
3226 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 12, DECEMBER 2015

Synchronization of Identical Oscillators Coupled
Through a Symmetric Network With Dynamics:

A Constructive Approach With Applications
to Parallel Operation of Inverters

Leonardo A. B. Tôrres, Member, IEEE, João P. Hespanha, Fellow, IEEE, and Jeff Moehlis

Abstract—We consider the problem of synchronizing a group
of N identical oscillators, coupled by a symmetric network that
is modelled by a multiple-input/multiple-output dynamical sys-
tem. We provide results that can be used to establish asymptotic
synchronization of a given system and also to construct identi-
cal feedback oscillators for which synchronization is guaranteed.
These results are based on a new notion of passivity with respect
to manifolds defined in the input and output spaces of a dynamical
system. The problem under consideration is motivated by the
design of control algorithms for the parallel operation of power
inverters. Simulation results have shown that synchronization
could be achieved in less than two AC cycles, depending on the
electrical interconnection network.

Index Terms—Coupled oscillators, LTI network, synchroniza-
tion, voltage power supplies.

I. INTRODUCTION

THIS paper addresses the synchronization of identical os-
cillators connected through a network represented by a

dynamical system as shown in Fig. 1. A key motivation for
this problem is the synchronization of alternative-energy power
generators connected to a local power grid in an isolated
community [1], [2], or the synchronization of multiple inverters
providing energy to the same load [3]. We are interested in very
fast synchronization (within less than 10 cycles) for which a
standard phasor-domain analysis is not appropriate since non-
sinusoidal signals can dominate the transient behavior (see [4]
for an alternative approach). Fast synchronization is possible
when power electronic devices (typically inverters) are used to
interface primary energy sources with the power bus, i.e., the
inverters operate in the grid-forming mode [5]. A key challenge
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Fig. 1. A group of identical nonlinear oscillators (denoted by agents) are
connected through a dynamic network. Our goal is to design the agent dynamics
to ensure their synchronization.

introduced by AC power supplies with fast dynamics is that an
interconnection electrical network containing inductive and/or
capacitive components cannot be regarded as simply enforcing
algebraic constraints between currents and voltages (in the
phasor domain) and, instead, must be treated as a dynamical
system, as recently pointed out in [6]. It is worth mentioning
that most previous work on stability analysis of power systems
using standard phasor based models neglects conductances
since they are very difficult to handle mathematically, but this
simplification is not made in the present paper.

With respect to previous work on parallel operation of power
inverters, specifically in the contexts of Uninterruptible Power
Supplies (UPS) and islanded microgrids, the Droop Method
proposed in [7] is a well-known approach (see [8] and ref-
erences therein). This method essentially relies on systems
designed to mimic the behavior of simplified electromechan-
ical power generators to achieve equal sharing of active and
reactive power, based on continuous changes in frequency and
amplitude of generated sinusoidal signals, using only variables
that can be locally measured. In [9] and [10] the authors have
addressed the local and regional stability analysis, respectively,
associated with the use of the Droop Method. This analysis
makes use of average dynamical models that are necessary
to justify the assumption of almost constant interconnection
impedances between parallel connected inverters (admittances
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Fig. 2. Interconnection of N voltage sources that provide energy to a common
load using a star configuration. The network that interconnects the power
supplies contains one or more loads, corresponding to the admittance gL, and
several connecting components, corresponding to the admittances g1 through
gN . This network can be modeled by a transfer function matrix G(s) from the
vector of voltages [v1, v2, . . . , vn] to the vector of currents [i1, i2, . . . , in].

shown in Fig. 2). The analysis provided in the present paper is
global and does not rely on the assumption of almost constant
impedances, i.e., it is developed in the time domain, which
makes it potentially applicable for much faster time scales.
We shall see in a numerical example in Section IV that even
when starting with very different phases, the power supplies
synchronize in less than two AC cycles, depending on the
electrical interconnection network.

