
Physica D 412 (2020) 132621

B
a

b

a
t
i
b
m
e
t
d
m
m

d

m

h
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Supervised learning algorithms for controlling underactuated
dynamical systems✩

harat Monga a,∗, Jeff Moehlis a,b

Department of Mechanical Engineering, Engineering II Building, University of California Santa Barbara, Santa Barbara, CA 93106, United States
Program in Dynamical Neuroscience, University of California Santa Barbara, Santa Barbara, CA 93106, United States

a r t i c l e i n f o

Article history:
Received 29 August 2019
Received in revised form 26 May 2020
Accepted 13 June 2020
Available online 18 June 2020

Keywords:
Supervised learning
Underactuated dynamical systems
Bang bang control
Coupled oscillators
Machine learning
Binary classification

a b s t r a c t

Control of underactuated dynamical systems has been studied for decades in robotics, and is now
emerging in other fields such as neuroscience. Most of the advances have been in model based control
theory, which has limitations when the system under study is very complex and it is not possible
to construct a model. This calls for data driven control methods like machine learning, which has
spread to many fields in the recent years including control theory. However, the success of such
algorithms has been dependent on availability of large datasets. Moreover, due to their black box
nature, it is challenging to analyze how such algorithms work, which may be crucial in applications
where failure is very costly. In this paper, we develop two related novel supervised learning algorithms.
The algorithms are powerful enough to control a wide variety of complex underactuated dynamical
systems, and yet have a simple and intelligent structure that allows them to work with a sparse
data set even in the presence of noise. Our algorithms output a bang-bang (binary) control input by
taking in feedback of the state of the dynamical system. The algorithms learn this control input by
maximizing a reward function in both short and long time horizons. We demonstrate the versatility
of our algorithms by applying them to a diverse range of applications including: switching between
bistable states, changing the phase of an oscillator, desynchronizing a population of synchronized
coupled oscillators, and stabilizing an unstable fixed point. For most of these applications we are able
to reason why our algorithms work by using traditional dynamical systems and control theory. We
also compare our learning algorithms with some traditional control algorithms, and reason why our
algorithms work better.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Underactuated dynamical systems are systems with fewer
ctuators/controls than the dimensionality of the state space of
he system. Such systems are ubiquitous in a variety of fields
ncluding physics, chemistry, biology and engineering. There have
een numerous advances made on controlling such systems, with
uch of the work in robotics [1–3]. Control in other applications,
specially biology [4–7], is on the rise as it provides promising
reatment strategies for several disorders such as Parkinson’s
isease, cardiac arrhythmias, and jet lag. Most of these control
ethods, both in robotics and biology, are based on traditional
odel based control theory and optimal control.
Such methods work well when it is possible to model the

ynamics of the system accurately, which is very difficult as

✩ Implementation of the algorithms in this article is available at https:
//github.com/bharatmonga/Supervised-learning-algorithms.

∗ Corresponding author.
E-mail addresses: monga@ucsb.edu (B. Monga),

oehlis@engineering.ucsb.edu (J. Moehlis).
ttps://doi.org/10.1016/j.physd.2020.132621
167-2789/© 2020 Elsevier B.V. All rights reserved.
the systems become complicated, especially in neuroscience ap-
plications where the dynamics of a single neuron may change
rapidly depending on the response from other neurons in the
network. Even if an accurate model could be built to describe
the dynamics of such a system, developing a classical model
based control for such an underactuated system is a challenging
task. If the parameters of the system change with time, or if the
model does not describe the dynamics accurately, the theoretical
control guarantees like stability and boundedness may not apply
in real systems [8,9]. This calls for the development of data driven
control algorithms that can learn to control the system without
explicitly using a model.

Artificial intelligence algorithms are able to learn to con-
trol dynamical systems by using deep neural networks. Such
algorithms have been used for a long time [10,11], but with
the availability of large data sets, improvement in deep learn-
ing architectures, optimization methods, and cheap computation
costs, their use is on the rise [12]. However, the success of
such algorithms has been largely dependent on availability of
large datasets [13], which can be limited in fields like neuro-

science where the cost of obtaining human/animal brain data

https://doi.org/10.1016/j.physd.2020.132621
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132621&domain=pdf
https://github.com/bharatmonga/Supervised-learning-algorithms
https://github.com/bharatmonga/Supervised-learning-algorithms
mailto:monga@ucsb.edu
mailto:moehlis@engineering.ucsb.edu
https://doi.org/10.1016/j.physd.2020.132621

2 B. Monga and J. Moehlis / Physica D 412 (2020) 132621

i
n
g
s
f
t
d
o
i
e
o
c
a

d

t

is very high. Moreover, the black box nature of such methods
makes their analysis difficult. Such analysis would be important
in tasks where failure is very costly. Another limitation of such
methods is their inability to take advantage of the inherent
dynamics of the system to achieve the task, which limits their
performance.

All these limitations call for a new machine learning control
algorithm that does not rely on large amounts of data, is easy to
understand, and can take advantage of the underlying dynamics
in achieving the task. In this article, we have developed two
related novel supervised learning algorithms based on these three
goals. Our algorithms are powerful enough to control a wide va-
riety of complex underactuated dynamical systems, and yet have
a simple structure so one can understand how they work using
dynamical systems and control theory foundations. Their simple
yet intelligent structure also allows them to effectively achieve
the control objective by training on a sparse data set, even in the
presence of noise. Our algorithms output a bang-bang (binary)
control input by taking in feedback of the state of the dynamical
system. The algorithms learn this control input by maximizing
a reward function in both short and long time horizons. We
demonstrate the versatility of our algorithms by applying them
to a diverse range of underactuated dynamical systems includ-
ing: switching between bistable states, changing the phase of an
oscillator, desynchronizing a population of synchronized coupled
oscillators, and stabilizing an unstable fixed point of a dynamical
system. For most of these applications we are able to reason
why our algorithms work by using traditional dynamical systems
and control theory. We compare our algorithms with traditional
control algorithms and reason why our algorithms work better,
especially because they learn to take advantage of the underlying
system dynamics in achieving the control objective. We carry
out a robustness analysis to demonstrate the effectiveness of our
algorithms even in the presence of noise.

This article in organized as follows. In Section 2, we develop
our supervised learning algorithms to output a binary control. We
demonstrate our first supervised learning algorithm by control-
ling underactuated bistable dynamical systems in Section 3, and
compare our algorithm to a fully actuated control. In Section 4,
we illustrate the effectiveness of our second supervised learning
algorithm by controlling the phase of a single oscillator and com-
paring the algorithm to a model based optimal control algorithm.
We further demonstrate the versatility of our second supervised
learning algorithm by using it to desynchronize a population
of synchronized coupled oscillators in Section 5. In Section 6,
we apply our second algorithm to stabilize an unstable fixed
point of an underactuated dynamical system, and compare the
algorithm to a model based control algorithm. To demonstrate the
applicability of our algorithms in a more realistic setting, we show
how their intelligent structure allows them to perform well in the
presence of noise. Section 8 summarizes our work and suggests
future extensions and tools. Appendix A lists the mathematical
models used in this article. In Appendix B, we give background on
phase reduction relevant for the model based control comparison
and validation of our second learning algorithm in Sections 4 and
5, respectively.

2. Supervised learning algorithms

In this section, we develop our supervised learning algorithms
to control a diverse range of underactuated dynamical systems.
The development includes two important steps: the first step is
generating an appropriate training data set, and the second step
Fig. 1. Flowchart of the two supervised learning algorithms.

s feeding that data set into a binary classifier to control the dy-
amical system. We call the first step the training algorithm, as it
enerates the training data by maximizing a reward function. We
how in the rest of the paper how choosing an appropriate reward
unction can be used to take advantage of the inherent dynamics
o control a variety of dynamical systems. For the second step, we
esign a locally weighted binary classifier that takes in the state
f the dynamical system as input, and outputs a binary control
nput in real time. The local nature of our classifier allows it to
ffectively interpolate between nonlinear boundaries inherent in
ur data set, and thus plays an important role in the control. The
ombination of these two steps results in our supervised learning
lgorithms described below and shown in Fig. 1.
We consider an underactuated dynamical system with an ad-

itive control input π(x(t)) as

d
dt

x(t) = F (x(t)) + [π(x(t)) , 0n−1]
T , x(t) ∈ Rn, (1)

where 0n−1 is an n−1 dimensional zero vector. Thus, the control
input depends on the full state of the dynamical system, and only
directly affects the first state of the dynamical system. The control
input is binary in nature having two values {u1 > 0, u2}, which
can be chosen differently for different applications. For our first
algorithm, we take u2 = 0, and thus the control can be thought
of having an ‘‘ON’’ state with the value u1 and an ‘‘OFF’’ state
with value 0. For our second algorithm, we take the control to
be a bang bang control with u2 = −u1. Both algorithms learn
the control input π(x(t)) as a function of the state to achieve
a particular control objective. They do so by learning from the
data generated by sampling a model describing the underlying
dynamics of the system. To demonstrate our algorithm in this
article, we use an analytical model (F (x(t))) which generates our
training data. In case a model is not available in an application,
one can still use the same algorithms by obtaining training data
by direct measurement of the states of the system at different
times. Below we describe our supervised learning algorithms in
more detail.

