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Models for turbulent plane Couette flow using the proper orthogonal
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We model turbulent plane Couette flow~PCF! by expanding the velocity field as a sum of optimal
modes calculated via the proper orthogonal decomposition from numerical data. Ordinary
differential equations are obtained by Galerkin projection of the Navier–Stokes equations onto these
modes. For a minimal truncation including only the most energetic modes having no streamwise
variation, we show under quite general conditions the existence of linearly stable nontrivial fixed
points, corresponding to a state in which the mean flow is coupled to streamwise vortices and their
associated streaks. When the two next most energetic modes, still lacking streamwise variations, are
included, chaos and heteroclinic cycles associated with the fixed points are found. The attractors
involve repeated visits near unstable fixed points and periodic orbits corresponding to steady and
periodically varying vortices, and account for a self-sustaining process in which vortices interact
with the mean flow. The models considered in this paper can also serve as a foundation for more
sophisticated ordinary differential equation models for turbulent PCF, including those which include
modes with streamwise variations. ©2002 American Institute of Physics.
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I. INTRODUCTION

In 1967, Lumley1 ~cf. Ref. 2! suggested that the prope
orthogonal decomposition~POD! could be used to extrac
energetic, and hence presumably dynamically relevant,
herent structures from turbulent velocity fields. However,
two-point velocity correlation tensors required for the de
vation of the empirical basis functions of the POD dema
the collection of large amounts of data, and not until t
1980’s did experimental and computational techniques
velop to the point at which this remarkable idea could flo
ish. Working with hot film anemometry, Herzog3 provided
turbulent boundary layer data which Aubryet al.4 ~hereafter
AHLS! used to create a low-dimensional model of the w
region by projection of the Navier–Stokes equations~NSE!
onto empirical subspaces, following modeling of the me
~spatially averaged! flow and use of a Heisenberg-type mod
to account for energy transfer to neglected modes. T
model captured aspects of the experimentally observed e
tion and bursting events associated with streamwise vo

a!Author to whom correspondence should be addressed. Teleph
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pairs.5 AHLS, and parallel work of Sirovich,6 led to a num-
ber of similar studies; see Ref. 7 for background and furt
citations.

In this paper, we consider a simpler problem than
fully developed turbulent boundary layer: Plane Couette fl
~PCF! at a relatively modest Reynolds number. PCF h
many interesting properties, including:~i! linear stability of
the laminar state for all Reynolds numbersRe,8 ~ii ! the ex-
perimental observation of turbulence for sufficiently highRe
and/or perturbation amplitudes,9 and ~iii ! the existence of
unstable finite amplitude solutions consisting of streamw
vortices and streaks which do not bifurcate from the lami
state.10–12 While progress in understanding these and ot
properties of PCF turbulence has been made through ex
ments and the numerical study of the NSE, ordinary diff
ential equation~ODE! models have provided additional in
sight. For example, the models reviewed in Ref.
emphasize non-normality of the linearized Navier–Stok
operator, proposing that the resulting transient growth of p
turbations may trigger a nonlinear transition to turbulen
Weaknesses of such models are that they are not derived
systematic way from the NSE, and in fact often violate ba
nonlinear properties of the NSE.14 The model considered in
Refs. 15 and 16~following previous work in Refs. 14, 17

e:
3 © 2002 American Institute of Physics
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and 18! views the turbulent state as being related to a n
linear ‘‘self-sustaining process’’ involving streamwise roll
streaks and their instabilities, all feeding off the mean flo
see also Ref. 19. Stable fixed points or periodic orbits for
model are associated with the turbulent state. A rela
higher-dimensional model12,20 captures the existence o
many unstable finite amplitude solutions, and suggests
the transition boundary is characterized by a chao
repeller.21 Note that the models in Refs. 12, 15, 16, and
are for sinusoidal shear flow, which is related to but n
identical to PCF.

While these ODE models successfully capture vario
aspects of the PCF system, the description of the susta
turbulent state as a fixed point~corresponding to steady flui
flow! or a periodic orbit~corresponding to periodic fluid
flow! is undoubtedly too simple. In this paper, we use
approach described in AHLS to suggest a more sophistic
characterization of the sustained turbulent state. In particu
we investigate in detail the interesting possibility, sugges
for PCF in Refs. 12 and 22 and partially demonstrated for
turbulent boundary layer in AHLS and Refs. 23, 24, th
fully developed PCF turbulence might be related to hete
clinic connections among unstable, ordered structures in
flow, such as streamwise vortices. This nicely resolves
paradox that streamwise vortices are observed ‘‘on avera
and hence are represented among the leading emp
eigenfunctions, both in the boundary layer4,7 and in the
present study, even though they are ostensibly linearly
stable due to the inflection-point shear profiles they indu
Repeated visits to the neighborhoods of unstable sets a
necessary consequence of heteroclinic cycles.

Specifically, using well-resolved data for the turbule
state obtained from numerical simulations, we perform
POD which identifies an energetically dominant set of e
pirical eigenmodes~‘‘POD modes’’! from the data. We then
construct models by Galerkin projection of the NSE on
finite-dimensional subspaces spanned by the domin
modes; this yields ODEs for the evolution of the modal a
plitudes. After verifying the validity of this procedure b
examining truncations which retain a large number of term
we consider low-dimensional models; because the modes
timally represent the cumulative kinetic energy, it is hop
that these low-dimensional models will capture important
pects of the turbulence. In studying the low-dimensio
models, we pay particular attention to symmetries of the P
system and their implications for the ODEs. Our analy
suggests that heteroclinic cycles and chaos are important
relates of sustained turbulence. Note that the model in R
12, 15, 16, and 20 are also obtained through Galerkin p
jection of the NSE, but they use elementary~and nonopti-
mal! trigonometric bases.

As in AHLS, the modes included in the present stu
lack streamwise structure. While this is clearly restrictive,
believe that it is a useful starting point for understand
models which include streamwise variations.~For example,
Sec. IV of Hamilton et al.17 uses ‘‘zeroed’’ streamwise
modes to investigate the effect of vortices on the turbul
mean.! Moreover, there are important differences betwe
the present models and those considered in AHLS. First,
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present models apply to theentirechannel and thus not only
describe boundary layer dynamics, but also include mo
interactions characteristic of the full channel. Moreover,
clusion of the entire domain eliminates the pressure forc
term required in AHLS.~Zhou and Sirovich25,26 also used
full channel POD modes, but with a wall-weighted norm,
extract a boundary layer model, cf. Ref. 7, Sec. 11.5.! Sec-
ond, PCF has anexact laminar solution, whose~constant!
shear can act as an energy source for turbulence. We a
the mean of perturbations to this laminar solution to evo
under the NSE rather than modeling the turbulent mean a
AHLS. Finally, the governing equations for PCF enjoy mo
spatial symmetry than those for the turbulent boundary la
These symmetries, plus the fact that the nonlinear terms c
serve energy, constrain the projected ODEs, permitt
checks to be performed on the resulting models, and sim
fying their analysis.

In applying the POD and projection method to one of t
simplest nontrivial shear flows, we hope to provide a critic
assessment of the method by making direct comparison
model predictions with direct numerical simulation~DNS!
and experimental results. In this first paper we confirm t
relatively high @O~600-1200!-# dimensional projections can
capture the observed modal energy budgets and provide
ceptable short-term tracking of individual solutions, and
show that very low@O~2-10!-# dimensional models can re
veal qualitative mechanisms by which low Reynolds num
turbulence is sustained and cross stream length scales
selected. We find that the detailed behavior depends
subtle manner on the modes included in the truncation,
that a proper account of the symmetries of the system
crucial.

We begin by giving the governing equations for PCF a
discussing their symmetries in Sec. II. Sec. III describes
POD modes derived from turbulent PCF data. In Sec.
after verifying that high-dimensional models of turbule
PCF derived using the POD and Galerkin projection of
NSE can accurately reproduce the flow properties, we
scribe results for two different classes of low-dimension
models. We summarize our results in Sec. V.