Inspired by the work of [11]–[13] we use dissipation and pas-
sivity [14] as key analysis tools. The use of passivity is attrac-
tive because it allows one to establish passivity properties for
a large network based on input-output properties of individual
components. In the context of electrical networks, passivity is
also natural [15], [16] because an electrical network comprised
only of passive elements is a passive system [17]. However,
our work differs from previous passivity-based approaches to
synchronization in that it is based on a new notion of passivity
with respect to manifolds defined on the system’s input and
output spaces.

Consider a square system with m inputs and m outputs
and two manifolds U ⊂ R

m and Y ⊂ R
m. We define a system

to be passive with respect to the pair of manifolds (U ,Y) if
for every system trajectory there exists another trajectory with
inputs and outputs in U and Y , respectively, such that the
difference between the two trajectories satisfy an appropriate
dissipation inequality defined precisely in Section II. For the
trivial manifolds U = Y = {0}, this definition coincides with
the usual definition of passivity [18, Definition 6.3]. However,
that is not the case for other manifolds, even when applied
to linear systems. This new notion of passivity was motivated
by the incremental passivity approach introduced by Stan and
Sepulchre in [11], but it is strictly weaker (even for linear
systems) and, in fact, the gap between these notions is crucial
for the results presented in this paper. In addition, several results
are provided to establish the passivity of linear systems with
respect to input/output linear subspaces and of several forms of

composition of nonlinear systems (including feedback intercon-
nections, diagonal compositions, and parallel interconnections).

The synchronization results can be found in Section III,
which considers a system consisting of N feedback oscillators
connected by a symmetric network (see Fig. 1). Two key differ-
ences with respect to previous work on the general problem of
oscillator synchronization are that the interconnection network
is assumed to have dynamics and that the coupling between
the oscillators persists even when they become synchronized.
In most of the work on synchronization of dynamical agents
the coupling between agents takes place through “error” sig-
nals that vanish when the system becomes synchronized. In
those works, the coupling is “transient” in the sense that the
interaction between agents disappears asymptotically as they
become synchronized. Moreover, these error signals that drive
the agents towards consensus are static functions of the differ-
ence between variables associated with “neighboring” agents
[19]. Instead, here the agents are coupled through their con-
nection to a multiple-input/multiple-output dynamical system
and continue to interact with this interconnection structure and
with each other even when they are synchronized. This type
of topology is needed to study the interconnection of electric
power supplies to a common load [20], as shown in Fig. 2.
In this contribution we offer a theoretical basis for a deeper
comprehension of the ad-hoc procedures outlined in [20], and
experimentally tested in [21]. However, it is important to notice
that our aim here, different from the objectives in [20], [21],
is to investigate synchronization conditions related to agents’
consensus without specifying a target oscillation amplitude,
frequency or shape (e.g., sinusoidal) for the agents’ outputs
after reaching the synchronized behavior.

The main synchronization result in Section III is a set of
sufficient conditions for the synchronization of N identical
feedback oscillators connected by a symmetric dynamic net-
work. Our constructive approach means that these conditions
are amenable to the design of the oscillatory agents that guar-
antee the synchronization of the overall system regardless of
the initial conditions of the oscillators and the network that
couples them. In fact, a systematic procedure is provided in
Section III-C–E for the construction of oscillators, with closed
form solutions provided for star networks with an arbitrary
number of agents, resistive interconnection branches, and RLC
oscillator dynamics.

II. PASSIVITY WITH RESPECT TO MANIFOLDS

In this section we develop a passivity-inspired approach for
the study of networks of feedback oscillators. To this effect,
consider a dynamical system with the same number of inputs
and outputs of the form

ẋ = f(x, u), y = g(x, u), x ∈ R
n, u, y ∈ R

m. (1)

Throughout this paper we assume solutions to ODEs in the
sense of Carathéodory [22]. We now introduce definitions that
express properties of the difference between arbitrary solutions
to (1) and solutions whose inputs and outputs lie in specific
manifolds U , Y ⊂ R

m. We recall that a projection onto a
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manifold M ⊂ R
m is a function π : Rm → M for which

π(z) = z, ∀z ∈ M, and π(π(x)) = π(x), ∀x ∈ R
m.