2.1. Training Algorithm 1

Our first supervised learning algorithm outputs a ‘‘ON’’ or
‘‘OFF’’ binary control input. The algorithm learns what control in-
put to output to achieve a certain control objective by maximizing
a reward function R(x(t)) which needs to be carefully designed
o achieve a control objective in a particular application.

B. Monga and J. Moehlis / Physica D 412 (2020) 132621 3

R
n
b

b
s
r
f
i
t
c
a
t

2

b
d
l
t
n
p

d
t
s
u
T
W
t
m

g

2

N
c
b
i
c

We sample a state x(0) randomly from the state space of the
dynamical model of the system, and evolve the state forward in
time for short time ∆t with control state OFF. If R(x(∆t)) ≥

(x(0)), we set the control policy for state x(0) as OFF. If it is
ot, we again evolve the initial state forward for the same time
ut with control ON, and compare R(x(∆t)) for both control ON

and OFF. Whichever control policy maximizes the reward is set
for the sampled state x(0). We repeat the process N times by
sampling more initial states randomly. The training algorithm is
summarized below:

Training Algorithm 1
Initialize X as zeros(N,length(x)) and U as zeros(N,1)
for i=1,N do
Randomly sample x(0)
Compute x(∆t) and R(x(∆t)) with control OFF
if R(x(∆t)) ≥ R(x(0)) then
Set policy for x(0) as OFF

else
Compute x(∆t) and R(x(∆t)) with control ON
if R(x(∆t)) with control ON > R(x(∆t)) with control OFF
then

Set policy for x(0) as ON
else

Set policy for x(0) as OFF
end if

end if
Assign X [i, :] as x(0) and U[i, :] as the policy

end for
return X , U

Such an algorithm takes advantage of the underlying dynamics
y letting the trajectories evolve without any control and only
witching ‘‘ON’’ the control when necessary. This makes our algo-
ithm highly energy efficient. Such an algorithm is very suitable
or controlling bistable dynamical systems where the objective
s for the trajectory to converge to a particular stable state of
he system, or to switch from one stable state to another. The
ontrol can switch OFF when the trajectory enters the region of
ttraction of the desired stable state, and let the dynamics take
he trajectory to the desired state.

.2. Training Algorithm 2

Our second supervised learning algorithm outputs a bang-
ang control input which can be used to control a variety of
ynamical systems, including coupled oscillators. The algorithm
earns what control input to output to achieve a certain con-
rol objective by maximizing a reward function R(x(∆t)), which
eeds to be carefully designed to achieve a control objective in a
articular application.
We sample a state x(0) randomly from the state space of the

ynamical model of the system, and evolve the state forward in
ime for short time ∆t with both control u1 and −u1. In both
cenarios we let the state evolve further in time with zero control
ntil some event occurs and measure the timing of this event.
he reward R(x(∆t)) is dependent on the timing of this event.
hichever policy (u1 or −u1) maximizes this reward is set for

hat sampled state. We repeat the process N times by sampling
ore states randomly. The algorithm is summarized below:
Training Algorithm 2
Initialize X as zeros(N,length(x)) and U as zeros(N,1)
for i=1,N do

Randomly sample x(0)
Compute x(∆t) and R(x(∆t)) with control u1
Compute x(∆t) and R(x(∆t)) with control -u1
if R(x(∆t)) with control u1 ≥ R(x(∆t)) with control -u1
then

Set policy for x(0) as u1
else

Set policy for x(0) as -u1
end if
Assign X [i, :] as x(0) and U[i, :] as the policy

end for
return X , U

Such control is useful when the objective is to converge to
an unstable state of the system, because the control needs to
stay ‘‘ON’’ (be non-zero) the whole time even when the control
objective has been realized, since the trajectory will go back to
the stable state otherwise. Here as well the underlying dynamics
of the system play a role in our learning algorithm: to determine
the control input for a particular initial state, we let the dynamics
evolve the trajectory until an event occurs.

Both of these training algorithms generate data comprising a
set of N sampled states of the dynamical system X , and a set of
the corresponding control inputs U . However, we need to know
the control input π(x(t)) as a function of a general trajectory
x(t) of the system, since the trajectory is not restricted to these
sampled states. This is achieved with our binary classifier, that
takes an input as the state of the dynamical system x(t) and
outputs the corresponding control policy π(x(t)) based on this
enerated data.

.3. Binary classifier

Our training algorithms generate data comprising a set X of
sampled states of the dynamical system, and a set of the

orresponding control inputs U . Based on this information we
uild a locally weighted binary classifier that takes an input as the
nstantaneous state of the dynamical system x(t), and outputs the
orresponding control policy π(x(t)) to be applied at that instant.
We assign each element of the set X with a weight

wi(x(t)) = exp
(

−
|x(t) − Xi|

2

2τ

)
, i = 1, 2, . . . ,N,

where Xi represents the ith sampled state stored in the set X .
Thus a sampled state is given a higher weight if its closer to x(t),
and a lower weight if it is further away from x(t). These weights
are normalized so that
N∑
i=1

wi(x(t)) = 1.

For the first algorithm, the classifier outputs π(x(t)) = u1 (‘‘ON’’)
if
N∑
i=1

wi(x(t))Ui > 0.5u1, (2)

and π(x(t)) = 0 (‘‘OFF’’) otherwise. Similarly for the second
algorithm, the classifier outputs π(x(t)) = u1 if
N∑

wi(x(t))Ui > 0, (3)

i=1

4 B. Monga and J. Moehlis / Physica D 412 (2020) 132621

c
t
i
a
b
p
t
c
t
a
w
w
s
e
c
a
i
c
a
e
t
t
o

f
a
a
w
T

a

3

B
X
(

D
u
h

3

s
p
f

v

w
v
a
t
t
w
F

3

s
w
i
a
c
s

and π(x(t)) = −u1 otherwise. Here τ is a hyperparameter, which
an be thought of as a bandwidth parameter. Smaller τ decreases
he influence of faraway data points in local interpolation. Choos-
ng a very small value can lead to overfitting and tight boundaries
round the sampled points. On the other hand, a large value can
ias the decision boundary in favor of a larger cluster of data
oints. We run experiments with different τ values and choose
he one which enables our classifier to label the training data
orrectly, and also produces a smooth decision boundary between
he clusters. The critical number on the right hand side of Eqs. (2)
nd (3) can be thought of as another hyperparameter which
ould influence the decision boundary together with the band-
idth parameter. We keep this parameter fixed for all our case
tudies, and find that a value of 0.5u1 and 0 respectively prove
ffective in outputting a smooth boundary decision around the
luster of data points for the examples that we consider. Choosing
larger (resp., smaller) critical value would extend the boundary

n favor of clusters with labels OFF/negative (resp., ON/positive)
ontrol. We do not claim that the chosen hyperparameter values
re optimal, but we believe that they are close to optimal for our
xamples, as the binary classifier is able to correctly label the
raining data and produce a smooth boundary, and thus is able
o achieve the control objectives demonstrated in later sections
f the article.
With π(x(t)) defined to be the output of this binary classi-

ier, we simulate the dynamical system from (1) starting from
random initial condition and find that our supervised learning
lgorithms are able to achieve the desired control objectives,
hile simultaneously maximizing the designed reward functions.
he entire algorithm is depicted in the flowchart in Fig. 1.
Note that in our algorithm, the sets X , U need to be com-

puted only once for a given dynamical system, whereas the
control input π(x(t)) is computed by the binary classifier at every
timestep.

3. Bistable dynamical systems

Bistability is widely found in neural systems [14] and cardiac
arrhythmia [15], and is used in digital electronics for storing
binary information, in mechanical switches for transitioning be-
tween ON and OFF states, and in multivibrators, Schmitt trigger
circuits, and even optical systems [16]. It is the key mechanism
for understanding several cellular processes including those asso-
ciated with the onset and treatment of cancer [17]. In this section
we apply our first supervised learning algorithm to control un-
deractuated bistable dynamical systems. The control objective is
for the trajectory to converge to a particular stable fixed point of
the system starting anywhere in the state space (including in the
basin of attraction of the other stable state). Such a control ob-
jective is relevant for several applications such as biocomputing,
gene therapy, and treatment of cancer [18,19], among others.

3.1. Duffing oscillator

With the Duffing oscillator [20,21], we consider the class
of bistable dynamical systems having two stable fixed points
(xs1, xs2), and an unstable fixed point (xu). The control objective
is for the trajectory to converge to xs2 starting anywhere in the
state space. The Duffing oscillator is given as:

ẋ = y + π(x(t)) ,

ẏ = x − x3 − δy.