II. PLANE COUETTE FLOW: EQUATIONS AND
SYMMETRIES

In PCF, fluid is sheared between two infinite paral
plates moving at speedU0 , in opposite directions6ex . The
x, y, z directions are defined to be the streamwise, spanw
and wall normal directions, respectively. We nondimensio
alize lengths in units ofd/2 whered is the gap between the
plates, velocities in units ofU0 , time in units of (d/2)/U0 ,
and pressure in units ofU0

2r where r is the fluid density.
Laminar flow is then given byU05zex , 21<z<1. Writing
u5(u1 ,u2 ,u3), x5(x,y,z), the evolution equation for the
perturbation@u(x,t),p(x,t)# to laminar flow is

]

]t
u52~u•¹!u2z

]

]x
u2u3ex2¹p1

1

Re
¹2u, ~1!

where the Reynolds numberRe is defined by
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2495Phys. Fluids, Vol. 14, No. 7, July 2002 Models for turbulent plane Couette flow
Re5
U0d

2n
. ~2!

The fluid is assumed to be incompressible, i.e.,

¹•u50, ~3!

and there are no-slip boundary conditions at the plates,

uuz56150. ~4!

Finally, the flow is assumed periodic in the streamwise a
spanwise directions, with lengthsLx[4p and Ly[2p, re-
spectively, following Refs. 10–12. We denote the domain
<x<Lx , 0<y<Ly , 21<z<1 by V.

Equations~1! and ~3! along with the boundary condi
tions are equivariant with respect to the followin
symmetries12

P•@~u1 ,u2 ,u3 ,p!~x,y,z,t !#

5~2u1 ,2u2 ,2u3 ,p!~2x,2y,2z,t !, ~5!

R•@~u1 ,u2 ,u3 ,p!~x,y,z,t !#

5~u1 ,2u2 ,u3 ,p!~x,2y,z,t !, ~6!

RP•@~u1 ,u2 ,u3 ,p!~x,y,z,t !#

5~2u1 ,u2 ,2u3 ,p!~2x,y,2z,t !, ~7!

TDx,Dy•@~u1 ,u2 ,u3 ,p!~x,y,z,t !#

5~u1 ,u2 ,u3 ,p!~x1Dx,y1Dy,z,t !. ~8!

Equivariance means that if there is a solutionu(x,t) to ~1!,
then the solution obtained by acting onu(x,t) with any prod-
uct of the actions given in Eqs.~5!–~8! will also be a solu-
tion. For example, if

~u1~x,y,z,t !,u2~x,y,z,t !,u3~x,y,z,t !,p~x,y,z,t !!

solves~1!, then so does

~u1~x,2y,z,t !,2u2~x,2y,z,t !,

u3~x,2y,z,t !,p~x,2y,z,t !).

Physically,P is a point reflection about (x,y,z)5(0,0,0),R
is a reflection about the planey50, RP is a rotation byp
about they axis, andTDx,Dy is a translation byDx in the
streamwise direction and byDy in the spanwise direction.P
and R generate the four element group$Id,P,R,RP%, iso-
morphic to the abstract group D2 ~see, e.g., Ref. 27!. The
group generated byRP and translations in thex direction is
O(2)5Z2(RP)›S1(TDx) where› denotes the semidirec
product, and the group generated byR and translations in the
y direction isO(2)5Z2(R)›S1(TDy). Altogether, the gov-
erning equations are equivariant with respect to the di
product of these groups, i.e.,O(2)3O(2). Wenote that the
boundary layer of AHLS shares onlysomeof the symmetries
of the PCF system: It lacksP and PR and altogether has
O(2)3S1 symmetry, whereO(2)5Z2(P)›S1(TDy) and
S15S1(TDx). We will use the symmetries in our applicatio
of the POD procedure to create a basis endowed with
appropriate symmetries.
Downloaded 06 Jun 2002 to 128.112.16.105. Redistribution subject to A
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III. POD MODES FOR PLANE COUETTE FLOW

A. The POD procedure

Details of the POD procedure are described in Ref.
here we summarize key aspects. The POD modesF
5(F1 ,F2 ,F3) are chosen to maximize the average proje
tion of the perturbationu5(u1 ,u2 ,u3) onto each mode.
First, we define the inner product on the space of veloc
fields @L2(V)#3 as

~ f,g![(
j 51

3 E E E
V

f j~x!gj* ~x!d3x,

where the subscripts identify components of the functio
and * denotes complex conjugation. The POD modes
chosen to maximize the average projection of the pertur
tion u onto each mode; specifically, we seek functio
F(x)P@L2(V)#3 such that the quantitŷu(u,F)u2&/iFi2 is
maximized, wherei•i5(•,•)1/2 and ^•& is an ~ensemble or
time! averaging operation. This leads to the eigenvalue pr
lem

(
j 51

3 E E E
V

^ui~x,t !uj* ~x8,t !&F jnxny

(n) ~x8!d3x8

5lnxny

(n) F inxny

(n) ~x!, i 51,2,3, ~9!

where the ‘‘quantum numbers’’nPZ1, and wave numbers
nx ,nyPZ distinguish different POD modes. The eigenval
lnxny

(n) is twice the average kinetic energy in the POD mo

Fnxny

(n) @see~14! below#. The~orthogonal! POD modes will be

normalized so that

~Fnxny

(n) ,Fn
x8n

y8
(n8)

!5dnn8dnxn
x8
dnyn

y8
.

The POD modes are optimal in the sense of capturi
on average, the most kinetic energy possible for a projec
onto a given number of modes. In applications one is ty
cally only interested in POD modesFnxny

(n) with strictly posi-

tive eigenvalueslnxny

(n) . While these do not form a complet

basis, almost every member of the original ensemble use
obtain the POD modes can be reproduced by linear com
nations of the POD modes; moreover eachFnxny

(n) inherits

linear properties from the ensemble$u(k)%, such as incom-
pressibility and boundary conditions. Finally, we note th
the POD procedure can be formulated for other inner pr
ucts~e.g., Ref. 28!, allowing the computation of POD mode
which optimally represent quantities other than the kine
energy.

B. Application to plane Couette flow

We expand the perturbation velocity fieldu in terms of
POD modes as

u~x,t !5 (
n51

`

(
nx52`

`

(
ny52`

`

anxny

(n) ~ t !Fnxny

(n) ~x!, ~10!

where the amplitudesanxny

(n) are complex unlessnx5ny50, in

which case they are real. Note that the vector-valued fu
tions Fnxny

(n) effectively couple all three components of th
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



n.

n

m
ew
ob
th

,
ire

m-

y to

oca-
ots
oi-

eri-
lts
d in

a
nse

in
ollo-
e
a

first
n-

the
el
ns,

2496 Phys. Fluids, Vol. 14, No. 7, July 2002 Moehlis et al.
velocity field; this has implications to which we shall retur
Translation symmetry inx and y implies optimality of the
Fourier decomposition in these directions7

Fnxny

(n) ~x!5
fnxny

(n) ~z!

ALxLy

expS 2p i S nxx

Lx
1

nyy

Ly
D D . ~11!

Complex conjugating~9! and using~11! gives

fnxny

(n) ~z!5f2nx2ny

(n)* ~z!. ~12!

Sinceu is real,~10! then implies that

anxny

(n) ~ t !5a2nx2ny

(n)* ~ t !. ~13!

We also note that7

lnxny

(n) 5^uanxny

(n) u2& and ^anxny

(n) akxky

(k)* &50,

unless k5n,kx5nx ,ky5ny . ~14!

The DNS velocity data is computed in the form

u~x,t !5 (
nxny

expS 2p i S nxx

Lx
1

nyy

Ly
D DF~nx ,ny ;z,t !,

~15!

and reality ofu implies that

F~2nx ,2ny ;z,t !5F* ~nx ,ny ;z,t !. ~16!

Substituting Eqs.~15! and ~11! into ~9!, integrating overx8
andy8, and Fourier transforming inx andy, we obtain

LxLy(
j 51

3 E
21

1

^Fi~nx ,ny ;z,t !F j* ~nx ,ny ;z8,t !&

3f jnxny

(n) ~z8!dz85lnxny

(n) f inxny

(n) ~z!. ~17!

