = kiψi, (11)
d∇γ(t)ψi

dt
=

(
kiI −DF (γ(t))T

)∇γ(t)ψi, (12)

where ki = log(λi)/T is the ith nontrivial Floquet exponent, and I is the identity matrix. We refer
to this gradient ∇γ(t)ψi ≡ Ii(θ) as the isostable response curve (IRC). Its T -periodicity along with
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the normalization condition ∇x0ψi · vi = 1 gives a unique IRC. It gives a measure of the effect of a
control input in driving the trajectory away from the periodic orbit. The n-dimensional system (given
by (4)) can be realized as [16]

θ̇ = ω + ZT (θ)U(t), (13)

ψ̇i = kiψi + IT
i (θ)U(t), for i = 1, . . . , n− 1. (14)

We refer to this reduction as the augmented phase reduction; it is valid in the limit of small control
inputs U(t). Here, the phase variable θ indicates the position of the trajectory along the periodic
orbit, and the isostable coordinate ψi gives information about transversal distance from the periodic
orbit along the ith eigenvector vi. It is evident from (13, 14) that an external perturbation affects
the oscillator’s phase through the PRC, and its transversal distance to the periodic orbit through the
IRC. In practice, isostable coordinates with nontrivial Floquet multiplier close to 0 can be ignored
as perturbations in those directions are nullified quickly under the evolution of the vector field. If
all isostable coordinates are ignored, the augmented phase reduction reduces to the standard phase
reduction. In this paper, the models that we calculate the augmented phase reduction for are two-
dimensional, so there is only one isostable coordinate. We thus write the adjoint equation as

d∇γ(t)ψ

dt
=
(
kI −DF (γ(t))T

)∇γ(t)ψ, (15)

and the augmented phase reduction as

θ̇ = ω + ZT (θ)U(t), (16)

ψ̇ = kψ + IT (θ)U(t). (17)

We have removed the subscript for ψ, k, and I as we only have one isostable coordinate. The
eigenvector v is then the unit vector along the one-dimensional isochron Γ0. The nontrivial Floquet
exponent k can then be computed from the divergence of the vector field as [27]

k =
∫ T

0 ∇ · F (γ(t))dt
T

. (18)

We note that [28] shows how the augmented phase reduction can be extended to include higher order
corrections.

3. Analytical and numerical computation of the augmented phase re-

duction
Bifurcation theory [15, 20] identifies four codimension one bifurcations which give birth to a stable limit
cycle for generic families of vector fields: a supercritical Hopf bifurcation, a saddle-node bifurcation
of limit cycles, a SNIPER bifurcation (saddle-node bifurcation of fixed points on a periodic orbit, also
called a SNIC bifurcation), and a homoclinic bifurcation. Analytical calculations for the augmented
phase reduction of systems undergoing the first three of these bifurcations are given in [10]. In
this section, we derive analytical expressions for the augmented phase reduction of planar dynamical
systems which have a stable limit cycle which arises from a homoclinic bifurcation, and also for
systems with relaxation oscillators with fast-slow dynamics.

To validate our calculations, we simulate two different models whose dynamics are expected to be
captured by the aforementioned planar systems, and we compare their numerically computed IRCs
with the derived analytical expressions. In the numerical computation of the IRCs for the planar
systems, we directly calculate the nontrivial Floquet exponent k as the mean of the divergence of
vector field along the periodic orbit according to (18). On the other hand, for higher dimensional
models, we first compute PRC using the software XPP [25], then choose an arbitrary point on the
periodic orbit as θ = 0, and approximate the isochron as a hyperplane orthogonal to the PRC at that
point. To compute the Jacobian DP , we compute xΓ for a number of initial conditions x0 spread out
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Fig. 2. A homoclinic orbit exists at μ = 0, giving rise to a stable periodic
orbit for μ > 0.

on the isochron. Eigenvector decomposition of DP gives us the Floquet multipliers of the periodic
orbit and thus k. After obtaining k, we use Newton iteration to obtain the IRC as the periodic solution
to (15). Note that the PRC and the IRC for higher dimensional systems can also be computed in the
context of the Koopman operator, by computing Fourier and Laplace averages evaluated along the
system trajectories [29]. The higher dimensional systems we consider for numerical simulation in this
section have only one negative small magnitude nontrivial Floquet exponent, so the reduction given
by (16,17) still applies.