For δ > 0, the system has two stable fixed points xs1 = (−1, 0)
and xs2 = (1, 0), and an unstable fixed point xu = (0, 0), all
shown in Fig. 2. We take δ = 0.1 in our simulations.
3.1.1. Learning algorithm
We choose our reward function to be the negative of the

Euclidean distance between the current state and the desired
state:

R(x(t)) = −∥x(t) − xs2∥. (4)

Thus the control will make the trajectory converge towards the
desired fixed point while increasing the reward to 0. To converge
to xs2 starting anywhere in the state space, we use our learning
algorithm to generate a control policy. The ON (resp., OFF) state
of the control policy corresponds to a value of u1 = 4 (resp., 0).
We randomly sample N = 50 points for generating the sets X , U ,
nd choose ∆t = 0.001 and τ = 0.4.

.1.2. Results
The generated control policy is shown in the left panel of Fig. 2.

lue open circles (resp., black ×’s) represent elements of the set
where the control policy given by elements of the set U is OFF

resp., ON). The green (resp., red) region is where output π(x(t))
of the binary classifier is OFF (resp., ON). A controlled and an
uncontrolled trajectory starting from same x(0) are shown in the
right panel of Fig. 2. As can be seen in this figure, the control
algorithm gradually converges the trajectory to xs2 by turning
the control ON a few times, whereas the uncontrolled trajectory
converges to xs1.

The algorithm generates an energy efficient control policy as
the policy is OFF 60.41% of the total time it takes to drive the
trajectory within a ball of radius of 0.45 in the region of attraction
of xs2. We investigate the robustness of our learning algorithm
by testing it on 1000 randomly generated initial conditions, and
in all the 1000 cases, the control algorithm is able to converge
the trajectories to xs2, achieving 100% accuracy. Choosing N is
the crucial task in our learning algorithm. We start with a small
N and keep increasing it until the algorithm achieves 100% ef-
fectiveness. N = 50 points turns out to be appropriate for the
uffing oscillator as choosing a lower number of points leads to
nderfitting, and choosing a higher number of points leads to a
igher computational cost.

.2. Reduced Hodgkin–Huxley model

With the reduced Hodgkin–Huxley model [22–24], we con-
ider the class of bistable dynamical systems having a stable
eriodic orbit xs1(t), an unstable periodic orbit xu(t), and a stable
ixed point xs2. The model is given as

˙ =
(
I − gNa(m∞(v))3(0.8 − n)(v − vNa) − gKn4(v − vK)

− gL(v − vL)
)
/c + π(x(t)) ,

ṅ = an(v)(1 − n) − bn(v)n,

here v is the trans-membrane voltage, and n is the gating
ariable. I is the baseline current, which we take as 6.69 µA/cm2,
nd π(x(t)) represents the applied control policy. For the rest of
he parameters, see Appendix A.1. In the absence of control input,
he system is bistable having xs1(t) with period 14.91 ms, xu(t)
ith period 14.33 ms, and xs2 = (−61.04, 0.38), all shown in
ig. 3.

.2.1. Learning algorithm
The control objective is for the trajectory to converge to the

table fixed point starting anywhere in the state space. Here as
ell we choose the reward function (4). Without any control

nput, a trajectory starting outside xu(t) will converge to xs1(t),
nd a trajectory starting inside xu(t) will converge to xs2. To
onverge to the stable fixed point starting anywhere in the state
pace, we use our learning algorithm to generate a control policy.

B. Monga and J. Moehlis / Physica D 412 (2020) 132621 5

I
G
t
l

T
v
g
0
i
T
s
f
d
s
t
c

3

A
b
o
l
S
s
t
t
t
u
e
t

Fig. 2. Duffing Oscillator (δ = 0.1): Solid (resp., open) black circles represent xs1 , xs2 , (resp., xu). In the left panel, open blue circles (resp., black ×’s) represent
elements of the set X where the control policy given by elements of the set U is OFF (resp., ON). The green (resp., red) region is where the output π(x(t)) of the
binary classifier is OFF (resp., ON). In the right panel, the trajectory starts in the region of attraction of xs1 , and converges to xs2 (resp., xs1) with (resp., without)
control. When the control policy is ON (resp., OFF), the trajectory is plotted in black (resp., blue). The uncontrolled trajectory is plotted in red. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Reduced Hodgkin–Huxley model: The black and red curves are xs1(t) and xu(t), respectively. The black point in the bottom left corner of figure panels is xs2 .
n the left panel, small black circles (resp., black ×’s) represent elements of the set X where the control policy given by elements of the set U is OFF (resp., ON).
reen (resp., red) regions are where the output π(x(t)) of the binary classifier is OFF (resp., ON). In the right panel, the trajectory starts outside xu(t), and converges
o xs2 . When the control policy is ON (resp., OFF), the trajectory is plotted in black (resp., blue) color. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
i
o
c
a
h
t

3

r
a

U

w
s
r
o
e
T
n
d
o
c

he ON (resp., OFF) state of the control policy corresponds to a
alue of uc = 15 (resp., 0). We sample N = 1000 points for
enerating the sets X , U , and choose ∆t = 0.001, and τ =

.001. Because the two state variables v, n scale differently, it is
mportant to normalize them for calculating the reward function.
his is also important for the binary classifier to work effectively,
ince it is based on the Euclidean norm. To do this, we subtract
rom each element of the set X the mean of the set and then
ivide each element by the variance of the set. We subtract the
ame mean and divide by the same variance from the state x(t)
hat goes in calculating the reward function and also the binary
lassifier.

.2.2. Results
The generated control policy is shown in the left panel of Fig. 3.

s shown in this figure, the learning algorithm indicates that it is
etter to have control ON in the left part of the state space in
rder to maximize the reward function. In all other regions, the
earning algorithm indicates that the control policy should be OFF.
ince the control policy is ON in only a small region of the state
pace, we need to sample 1000 points to accurately determine
his region. A controlled trajectory using this policy is shown in
he right panel of Fig. 3. The learning algorithm is able to converge
he trajectory to the stable fixed point xs2 by bypassing the
nstable periodic orbit xu(t). The algorithm generates an energy
fficient control policy as the policy is OFF 23.81% of the time it
akes for the algorithm to drive the trajectory inside xu(t). We
 i
nvestigate the robustness of our learning algorithm by testing it
n 1000 randomly generated initial conditions, and in all the 1000
ases, the algorithm is able to converge the trajectories to xs2,
chieving 100% effectiveness. Note that the learning algorithm
as no information about the periodic orbits and fixed points of
he system; it only works to maximize the reward function.

.2.3. Comparison with fully actuated control
To further demonstrate energy efficiency of our learning algo-

ithm, we compare it with a fully actuated feedback control given
s
d
dt

x(t) = F (x(t)) + U(x(t)), x(t) ∈ Rn, (5)

(x(t)) = −F (x(t)) − 0.2
(
x(t) − xs2

)
, (6)

hich also converges the trajectory to the stable fixed point in the
ame time frame as our learning algorithm. However the energy
equired by this algorithm calculated as

∫ t
0 ∥U(x(t))∥2

2dt comes
ut to be more than 3 orders of magnitude larger compared to the
nergy taken by the control obtained from our learning algorithm.
his is because our learning algorithm takes advantage of the
atural dynamics of the system to drive the trajectory close to the
esired point, and turns the control ON only for a short amount
f time when it is really needed. In contrast, the feedback based
ontrol is ON the whole time, even when the trajectory reaches

nside the unstable periodic orbit.

6 B. Monga and J. Moehlis / Physica D 412 (2020) 132621

e
r

4

c
c
t
c
c
t
m
d
m
m
o

4

t
r

v

w
v
r
o
i

Fig. 4. Thalamic neuron model: Red curve is the stable limit cycle. Small blue circles (resp., black ×’s) represent elements of set X where control policy given by
lements of set U is −u1 (resp., u1). The controlled trajectory is plotted in blue (where π(x(t)) = −u1) and black (where π(x(t)) = u1). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
p
i
w
d
p
i
a
n

c
s
a
a
d

. Phase control of an oscillator

In this section, we use our second algorithm to control a
lass of underactuated dynamical systems having a stable limit
ycle solution xs(t). We seek to maximally increase or decrease
he phase of the limit cycle solution by using a bang-bang type
ontrol input. The motivation behind such a control objective
omes from controlling neurons, where one might want a neuron
o spike as quickly as possible subject to a constraint on the
agnitude of the allowed input current; this constraint can be
ue to hardware limitations and/or concern that large inputs
ight cause tissue damage. Thus, instead of thinking in terms of
aximally increasing the phase, one can instead think in terms
f maximally decreasing the neuron’s spike time.

.1. Model

To demonstrate our algorithm, we consider the 3-dimensional
halamic neuron model [25] for the oscillatory behavior of neu-
ons in the thalamus:

˙ =
−IL(v) − INa(v, h) − IK (v, h) − IT (v, r) + Ib

Cm
+ π(x(t)) , (7)

ḣ =
h∞(v) − h

τh(v)
, (8)

ṙ =
r∞(v) − r

τr (v)
, (9)

here the state x(t) is the tuple (v, h, r), v is the transmembrane
oltage, and h, r are the gating variables of the neuron. π(x(t))
epresents the applied current as the control input. For details
f the rest of the parameters, see Appendix A.2. With no control
nput, these parameters give a stable limit cycle xs(t) with period
T = 8.40 ms shown in red in Fig. 4.