We now consider computation of the kernel^FiF j* & of
~17!. The data are not given for continuoust, but rather as a
series ofsnapshotsat discrete timestk

u(k)~x!5 (
nxny

expS 2p i S nxx

Lx
1

nyy

Ly
D DF(k)~nx ,ny ;z!,

~18!

where u(k) is the kth snapshot ofu, and F(k) is the corre-
spondingkth snapshot ofF. One might be tempted to take

^Fi~nx ,ny ;z,t !F j* ~nx ,ny ;z8,t !&

5
1

T8 (
k51

T8

Fi
(k)~nx ,ny ;z!F j

(k)* ~nx ,ny ;z8!, ~19!

where T8 is the number of snapshots in the original e
semble. However, it has been pointed out6 that the symme-
tries of such systems can be used to enlarge the ense
size without having to solve the governing equations for n
initial conditions, and it was subsequently noted that, to
tain bases which appropriately retain all symmetries of
governing equations, it is in factnecessaryto average over
orbits of the symmetry group.29–32 For the present system
translation symmetries in the streamwise and spanwise d
Downloaded 06 Jun 2002 to 128.112.16.105. Redistribution subject to A
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The kernel obtained by averaging over the remaining sy
metry group D25$Id,P,R,RP% is given by

^Fi~nx ,ny ;z,t !F j* ~nx ,ny ;z8,t !&

5
1

T8 (l 51

T8

(
gPD2

g•Fi
( l )~nx ,ny ;z!

3g•F j
(k)* ~nx ,ny ;z8!

[
1

T (
k51

T

Fi
(k)~nx ,ny ;z!F j

(k)* ~nx ,ny ;z8!, ~20!

where the set of snapshots is extended in the obvious wa
give a total ofT54T8 velocity fields. The actions of the
elements of D2 on theF(k)’s are given in Appendix A. Equa-
tion ~17! thus becomes

LxLy

T (
j 51

3 E
21

1

(
k51

T

Fi
(k)~nx ,ny ;z!F j

(k)* ~nx ,ny ;z8!

3f jnxny

(n) ~z8!dz85lnxny

(n) f inxny

(n) ~z!. ~21!

Numerical methods are used to solve~21! for thef’s, repre-
sented as vectors specifying values at discrete spatial l
tions. This can be accomplished by the method of snapsh6

or by direct approximation of the integral using the trapez
dal or Simpson’s rule.33 Both methods reformulate~21! as a
matrix eigenvalue problem which can then be solved num
cally by standard methods, giving virtually identical resu
for the plane Couette flow dataset. This was implemente
FORTRAN90 using the LAPACK34 numerical linear algebra
package.

C. POD modes for plane Couette flow

POD modes were obtained using 1000 snapshots~before
averaging over the D2 symmetry! from a single well-
resolved DNS of turbulent plane Couette flow atRe5400.
~This is just beyond the critical Reynolds numberRec

5370610 at which sustained turbulence arises through
more natural transition, as opposed to transitions in respo
to special perturbations.35! The code uses Fourier modes
the streamwise and spanwise directions, and Legendre c
cation in the wall normal direction to produce th
F(nx ,ny ;z,t)’s of ~15!. Pressure terms were treated by
Lagrange method.12,36

Table I shows the eigenvalues associated with the
thirteen ~sets of! POD modes in decreasing order of eige
value magnitude. Here

%Enxny

(n) 5S lnxny

(n) Y (
m,mx ,my

lmxmy

(m) D 3100

is the percentage of average total energy contained in
(n,nx ,ny) POD mode. Note that for consistency in a mod
obtained by Galerkin projection of the governing equatio
if modes withnx are included, then modes with2nx must
also be included~similarly for ny!. Since, for example,each
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of the ~1,0,2! and (1,0,22) modes account for 3.74% of th
average total energy, together these modes account
7.48%.

Following AHLS, the ODE low-dimensional model
considered in this paper will only involve projections on
POD modes lacking streamwise variations~i.e., with nx50!;
here we briefly describe the structures of such modes,
rived via careful analysis of the symmetries~5!–~8!. The
(n,0,0) modes can be taken to be purely real, and nonz
only in thex or they component, and are either odd or ev
underz→2z. The~1,0,0! mode contains over half~57.47%!
of the total average energy, and, as shown in Fig. 1, appr
mates the experimentally and numerically observed m
turbulent velocity profile with higher velocity gradient ne
the walls and lower gradients toward the center;37,38 the re-
maining (n,0,0);n>2 modes contribute only 0.7% to thi
mean. Thex andz components off0ny

(n) can without loss of

generality be taken to be real, with they component purely
imaginary.39 Also, symmetry arguments show that either t

TABLE I. Eigenvalues for the POD modes.

(n,nx ,ny) lnxny

(n) lnxny

(n) /l00
(1) %Enxny

(n)

~1,0,0! 8.9246 1.0000 57.47
(1,0,62) 0.5804 0.0650 3.74
(1,0,61) 0.2807 0.0315 1.81
(1,61,62) 0.0846 0.0095 0.54
(1,0,63) 0.0639 0.0072 0.41
(1,61,61) 0.0522 0.0058 0.34
(2,0,62) 0.0499 0.0056 0.32
(2,0,61) 0.0489 0.0055 0.31
(1,61,63) 0.0479 0.0054 0.31
(2,0,63) 0.0361 0.0040 0.23
(2,61,62) 0.0346 0.0039 0.22
(1,62,62) 0.0330 0.0037 0.21
(1,0,64) 0.0325 0.0036 0.21
¯

FIG. 1. ~a! The x component of the POD modeF00
(1) . They andz compo-

nents are equal to zero.~b! The velocity profile obtained by adding this PO
mode with its r.m.s. amplitudeAl00

(1)5A^ua00
(1)(t)u2& @cf. ~14!# to the laminar

stateU05zex . This lies within 0.7% of the mean flow obtained from the fu
DNS ensemble average~dotted curve, barely visible!.
Downloaded 06 Jun 2002 to 128.112.16.105. Redistribution subject to A
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x andz components are even and they component odd, or
that thex andz components are odd and they components
even underz→2z. The (1,0,ny) POD modes consist ofny

~spanwise! pairs of streamwise rolls and associated strea
henceforth called ‘‘roll modes’’~see Fig. 2!; (n,0,ny) modes
with n.1 and nyÞ0 have multiple layers of streamwis
vortices and streaks~see Fig. 3!.

The eigenvalues succeeding the five leading entries
Table I remain almost flat asn,nx ,ny increase, so criteria for
inclusion of modes in low-dimensional model cannot
purely energetic. In Sec. IV we use the modal interact
structure determined by the symmetries of thef0ny

(n) in choos-

ing specific truncations.
It is not surprising that streamwise vortices and th

associated streaks are important coherent structures for
bulent PCF. As mentioned in the Introduction, such str
tures have been found numerically as unstable steady s
tions of the NSE10–12 ~these finite amplitude solutions hav
some variation in the streamwise direction, but nonethe
have a strong resemblance tonx50 POD modes, which can
be seen as streamwise-averaged versions of them!. They can
be stabilized by spatially forcing the flow with a stationa
wire or bead.40–43 They are also involved in the self

FIG. 2. Flow fieldsu associated with the~a! (n,nx ,ny)5(1,0,1) and~b!
~1,0,2! POD modes. The vectors show the spanwise and wall normal c
ponents of the velocity, while the dark~light! shading denotes positive
~negative! streamwise velocity.

FIG. 3. Flow fieldsu associated with the~a! (n,nx ,ny)5(2,0,1) and~b!
~2,0,2! POD modes.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sustaining process elucidated in Refs. 14, 15, 17, and
although there, separate modes are associated with rolls
streaks. Here the relative roll and streak magnitudes are fi
by each vector eigenfunctionfnxny

(n) (z), but the ODEs of Sec

IV permit scale selection and roll and streak adjustment
dynamical interactions among the modal amplitud
anxny

(n) (t). In the following section, we derive models whic

determine dynamical interactions of such streamwise vo
ces.

IV. LOW-DIMENSIONAL MODELS

Inserting ~10! into ~1! and performing a Galerkin
projection7 we obtain an infinite set of ODEs of the form

ȧkxky

(k) 5 (
n51

`

Âkxky

(k,n)akxky

(n) 1@N~a,a!#kkxky
, ~22!

where

@N~a,a!#kkxky
5 (

m,n,
mx ,my

B̂kxkymxmy

(k,m,n) amxmy

(m) akx2mx ,ky2my

(n) ,

k51,2,..., kx ,ky5...,22,21,0,1,2,... .