3.1 Homoclinic bifurcation
For a homoclinic bifurcation [15, 20], a periodic orbit is born out of a homoclinic orbit to a hyperbolic
saddle point p upon varying a parameter μ. We will consider planar systems with a homoclinic
bifurcation. If a homoclinic orbit exists for μ = 0, then there will be a periodic orbit for, say, μ > 0, but
not for μ < 0, as shown in Fig. 2. We assume that the magnitude of the unstable eigenvalue λu of the
saddle point is smaller than the stable eigenvalue λs, resulting in a stable periodic orbit [15]. Moreover,
we will assume that the periodic orbit is strongly attracting, that is, that |λs/λu| is sufficiently large
that a trajectory perturbed away from the periodic orbit will return to an infinitesimal neighborhood
of the periodic orbit after one transit around the periodic orbit; see [30] for a discussion of a related
piecewise continuous system which shows that there can be corrections to the phase response curve
if the periodic orbit is not strongly attracting, and multiple transits need to be considered.

For μ close to zero, the periodic solution spends most of its time near the saddle point p, where the
vector field can be approximated by its linearization. It can be written in diagonal form as

ẋ = λux, (19)

ẏ = λsy, (20)

where λu > 0, and λs < 0. As in [4], we consider a box B = [0,Δ] × [0,Δ] ≡ Σ0 × Σ1 that encloses
the periodic orbit for most of its time period, and within which (19, 20) are accurate. This is shown
in the left panel of Fig. 3. We do not model the periodic orbit outside B, but assume that trajectory
re-enters the box after a time δT at a distance ε from the y axis, where ε varies with the bifurcation
parameter μ. The time taken for the trajectory to traverse B can be found as [4]

τ(ε) =
1
λu

log
(

Δ
ε

)
. (21)

Thus the time period T of the periodic orbit is given as τ(ε) + δT . As μ decreases towards zero,
the periodic orbit approaches p, resulting in ε approaching 0. Near the bifurcation, δT � τ(ε), so
T ≈ τ(ε). We approximate the trajectory as spending all its time within the box B, and re-injecting
into the box instantaneously. Thus we set θ = 0 at the point where trajectory enters B, and θ = 2π
where trajectory exits B. To find the PRC, we solve the adjoint equation in B to get

Z(θ) = Zx0e
−λutx̂+ Zy0e

−λstŷ, (22)

subject to the initial condition (Eq. (7))

Zx0λuε+ Zy0λsΔ =
2πλu

log
(

Δ
ε

) . (23)
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Fig. 3. Trajectory near a homoclinic bifurcation. The left panel shows the
trajectory near the saddle point. The right panel shows the Poincaré sections
used in the analysis.

Here x̂ and ŷ represent the unit vectors in the x and y directions, respectively. As μ→ 0, ε→ 0, thus
the first term in the left hand side and the right hand side term in above equation go to zero. Thus
we get Zy0 ≈ 0 near the bifurcation point, and the PRC is only significant in the x-direction. Since
the isochrons are orthogonal to the PRC on the limit cycle, the eigenvector v ≈ 0 x̂+1 ŷ. We will use
this information for the normalization condition of the IRC later. Since the trajectory spends most
of its time inside the box B, we get k = λs + λu by the mean of the divergence of the linear vector
field inside B. We will also prove this by the following Poincaré analysis.

Consider the Poincaré maps

P = P2 ◦ P1 : Σ0 → Σ0, where (24)

P1 : Σ0 → Σ1; (x,Δ) → (Δ,ΔeλsT ), (25)

P2 : Σ1 → Σ0; (Δ, y) → (x,Δ). (26)

The Poincaré sections Σ0 and Σ1 are shown in the right panel of Fig. 3. Following the analysis in
Chapter 10 of [31], we get the Poincaré map P as

P : Σ0 → Σ0, (x,Δ) → (Ax−
λs
λu + μ,Δ), (27)

where A is a positive constant, and μ is the bifurcation parameter. We note that by Proposition 3.2.8
of [32], the difference between this Poincaré map, obtained by considering the linearlized vector field
(19,20), and the exact Poincaré map without using this linear approximation is O(Δ2). Moreover,
when the periodic orbit is strongly attracting, (27) shows that the fixed point of the Poincaré map,
corresponding to the periodic orbit, occurs at ε ≈ μ. Equation (27) also gives the nontrivial Floquet
multiplier of the periodic orbit as

