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Abstract—There is increasing evidence from in vivo
recordings in monkeys trained to respond to stimuli by
making left- or rightward eye movements, that firing rates
in certain groups of ‘visual’ neurons mimic drift-diffusion
processes, rising to a (fixed) threshold prior to movement
initiation. This supplements earlier observations of psy-
chologists, that human reaction-time and error-rate data can
be fitted by random walk and diffusion models, and has re-
newed interest in optimal decision-making ideas from in-
formation theory and statistical decision theory as a clue to
neural mechanisms.

We review results from decision theory and stochastic
ordinary differential equations, and show how they may
be extended and applied to derive explicit parameter de-
pendencies in optimal performance that may be tested on
human and animal subjects. We then briefly describe a
biophysically-based model of a pool of neurons in locus
coeruleus, a brainstem nucleus implicated in widespread
norepinephrine release. This neurotransmitter can effect
transient gain changes in cortical circuits of the type that
the abstract drift-diffusion analysis requires. We argue that
a rational account of how neural spikes give rise to simple
behaviors is beginning to emerge.

1. Introduction: Optimal decisions

The drift diffusion (DD) process, governed by the
stochastic differential equation (SDE):

dx = adt + σdW , with thresholds ± z , (1)

where the constants a and σ denote the drift rate and stan-
dard deviation of the Wiener (white noise) process W(t),
has been used since the 1960’s to model human reaction
time and error statistics in two-alternative forced choice
and other tasks [1]. Not only is it the continuum limit
of the sequential probability ratio test (SPRT), known to
be the optimal decision-maker for two-alternative forced-
choice (TAFC) tasks with accumulating noisy data [2, 3],
but its threshold-crossing behavior closely matches human

behavioral data [4, 5]. Moreover, direct neural record-
ings from oculomotor brain areas of monkeys performing
choice tasks has recently shown that firing rates of groups
of neurons selective for the ‘chosen’ of the two alterna-
tives rise toward a threshold that signals the onset of mo-
tor response in a manner that seems to match sample DD
paths [6, 7, 8].

In this application a denotes the net weight of evidence
in favor of one alternative vs. the other (the log likelihood
ratio). First passage time distributions yielding mean reac-
tion times (RT), and error rates (ER), are readily computed
for (1) from the backward Kolmogorov or Fokker-Planck
equation associated with it:

ER =
1

1 + exp
(

2az
σ2

) ; RT =
z
a

tanh
( az
σ2

)

. (2)

For fixed signal to noise ratio (SNR), as z increases, ER
decreases but at the expense of longer RTs: this ‘speed-
accuracy tradeoff’ is well-known in psychology [1]. How-
ever, as suggested by [9], one can explicitly compute
thresholds that maximize the average reward rate:

RR =
1 − ER

RT + D + Dpen · ER
; (3)

here the numerator represents the average fraction correct
and the denominator the average time between responses
(RT + experimenter-imposed delay D + possibly an addi-
tional penalty delay Dpen incurred by errors). Substitut-
ing (2) into (3) one finds that the unique maximum of RR
as a function of threshold for fixed SNR occurs at:

exp
(

2az
σ2

)

− 1 =
2a2

σ2

(

D + Dpen −
z
a

)

. (4)

From Eqns. (2-4) we may derive a unique optimal per-
formance curve relating normalised reaction time (RT /
[D + Dpen]) to ER: see Fig. 1, which also shows behav-
ioral data indicating that all subjects but those with the
lowest overall scores follow the optimal curve reasonably
closely, albeit with slightly suboptimal (longer) reaction
times. See [10] for full details.
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Figure 1: Thick curve shows the optimal performace curve
derived from Eqns (2-3), and histogram bars show data col-
lected from 80 human subjects, sorted according to total
rewards accrued. White bars: all subjects; light gray bars:
lowest 10% excluded; medium gray bars: lowest 50% ex-
cluded; dark gray bars: lowest 70% excluded. Error bars
indicate standard error.

2. A neural model

As shown in [10], the DD process (1) can be derived
in suitable limits from connectionist models of neural ac-
tivity (see [11] and §3 below), which are in turn related to
firing rate models that may be derived from biophysically-
detailed Hodgkin-Huxley type equations and ‘integrate-
and-fire’ simplifications thereof [13, 14]. We have begun
studies of specific neural groups involved in the decision
process, and, via neurotransmitter release, in control and
attention selection. The brainstem nucleus locus coeruleus
(LC) plays an important role in the latter [12, 15], releas-
ing norepinephrine widely in the cortex when its cells fire
action potentials.

We model LC with a heterogeneous set of periodically
spiking neurons reduced to planar systems as by Hind-
marsh and Rose [16] and further reduced to phase oscilla-
tors via the phase response curve (PRC) method [17]. This
yields a set of noisy, coupled, SDEs each of the form:

dθi =

















ωi + Z(θi)(I(t) +
∑

j

f (θ j))

















dt+σZ(θi)dW(t)+O(σ2) ,

(5)
where I(t) and f (θ j) denotes inputs due to external stim-
uli and from synaptic and electrotonic coupling from other
LC cells, and the PRC Z(θ) encodes the cell’s sensitivity at
different points in its firing cycle or phase θ: see [18] for
details.