Finite dimensional models are obtained by truncating~22!.
The Â’s andB̂’s are calculated from integrals of products
components of POD modes and their derivatives; exp
expressions are given in Appendix B. Equation~13! implies
that we need only explicitly include approximately half
the variablesakxky

(k) . Note that theÂ’s containReas a param-

eter; our POD modes areoptimal at Re5400, but the NSE
can be projected onto them forany Re.

Through multiplication by appropriate complex co
stants, the POD modes may be chosen so that the actio
the group elements given in~5!–~8! on the amplitudes take
the simple forms

P:anxny

(n) ~ t !→6a2nx2ny

(n) ~ t !,

R:anxny

(n) ~ t !→6anx2ny

(n) ~ t !,

RP:anxny

(n) ~ t !→6a2nxny

(n) ~ t !, ~23!

TDx :anxny

(n) ~ t !→einxfxanxny

(n) ~ t !,

TDy :anxny

(n) ~ t !→einyfyanxny

(n) ~ t !.

Here the choice of6 depends onnx , ny , andn in an em-
pirically determined fashion, andfx[2pDx/Lx ,fy

[2pDy/Ly . The ODEs~22! will be equivariant with re-
spect to these group actions, i.e., writing~22! as ȧ5 f (a), it
is necessary thatf (ga)5g f (a) for all gPO(2)3O(2).44,45

This can be interpreted as limiting the nonzero terms wh
appear in~22!. Also, by exploiting symmetry properties o
the POD modes~specifically, oddness or evenness of co
ponentsf inxny

(n) underz→2z), it can be shown that more o

the Â’s and B̂’s vanish identically. Finally, there are furthe
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conditions on theB̂’s arising from the fact that the nonlinea
terms in the Navier–Stokes equations are energy-conserv
Specifically

E E E
V

u•~u•¹u!d3x

5E E E
V

u~¹~ 1
2 u•u!2u3~¹3u!!d3x

5E E E
V

¹•~~ 1
2 u•u!u!d3x

5E E
]V

~ 1
2 u•u!u•n̂dS50, ~24!

where we have used vector identities, the facts thatu•(u
3(¹3u))50 and ¹•u50, and the divergence theorem
The surface integral vanishes from the no-slip boundary c
ditions atz561 and periodicity in thex and y directions.
Using ~10!, it can be shown that Eq.~24! is equivalent to

(
k51

`

(
kx52`

`

(
ky52`

`

akxky

(k)* @N~a,a!#kkxky
50. ~25!

Equation~25! and the symmetries~23! provide checks on the
nonlinear coefficients: in all cases we have found that~25! is
satisfied to 0.01%.

The ODEs ~22! are similar to those of the turbulen
boundary layer problem in AHLS. However, there are se
eral important differences. In AHLS, in place ofU05zex ,
the analog of~1! involves a spatially averaged~t-dependent!
mean turbulent velocity; this was modeled as a balance
tween the effects of pressure and those of the coherent s
tures, giving cubic terms in the ODEs. No such modeling
required here: The nonlinear terms derive directly from
NSE and thenx5ny50 modes represent turbulent modific
tions to the mean, cf. Fig. 1. Second, the contribution fro
the pressure term at the outer edge of the wall layer w
modeled as stochastic forcing in AHLS; here, it makes
contribution because of the divergence-free expansion~10!
and no-slip and periodic conditions at the boundaries ofV.7

Third, in AHLS an eddy viscosity parameter was included
account for energy transfer to neglected modes~in fact, this
was treated as a bifurcation parameter!; such modeling is not
included at this stage, andRe is treated as the bifurcation
parameter. Finally, in AHLS the ODEs are equivariant und
O(2)3S1; here, the additional reflection and rotation sym
metries noted in Sec. II make the ODEs equivariant un
O(2)3O(2), with actions as given above in~23!, further
constraining the modal interactions.

A. High-dimensional models, tracking, and energy
budgets

To confirm the validity of the POD and Galerkin proc
dure to derive models for turbulent PCF, we first consid
truncations which retain a large number of terms, spec
cally: All modes with ukxu1ukyu<6 and 1<k<K, with K
58 ~resp.K515), corresponding to eight real and 336 i
dependent complex modes~resp. 15 and 630!. In both cases,
these modes include over 99% of the average total ene
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We project the DNS data to get modal time histor
akx ,ky

(k) (t), and then integrate the models from the same ini

conditions. Typical results are shown in Fig. 4, from whi
we see that good short-term tracking is achieved for'10
~resp. 25! nondimensional time units; the time scales of the
modes also appear to be correctly reproduced. We note
sensitive dependence on initial conditions precludes lo
term tracking, irrespective of the order of truncation. Simi
results were obtained for all other modal coefficients.

The models were then integrated for 2000 time units,
same duration as the DNS, and the values of^uanx ,ny

(n) u2& com-

pared. The results for the most energetic modes are give
Table II. We observe reasonable agreement, improving aK
increases, with the possible exception of thea0,2

(1) mode.
In the following, we consider much more drastic trunc

tions than these. While they necessarily neglect impor
effects, including energy transport through higher modes,
dynamics of such low-dimensional models can be und
stood in considerable detail, and, as we shall see, they
gest that sustained PCF turbulence is associated with c
and heteroclinic cycles in phase space.

FIG. 4. Tracking performance for thea00
(1) , a01

(1) , and a13
(1) modes. Solid,

dash–dotted and dotted lines respectively show the DNS,K58 and K
515 model results.

TABLE II. Comparison of^uanx ,ny

(n) u2& values.

(n,nx ,ny) K58 model K515 model DNS data

~1,0,0! 11.0205 8.8361 8.9246
(1,0,62) 0.0928 0.3105 0.5804
(1,0,61) 0.1582 0.2842 0.2807
(1,61,62) 0.0662 0.0793 0.0846
(1,0,63) 0.0457 0.0795 0.0639
(1,61,61) 0.0667 0.0537 0.0522
(2,0,62) 0.0377 0.0449 0.0499
(2,0,61) 0.0281 0.0359 0.0489
(1,61,63) 0.0495 0.0569 0.0479
¯
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B. Models with kÄ1 and k xÄ0

In AHLS, a ten-dimensional system of ODEs modelin
the turbulent boundary layer was derived and studied;
model would correspond in the present notation to the tr
cation of the analog of~22! with k51, kx50, 25<ky<5.
Inspired by the success of that model in capturing cert
features of boundary layer turbulence, we first consider~22!
for the truncationk51, kx50, 2Ny<ky<Ny . For Ny52
this is the leading triad of Table I.

Letting r 05a00
(1)PR and a0 j

(1)[r je
iu j , r j>0 for j

51,...,Ny , we obtain

ṙ 05A0r 012(
q51

Ny

Bqr q
2 , ~26!

ṙ j5~Aj2Bjr 0!r j , j 51,...,Ny , ~27!

u̇ j50, j 51,...,Ny . ~28!

HereA0 , theAj ’s, and theBq’s are real, and the former hav
the forms

A0[2A09/Re, Aj[Aj82Aj9/Re; j >1, ~29!

where theAj8’s, Aj9’s andBq’s are positive~see Table III!; in
particularA0 is always negative. For asymptotic behavior,
fixed Re we need only consider modes withAj.0; j >1,
because~26! and positivity of theBq’s imply that r 0,0
gives ṙ 0.0. Thus, eventually the system evolves to a st
with r 0.0, and then, from~27!, modes withAj,0 asymp-
totically decay to zero.

Equations~26! and ~27! have the trivial fixed pointP0

defined byr j50 for all j , corresponding physically to the
laminar state. Its eigenvaluesA0 ,A1 ,...,ANy

show that it is
linearly unstable if anyAj is positive for j >1. Equations
~26! and ~27! also have nontrivial fixed pointsPl for l
51,...,Ny defined by r l5(2A0Al /(2Bl

2))1/2, r 05Al /Bl ,
andr j50 for j Þ0,l . @From ~28!, eachPl represents a circle
of fixed points in terms of the original amplitudesa0 j

(1) , cor-
responding to spanwise translationsTDy of the velocity field.#
The eigenvalues of these fixed points are

m6
( l )[~A06~A0

218A0Al !
1/2!/2, ~30!

corresponding to perturbations in the (r 0 ,r l) plane, and

mq
( l )[Aq2BqAl /Bl , qÞ0,l ,

corresponding to perturbations in ther q-direction. ThePl

fixed points represent states in which the mean flow
coupled to streamwise vortices and their associated stre

TABLE III. Coefficients for Eqs.~26! and ~27! for Ny56.

j Aj8 Aj9 Bj

0 ¯ 11.4349 ¯

1 0.0688 5.5563 0.0117
2 0.1738 10.8038 0.0264
3 0.2218 15.3067 0.0325
4 0.2414 22.0804 0.0336
5 0.2324 30.2181 0.0339
6 0.1968 41.0443 0.0289
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Such states strongly resemble those associated with s
fixed points for the model considered in Refs. 15 and
Note that r 0.0 implies a ‘‘turbulent’’ mean flow profile
similar to that discussed in Refs. 37 and 38; cf. Fig. 1 abo

We have the following general result:
The system (26) and (27) with A0.0 and Aj.0,Bj.0 for
j 51,...,Ny has at least one, and generically only one, li
early stable nontrivial fixed point.