λ = A′ε−
λs
λu

−1, (28)

where A′ = −Aλs/λu. From this equation, it is easy to see that λ → 0 as ε → 0. Also note that
although the isochrons in the box B may not be horizontal, we have calculated the nontrivial Floquet
multiplier for a horizontal section, as that is more convenient; the value of the nontrivial Floquet
multiplier is independent of the Poincaré section [31]. k can be found as

k =
log
(
A′ε−

λs
λu

−1
)

T
. (29)

Near the bifurcation, this can be written as
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k = lim
ε→0

log
(
A′ε−

λs
λu

−1
)

1
λu

log
(

Δ
ε

) . (30)

Since both the numerator and denominator approach plus or minus infinity as ε → 0, the limit can
be solved by L’Hospital’s rule as

k = lim
ε→0

(
λuΔε−1

A′ε−
λs
λu

−1

)⎛⎝A′
(

λs

λu
+ 1
)
ε−

λs
λu

−2

Δε−2

⎞
⎠

= λs + λu. (31)

With this, we get the following adjoint equation for the IRC:

İx = λsIx, (32)

İy = λuIy, (33)

⇒ Ix = Ix0e
λst, (34)

Iy = Iy0e
λut. (35)

The normalization condition Ix0,y0 . v = 1 gives the IRC as

Ix,y = Ix0e
λsθ

ω x̂+ e
λuθ

ω ŷ. (36)

Here Ix0 remains indeterminate as we do not model the dynamics outside B. The x component of
the IRC decreases at an exponential rate, while the y component increases at an exponential rate
inside the box B. We do not implement the condition of T -periodicity on (34, 35), as the calculated
expressions of the IRC are valid only in the box B. We expect the IRC to jump back to its initial
value as the trajectory re-enters the box. As the parameter μ moves away from the bifurcation at
μ = 0, corrections to k in (31) come in at O(μ) (recall that ε is O(μ) when the periodic orbit is
strongly attracting), so our expression (36) for the IRC will also have O(μ) corrections.

3.1.1 A simple model for homoclinic bifurcation
We use a 2-dimensional model derived from [33] to validate our result:

ẋ = (a+ b− 0.5μ)x− 0.5μy − (a/4 + 3b/8)(x+ y)2 − 3a/8(x2 − y2),

ẏ = 0.5μx+ (a− b+ 0.5μ)y + (−a/4 + 3b/8)(x+ y)2 + 3a/8(x2 − y2).

This system undergoes a homoclinic bifurcation at μ = 0, and has a stable periodic orbit for μ >

0, a < 0 < b, and |b| > |a|. With parameters μ = 1 × 10−13, a = −1, and b = 2, we get a stable
periodic orbit with the period T = 31.7689, eigenvalues λs = −3, λu = 1, nontrivial Floquet exponent
k = −1.7579, and the eigenvector v = 0.0006x̂+0.9999ŷ. The time series, periodic orbit, and the box
B are shown in Fig. 4.

Fig. 4. Periodic orbit near homoclinic bifurcation with parameters μ = 1 ×
10−13, a = −1, and b = 2. The left (resp., middle) panel shows the time
series (resp., orbit). The red and the blue lines show the x and y component
of trajectories respectively. The right panel shows the box B.
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Fig. 5. IRC for periodic orbit near a homoclinic bifurcation. The left and the
right panels show the x and y component of the IRC respectively, the middle
panel shows the zoomed in plot of the left panel. The blue line shows the
numerically computed IRC, while the red line shows an exponential curve with
rate constant given by (36).

With Δ = 0.0201, the trajectory spends 86.5 % of its period in the box B. Figure 5 compares the
numerically computed IRC with the exponential curve having rate constants from the analytical IRC
(36). We see that the numerically computed IRC agrees well with the analytical one in the beginning
(inside box B), but diverges after. It oscillates quickly back to its initial value at the end of its period,
as is expected.

3.2 Relaxation oscillator
For a relaxation oscillator, at least one variable evolves at a much faster rate than the other variables.
Such oscillators are ubiquitous in conductance-based models of cells, where the gating variables evolve
at a much slower rate than the cell membrane potential. We will consider the two-dimensional system

μẋ = f(x, y), 0 < μ� 1, (37)

ẏ = g(x, y). (38)

describing a relaxation oscillation as shown in panel (a) of Fig. 6 for small but finite μ, and in panel (b)
for the singular limit μ = 0. We assume that the critical manifold for this system, defined implicitly
by the equation f(x, y) = 0, is an S-shaped curve y = h(x) with exactly two fold points a1 and a2

satisfying [21]

f(ai) = 0, fx(ai) = 0, fxx(ai) �= 0, fy(ai) �= 0, g(ai) �= 0, i = 1, 2. (39)

We assume that these are the only two points in phase space for which both f(x, y) = 0 and fx(x, y) =
0, which is commonly true for relaxation oscillators. It is useful to think of the trajectory for the
relaxation oscillation as hugging the left branch of the critical manifold as it moves with ẏ < 0, then
jumping from a1 to b1, then hugging the right branch of the critical manifold as it moves with ẏ > 0,
then jumping from a2 to b2.