We say that (1) is (non-strictly) passive with respect to the
pair (U ,Y) if there exists a continuously differentiable, positive
definite storage function S : Rn → [0,∞) and a projection π
of R

m onto U , such that for every globally defined solution
(u, x, y) to (1) there exists another globally defined solution
(ū, x̄, ȳ) to the same system (possibly corresponding to a
different initial condition) with ū(t) = π(u(t)) and ȳ(t) ∈ Y ,
∀t � 0 for which

ṡ(t) � (y(t)− ȳ(t))′ (u(t)− ū(t)) , ∀t � 0 (2a)

where s(t) := S(x(t)− x̄(t)), ∀t � 0, and ṡ(t) denotes the
time-derivative of s(t).

Following a terminology consistent with that of [18, p. 236],
and defining ũ(t) = u(t)− ū(t), ỹ(t) = y(t)− ȳ(t), with
ū(t) ∈ U and ȳ(t) ∈ Y , ∀t � 0, we introduce the following
additional notions of passivity with respect to manifolds: We
say that (1) is input-feedforward passive with respect to (U ,Y)
with passivity margin σ ∈ R if

ṡ(t) � −2σ ‖ũ(t)‖2 + (ỹ(t))′ (ũ(t)) , ∀t � 0 (2b)

holds instead of (2a), and when σ > 0 the system is called
input-strictly passive with respect to (U ,Y). We say that (1)
is output-feedback passive with respect to (U ,Y) with passivity
margin σ ∈ R if

ṡ(t) � −2σ ‖ỹ(t)‖2 + (ỹ(t))′ (ũ(t)) , ∀t � 0 (2c)

holds instead of (2a), and when σ > 0 we say that (1) is output-
strictly passive with respect to (U ,Y). We say that (1) is strictly
passive with respect to (U ,Y) with passivity margin σ ∈ R,
σ > 0, if

ṡ(t) � −2σs(t) + (ỹ(t))′ (ũ(t)) , ∀t � 0 (2d)

holds instead of (2a). These definitions extend to memoryless
systems, simply by making s(t) = ṡ(t) = 0 in the above in-
equalities, and by disregarding the need to choose appropriately
initial conditions. In addition, for trivial manifolds U = Y =
{0} (for which, ū = ȳ = 0) the definitions above coincide with
the notions of passivity in [18, Definition 6.3] (specialized for
ϕ, in [18], equal to the identity function).

A. Input/Output Convergence to Manifolds

Consider the positive feedback interconnection of (1) with a
static nonlinearity of the form

u(t) = Φ (y(t)) , ∀t � 0. (3)

For the closed-loop system (1), (3) to be well-defined, we as-
sume that for every x ∈ R

n, the equation y = g(x,Φ(y)) has a
unique solution y := h(x) so that the closed-loop dynamics are
given by ẋ = f(x,Φ(h(x))), and the map x 	→ f(x,Φ(h(x)))
is locally Lipschitz continuous.

Our general goal is to determine if the signals u(t) and y(t)
converge to manifolds U and Y , respectively, along solutions to
(1), (3). For some specific manifolds—e.g., the linear space of

all vectors in R
m with equal entries—this convergence neces-

sarily implies synchronization of the inputs and/or outputs, in
the sense that all the inputs become equal and/or all outputs
become equal. This goal is closely related to more common
notions of invariance and attractiveness of synchronization
manifolds [23], but here the manifolds are defined in the input
and output spaces in R

m, instead of being defined in the
system’s state space in R

n.
Theorem 1 (Input/Output Convergence): Any one of the

following conditions guarantees that u(t) converges to U :
C1 Suppose that (1) is strictly passive with respect to the

pair (U ,Y). This implies that for every globally defined
solution (u, x, y) to (1), (3) there exists globally defined
solutions (ū, x̄, ȳ) to (1) with ū(t) = π(u(t)), ȳ(t) ∈ Y ,
∀t � 0 such that (2d) holds. Assume that among such
solutions there exists one for which