Stability is shown by induction. SupposeNy51. The
fixed point P1 has eigenvaluesm6

(1) which both have nega
tive real part. Now suppose for the truncation atNy that there
is a linearly stable nontrivial fixed point, sayPL . The eigen-
values ofPL arem6

(L) , both with negative real part, and

mq
(L),0, q51,2,...,L21,L11,...,Ny . ~31!

For the truncation atNy11, PL has an additional eigenvalu
mNy11

(L) . If this is negative thenPL is linearly stable and the

result follows, so suppose instead thatmNy11
(L) .0. The fixed

point PNy11 has eigenvaluesm
6

(Ny11) , both with negative

real part, andmq
(Ny11) , q51,...,Ny . By explicit computation

mL
(Ny11)

52
BL

BNy11
mNy11

(L) ,0.

Finally, mNy11
(L) .0 implies thatANy11 /BNy11.AL /BL , so

Aq2BqANy11 /BNy11,Aq2BqAL /BL5mq
(L) ,

and using~31!, we conclude that

mq
(Ny11)

,0, q51,2,...,L21,L11,...,Ny .

Thus,PNy11 is linearly stable.
As an example, consider Eqs.~26! and ~27! with Ny

56, which captures 70.17% of the average total energy~al-
beit omitting more energetic modes than some of those
cluded!. The coefficients and fixed point properties are giv
in Tables III and IV, respectively.~Here and henceforth, we
specify coefficients to four decimal places: at this order
‘‘conservative’’ constraint~25! is always satisfied. All of the
results which we report are robust to small changes in th
coefficients.! The exchange of stability between theP3 and
P4 fixed points atRe5517.30 may be understood by co
sidering a restriction tor 15r 25r 55r 650 @from ~27! this is
an invariant subspace, meaning that if the system start
this subspace, it remains there for all time#. The reduced
equations are

ṙ 05A0r 012B3r 3
212B4r 4

2 , ~32!

TABLE IV. Fixed point properties forNy56.

Fixed Pt Existence Stable range

P0 all Re Re,62.16
P1 Re.80.76 ¯

P2 Re.62.16 62.16,Re,255.89
P3 Re.69.01 255.89,Re,517.30
P4 Re.91.47 Re.517.30
P5 Re.130.03 ¯

P6 Re.208.56 ¯
Downloaded 06 Jun 2002 to 128.112.16.105. Redistribution subject to A
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ṙ 35~A32B3r 0!r 3 , ~33!

ṙ 45~A42B4r 0!r 4 . ~34!

At the exchange of stability,m3
(4)5m4

(3)50, so A3 /B3

5A4 /B4 . At r 05A3 /B35A4 /B4 , we thus haveṙ 35 ṙ 450,
and at this value ofr 0 , ṙ 050 for

2B3r 3
212B4r 4

25A0A3 /B3 . ~35!

Thus, there are fixed points at (r 0 ,r 1 ,r 2 ,r 3 ,r 4 ,r 5 ,r 6)
5(A3 /B3,0,0,r 3 ,r 4,0,0) for allr 3 andr 4 satisfying~35!: this
is an ~elliptical! arc of fixed points connectingP3 to P4 .
Similar behavior occurs at the exchange of stability atRe
5255.89. Only at such bifurcation values ofRe do multiple
stable equilibria exist.

Note that, in view of~28!, eachr jÞ0 fixed point actu-
ally belongs to acircle of equilibria. Reference to Figs. 2 an
3 shows that this corresponds to families of streamwise v
tices and streaks at arbitrary spanwise locations.

These ‘‘minimal’’ models suggest a simple interpretati
of the mechanism that sustains nontrivial behavior in P
~we hesitate to call it turbulence in this context!. Recall that
r 0 is the amplitude of the~modification to! the mean flow
F00

(1)(x), which, for r 0.0, promotes the inflection-point pro
files observed in turbulent PCF~Fig. 1!, and thatr j ; j >1 are
the amplitudes of the modes containing streamwise vort
~Fig. 2!. From Equation~26! we see that the collective mag
nitudes of the latter drive the former, which would otherwi
decay. In turn,~some of! the roll modesr j are linearly un-
stable for smallr 0 , but excessive growth inr 0 leads to decay
in the r j @Eq. ~27!#, setting up a self-sustaining and se
limiting process, much as in the model of Waleffe.14–16,18

However, as shown above, for almost all coefficientsAj ,Bj

.0, the flow of Eqs.~26! and ~27! tends to a stable fixed
point at (r 0 ,r l ,r q)5(Al /Bl ,(2A0Al /(2Bl

2))1/2,0), where
Al /Bl.Aq /Bq for all qÞ0,l @cf. ~30!#. This is the unique
attractor for the two-dimensional invariant subspace span
by r 0 and r l , and on which the dynamics are simply give
by

ṙ 05A0r 012Blr l
2, ṙ l5~Al2Blr 0!r l . ~36!

Thus only the ‘‘least stable’’ roll mode remains active. As w
shall see, addition of two members of the second~quantum!
family of modes significantly enriches this picture.

It must be noted that these models incorrectly pred
that the laminar stateP0 becomes linearly unstable for su
ficiently high Re ~as soon as the ‘‘first’’Aj becomes posi-
tive!. This comes from a well-known limitation of POD
based models: as discussed in Refs. 15 and 46 and not
Sec. III B, models derived from sustained turbulent data
ing the expansion~10! necessarily couple streamwise an
cross-stream disturbances, leading to instability of the la
nar state. Specifically, theRe-independent componentsAj8 of
the linear coefficients of~27!, derived from the second term
of ~B1!, are strictly positive. Indeed, for~very! low-
dimensional truncations, including ones lacking streamw
modes, instability of the trivial solution is an unavoidab
consequence of averaging over ‘‘active’’ velocity fields of t
ensemble that remain relatively far from the laminar sta
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and give rise to eigenfunctions with2*f3kxky

(n) f1kxky

(k)* dz.0,

cf. Ref. 7. Ensembles collected for smallerRe, having longer
episodes of laminar flow, would presumably give modes w
2*f3kxky

(n) f1kxky

(k)* dz,0, leading to stability of the lamina

state. Moreover, it is argued in Ref. 46 that models using
‘‘unconstrained’’ empirical expansion derived from the PO
that decouples streamwise and cross-stream disturba
correctly give laminar stability, and furthermore, behavio
of models derived using the expansion~10! are strongly ech-
oed in those derived using the decoupled expansion. In s
the present model can represent sustained ‘‘turbulence,’’
not the transition from laminar flow asRe increases. Furthe
comments on this appear in Sec. V.

C. A model including kÄ2 modes

The models of Sec. IV A can capture the sustained
bulent state quite well; however, they are of such high
mension that detailed analysis is impossible. On the o
hand, the severely truncated models of Sec. IV B can
essentially completely understood, but their stable fix
points are too simple to characterize the turbulent state. H
we consider an extension of the models of Sec. IV B that
between these extremes: Its dimension is low enough
detailed analyses can be undertaken, yet it preserves m
realistic signatures of sustained turbulence. Specifically,
include the most energetic streamwise invariant modes w
k.1, namely the (2,0,61) and (2,0,62) modes. Inclusion
of these members of the second ‘‘quantum’’ family intr
duces new Fourier wave number interactions, the most
portant being those with the modes (1,0,ky) with ukyu<4.
Truncating to include only these modes, we obtain

ȧ0
(1)5A0a0

(1)12S (
q51

4

Bquaq
(1)u21B1

(2)ua1
(2)u21B2

(2)ua2
(2)u2D ,

~37!