4.2. Learning algorithm

Here the control objective is to maximally decrease the spike
time of the neuron, meaning we want the oscillation to end
sooner than it naturally would. We set the reward function as
the negative of the neuron’s next spike time (the time when the
transmembrane voltage v(t) reaches a maximum):

R(x(t)) = −tspike. (10)

We sample 100 states randomly along the limit cycle and evolve
them with both positive and negative control inputs for time
∆t = 0.001, and then evolve them further with zero control
input until the neuron spikes. Whichever control input attains
the minimal t (maximizes the reward function) is selected
spike a
as control policy for that sampled state. We choose τ = 0.01.
Because the state variables v, h, r have different dynamic ranges,
we normalize the set X and the state at every time step similar
to in Section 3.2.1.

4.3. Results

The generated control policy, along with the controlled trajec-
tory, is shown in Fig. 4. As seen in this figure, most of the sampled
states need to have a positive control in order to maximize the
reward function. This is evident from the left panel of Fig. 5 which
plots the corresponding control input. Because of the control, the
neuron spikes (v reaches its maximum) in tspike = 7.49 ms which
is 10.82% decrease in its natural spike time of 8.40 ms. Thus our
algorithm is able to achieve the control objective while keeping
the controlled trajectory close to the stable limit cycle solution
(see Fig. 4).

4.4. Model based control comparison

The dynamics of neural oscillations are highly nonlinear and
high dimensional, which makes a model based control formula-
tion very challenging. Phase reduction, a model reduction tech-
nique valid close to the limit cycle (see Appendix B for more
details), can overcome these challenges. The neuron spike time
control problem was solved as an optimal control problem in [4,
26] using phase reduction, which also resulted in a bang bang
control with control input given as

π(x(t)) = −sign[Z(θ)]u1 for decreasing tspike, (11)

where u1 is the bound chosen by the user and Z(θ) is the
hase response curve (see Appendix B for more details) which
s a periodic function of θ . Such a control works well, except
hen the bound u1 is large, where the controlled trajectory can
iverge far away from the limit cycle, decreasing the accuracy of
hase reduction and making the control based on phase reduction
neffective. Effectiveness of such a control also relies heavily on
ccurate measurement of the phase response curve, which may
ot be possible.
We find that our supervised learning based control outputs a

ontrol input very similar to the above model based control, both
hown in the left panel of Fig. 5 for u1 = 1. We compute tspike
s a function of the bound u1 and find that our learning based
lgorithm does slightly better than the model based algorithm in
ecreasing tspike (shown in the right panel of Fig. 5). Both controls

re able to decrease tspike more as u1 increases.

B. Monga and J. Moehlis / Physica D 412 (2020) 132621 7

n
m

Fig. 5. Thalamic neuron model: The left panel plots the control input π(x(t)) for our learning algorithm and optimal control algorithm for u1 = 1. The right panel
shows the % decrease in tspike as a function of u1 .
S
w
c
m
o
a
p
p
o

X

W
a
f
s
s

s
o
s

n
i
a
W

5

c
a
f
F

5. Desynchronization of a population of coupled oscillators

Populations of coupled oscillators are ubiquitous in appli-
cations from physics, chemistry, biology, and engineering [23,
27–29]. The collective behavior of such oscillators varies, and
includes synchronization, desynchronization, and clustering in
various scenarios. Pathological synchronization of neural oscilla-
tions in the thalamus and the subthalamic nucleus (STN) brain
region is hypothesized to be one of the causes of motor symptoms
for essential and parkinsonian tremor, respectively [30,31]. Deep
brain stimulation (DBS), an FDA approved treatment, has proven
to alleviate these symptoms [32,33] by stimulating the thala-
mus or the STN brain regions with a high frequency, (relatively)
high energy pulsatile waveform, which has been hypothesized
to desynchronize the synchronized neurons; see, e.g., [34,35].
This has motivated researchers to come up with efficient model
dependent control techniques [5,36–39] to desynchronize the
neural oscillations, but also consume less energy, thus prolonging
the battery life of the stimulator and preventing tissue damage or
side effects caused by the pulsatile stimuli.

5.1. Model

Inspired by such treatment of parkinsonian and essential
tremor, we employ our algorithm to desynchronize an initially
synchronized population of M coupled thalamic neural oscilla-
tions. We consider the 3-dimensional thalamic neuron model [25]
for each individual oscillator with added all-to-all electrotonic
coupling:

v̇i =
−IL(vi) − INa(vi, hi) − IK (vi, hi) − IT (vi, ri) + Ib +

1
N

∑M
j=1 αij(vj − vi)

Cm

+π(x(t)) , (12)

ḣi =
h∞(vi) − hi

τh(vi)
, (13)

ṙi =
r∞(vi) − ri

τr (vi)
, (14)

where x(t) represents the full state (3 ×M dimensional) of the
oscillator population. Here, i = 1, . . . ,M , where M is the total
umber of oscillators in the neuron population. vi is the trans-
embrane voltage, and hi, ri are the gating variables of the ith

neural oscillator. αij is the coupling strength between oscillators i
and j, which are assumed to be electrotonically coupled [40] with
αij = 0.01 for j ̸= i and αii = 0 for all i. π(x(t)) represents the
applied current as the control policy. For details of the rest of the
parameters, see Appendix A.2. Note that the same control input
 p
π(x(t)) is applied to all of the oscillators. With no control input,
these parameters give a synchronized oscillator population with
period T = 8.40 ms.

5.2. Learning algorithm

We index the individual neural oscillators in the order in
which they spike, thus neuron 1 spikes first and neuron M spikes
last. We set the reward function as the absolute value of spike
time difference of neuron 1 and M:

R(x(t)) = |tspike1 − tspikeM |. (15)

ince the oscillator population is initially synchronized, this re-
ard is initially a small positive number as all neurons spike very
lose to each other. We aim to desynchronize the population by
aximally increasing this reward function. We consider M = 51
scillators in the synchronized population and sample 51 states
long the synchronized oscillation. Since the state of the oscillator
opulation is very large (3 × M), we take the mean across the
opulation to reduce the dimension of our set X . The ith element
f the set X is given as

i =

∑M
j=1

(
vj, hj, rj

)
M

. (16)

e evolve the oscillator population with both positive and neg-
tive control inputs for time ∆t = 0.001, and evolve them
urther with zero control input until all neurons in the population
pike. Whichever policy attains the maximum reward function is
elected for that sampled state Xi.
The binary classifier takes as input the full high dimensional

tate of the oscillator population. It then computes the mean
f the state across the population and compares it with the
ampled mean states to output a control policy π(x(t)). Because
the mean of the states vj, hj, rj scale differently, it is important to
ormalize them for the binary classifier to work effectively, since
t is based on the Euclidean norm. Thus we normalize the set X
nd the mean state at every time step similar to in Section 3.2.1.
e choose τ = 0.01.

.3. Results

The generated control policy shown in Fig. 6 gives a positive
ontrol input in the bottom left region of oscillation and a neg-
tive control in the top right region of the oscillation. The same
igure also plots a model based control policy discussed below.
ig. 7 shows the results of desynchronization of a thalamic neuron
opulation by our learning algorithm. As shown in both the left

8 B. Monga and J. Moehlis / Physica D 412 (2020) 132621

s
r

a
i
t
o
s
p
m
o
t
c

5

a
o
r

θ

θ

T
a

φ

w
p
w
p

Fig. 6. Thalamic synchronized population oscillation: The closed curve is the synchronized oscillation. Small blue circles (resp., black ×’s) represent elements of the
set X where the control policy given by elements of the set U is −u1 (resp., u1). The oscillation is plotted in red (resp., green) where Z ′(θ) is negative (resp.,
positive). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Desynchronization of thalamic neuron population: Left panel plots the state vi for i = 1, . . . , 51 neurons as a function of time. Right panel plots the initially
ynchronized (resp. final desynchronized) neurons as small red (resp., blue) circles. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
i

φ

T
c
b
o
c
p
o
a

6

s
s
t
r
r
s

y

I
8
0

nd right panels of the figure, the control policy from our learn-
ng algorithm is able to desynchronize an initially synchronized
halamic neuron population in about 90 ms while keeping the
scillators close to the initially synchronized oscillation. It may
eem that the population is largely synchronized from the right
anel of Fig. 7 but that is not the case. Since the oscillators spend
ost of their time near the top of the limit cycle, one naturally
bserves more of them near the top of the limit cycle even though
hey are evenly spread out in time (and not space). This becomes
lear from the left panel of Fig. 7.