[δΦ,π (y(t))]
′ [ỹ(t)] � 0 (4a)

with δΦ,π(y(t)) := Φ(y(t))− (π ◦ Φ)(y(t)) and ỹ(t) :=
y(t)− ȳ(t), ∀t � 0. Then u(t) converges to U and y(t)
converges to Y as t → ∞, along every solution to (1), (3)
that is globally defined.

C2 Suppose that (1) is input-feedforward passive with respect
to the pair (U ,Y) with passivity margin σ > α, for a
radially unbounded storage function S. This implies that
for every globally defined solution (u, x, y) to (1), (3)
there exists globally defined solutions (ū, x̄, ȳ) to (1) with
ū(t) = π(u(t)), ȳ(t) ∈ Y , ∀t � 0 such that (2b) holds.
Assume that among such solutions there exists one for
which

[δΦ,π (y(t))]
′ [ỹ(t)] � 2α ‖δΦ,π (y(t))‖2 (4b)

with δΦ,π(y(t)) := Φ(y(t))− (π ◦ Φ)(y(t)) and ỹ(t) :=
y(t)− ȳ(t), ∀t � 0. Then u(t) converges to U as t → ∞,
along every solution to (1), (3) that is a globally defined
and uniformly bounded solution.1

C3 Suppose that (1) is output-feedback passive with respect
to the pair (U ,Y) with passivity margin σ > α, for a
radially unbounded storage function S. This implies that
for every globally defined solution (u, x, y) to (1), (3)
there exists globally defined solutions (ū, x̄, ȳ) to (1) with
ū(t) = π(u(t)), ȳ(t) ∈ Y , ∀t � 0 such that (2c) holds.
Assume that among such solutions there exists one for
which

[δΦ,π (y(t))]
′ [ỹ(t)] � 2α ‖ỹ(t)‖2 (4c)

with δΦ,π(y(t)) := Φ(y(t))− (π ◦ Φ)(y(t)) and ỹ(t) :=
y(t)− ȳ(t), ∀t � 0. Then u(t) converges to U and y(t)
converges to Y as t → ∞, along every solution to (1), (3)
that is globally defined and belongs to a uniformly bounded
set of solutions. �

Before proving Theorem 1, we make three observations that
provide useful insights into this result and its application.

1We say that a solution x : [0,∞) → Rn is uniformly bounded if ‖x(t)‖ �
c < ∞, with c the same constant value ∀t � 0.
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Remark 1 (Inequalities Along Specialized Solutions): The
inequalities (4a)–(4c) only need to be verified along pairs of
solutions (u, x, y), (ū, x̄, ȳ) for which ū(t) = π(u(t)) = π ◦
Φ(y(t)) and ȳ(t) ∈ Y , ∀t � 0. In particular, (4a)–(4c) need
not apply to arbitrary signals y(t) and ȳ(t). Notice also that,
in general, ū(t) �= Φ(ȳ(t)). These considerations will be instru-
mental, e.g., in using Theorem 1 to prove Theorem 3, later in
Section III-A. �

Remark 2 (Assumption on the Solutions): All three condi-
tions in Theorem 1 only establish convergence for solutions to
(1), (3) that are globally defined, so to draw conclusions that are
valid for every solution, one must independently establish that
every (maximal) solution is globally defined. The conditions
C2 and C3 are even more restrictive in the sense that they only
establish convergence for solutions that are bounded, which
would need to be independently established. Fortunately, many
powerful techniques are available to prove global existence
and uniform boundedness of solutions to ODEs (cf., e.g.,
[18, p. 172]). For the purposes of the results in this paper, a
sufficient condition is that the system (1) is input-to-state stable
with respect to the input u[18, p. 172] and the nonlinearity Φ is
bounded. This is typically the case for feedback oscillators (to
be defined in Section III), where (1) would be a stable system
with a strong resonance at the desired oscillation frequency
and the nonlinearity Φ is used to destabilize the system, while
keeping the solutions bounded. �

Remark 3 (Passivity Versus Passivity With Respect to Man-
ifolds): To conclude from Theorem 1 that u(t) converges to
a signal ū(t) in the set U that is not the trivial signal ū(t) =
0, ∀t � 0, the system (1) must be endowed with passivity
properties with respect to a pair (U ,Y), but not with respect
to the trivial pair ({0},{0}). This is because the latter would
imply convergence of u(t) to the origin. Therefore, when we
want to use Theorem 1 to establish convergence to non-zero
solutions, we must rely on the “gap” between passivity with
respect to appropriate manifolds (U ,Y) and the standard (more
conservative) notion of passivity, which would correspond to
passivity with respect to the trivial manifolds ({0},{0}). �

Remark 4 (Incremental Passivity Versus Passivity With Re-
spect to Manifolds): The notions above are also related to the
concept of Incremental Passivity in [11], [24], which would
require the inequalities in (2) to hold for every pair of solutions
(u, x, y), (ū, x̄, ȳ) to (1), and not just for the ones associated
with ū = π(u) ⇒ ū ∈ U , with ȳ ∈ Y by appropriately choos-
ing initial conditions. The incremental passivity property can
also be used to derive sufficient conditions to show that any
solution to (1) will converge to a specific one, e.g., a solution
such that y(t) = 0, ∀t � 0, as it was done in [24]. However
the incremental passivity property is strictly stronger than the
passivity with respect to manifolds since an incrementally
passive system is actually a passive system with respect to the
pair (U ≡ R

m,Y ≡ R
m). By restricting the pairs of solutions

for which the inequalities must hold, we enlarge the class of
systems that are incrementally passive with respect to nontrivial
input and output manifolds. �

Proof of Theorem 1: Assuming that (1) is strictly passive
with respect to the pair (U ,Y), for every globally defined
solution (u, x, y) to the feedback interconnection (1), (3), there

exists another globally defined solution (ū, x̄, ȳ) to (1) for
which ū(t) = π(u(t)), with ȳ(t) ∈ Y , ∀t � 0, and

ṡ � −2σs+ (ỹ)′(ũ) = −2σs+ (ỹ)′ (δΦ,π(y)) � −2σs

where s(t) := S(x(t)− x̄(t)) for a positive definite storage
function S : Rn → [0,∞), and the second inequality is a con-
sequence of (4a) by noticing that ū = (π ◦ Φ)(y). Using the
Comparison Lemma [18, p. 102] we conclude that s(t) con-
verges to zero exponentially fast and therefore the solution
(u, x, y) converges to the solution (ū, x̄, ȳ) as t → ∞. When
(1) is input-feedforward passive with respect to the pair (U ,Y)
with passivity margin σ > α, for every bounded and globally
defined solution (u, x, y) to the feedback interconnection (1),
(3), we now conclude, from the definition of passivity with
respect to (U ,Y), that there exists another globally defined
solution (ū, x̄, ȳ) to (1) for which ū(t) = π(u(t)), with ȳ(t) ∈
Y , ∀t � 0, and

ṡ � −2σ ‖Φ(y)− ū‖2 + (ỹ)′ (Φ(y)− ū)

� −2σ ‖δΦ,π(y)‖2 + (ỹ)′ (δΦ,π(y))

� −2(σ − α) ‖δΦ,π (h(x))‖2

where s(t) := S(x(t)− x̄(t)) for a positive definite and ra-
dially unbounded storage function S : Rn → [0,∞), the last
inequality is a consequence of (4b), and the function y = h(x)
is associated with the unique solution to y = g(x,Φ(y)). More-
over, the state vector x̄ must be bounded because from the above
inequality s is bounded, and by assumption S is radially un-
bounded and x belongs to a uniformly bounded set of solutions.
Using LaSalle’s invariance principle [25, Theorem 6.4] to the
combined dynamics of x and x̄, we conclude that (x(t), x̄(t)) ∈
R

2n, ∀t � 0 must converge to the largest invariant set M
contained in

E :=
{
(x, x̄) ∈ R

2n : Φ (h(x)) = π ◦ Φ(h(x))
}
.