ȧ1
(1)5~A12B1a0

(1)!a1
(1)2C1,12a1

(1)* a2
(2)

1C1,32a3
(1)a2

(2)* 2C1,21a2
(1)a1

(2)* , ~38!

ȧ2
(1)5~A22B2a0

(1)!a2
(1)1C2,42a4

(1)a2
(2)*

2C2,11a1
(1)a1

(2)2C2,31a3
(1)a1

(2)* , ~39!

ȧ3
(1)5~A32B3a0

(1)!a3
(1)1C3,12a1

(1)a2
(2)

2C3,21a2
(1)a1

(2)2C3,41a4
(1)a1

(2)* , ~40!

ȧ4
(1)5~A42B4a0

(1)!a4
(1)1C4,22a2

(1)a2
(2)

2C4,31a3
(1)a1

(2) , ~41!

ȧ1
(2)5~A1

(2)2B1
(2)a0

(1)!a1
(2)1~C1,211C2,11!a2

(1)a1
(1)*

1~C2,311C3,21!a3
(1)a2

(1)*

1~C3,411C4,31!a4
(1)a3

(1)* 2C2,11
(2) a2

(2)a1
(2)* , ~42!
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ȧ2
(2)5~A2

(2)2B2
(2)a0

(1)!a2
(2)1C1,12~a1

(1)!2

2~C3,121C1,32!a1
(1)* a3

(1)

2~C2,421C4,22!a2
(1)* a4

(1)1C2,11
(2) ~a1

(2)!2. ~43!

Here we have suppressed the subscriptkx50 of thea’s and
simplified the notation of~22!, as in ~26!–~28!. The coeffi-
cientsA0 and Aj ,Bj ;1< j <4 are given by~29! and Table
III; the additional coefficients are

A1
(2)50.0323212.0680/Re,

A2
(2)50.1062215.9763/Re,

B1
(2)50.0028, B2

(2)50.0077,

C1,1250.0098, C1,2150.0164,

C1,3250.0165, C2,1150.0209,

C2,3150.0167, C2,4250.0105,

C3,1250.0302, C3,2150.0439,

C3,4150.0204, C4,2250.0613,

C4,3150.0471, C2,11
(2) 50.0064.

This model includes the leading modes lacking streamw
variations, cf. Table I, and its structure remains similar wh
more modes withkx50 are included.

Some preliminary notes are in order. First, the$a1
(2)

50% and$a2
(2)50% subspaces arenot invariant:a1

(2) anda2
(2)

can be excited by nonlinear interactions among theaky

(1)

modes. OtherkÞ1 modes not included in this truncation ca
be similarly excited, but these contain a smaller fraction
the average kinetic energy, and hence are presumably
important, and their exclusion simplifies the analysis. S
ond, the dynamics of this model typically fail to satisfy th
energy budgets of Table I, presumably because signific
energy-transferring interactions are absent. In AHLS~see
also Ref. 24! this problem was partially overcome throug
the introduction of a Heisenberg-type model to account
energy losses to neglected modes. This requires determ
tion of additional parameters; for simplicity, we do not mod
neglected modes here, so that our only parameter is the R
nolds numberRe. As we will see, Eqs.~37!–~43! exhibit
interesting behavior for 350&Re&600.

To understand these dynamics, we first observe that E
~37!–~43! have a hierarchy of invariant subspaces as given
Table V. For example,S e

R,Se is the ‘‘real’’ subspace ob-
tained by restricting the amplitudes in the ‘‘even’’ subspa
Se to being real~recall thata0

(1) is always real!. Real sub-
spaces correspond to velocity fields symmetric under
spanwise and pointwise reflectionsR andP, as follows from
~13! and ~23! with nx50. Acting on the invariant subspace
S e

R , S o
R , S 012

R , S2 , S3 , S4 , and S 2
(2) with S1(TDy) gives

invariant subspaces which are rotated~i.e., spanwise trans
lated! copies of the originals.

The fixed pointsP2 , P3 , and P4 of Sec. IV B can be
shown to persist for~37!–~43! by restricting to the subspace
S2 , S3 , andS4 , respectively. An analogous nontrivial fixe
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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point P2
(2)PS 2

(2) also exists for sufficiently highRe
(>150.44). Note that$a0

(1) ,R(a1
(1))% and$a0

(1) ,R(a1
(2))% are

not invariant subspaces; ‘‘pure’’P1 andP1
(2) fixed points do

not exist for ~37!–~43!. As above, all fixed points lie on
circles of equilibria obtained under the action ofS1(TDy).

We first consider theS012 subspace, on which Eqs.~37!–
~43! reduce to

ȧ0
(1)5A0a0

(1)12~B1
(2)ua1

(2)u21B2
(2)ua2

(2)u2!, ~44!

ȧ1
(2)5~A1

(2)2B1
(2)a0

(1)!a1
(2)2C2,11

(2) a2
(2)a1

(2)* , ~45!

ȧ2
(2)5~A2

(2)2B2
(2)a0

(1)!a2
(2)1C2,11

(2) ~a1
(2)!2. ~46!

This subspace captures the interaction of the mean flow
the k52 modes in 1:2 spatial resonance. In the region
,z,1 ~or 21,z,0!, this mode interaction correspond
physically to a ‘‘boundary-layer’’ mean flow profile interac
ing with streamwise rolls in 1:2 spatial resonance~cf. Figs. 1
and 3!. Such an interaction has been investigated from
similar perspective for a single turbulent boundary layer
Ref. 47, although this involved modeling of the mean flo
whereas here we allow the mean flow to evolve dynamica

We summarize the main results from a numerical bif
cation analysis~using AUTO48! of Eqs. ~44!–~46! for the
coefficients of interest. Here and elsewhere,orbital stability
is indicated, that is, asymptotic stability with respect to p
turbations within the sub-spacenot associated with the con
tinuous symmetryS1(TDy) ~which gives an eigenvalue o
Floquet exponent equal to zero!.44 Our description is for in-
creasing Re. The laminar state (a0

(1)5a1
(2)5a2

(2)50) is
stable forRe,150.44; at this value, it loses stability to
circle of stable ‘‘pure mode’’ fixed points~with a0

(1)Þ0,
a2

(2)Þ0, a1
(2)50!. These then lose stability atRe5311.86 to

a circle of stable ‘‘mixed mode’’~MM ! fixed points ~with
a0

(1)Þ0, a1
(2)Þ0, a2

(2)Þ0!. At Re5339.82, the MM fixed
points lose stability to periodic traveling waves; these in tu
lose stability atRe5340.84 to quasiperiodic modulated tra
eling waves, which remain stable untilRe5354.82. Most
interestingly, attracting, structurally stable heteroclinic cyc
connecting twoTLy/4-symmetry relatedP2

(2) fixed points exist
for Re*346. Near such a cycle, trajectories alternately v
the vicinities of these two unstable saddle points, with exc
sions in whichua1

(2)u grows andua0
(1)u collapses between vis

its. Since the cyclesattract, nearby solutions approach them

TABLE V. Invariant subspaces for Eqs.~37!–~43!: Variables not identified
in $¯% remain zero.

Invariant subspace Dimension

Se[$a0
(1) ,a2

(1) ,a4
(1) ,a2

(2)% 7
So[$a0

(1) ,a1
(1) ,a3

(1) ,a2
(2)% 7

S012[$a0
(1) ,a1

(2) ,a2
(2)% 5

S e
R[$a0

(1) ,R(a2
(1)),R(a4

(1)),R(a2
(2))% 4

S o
R[$a0

(1) ,R(a1
(1)),R(a3

(1)),R(a2
(2))% 4

S 012
R [$a0

(1) ,R(a1
(2)),R(a2

(2))% 3
S2[$a0

(1) ,R(a2
(1))% 2

S3[$a0
(1) ,R(a3

(1))% 2
S4[$a0

(1) ,R(a4
(1))% 2

S 2
(2)[$a0

(1) ,R(a2
(2))% 2
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andstructural stabilityimplies that they persist over a rang
of Re values, and also under small perturbations to ot
coefficients, as might result from different POD bases. Str
tural stability of these heteroclinic cycles is a consequenc
theO(2) symmetry for theS012 subspace inherited from pe
riodic boundary conditions in the spanwise direction; th
also implies that there is a full circle of such cycles.