In the singular limit (μ→ 0), the PRC is given as [22]

Z(θ) = −ωgx

fxg
x̂+

ω

g
ŷ (40)

away from the jumps. Here the functions g, gx, and fx are evaluated on the periodic orbit, and thus
are functions of θ.

At the jumps, which are discontinuities in the trajectory, [22]

Z(θ̃j) =
ω

fy(aj)

(
1

g(aj)
− 1
g(bj)

)
δ(θ − θ̃j)x̂+

ω

g(aj)
ŷ, (41)

where θ̃j is the value of the phase corresponding to the point aj .
The eigenvector v in the direction of the isochron is given as

v =
−x̂− gx

fx
ŷ√

1 + g2
x

f2
x

. (42)
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Fig. 6. Relaxation oscillation shown for (a) 0 < μ � 1 and (b) the singular
limit μ → 0. The curve implicitly defined by f(x, y) = 0 is called the critical
manifold, and has folds at the points a1 and a2.

For computing the adjoint equation for IRC in relaxation limit, we do the following analysis in the
spirit of [4].

Consider an infinitesimal perturbation Δx = (Δx,Δy) to the periodic trajectory x ∈ γ(t). Then
the perturbed trajectory evolves as

μΔ̇x = fxΔx+ fyΔy, (43)

Δ̇y = gxΔx+ gyΔy. (44)

This can be written as AΔ̇x = DFΔx, where A =

[
μ 0
0 1

]
, and DF is the Jacobian evaluated on the

periodic orbit. The isostable shift Δψ by a perturbation AΔx is given by Δψ = 〈∇ψ,AΔx〉, where
〈·, ·〉 is the Euclidean inner product. Its time evolution can be written as

Δ̇ψ = 〈∇ψ̇, AΔx〉 + 〈∇ψ,AΔ̇x〉 = kΔψ,

= 〈AT∇ψ̇,Δx〉 = 〈kAT∇ψ,Δx〉 − 〈∇ψ,DFΔx〉,
⇒ 〈AT∇ψ̇,Δx〉 = 〈kAT∇ψ,Δx〉 − 〈DFT∇ψ,Δx〉.

Since the last equation is valid for an arbitrary perturbation Δx, we must have

AT∇ψ̇ = kAT∇ψ −DFT∇ψ, (45)

which can be rewritten as

μİx = (kμ− fx)Ix − gxIy, (46)

İy = −fyIx + (k − gy)Iy, (47)

where Ix = ∂ψ/∂x, and Iy = ∂ψ/∂y. From the mean of the divergence of the vector field along
periodic trajectory, we get the nontrivial Floquet exponent and multiplier as

λ = exp

(∫ T

0
(fx/μ+ gy) dt

)
, (48)

k = C/μ+B, (49)

where C =
∫ T
0 fxdt

T , and B =
∫ T
0 gydt

T . We must have k < 0 for a stable periodic orbit. This implies
that C < 0, because otherwise, k would become positive as μ → 0. Thus in the relaxation limit,
k → −∞ and λ → 0, and any perturbation from the periodic orbit gets nullified instantly by the
vector field. The adjoint equation for the IRC becomes

μİx = (C + μB − fx)Ix − gxIy, (50)

İy = −fyIx + (C/μ+B − gy)Iy. (51)
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Fig. 7. (a) shows an example time series for fx evaluated along the relaxation
oscillation for one period. The discontinuities correspond to the jumps in
the trajectory at times t1 and t2. The function f̃x shown in (b) is obtained
by reflecting the part of the time series between times t1 and t2 about t =
(t1 + t2)/2 to form a continuous function with the same time-average C as fx.
Similar for panels (c) and (d). Since the function f̃x is continuous, we can
apply the mean value theorem to it.