.4. Model based validation of control policy

Here we analyze why the policy predicted by our learning
lgorithm works. Consider an oscillator population comprised
f just 2 oscillators whose dynamics evolve according to phase
eduction as

˙1 = ω + Z(θ1)u(t), (17)
˙2 = ω + Z(θ2)u(t). (18)

he dynamics of their phase difference φ = θ1−θ2 can be written
s (cf, [37])

˙ = Z ′(θ)u(t)φ + O(φ3), (19)

here θ = 0.5(θ1 + θ2) is the mean of the two oscillators’
hases, and Z ′(θ) is the derivative of the phase response curve
ith respect to θ . If the oscillators are synchronized then their
hase difference φ ≈ 0, thus higher order term in Eq. (19) can be
gnored and the equation can be rewritten as

˙ = Z ′(θ)u(t)φ. (20)

o desynchronize these two synchronized oscillators the coeffi-
ient of φ in the above equation should be positive. This can
e achieved if u(t) is of same sign as Z ′(θ). This is exactly what
ur policy predicts, as is shown in Fig. 6. The policy predicts the
ontrol to be positive in the region of oscillation where Z ′(θ) is
ositive, and it predicts the control to be negative in the region
f oscillation where Z ′(θ) is negative, thus explaining why our
lgorithm is able to desynchronize the oscillator population.

. Stabilizing an unstable fixed point

In this section we apply our second learning algorithm to
tabilize an unstable fixed point of an underactuated dynamical
ystem. This control objective is one of the oldest studied control
heory problems that is employed in several fields including
obotics, electrochemical systems, and treatment of cardiac ar-
hythmias [3,41,42]. To demonstrate this, we consider the Lorenz
ystem [43] given as:

ẋ = σ (y − x) + π(x(t)) , (21)
˙ = rx − y − xz, (22)
ż = xy − bz. (23)

n the absence of control input with parameters σ = 10, b =

/3, r = 1.5, the system is bistable with xs1 = (−1.15, −1.15,
.5), xu = (0, 0, 0), and xs2 = (1.15, 1.15, 0.5), all shown in Fig. 8.

B. Monga and J. Moehlis / Physica D 412 (2020) 132621 9

t
t
f

6

u
c
d
p

R

T
d
t
a
a
c
τ

6

B
X
(
a
t
t
x
c
o
i
c
o

6

w
s

V

Fig. 8. Lorenz system: Solid green (resp., open red) circles represent xs1 , xs2 , (resp., xu). In the left panel, open blue circles (resp., black ×’s) represent elements of
he set X where the control policy given by elements of the set U is -5 (resp., 5). In the right panel, the uncontrolled trajectory plotted in red converges to xs1 , and
he supervised learning (resp., Lyapunov) based control trajectory plotted in black (resp., blue) converges to xu . (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
.1. Learning algorithm

The control objective is for a trajectory to converge to the
nstable fixed point xu starting anywhere in the state space. We
hoose our reward function to be the negative of the Euclidean
istance between current state and the desired unstable fixed
oint

(x(t)) = −∥x(t) − xu∥. (24)

hus the control will make the trajectory converge towards the
esired fixed point while increasing the reward to 0. To converge
o xu starting anywhere in the state space, we use our learning
lgorithm to generate a control policy. We take u1 = −u2 = 5,
nd sample N = 1000 points for generating the sets X , U . We
hoose ∆t = 0.001 and take the binary classifier parameter
= 5.

.2. Results

The generated control policy is shown in the left panel of Fig. 8.
lue open circles (resp., black ×’s) represent elements of the set
where the control policy given by elements of the set U is −5

resp., 5). A controlled trajectory using our learning algorithm and
n uncontrolled trajectory starting from same x(0) are shown in
he right panel of Fig. 8. The learning algorithm converges the
rajectory to xu, whereas the uncontrolled trajectory converges to
s1. In doing so, the learning based control consumes 150 units of
ontrol energy (

∫ 6
0 π(x(t))2 dt). We investigate the robustness of

ur learning algorithm by testing it on 1000 randomly generated
nitial conditions, and in all the 1000 cases, the learning based
ontrol algorithm is able to converge the trajectories within a ball
f radius 0.09 units centered at xu, achieving 100% effectiveness.

.3. Comparison with Lyapunov based control

To demonstrate energy efficiency of our learning algorithm,
e compare it with Lyapunov-based control to stabilize xu. Con-
ider the following positive definite Lyapunov function

(t) =
1
x(t)2 +

1
y(t)2 +

1
z(t)2. (25)
2 2 2
Its time derivative is given as

V̇ (t) = −2σx(t)2 − 2y(t)2 − 2bz(t)2 + 2x(t) (u(t) + (σ + r)y(t)) ,

(26)

where u(t) takes the place of π(x(t)) in Eq. (21). Then by taking
u(t) = −(σ + r)y(t), one gets a negative definite time derivative
of the Lyapunov function. Thus by the Lyapunov theorem, this
control asymptotically stabilizes the unstable fixed point xu. The
control trajectory based on this control is plotted in blue in the
right panel of Fig. 8. As seen in the figure, the Lyapunov-based
control is able to converge the trajectory towards the unstable
fixed point as well. But in doing so, it consumes 1176.8 units of
control energy (

∫ 6
0 u(t)2dt), which is almost 8 times the energy

consumed by our learning based control. This is partly because
our learning based control uses the inherent system dynamics to
control the trajectory, as the controlled trajectory seems to stay
close to the uncontrolled trajectory. In contrast, the Lyapunov
based control drives the trajectory far away before it converges
to xu, thus it ends up consuming much more energy.

7. Robustness to noise

We have demonstrated the effectiveness of our algorithms in
several scenarios in which the algorithms were based on data
generated from a deterministic dynamical model. However, real
data measured from an experimental setup will be noisy. In order
for our algorithms to work in an experimental setup it is impera-
tive to investigate their performance when the data is corrupted
with noise. We do that by considering the Duffing oscillator in the
bistable parameter regime from Section 3.1. The control objective
is still for the trajectory to converge to xs2 starting anywhere in
the state space.

7.1. Learning algorithm

To replicate the effect of noise in an experimental setup, we
use exactly the same parameters as before to generate the sets
X , U and corrupt the set X by adding Gaussian white noise with
mean 0 and standard deviation σ , resulting in the set X̃ . Thus
each element in the dataset will be offset from its true value. We
also add Gaussian white noise with the same mean and standard
deviation to the state x(t) resulting in x̃(t), which the binary

10 B. Monga and J. Moehlis / Physica D 412 (2020) 132621

c
s

τ

d
v
c
m
t
s
T
e
i
m
t
t
e

a
k
r
e
t
S
t
t
r

8

i
s
i
a
a
o

Fig. 9. Flowchart of the Supervised Learning Algorithm with added noise.

classifier takes as input at every time step. This accounts for the
noise in estimation of the state by the classifier in a real system.
The flowchart from Fig. 1 with added noise is modified and shown
in Fig. 9.

7.2. Results

The generated control policy corrupted with noise of standard
deviation σ = 0.2 is shown in the left panel of Fig. 10. Blue open
ircles (resp., black ×’s) represent elements of the noise corrupted
et X̃ where the control policy given by elements of the set U
is OFF (resp., ON). The green (resp., red) region is where output
π(̃x(t)) of the binary classifier is OFF (resp., ON). The elements
of the original set X are plotted in white to show the shifting
of the elements due to the noise. Besides shifting the elements,
the addition of white noise blurs the decision boundary between
the ON and OFF policy region . A controlled and an uncontrolled
trajectory starting from the same x(0) is shown in the right panel
of Fig. 10. As can be seen in this figure, the control algorithm
converges the trajectory to xs2 even though it has been corrupted
by adding noise both to the training dataset and to the input of
the binary classifier. On the other hand, the uncontrolled trajec-
tory converges to xs1. Note that the controlled trajectory follows
a different route when compared to the noiseless case from Fig. 2.
This is because the noise distorts the decision boundary between
ON and OFF states of the policy, resulting in a slightly different
path.

7.3. Robustness and noise intensity

We first investigate the robustness of our learning algorithm
in the presence of noise by considering noise with intensity
σ = 0.2 and testing it on 1000 randomly generated initial
conditions; in all 1000 cases the control algorithm is able to
converge the trajectories to xs2, achieving 100% effectiveness.
It is natural to ask if effectiveness decreases down from 100%
as one increases the noise intensity beyond 0.2. To answer this
question, we tested robustness of our algorithm by simulating
1000 randomly generated initial conditions and evolving them
under our control policy for various levels of noise intensity σ

and bandwidth parameter τ . We found that our algorithm can
still achieve very high effectiveness for higher σ , if we adjust the
bandwidth parameter τ .