Since for any pair of states (x(t), x̄(t)) in E (and in M ) we have
u(t) = ū(t), we conclude that ũ(t) = u(t)− ū(t) converges to
0 as t → ∞ and therefore u(t) must converge to U . Assuming
that (1) is output-strictly passive with respect to the pair (U ,Y),
for every bounded and globally defined solution (u, x, y) to the
feedback interconnection (1), (3), we now conclude that there
exists a solution (ū, x̄, ȳ) to (1) for which ū(t) = π(u(t)), with
ȳ(t) ∈ Y , ∀t � 0, and

ṡ � −2σ‖ỹ‖2 + (ỹ)′ (Φ(y)− ū)

� −2σ‖ỹ‖2 + (ỹ)′ (δΦ,π(y))

� −2(σ − α)‖ỹ‖2 = −2(σ − α) ‖h(x)− h(x̄)‖

where s(t) := S(x(t)− x̄(t)) for a positive definite and radi-
ally unbounded storage function S : Rn → [0,∞), and the last
inequality is a consequence of (4c). Reasoning as above, we
now conclude using LaSalle’s invariance principle that y(t)
converges to ȳ(t) as t → ∞ and therefore y(t) converges to
Y . From (3), we further conclude that u(t) converges to ū(t) as
t → ∞ and therefore u(t) must converge to U . �
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B. Linear Case

Consider now the specific case where (1) is a linear time-
invariant (LTI) system of the form

ẋ = Ax+Bu, y = Cx+Du, x ∈ R
n, u, y ∈ R

m (5)

and two manifolds U and Y that are linear subspaces of R
m

defined by appropriate m×m projection matrices U = U2 and
Y = Y 2, respectively, such that U = ImU and Y = ImY .

We say that a pair of matrices U, Y ∈ R
m×m commutes with

the system (5) when

Ĝ(s)U = Y Ĝ(s), ∀s ∈ C (6)

where Ĝ(s) := C(sI −A)−1B +D. As a consequence of (6),
the LTI system Markov parameters and the impulse response
are such that

DU=Y D, CAkBU = Y CAkB, k = 0, 1, . . . , n− 1;

(7a)
DU=Y D, CeAtBU = Y CeAtB, ∀t � 0. (7b)

We are now ready to establish passivity of (5) with respect to
(U ,Y) using linear matrix inequalities (LMIs).

Theorem 2 (LTI Case): Suppose that the pair of projection
matrices U , Y ∈ R

m×m commutes with the system (5), and

define T :=

[
In 0
0 Im − U

]
, where Ik denotes the k × k iden-

tity matrix. The system (5) is passive with respect to (U :=
ImU,Y := ImY ) if there exists a matrix P ∈ R

n×n, P = P ′ >
0, such that

T ′
[
PA+A′P PB − C ′

B′P − C −D −D′

]
T � 0; (8a)

it is strictly passive with respect to (U ,Y) with dissipation
margin σ > 0 if there exists a matrix P ∈ R

n×n, P = P ′ > 0,
such that

T ′
[
PA+A′P + 2σP PB − C ′

B′P − C −D −D′

]
T � 0; (8b)

it is input-feedforward passive with respect to (U ,Y) with
passivity margin σ ∈ R if there exists a matrix P ∈ R

n×n,
P = P ′ > 0, such that

T ′
[
PA+A′P PB − C ′

B′P − C 4σIm −D −D′

]
T � 0; (8c)

and it is output-feedback passive with respect to (U ,Y) with
passivity margin σ ∈ R if there exists a matrix P ∈ R

n×n, P =
P ′ > 0, such that

T ′
[
PA+A′P + 4σC ′C PB − C ′ + 4σC ′D
B′P − C + 4σD′C 4σD′D −D −D′

]
T � 0.