⇒ Ix =
gx

C + μB − fx
Iy + O(μ), (52)

⇒ μİy =
(
C + μB − μgy − μgxfy

C + μB − fx

)
Iy + O(μ2). (53)

In the singular limit (μ→ 0), we get

(C − fx) Iy = 0. (54)

Because the trajectory is discontinuous in this limit, the function fx (which is evaluated on the
trajectory) is also discontinuous. However, we note that as the trajectory moves along the critical
manifold (on which f = 0), fx is only zero at the fold points. With this in mind, we show two example
time series for fx in Figs. 7(a) and (c), where t1 and t2 are the times at which jumps occur during one
period of the oscillation. We can obtain a continuous function f̃x with the same average value C by
reflecting the part of the time series between times t1 and t2 as shown in panels (b) and (d) of Fig. 7.
The mean value theorem applied to f̃x implies that there is at least one phase θ̃i where C = f̃x, but
by construction this also implies that there is at least one phase θi where C = fx. Thus, in order to
satisfy (54), Iy has to be zero for all θ except at θi, where it can be non-zero. The same can be said
about Ix from (52). Thus we can write the IRC as

Ix,y =
(

Σ
i
Ix(θi)

)
x̂+

(
Σ
i
Iy(θi)

)
ŷ, (55)

where the θi are points where C = fx. We note that unlike the PRC, the IRC does not have a delta
function at the jumps, because its value is always zero except at the points θi, which generically do
not correspond to the jumps. It makes sense intuitively that the IRC is zero everywhere except at
few points where C = fx because the periodic orbit is very strongly stable in the relaxation limit (the
nontrivial Floquet multiplier is close to zero). Therefore, a perturbation from the periodic orbit gets
nullified instantaneously by the stabilizing vector field. This renders the isostable coordinate zero
near the periodic orbit, and its gradient zero almost everywhere on the periodic orbit.
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Fig. 8. van der Pol Oscillator: The left panel plots the periodic orbits and
nullclines. The middle (resp., the right) panel plots Ix (resp., Iy). In all
plots, the blue, red and black lines correspond to μ = 0.1, 0.01,, and 0.001,
respectively. The two red dots in the middle and right panels mark the phases
θ1 and θ2.

3.2.1 van der Pol oscillator
An example of a relaxation oscillator is the van der Pol oscillator [34, 35] which can be written as

μẋ = −y + x− x3/3, 0 < μ� 1, (56)

ẏ = x. (57)

In the relaxation limit (μ → 0), we find numerically that C − fx crosses zero at θ1 = 1.6567 and
θ2 = 4.7983. Thus we expect the IRC to be zero everywhere except these two θi values. We compute
periodic orbits and their IRCs for three different values of the parameter μ : 0.1, 0.01, and 0.001, as
shown in Fig. 8. We see from Fig. 8 that as μ approaches the relaxation limit, the IRC becomes zero
everywhere except near the phases θ1, and θ2, thus validating our analytical results. Since the IRC
is zero everywhere except near 2 points, we do not use the normalization condition of Section 2.2;
instead we normalize the IRC by the maximum absolute value of {Ix(θi), Iy(θi)}.

4. Discussion and conclusions
Standard phase reduction is a crucial tool in the analysis and control of oscillators. It reduces the
dimensionality of a system, and can make its control experimentally amenable. However it only
allows a small perturbation without the risk of driving the oscillator away from the periodic orbit.
This limitation makes it unsuitable for some control purposes, especially when a significant control
stimulus is required or when a nontrivial Floquet exponent of the periodic orbit has small magnitude.
This necessitates the use of the augmented phase reduction.

In this article, we have derived expressions for the augmented phase reduction for two distinct
systems with a periodic orbit. We find that for a system near homoclinic bifurcation, the IRC is
exponential for a large part of its phase. For a relaxation oscillator, the IRC is zero everywhere
except at a few points. We simulated dynamic models which are examples of these two systems, and
found that their numerically computed IRCs match with their analytical counterparts very closely.

For a strongly stable system, the nontrivial Floquet exponent k goes to −∞. This is the case
for relaxation oscillator in the relaxation limit. Thus, any perturbation to the periodic orbit gets
nullified instantly. In such a case, it is not necessary to use the augmented phase reduction, instead
the standard phase reduction would suffice. On the other hand, for systems undergoing a homoclinic
bifurcation, as was the case for the λ − ω, Hopf, and Bautin normal form systems and the example
near a SNIPER bifurcation [10], it is better to use the augmented phase reduction over the standard
phase reduction, especially when k is a negative number that is small in magnitude.
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