To understand why this is the case, see Fig. 11, where we
plot two policies for noise intensity σ = 0.3 with bandwidth
parameter τ = 0.1 and 0.8. Since noise randomly shifts ele-
ments of our data set X , it distorts the decision boundary when
Table 1
Effectiveness of our algorithm as a function of noise intensity σ and bandwidth
parameter τ for the Duffing oscillator.
σ τ

0.1 0.4 0.8 1.2 1.6

0.2 100% 100% 100% 100% 100%
0.3 100% 100% 100% 100% 83%
0.4 0% 89.9% 100% 93.2% 64.1%
0.5 0% 78.6% 90.8% 100% 68.7%
0.6 0% 0% 0% 9% 95.6%

compared to the decision boundary in the noiseless case (see
the left panel of Fig. 2 for a comparison). For small τ values,
this leads to significant segmentation of the policy as the output
of the binary classifier can vary rapidly with a small change in
the input state. This is evident from the left panel of Fig. 11.
On the other hand, if we increase the bandwidth parameter,
segmentation is significantly reduced, as is evident from the right
panel of the same figure. A higher bandwidth parameter leads
to less segmentation, because the binary classifier effectively
takes into account more neighboring data points in making its
decision (equation (2)). In other words, when these points are
randomly shifted by the addition of Gaussian white noise, the
weighted average from a larger number of data points produces
smoother transition between regions, and thus leads to reduced
segmentation. On the other hand, if the bandwidth parameter
was too small, the binary classifier’s decision would be based on
only a very few neighboring data points, which, when randomly
shifted by Gaussian white noise, can produce a highly segmented
and non-smooth policy.

But robustness does not keep increasing with increasing τ . A
value which is too high can actually reduce effectiveness, as
epicted in Table 1, because, as previously mentioned, high τ

alues can wrongly extend the decision boundary in favor of a
luster of data points which is too large. Thus, a carefully chosen
oderate value of τ is most effective in assuring robustness in

he presence of noise. Another observation from our robustness
tudies for various levels of noise intensity σ and τ depicted in
able 1 is that we need an increasing value of τ to achieve 100%
ffectiveness as we increase the noise intensity σ . This is also
ntuitive to understand, as for a given value of τ , one expects
ore segmentation in the control policy with increasing σ . Thus,

he locally weighted nature of our binary classifier, together with
he flexibility to adjust its bandwidth allows our algorithm to be
ffective in the presence of noise.
While it may not be possible to achieve 100% effectiveness in

ll control applications, we believe that this example illustrates
ey considerations in characterizing the robustness of our algo-
ithms to noise. Another possible consideration for achieving high
ffectiveness could be choosing a higher sample size N , however
his would increase the computational cost of our algorithm.
ince we are able to achieve very high effectiveness by adjusting
he bandwidth parameter while keeping the computational cost
he same, we favor this over adjusting N in characterizing the
obustness of our algorithms to noise.

. Conclusion

In this article we have developed two novel supervised learn-
ng algorithms to control a range of underactuated dynamical
ystems. The algorithms output a bang bang (binary) control
nput to achieve the desired control objectives which maximize
reward function. A simple yet intelligent structure allows the
lgorithms to be energy efficient as they learn to take advantage
f the inherent dynamics. We demonstrated the versatility of our

B. Monga and J. Moehlis / Physica D 412 (2020) 132621 11

a
c
a
p
o
w
W
m
b
e

t
t
s
s
b
i
f
t
s
T
b
a

Fig. 10. Duffing Oscillator with noise (δ = 0.1): Solid (resp., open) black circles represent xs1 , xs2 , (resp., xu). In the left panel, open blue circles (resp., black ×’s)
represent elements of the set X̃ where the control policy given by elements of the set U is OFF (resp., ON). The green (resp., red) region is where the output π(̃x(t))
of the binary classifier is OFF (resp., ON). The elements of the original set X are plotted in white. In the right panel, the trajectory starts in the region of attraction
of xs1 , and converges to xs2 (resp., xs1) with (resp., without) control. When the control policy is ON (resp., OFF), the trajectory is plotted in black (resp., blue). The
uncontrolled trajectory is plotted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Duffing Oscillator policy with noise intensity σ = 0.3.
lgorithms by applying them to a diverse range of applications in-
luding: switching between bistable states, changing the phase of
n oscillator, desynchronizing a population of synchronized cou-
led oscillators, and stabilizing an unstable fixed point. For most
f these applications we were able to reason why our algorithms
ork by using traditional dynamical systems and control theory.
e also compared our algorithms to some traditional nonlinear
odel control algorithms and showed that our algorithms work
etter. We also carried out a robustness study to demonstrate the
ffectiveness of our algorithms even with noisy data.
We simulated various dynamical models to generate data for

raining our supervised learning algorithms. In an experimen-
al setting such an algorithm can be similarly implemented by
timulating the system with binary control inputs at different
tates of the system and determining which control input works
est for the different sampled states, and ultimately using that
nformation in constructing a binary classifier. The data generated
rom an experimental setting might be corrupted with noise, thus
o demonstrate the potential of our algorithm in a real setting we
howed that our algorithm works even in the presence of noise.
he unique structure of our binary classifier comes to the rescue
y negating the adverse effects of noise. Note that having an
dditive control input does not restrict our algorithms. Since the
algorithms work by maximizing the reward function, the struc-
ture of the control input coming into the dynamics does not
matter. In the future, we plan to explore how to modify our algo-
rithm if some of the states are not observable, and how to adapt
our algorithm for very high dimensional dynamical systems.

CRediT authorship contribution statement

Bharat Monga: Conceptualization, Methodology, Software,
Validation, Formal analysis, Writing - original draft, Visualiza-
tion, Investigation. Jeff Moehlis: Supervision, Writing - review &
editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was supported by National Science Foundation
Grant No. NSF-1635542.

12 B. Monga and J. Moehlis / Physica D 412 (2020) 132621

m

A

v

w

T
t

t

w
v
x
t
p
i
a
i

H
a
(
o

R

Appendix A. Models

In this appendix, we give details of the mathematical models
used in this article.

A.1. Reduced Hodgkin–Huxley model

Here we give the reduced Hodgkin–Huxley model [22–24]
used in Section 3.2:

v̇ =
(
I − gNa(m∞(v))3(0.8 − n)(v − vNa) − gKn4(v − vK)

− gL(v − vL)
)
/c + π(x(t)) ,

ṅ = an(v)(1 − n) − bn(v)n,

where v is the trans-membrane voltage, and n is the gating
variable. I is the baseline current, which we take as 6.69 µA/cm2,
and π(x(t)) represents the applied control current.

an(v) = 0.01(v + 55)/(1 − exp(−(v + 55)/10)),
bn(v) = 0.125 exp(−(v + 65)/80),
am(v) = 0.1(v + 40)/(1 − exp(−(v + 40)/10)),
bm(v) = 4 exp(−(v + 65)/18),

∞(v) = am(v)/(am(v) + bm(v)),
c = 1, gL = 0.3, gNa = 120, vNa = 50,

gK = 36 , vK = −77, vL = −54.4 I = 20.

.2. Thalamic neuron model

The thalamic neuron model is given as

˙ =
−IL(v) − INa(v, h) − IK (v, h) − IT (v, r) + Ib

Cm
+ π(x(t)) ,

ḣ =
h∞(v) − h

τh(v)
,

ṙ =
r∞(v) − r

τr (v)
.

here

h∞(v) = 1/(1 + exp((v + 41)/4)),
r∞(v) = 1/(1 + exp((v + 84)/4)),
αh(v) = 0.128 exp(−(v + 46)/18),
βh(v) = 4/(1 + exp(−(v + 23)/5)),
τh(v) = 1/(αh + βh),
τr (v) = (28 + exp(−(v + 25)/10.5)),

m∞(v) = 1/(1 + exp(−(v + 37)/7)),
p∞(v) = 1/(1 + exp(−(v + 60)/6.2)),
IL(v) = gL(v − eL),

INa(v, h) = gNa(m∞
3)h(v − eNa),

IK (v, h) = gK ((0.75(1 − h))4)(v − eK),
IT (v, r) = gT (p2∞)r(v − eT),

Cm = 1, gL = 0.05, eL = −70, gNa = 3, eNa = 50,
gK = 5, eK = −90, gT = 5, eT = 0, Ib = 5.

Appendix B. Phase reduction

Phase reduction is a classical technique to describe dynamics
near a limit cycle. It works by reducing the dimensionality of a
dynamical system to a single phase variable θ [28,29]. Consider a
general n-dimensional dynamical system given by
dx(t)

= F (x(t)), x(t) ∈ Rn, (n ≥ 2).

dt
Suppose this system has a stable periodic orbit xs(t) with period
. For each point x∗ in the basin of attraction of the periodic orbit,
here exists a corresponding phase θ (x∗) such that

lim
→∞

⏐⏐⏐⏐x(t) − xs
(
t +

T
2π

θ (x∗)
)⏐⏐⏐⏐ = 0,

here x(t) is the flow of the initial point x∗ under the given
ector field. The function θ (x) is called the asymptotic phase of
, and takes values in [0, 2π). For neuroscience applications, we
ypically take θ = 0 to correspond to the neuron firing an action
otential. Isochrons are level sets of this phase function, and it
s typical to define isochrons so that the phase of a trajectory
dvances linearly in time both on and off the limit cycle, which
mplies that
dθ
dt

=
2π
T

≡ ω

in the entire basin of attraction of the limit cycle. Now consider
our underactuated system given by Eq. (1). Phase reduction can
be used to reduce this system to a one-dimensional system given
by [4,44–46]:

θ̇ = ω + Z(θ)π(x(t)) .

ere Z(θ) is the first component of the gradient of phase vari-
ble θ evaluated on the periodic orbit and is referred to as the
infinitesimal) phase response curve (PRC). It quantifies the effect
f an infinitesimal control input on the phase of a limit cycle.

eferences

[1] I. Fantoni, R. Lozano, Non-linear Control for Underactuated Mechanical
Systems, Springer-Verlag London, 2002, http://dx.doi.org/10.1007/978-1-
4471-0177-2.