The time series for such a cycle atRe5400 is shown in
Fig. 5, with reconstructed velocity fields at eight time i
stants during passage near the cycle shown in Fig. 6. As
the boundary layer model in AHLS, the pair of fixed poin
in each individual cycle correspond to rolls translat

FIG. 5. Time series showing an attracting heteroclinic cycle connectingP2
(2)

fixed points for Eqs.~37!–~43! restricted toS012 at Re5400. The solid
~dashed! lines show the real~imaginary! parts of the amplitudes.

FIG. 6. Snapshots of velocity fields corresponding to part of the heteroc
cycle of Fig. 5; same convention as Fig. 2, time increasing down left t
right column. The first and last panels are near the unstable fixed po
between these the rolls and streaks interact, combine and reform w
lateral shift as the orbit follows the heteroclinic connection. Due to
restricted set of modes, flows maintain symmetry about the midplane.
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through one quarter of the spanwise domain@i.e., half a
wavelength of the roll pattern, via the action ofTLy/4 , cf. Fig.
3~b!#. Note that the existence and stability properties
scribed here are analogous to those for the normal form
spatial 1:2 mode interactionwithout mean flow;49 if a0

(1) is
replaced by its adiabatic value obtained by settingȧ0

(1)50,
Eqs.~44!–~46! reduce exactly to that normal form.

We next describe the behavior restricted to theSe sub-
space. TheP2 fixed points are stable withinSe from Re
562.16, where they bifurcate from the laminar state, toRe
5279.43, where a degenerate Hopf bifurcation50 takes place,
giving rise to a branch of tori carrying quasiperiodic motio
with three independent frequencies; see Fig. 7~a!. The tori
are stable withinSe for 255.89<Re<396.86. A periodic or-
bit, which without loss of generality lies inS e

R , also appears
in the Hopf bifurcation. This periodic orbit branch undergo
a complicated sequence of saddle-node and period-doub
bifurcations, the latter initiating period-doubling cascades
chaos; such chaos exists for 370&Re&430, and the~un-
stable! periodic orbit acts as the ‘‘core’’ of the appare
strange attractor, see Fig. 7~b!, and Fig. 8 for the recon
structed velocity fields. Such attractors lie in all fou
dimensional subspaces obtained under the action ofS1(TDy)
on S e

R , subspaces which are apparently attracting withinSe

for all Re in this range.

FIG. 7. Projections onto modal phase planes of solutions of Eqs.~37!–~43!
restricted to theSe subspace.~a! The stable three-torus atRe5350; the
solid, dashed, and dotted lines correspond to (k,ky)5(1,2),(1,4), and~2,2!,
respectively.~b! The strange attractor inS e

R at Re5400. The thick dashed
line shows the unstable periodic orbit which acts as the ‘‘core’’ of
strange attractor.
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Similar, somewhat more complex, bifurcations occur
So . Here we note only that for 530&Re&750, attracting,
structurally stable, heteroclinic cycles connecti
TLy/4-symmetry relatedP2

(2) fixed points exist; see Fig. 9, an
Fig. 10 for the reconstructed velocity fields. These cyc
differ in detail from those inS012 described above~the ex-
cursions involve modesua1

(1)u and ua3
(1)u in place of ua1

(2)u!,
but their effects are similar in that the fixed points in ea
cycle are related by one-quarter-domain spanwise transla

FIG. 8. Velocity fields corresponding an orbit making a half circuit on t
strange attractor of Fig. 7~b!. Note how the rolls grow and shrink cyclically
SinceSe contains only even spanwise wave numbers, the pattern has s
wise periodp ~half the box!.

FIG. 9. Time series showing an attracting heteroclinic cycle connectingP2
(2)

fixed points for Eqs.~37!–~43! restricted toSo at Re5600. The initial
conditions are random, and the system quickly starts making visits nearP2

(2)

fixed points, each successive visit being longer. The solid~dashed! lines
show the real~imaginary! parts of the amplitudes.
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of the rolls. Like the heteroclinic cycles found in the AHL
model,4 the stable eigenvalues ofP2

(2) in So include a com-
plex conjugate pair corresponding to perturbations in
S 2

(2) subspace, and the cycle’s attractivity is determined
eigenvalues for perturbations out ofS 2

(2) . Specifically, the
cycle attracts when the single positive eigenvalue ofP2

(2) has
smaller magnitude than the leading~real! negative eigen-
value.

The velocity fields of Figs. 6, 8, and 10, correspondi
to solutions restricted to ‘‘special’’ subspaces, necessa
display more symmetry than typical experimental or DN
realizations. Fields corresponding to orbits with all mod
nonzero, as in Fig. 11 below, lack such clear symmetries

A complete analysis of the full models~37!–~43! is be-
yond the scope of this paper. However, we do indicate
complicated relationship between the full dynamics and
namics restricted to invariant subspaces. There areRe ranges
in which each of the subpacesSe , So, andS012 is stable for
the full system, so that the remaining complex amplitudes
~37!–~43! decay to zero. For example,Se is stable forRe
'280 ~typical trajectories approach the three-torus in t
subspace!, So is stable forRe'600, andS012 is stable for
Re*700 ~typical trajectories approach structurally stab
heteroclinic cycles as in Figs. 9 and 5, respectively; at
lower end of the latter range small excursions out ofS012

occur, but the dynamics is dominated by theS012-cycles!.
There are alsoRe ranges for which none of these subspac
are stable; for example, atRe5400 typical solutions ap-
proach quasiperiodic motions involving all modes. Howev
even if So is unstable, chaotic solutions can exist that ma
intermittent visits near this subspace; see Fig. 11 for suc
solution at Re5500. The full dynamics of~37!–~43! are
clearly complicated, but they can be partially understood
terms of behavior in lower-dimensional invariant subspac

The ~stable! fixed pointsP2 , P3 , and P4 of Sec. IV B
necessarily belong to the attractors found for the full mod
~cf. Table V!, but the additional (k52) modal interactions

FIG. 10. Velocity fields corresponding to part of the heteroclinic cycle
Fig. 9. The first and last panels are near the unstable fixed points; bet
these the rolls interact and reform with a lateral shift. Note how the s
metry differs from that of Fig. 6.
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present in Eqs.~37!–~43! render these simple states unstab
replacing them by dynamically active motions that ‘‘grow
from the steady states in bifurcations asRe varies. Nonethe-
less, observations similar to those of Sec. IV B concern
self-sustaining and self-limiting processes still hold, with t
added complication that~local! stability of subspaces such a
Se andSo is determined not only by the magnitude ofa0

(1) ,
but also by the nonlinear terms in~37!–~43!. This permits
much richer behavior, involving energy transfer among s
eral distinct roll modes and intermittent visits to the neig
borhoods of subspaces corresponding to different~spanwise!
lengthscales and roll geometries.

As noted above, for such drastic truncations we can
expect energy budgets to match those of the original d
ensemble; not, at least, without models to represent losse
neglected modes. We note that the mean level ofua0

(1)u2 is
significantly too high~33.15, compared with the DNS valu

f
en
-

FIG. 11. Time series for solutions of Eqs.~37!–~43! in the full thirteen-
dimensional state space. The solid~dashed! lines show the real~imaginary!
parts of the amplitudes. Aroundt5800 and 7500 the system makes visi
near theSo subspace.
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8.9246!, and the mean square levels of the model’s lead
roll modes are correspondingly too small. Writing the kine
energy of this model@recalling that each mode withky>1
must be counted twice, cf.~13!#

E5
1

2
ua0

(1)u21 (
q51

4

uaq
(1)u21 (

q51

2

uaq
(2)u2, ~47!

we compute the rate of change along solutions@using ~25!#
as

dE

dt
5A0ua0

(1)u212(
q51

4

Aquaq
(1)u212(

q51

2

Aq
(2)uaq

(2)u2.

~48!

Since ~for Re*150! A0,0,Aq ,Aq
(2) , net energy grows

in a ‘‘cone’’ in state space centered on the roll mod
(ua0

(1)u50), and decays on a cone centered on thea0
(1)-axis.