(8d)
In all these cases, the storage function and the projection
function can be chosen of the form

S(x) :=
1

2
x′Px, ∀x ∈ R

n, π(u) = Uu, ∀u ∈ R
m. (8e)

�

To prove Theorem 2 we need the following result showing
that the commutation condition (6) will allow us to establish
the existence of the solutions (ū, x̄, ȳ) to (5) that appear in the
inequalities (2a)–(2d), which are needed for the definition of
passivity with respect to manifolds.

Lemma 1 (Commuting Solutions): Suppose that the pair of
projection matrices U , Y ∈ R

m×m commutes with the LTI
system (5) and consider the projection function π defined in
(8e). For every solution (u, x, y) to (5) there is another solution
(ū, x̄, ȳ) to (5) with ū(t) = π(u(t)) and ȳ(t) ∈ ImY , ∀t � 0.
Moreover, for every such solution we have ȳ(t) = CeAtx̄(0) +
Y (y(t)− CeAtx(0)), with CeAtx̄(0) ∈ ImY , ∀t � 0. �

Proof of Lemma 1: Any solution (ū, x̄, ȳ) to (5) with ū =
Uu is given by

ȳ(t) = CeAtx̄(0) + C

t∫
0

eA(t−τ)BUu(τ)dτ +DUu(t).

From (7b), it then follows that:

ȳ(t) =CeAtx̄(0) + Y C

t∫
0

eA(t−τ)Bu(τ)dτ + Y Du(t)

=CeAtx̄(0) + Y
(
y(t)− CeAtx(0)

)
which shows that a necessary and sufficient condition for ȳ(t) ∈
ImY , ∀t � 0 is that CeAtx̄(0) ∈ ImY , ∀t � 0 (e.g., this can
be achieved by setting x̄(0) = 0). �

Proof of Theorem 2: For an arbitrary solution (u, x, y)
to (5), let (ū, x̄, ȳ) be any solution to (5) whose existence is
guaranteed by Lemma 1. Defining x̃ := x− x̄, ũ := u− ū =
(Im − U)u, ỹ := y − ȳ, we have that

˙̃x = Ax̃+Bũ, ỹ = Cx̃+Dũ

and therefore, for s(t) := S(x̃(t)) = (1/2)x̃(t)′P x̃(t), ∀t �
0, and T :=

[
In 0
0 Im − U

]
, we have that

ṡ− ũ′ỹ =
1

2
x̃′(PA+A′P )x̃+ x̃′PBũ− ũ′(Cx̃+Dũ)

=
1

2
[ x̃′ ũ′ ]

[
PA+A′P PB − C ′

B′P − C −D −D′

] [
x̃
ũ

]

=
1

2
[ x̃′ u′ ]T ′

[
PA+A′P PB − C ′

B′P − C −D −D′

]
T

[
x̃
u

]
.

When (8a) holds, this leads to (2a). If instead (8b) holds, we
conclude that

ṡ− ũ′ỹ � 1

2
[ x̃′ u′ ]T ′

[
−2σP 0

0 0

]
T

[
x̃
u

]
= −σx̃′P x̃ = −2σs

which leads to (2d); when (8c) holds, we conclude that

ṡ− ũ′ỹ � 1

2
[ x̃′ u′ ]T ′

[
0 0
0 −4σIm

]
T

[
x̃
u

]
= −2σu′(Im − U)′(Im − U)u = −2σ‖ũ‖2
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which leads to (2b); and when (8d) holds, we conclude that