[2] M. Reyhanoglu, A. van der Schaft, N.H. Mcclamroch, I. Kolmanovsky,
Dynamics and control of a class of underactuated mechanical systems,
IEEE Trans. Automat. Control 44 (9) (1999) 1663–1671, http://dx.doi.org/
10.1109/9.788533.

[3] M. Spong, Energy based control of a class of underactuated mechanical
systems, IFAC Proc. Vol. 29 (1) (1996) 2828–2832, http://dx.doi.org/10.
1016/S1474-6670(17)58105-7, 13th World Congress of IFAC, 1996, San
Francisco USA, 30 June - 5 July.

[4] B. Monga, D. Wilson, T. Matchen, J. Moehlis, Phase reduction and phase-
based optimal control for biological systems: a tutorial, Biol. Cybernet. 113
(1) (2019) 11–46, http://dx.doi.org/10.1007/s00422-018-0780-z.

[5] P. Tass, A model of desynchronizing deep brain stimulation with a
demand-controlled coordinated reset of neural subpopulations, Biol. Cy-
bernet. 89 (2) (2003) 81–88, http://dx.doi.org/10.1007/s00422-003-0425-
7.

[6] D. Forger, D. Paydarfar, Starting, stopping, and resetting biological oscilla-
tors: in search of optimum perturbations, J. Theoret. Biol. 230 (4) (2004)
521–532, http://dx.doi.org/10.1016/j.jtbi.2004.04.043.

[7] J. Zhang, J. Wen, A. Julius, Optimal circadian rhythm control with light
input for rapid entrainment and improved vigilance, in: Proceedings of
the 51st IEEE Conference on Decision and Control (CDC), IEEE, 2012,
pp. 3007–3012, http://dx.doi.org/10.1109/CDC.2012.6426226.

[8] Z.-S. Hou, Z. Wang, From model-based control to data-driven control: Sur-
vey, classification and perspective, Inform. Sci. 235 (2013) 3–35, http://dx.
doi.org/10.1016/j.ins.2012.07.014, Data-based Control, Decision, Scheduling
and Fault Diagnostics.

[9] B.D.O. Anderson, Failures of adaptive control theory and their resolution,
Commun. Inf. Syst. 05 (1) (2005) 1–20, URL https://projecteuclid.org:443/
euclid.cis/1149698471.

[10] K. Hunt, D. Sbarbaro, R. bikowski, P. Gawthrop, Neural networks for
control systems—A survey, Automatica 28 (6) (1992) 1083–1112, http://
dx.doi.org/10.1016/0005-1098(92)90053-I, URL http://www.sciencedirect.
com/science/article/pii/000510989290053I.

[11] A.G. Barto, R.S. Sutton, C.W. Anderson, Neuronlike adaptive elements
that can solve difficult learning control problems, IEEE Trans. Syst. Man
Cybern. SMC-13 (5) (1983) 834–846, http://dx.doi.org/10.1109/TSMC.1983.
6313077.

[12] M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives,
and prospects, Science 349 (6245) (2015) 255–260, http://dx.doi.org/
10.1126/science.aaa8415, URL https://science.sciencemag.org/content/349/
6245/255.

http://dx.doi.org/10.1007/978-1-4471-0177-2
http://dx.doi.org/10.1007/978-1-4471-0177-2
http://dx.doi.org/10.1007/978-1-4471-0177-2
http://dx.doi.org/10.1109/9.788533
http://dx.doi.org/10.1109/9.788533
http://dx.doi.org/10.1109/9.788533
http://dx.doi.org/10.1016/S1474-6670(17)58105-7
http://dx.doi.org/10.1016/S1474-6670(17)58105-7
http://dx.doi.org/10.1016/S1474-6670(17)58105-7
http://dx.doi.org/10.1007/s00422-018-0780-z
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1007/s00422-003-0425-7
http://dx.doi.org/10.1016/j.jtbi.2004.04.043
http://dx.doi.org/10.1109/CDC.2012.6426226
http://dx.doi.org/10.1016/j.ins.2012.07.014
http://dx.doi.org/10.1016/j.ins.2012.07.014
http://dx.doi.org/10.1016/j.ins.2012.07.014
https://projecteuclid.org:443/euclid.cis/1149698471
https://projecteuclid.org:443/euclid.cis/1149698471
https://projecteuclid.org:443/euclid.cis/1149698471
http://dx.doi.org/10.1016/0005-1098(92)90053-I
http://dx.doi.org/10.1016/0005-1098(92)90053-I
http://dx.doi.org/10.1016/0005-1098(92)90053-I
http://www.sciencedirect.com/science/article/pii/000510989290053I
http://www.sciencedirect.com/science/article/pii/000510989290053I
http://www.sciencedirect.com/science/article/pii/000510989290053I
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1126/science.aaa8415
https://science.sciencemag.org/content/349/6245/255
https://science.sciencemag.org/content/349/6245/255
https://science.sciencemag.org/content/349/6245/255

B. Monga and J. Moehlis / Physica D 412 (2020) 132621 13
[13] E. Kaiser, J.N. Kutz, S.L. Brunton, Sparse identification of nonlinear dynam-
ics for model predictive control in the low-data limit, Proc. R. Soc. A 474
(2219) (2018) 20180335, http://dx.doi.org/10.1098/rspa.2018.0335.

[14] A. Longtin, A. Bulsara, F. Moss, Time-interval sequences in bistable systems
and the noise-induced transmission of information by sensory neurons,
Phys. Rev. Lett. 67 (1991) 656–659, http://dx.doi.org/10.1103/PhysRevLett.
67.656, URL https://link.aps.org/doi/10.1103/PhysRevLett.67.656.

[15] D.J. Christini, L. Glass, Introduction: Mapping and control of complex
cardiac arrhythmias, Chaos 12 (3) (2002) 732–739, http://dx.doi.org/10.
1063/1.1504061, arXiv:https://doi.org/10.1063/1.1504061.

[16] C. Bowden, M. Ciftan, H. Robl, Optical Bistability, Springer US, 1981, http:
//dx.doi.org/10.1007/978-1-4684-3941-0.

[17] R. Lefever, W. Horsthemke, Bistability in fluctuating environments. impli-
cations in tumor immunology, Bull. Math. Biol. 41 (4) (1979) 469–490,
http://dx.doi.org/10.1007/BF02458325.

[18] T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch
in escherichia coli, Nature 403 (2219) (2000) 339–342, http://dx.doi.org/
10.1038/35002131.

[19] A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo, E. Gudowska-Nowak, Mon-
itoring noise-resonant effects in cancer growth influenced by external
fluctuations and periodic treatment, Eur. Phys. J. B 65 (3) (2008) 435–442,
http://dx.doi.org/10.1140/epjb/e2008-00246-2.

[20] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and
Chaos, Springer-Verlag New York, New York, 2003, http://dx.doi.org/10.
1007/b97481.

[21] T. Kanamaru, Duffing oscillator, Scholarpedia 3 (3) (2008) 6327, http:
//dx.doi.org/10.4249/scholarpedia.6327, revision #91210.

[22] J. Moehlis, Canards for a reduction of the Hodgkin-Huxley equations, J.
Math. Biol. 52 (2) (2006) 141–153, http://dx.doi.org/10.1007/s00285-005-
0347-1.

[23] J. Keener, J. Sneyd, Mathematical Physiology, Springer-Verlag New York,
Inc., New York, NY, USA, 1998, http://dx.doi.org/10.1007/978-0-387-
75847-3_1.

[24] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve, J. Phys. 117 (4)
(1952) 500–544, http://dx.doi.org/10.1113/jphysiol.1952.sp004764.

[25] J. Rubin, D. Terman, High frequency stimulation of the subthalamic nucleus
eliminates pathological thalamic rhythmicity in a computational model,
J. Comput. Neurosci. 16 (3) (2004) 211–235, http://dx.doi.org/10.1023/B:
JCNS.0000025686.47117.67.

[26] A. Nabi, J. Moehlis, Time optimal control of spiking neurons, J. Math. Biol.
64 (2012) 981–1004.

[27] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept
in Nonlinear Sciences, University Press, 2003, URL https://books.google.
com/books?id=B1hQlwEACAAJ.

[28] Y. Kuramoto, Phase-and center-manifold reductions for large populations
of coupled oscillators with application to non-locally coupled systems,
Int. J. Bifurcation Chaos 7 (04) (1997) 789–805, http://dx.doi.org/10.1142/
S0218127497000595.