The probability density of phases, p(θ, t), for (5) in
the weakly-coupled limit may be found from the associ-
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Figure 2: Peri-stimulus time histograms of LC activity
for poor (a) and good (c) performance periods during a
target identification task, taken from single neurons, av-
eraged over ∼ 100 trials, from [15]. (b,d) show corre-
sponding histograms computed by simulating 100 Rose-
Hindmarsh neurons (gray bars) and from Fokker-Planck
equation for (5) (solid curve), with analytical decay bounds
(dashed curve).

ated forward Kolmogorov or Fokker-Planck equation and
(semi-) analytical expressions derived for the flux of phases
through θ = 0, corresponding to the cell firing an action
potential. This, in turn allows us to compute average fir-
ing rates of (groups of) LC cells in response to stereo-
typed stimuli representative of simple visual recognition
tasks [15, 19]. Fitting noise (σ) and oscillator frequency
distributions P(ωi) to interspike interval data in the absence
of stimuli, we compute firing rate histograms for compari-
son with experimental data: Fig. 2.

This figure illustrates the main result of [18]: that the
magnitude of the transient response to stimulus, relative to
baseline, is inversely proportional to baseline spiking fre-
quency of LC in the absence of stimuli, and partially ex-
plains the correlations between low baseline activity, strong
phasic response, and good performance on the one hand,
and higher baseline activity, lower response, and poor per-
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formance on the other [15].
These results, and others with different stimuli represent-

ing more complex decision tasks [18] and different neural
models [20], show that analytically-tractable reduced de-
scriptions of neural groups can be derived from biophys-
ically detailed ion-channel models. A major challenge is
to assemble such groups into ‘global’ models of interact-
ing brain mechanisms known to be involved in perception
and decision-making, e.g. the medio-temporal and lateral
interparietal areas, superior colliculus and frontal eye fields
(MT, LIP, CS, FEF), involved in motion-detection and re-
sponse saccades in monkeys [6, 7, 8], and to integrate
brainstem and midbrain areas such as LC and thalamus. At
the level of connectionist models, we have begun to study
how gain changes such as those due to transient bursts of
LC firing of Fig. 2 can affect cortical neurons. We briefly
review this before concluding the paper.

3. Optimal gain schedules

A firing rate model for TAFC takes the form (cf. [11]):

dy1

dt
= −αy1 + fg(t) (−βy2 + a1(t)) + g(t)

σ(t)
√

2
η1

t , (6)

dy2

dt
= −αy2 + fg(t) (−βy1 + a2(t)) + g(t)

σ(t)
√

2
η2

t , (7)

where the function fg(t) relating firing rate to inputs is typi-
cally sigmiodal:

fg(t)(x) =
1

1 + exp (−4g(t) (x − b))
(8)

or piecewise-linear, being bounded above (by 1) and be-
low (by 0). Here we allow time-varying stimuli a j(t), noise
level σ(t) and gain g(t) (the maximum slope of fg(t)).

If decay (leak) α and/or inhibition β are large, then (6-
7) has a one-dimensional stochastic center manifold [21]
that attracts solutions in a probabilistic sense. Moreover,
linearizing at the point of maximum slope and subtracting
(7) from (6) yields a scalar Ornstein-Uhlenbeck (OU) pro-
cess for the difference x = y1 − y2 in firing rates, and if
the system is balanced in that leak rate equals inhibition
(β ≡ 1), this OU process reduces to the DD SDE (1) aith
a = a1 − a2. Hence, for constant SNR, a balanced firing
rate, or leaky competing accumulator model, closely ap-
proximates the optimal decision-maker [10].

In [22] we address the problem of varying SNR and,
using the linearised one-dimensional O-U SDE with time-
dependent coefficients, we develop general expressions for
optimal gain schedules. These implement the matched fil-
ter strategy of signal processing [23]. We compute op-
timal gains for specific simple cases of stimuli that rise
slowly and rapidly and, using a simple linear model of
norepinephrine release as a function of LC firing rate, we
find that the transient LC firing rates thus predicited are
qualitatively similar to experimental PSTH records such as
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Figure 3: Comparison of optimal gain theory with empiri-
cal data for a target detection task. (a) Optimal gain sched-
ules for the firing rate model, with a processing time lag
of 0.1 sec following sensory cue, as shown in (b). (c) The
corresponding optimal time course of LC firing rate. (d)
Histogram of LC firing rates recorded in monkey during
good performance, from [15].

those of Fig. 2. See Fig. 3. This lends further support to
the hypothesis that LC activity, triggered by the arrival of
salient stimuli in cortical decision areas, can ‘tune’ those
areas (as well as motor areas) to improve accuracy and
speed responses.

4. Conclusion

We have reviewed recent work in modeling neural and
behavioral response to stimuli at both the level of biophys-
ical detail, beginning with ion channel models of Hodgkin-
Huxley type, and at that of abstracted ‘higher level’ con-
nectionist and drift-diffusion SDEs. While numerous gaps
remain between models at these disparate spatial and tem-
poral scales, we believe that the general outlines of an inte-
grated theory of neural function in simple decision-making
tasks are beginning to emerge.
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