This is clearly a poor representation of the true energy fl
which involves higher modes as well as those with strea
wise variationskxÞ0. The mean flow modea0

(1) is theonly
linearly dissipative mode in this model and is driven by
the other modes@cf. ~37!#, so it is perhaps not surprising tha
it equilibrates at an unrealistically high level, thus skewi
the energies of the other modes. Preliminary studies indi
that the inclusion of losses to neglected modes, modeled
a Heisenberg mechanism,4,7,24 can improve this picture.

V. CONCLUSION

In this paper, we modeled turbulent plane Couette fl
by expanding the velocity field as a sum of optimal ‘‘PO
modes’’ calculated via proper orthogonal decomposit
from numerical data obtained atRe5400. The most ener
getic mode approximates the observed mean turbulent ve
ity profile.37,38Other POD modes include pairs and stacks
streamwise rolls and associated streaks. ODE models w
then obtained by Galerkin projection of the Navier–Stok
equations onto these modes. The validity of the proced
was illustrated in Sec. IV A by examining truncations th
retain many terms.

We then considered two classes of low-dimensio
models. For a minimal truncation including only the mo
energetic family of modes having no streamwise variati
the existence of linearly stable nontrivial fixed points w
shown under quite general conditions~see Sec. IV B!. Such
fixed points correspond to states in which the mean flow
coupled to one set of streamwise vortices and their ass
ated streaks. These roll structures resemble unstable fi
amplitude solutions of the NSE,10–12 ‘‘modes’’ that can be
stabilized by spatially forcing the flow with a stationary wi
or bead,40–43 and structures involved in the self-sustaini
process elucidated in Refs. 14–17.

When the next most energetic family of modes, s
lacking streamwise variations, is included, richer dynami
behaviors are found~see Sec. IV C!. Of particular interest are
the attracting, structurally stable heteroclinic cycles in
S012 and So subspaces. Such cycles provide an explana
for the fact that streamwise vortices are prominent feature
turbulent PCF37 even though they are unstable: indeed,
cycles imply repeated visits near such unstable structures~cf.
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Ref. 22!. Moreover, these heteroclinic cycles are charac
ized by successive spanwise translations of rolls by ha
wavelength. A similar prediction was made in AHLS4 for the
ejection and bursting events for the turbulent boundary lay
evidence for such spanwise translations was found in
experiments described in Ref. 5. For turbulent PCF, we n
that Fig. 14 of Ref. 37 indicates that similar spanwise tra
lations are associated with large velocity fluctuation even
The difference inRe and the domain’s aspect ratio betwe
those experiments and our DNS data makes direct comp
son difficult; however, we hope that the present work w
inspire more careful exploration of this possibility. We no
that structural stability and genericity arguments7,50 imply
that these results are robust to small changes in the O
coefficients induced by changes in empirical eigenfunctio
for example. Also, this type of geometry has been used
propose control methods to reduce the rate of ‘‘burstin
away from such sets.51–53

Kawahara and Kida22 presented DNS evidence in PC
of heteroclinic cycles connecting periodic orbits that lie in
subspace analogous toSe , but with streamwise modesnx

Þ0. They used a smaller~minimal flow unit! domain, so
comparisons are problematic, and they report only 1% ac
racy in their calculations, but it is possible that they ha
found a periodic orbit or recurrent motion analogous to tho
of Fig. 7~b!.

An interesting class of low-dimensional models for she
flows, including PCF, was proposed by Waleffe.14,15,18A ma-
jor difference between our models and his is that the la
include decoupledstreamwise velocities representing th
mean flow and streak modes, and cross-stream roll com
nents, along with a ‘‘wakelike’’ x-dependent streak
instability.18 These lead to coexistence of a stable lamin
state and a nontrivial~periodic! attractor and allow investi-
gation of transition. Our POD-based models employ a v
torially coupled decomposition, constraining relative ro
streak magnitudes within each mode and implying instabi
of the laminar state, but permitting rational inclusion of
hierarchy of freely interacting modes that respect the sy
metries of the problem, and whose relative amplitudes
dynamically adjust to capture the roll-streak-mean inter
tions. @Our simplest model, of Sec. IV B, describes intera
tion between the meana00

(1) and a ‘‘most unstable’’ roll-streak
modea0 j

(1) whose spanwise scale depends on Reynolds n
ber. If we continue Waleffe’s reduction scheme~Sec. III C of
Ref. 15!, assuming that his streak and roll modesU and V
maintain a fixed amplitude ratio, and neglect the streamw
varying modeW, his model collapses to ours.# In Waleffe’s
simplest model there is only one real mode in each gro
and spanwise~or streamwise! translations are not allowed
thus excluding the possibility of heteroclinic cycles of th
type that we find in Sec. IV C, and that also play a cruc
role in models of the turbulent boundary layer~cf. Refs. 4
and 49!. Thus, both types of models impose constraints~as
any low dimensional model must!, and each highlights a dif-
ferent aspect of the turbulence production and sustainm
process.

A further comment on our vectorially coupled PO
bases and the resulting instability of the laminaru50 state in
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2506 Phys. Fluids, Vol. 14, No. 7, July 2002 Moehlis et al.
our models is appropriate. As noted in Sec. IV B, since
empirical eigenfunctions derive from turbulent DNS da
that remains far fromu50, the leading basis functions in
duce coupling between streamwise and spanwise velo
components that leads to an energy source term@the second
term on the right-hand side of Eq.~B1!#, in the absenceof
modes containing explicit streamwise variations. This is
cause the empirical basis functions withkx50 effectively
average over the longest nonzero streamwise scales. A
plained by Berkoozet al.7,46 and Waleffe,14 this constraint
may be relaxed by using a representation in which stre
wise and spanwise components are decoupled~at the cost of
doubling the number of modes!. Preliminary studies of such
a decomposition indicate eventual decay to the trivial s
for models lacking streamwise variations, as expected.
are currently studying both coupled and decoupled mod
including streamwise modes, but correct representions of
energy budgets and modal interactions would require us
eddy viscosity~Heisenberg! models; this work will appear in
a future paper.

The dependence of eigenvalues and energy budget
the aspect ratio of the DNS computational domain is also
interest: as noted in Ref. 38, short domains~such as theLx

54p used here! cannot accommodate the largest streamw
scales in turbulent PCF, and may ‘‘artificially’’ force stream
wise vortical structures.
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APPENDIX A

It may be verified from~5!–~7! and ~18! that the non-
trivial group elements of D2 act on theF(k)’s as follows:

P•S F1
(k)~nx ,ny ;z!

F2
(k)~nx ,ny ;z!

F3
(k)~nx ,ny ;z!

D 5S 2F1
(k)~2nx ,2ny ;2z!

2F2
(k)~2nx ,2ny ;2z!

2F3
(k)~2nx ,2ny ;2z!

D ,

~A1!

R•S F1
(k)~nx ,ny ;z!

F2
(k)~nx ,ny ;z!

F3
(k)~nx ,ny ;z!

D 5S F1
(k)~nx ,2ny ;z!

2F2
(k)~nx ,2ny ;z!

F3
(k)~nx ,2ny ;z!

D , ~A2!

RP•S F1
(k)~nx ,ny ;z!

F2
(k)~nx ,ny ;z!

F3
(k)~nx ,ny ;z!

D 5S 2F1
(k)~2nx ,ny ;2z!

F2
(k)~2nx ,ny ;2z!

2F3
(k)~2nx ,ny ;2z!

D .

~A3!

APPENDIX B

Letting 8 denote differentiation with respect toz, the
coefficients of~22! are
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Âkxky

(k,n)52
2p ikx

Lx
(
j 51

3 E
21

1

zf jkxky

(n) f jkxky

(k)* dz

2E
21

1

f3kxky

(n) f1kxky

(k)* dz2
1

ReF S S 2pkx

Lx
D 2

1S 2pky

Ly
D 2D dnk1(

j 51

3 E
21

1

f jkxky

(n)8 f jkxky

(k)* 8dzG ,

~B1!

B̂kxkymxmy

(k,m,n) 52
1

ALxLy
(
j 51

3 E
21

1 S 2p imx

Lx
f1,kx2mx ,ky2my

(n)

3f jmxmy

(m) 1
2p imy

Ly
f2,kx2mx ,ky2my

(n) f jmxmy

(m)

1f3,kx2mx ,ky2my

(n) f jmxmy

(m)8 Df jkxky

(k)* dz. ~B2!
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