[29] A. Winfree, Biological rhythms and the behavior of populations of coupled
oscillators, J. Theoret. Biol. 16 (1) (1967) 15–42, http://dx.doi.org/10.1016/
0022-5193(67)90051-3.
[30] A. Kane, W. Hutchison, M. Hodaie, A. Lozano, J. Dostrovsky, Enhanced
synchronization of thalamic theta band local field potentials in patients
with essential tremor, Exp. Neurol. 217 (1) (2009) 171–176, http://dx.doi.
org/10.1016/j.expneurol.2009.02.005.

[31] A. Kühn, A. Tsui, T. Aziz, N. Ray, C. Brücke, A. Kupsch, G.-H. Schneider,
P. Brown, Pathological synchronisation in the subthalamic nucleus of
patients with Parkinson’s disease relates to both bradykinesia and rigidity,
Exp. Neurol. 215 (2) (2009) 380–387, http://dx.doi.org/10.1016/j.expneurol.
2008.11.008.

[32] A. Benabid, S. Chabardes, J. Mitrofanis, P. Pollak, Deep brain stimulation of
the subthalamic nucleus for the treatment of Parkinson’s disease, Lancet
Neurol. 8 (1) (2009) 67–81, http://dx.doi.org/10.1016/S1474-4422(08)
70291-6.

[33] A. Benabid, P. Pollak, D. Hoffmann, C. Gervason, M. Hommel, J. Perret,
J. De Rougemont, D. Gao, Long-term suppression of tremor by chronic
stimulation of the ventral intermediate thalamic nucleus, Lancet 337
(8738) (1991) 403–406, http://dx.doi.org/10.1016/0140-6736(91)91175-T.

[34] C. Wilson, B. Beverlin, T. Netoff, Chaotic desynchronization as the thera-
peutic mechanism of deep brain stimulation, Front. Syst. Neurosci. 5 (2011)
http://dx.doi.org/10.3389/fnsys.2011.00050.

[35] D. Wilson, J. Moehlis, Clustered desynchronization from high-frequency
deep brain stimulation, PLoS Comput. Biol. 11 (12) (2015) e1004673,
http://dx.doi.org/10.1371/journal.pcbi.1004673.

[36] A. Nabi, M. Mirzadeh, F. Gibou, J. Moehlis, Minimum energy desynchro-
nizing control for coupled neurons, J. Comput. Neurosci. 34 (2) (2013)
259–271, http://dx.doi.org/10.1007/s10827-012-0419-3.

[37] D. Wilson, J. Moehlis, Optimal chaotic desynchronization for neural pop-
ulations, SIAM J. Appl. Dyn. Syst. 13 (1) (2014) 276, http://dx.doi.org/10.
1137/120901702.

[38] B. Monga, G. Froyland, J. Moehlis, Synchronizing and desynchronizing
neural populations through phase distribution control, in: 2018 American
Control Conference (ACC), 2018, pp. 2808–2813.

[39] B. Monga, J. Moehlis, Phase distribution control of a population of os-
cillators, Physica D 398 (2019) 115–129, http://dx.doi.org/10.1016/j.physd.
2019.06.001.

[40] D. Johnston, S.M.-S. Wu, Foundations of Cellular Neurophysiology, MIT
Press, Cambridge, MA, 1995.

[41] K. Pyragas, V. Pyragas, I.Z. Kiss, J.L. Hudson, Adaptive control of unknown
unstable steady states of dynamical systems, Phys. Rev. E 70 (2004)
026215, http://dx.doi.org/10.1103/PhysRevE.70.026215.

[42] B. Monga, J. Moehlis, Optimal phase control of biological oscillators using
augmented phase reduction, Biol. Cybernet. 113 (1) (2019) 161–178, http:
//dx.doi.org/10.1007/s00422-018-0764-z.

[43] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2)
(1963) 130–141, http://dx.doi.org/10.1175/1520-0469(1963)020<0130:
DNF>2.0.CO;2.

[44] A. Winfree, The Geometry of Biological Time, Second ed., Springer, New
York, 2001, http://dx.doi.org/10.1007/978-1-4757-3484-3’.

[45] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer,
Berlin, 1984.

[46] E. Brown, J. Moehlis, P. Holmes, On the phase reduction and response dy-
namics of neural oscillator populations, Neural Comp. 16 (2004) 673–715,
http://dx.doi.org/10.1162/089976604322860668.

http://dx.doi.org/10.1098/rspa.2018.0335
http://dx.doi.org/10.1103/PhysRevLett.67.656
http://dx.doi.org/10.1103/PhysRevLett.67.656
http://dx.doi.org/10.1103/PhysRevLett.67.656
https://link.aps.org/doi/10.1103/PhysRevLett.67.656
http://dx.doi.org/10.1063/1.1504061
http://dx.doi.org/10.1063/1.1504061
http://dx.doi.org/10.1063/1.1504061
http://dx.doi.org/10.1063/1.1504061
http://dx.doi.org/10.1007/978-1-4684-3941-0
http://dx.doi.org/10.1007/978-1-4684-3941-0
http://dx.doi.org/10.1007/978-1-4684-3941-0
http://dx.doi.org/10.1007/BF02458325
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1140/epjb/e2008-00246-2
http://dx.doi.org/10.1007/b97481
http://dx.doi.org/10.1007/b97481
http://dx.doi.org/10.1007/b97481
http://dx.doi.org/10.4249/scholarpedia.6327
http://dx.doi.org/10.4249/scholarpedia.6327
http://dx.doi.org/10.4249/scholarpedia.6327
http://dx.doi.org/10.1007/s00285-005-0347-1
http://dx.doi.org/10.1007/s00285-005-0347-1
http://dx.doi.org/10.1007/s00285-005-0347-1
http://dx.doi.org/10.1007/978-0-387-75847-3_1
http://dx.doi.org/10.1007/978-0-387-75847-3_1
http://dx.doi.org/10.1007/978-0-387-75847-3_1
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1023/B:JCNS.0000025686.47117.67
http://dx.doi.org/10.1023/B:JCNS.0000025686.47117.67
http://dx.doi.org/10.1023/B:JCNS.0000025686.47117.67
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb26
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb26
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb26
https://books.google.com/books?id=B1hQlwEACAAJ
https://books.google.com/books?id=B1hQlwEACAAJ
https://books.google.com/books?id=B1hQlwEACAAJ
http://dx.doi.org/10.1142/S0218127497000595
http://dx.doi.org/10.1142/S0218127497000595
http://dx.doi.org/10.1142/S0218127497000595
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/j.expneurol.2009.02.005
http://dx.doi.org/10.1016/j.expneurol.2009.02.005
http://dx.doi.org/10.1016/j.expneurol.2009.02.005
http://dx.doi.org/10.1016/j.expneurol.2008.11.008
http://dx.doi.org/10.1016/j.expneurol.2008.11.008
http://dx.doi.org/10.1016/j.expneurol.2008.11.008
http://dx.doi.org/10.1016/S1474-4422(08)70291-6
http://dx.doi.org/10.1016/S1474-4422(08)70291-6
http://dx.doi.org/10.1016/S1474-4422(08)70291-6
http://dx.doi.org/10.1016/0140-6736(91)91175-T
http://dx.doi.org/10.3389/fnsys.2011.00050
http://dx.doi.org/10.1371/journal.pcbi.1004673
http://dx.doi.org/10.1007/s10827-012-0419-3
http://dx.doi.org/10.1137/120901702
http://dx.doi.org/10.1137/120901702
http://dx.doi.org/10.1137/120901702
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb38
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb38
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb38
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb38
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb38
http://dx.doi.org/10.1016/j.physd.2019.06.001
http://dx.doi.org/10.1016/j.physd.2019.06.001
http://dx.doi.org/10.1016/j.physd.2019.06.001
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb40
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb40
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb40
http://dx.doi.org/10.1103/PhysRevE.70.026215
http://dx.doi.org/10.1007/s00422-018-0764-z
http://dx.doi.org/10.1007/s00422-018-0764-z
http://dx.doi.org/10.1007/s00422-018-0764-z
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1007/978-1-4757-3484-3'
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb45
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb45
http://refhub.elsevier.com/S0167-2789(19)30544-5/sb45
http://dx.doi.org/10.1162/089976604322860668

	Supervised learning algorithms for controlling underactuated dynamical systems
	Introduction
	Supervised learning algorithms
	Training Algorithm 1
	Training Algorithm 2
	Binary classifier

	Bistable dynamical systems
	Duffing oscillator
	Learning algorithm
	Results

	Reduced Hodgkin–Huxley model
	Learning algorithm
	Results
	Comparison with fully actuated control

	Phase control of an oscillator
	Model
	Learning algorithm
	Results
	Model based control comparison

	Desynchronization of a population of coupled oscillators
	Model
	Learning algorithm
	Results
	Model based validation of control policy

	Stabilizing an unstable fixed point
	Learning algorithm
	Results
	Comparison with Lyapunov based control

	Robustness to noise
	Learning algorithm
	Results
	Robustness and noise intensity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Models
	Reduced Hodgkin–Huxley model
	Thalamic neuron model

	Appendix B. Phase Reduction
	References