ṡ− ũ′ỹ � 1

2
[ x̃′ u′ ]T ′

[
−4σC ′C −4σC ′D
−4σD′C −4σD′D

]
T

[
x̃
u

]
= −2σ‖ỹ‖2

which leads to (2c). �

C. Establishing Passivity by Composition

A key feature of passivity-like properties is that one can
establish the passivity of large systems by showing that these
systems can be constructed by appropriate compositions of
smaller passive subsystems. We present here two results of this
nature that will be used in proving the main synchronization
result in Section III-A: one for feedback interconnections, and
another for diagonal compositions of equal linear systems.2

a) Feedback interconnection: Consider two systems Σ1

and Σ2 of the form

Σk : ẋk = fk(xk, uk), yk = gk(xk, uk), k ∈ {1, 2}

with xk ∈ R
nk , uk, yk ∈ R

m, and their negative feedback in-
terconnection Σfeedback with input u ∈ R

m and output y ∈ R
m

defined by

u1(t) = u(t)− y2(t), u2(t) = y1(t) =: y(t), ∀t � 0.
(9)

Lemma 2 (Feedback): Let U and Y be linear subspaces of
R

m and πu and πy linear projections of R
m onto U and Y ,

respectively.
C4 If Σ1 is strictly-passive with respect to (U ,Y) with pro-

jection function πu and passivity margin σs,1 > 0, and Σ2

is strictly-passive with respect to3(Y,U) with projection
function πy and passivity margin σs,2 > 0, then Σfeedback

is passive with respect to (U ,Y) with projection function
πu and passivity margin min{σs,1, σs,2} > 0.

C5 If Σ1 is output-feedback passive with respect to (U ,Y)
with projection function πu and passivity margin σo,1∈R

and Σ2 is input-feedthrough passive with respect to (Y,U)
with projection function πy and margin σi,2 ∈ R, then
Σfeedback is output-feedback passive with respect to (U ,Y)
with projection function πu and passivity margin σo,1+
σi,2 ∈ R.

C6 If Σ1 is input-feedthrough passive with respect to (U ,Y)
with projection function πu and passivity margin σi,1 ∈ R

and Σ2 is output-feedback passive with respect to (Y,U)
with projection function πy and margin σo,2 ∈ R, then
Σfeedback is input-strictly passive with respect to (U ,Y)
with projection function πu and passivity margin

σ =

⎧⎨
⎩

σi,1σo,2

σi,1+σo,2
, if σi,1 > 0, σo,2 > 0

σi,1

2 , if σi,1 � 0, −2σi,1 � σo,2 � 0
σ2

2 , if σo,2 � 0,−2σo,2 � σi,1 � 0

for any of these three cases. �

2It is worth mentioning that one could prove similar results also for parallel
interconnections of linear systems.

3We draw the reader’s attention to the reverse order of the manifolds and
projections.

Proof of Lemma 2: For an arbitrary solution (u, x, y) to
Σfeedback, let us denote by (u1, x1, y1) and (u2, x2, y2) the cor-
responding solutions to the subsystems Σ1 and Σ2, respectively.
From the passivity assumptions of Σ1 and Σ2, we conclude that
there exist other solutions (ū1, x̄1, ȳ1) and (ū2, x̄2, ȳ2) to the
subsystems for which

ū1 =πu(u1), ȳ1 ∈ Y (10a)

ṡ1 � (ỹ1)
′(ũ1)− 2σi,1‖ũ1‖ − 2σo,1‖ỹ1‖ − 2σs,1s1 (10b)

ū2 =πy(u2), ȳ2 ∈ U (10c)

ṡ2 � (ỹ2)
′(ũ2)− 2σi,2‖ũ2‖ − 2σo,2‖ỹ2‖ − 2σs,2s2 (10d)

where sk(t) := Sk(xk(t)− x̄k(t)) and Sk denotes the storage
function of the system Σk. The constants σi,k, σo,k, σs,k,
k ∈ {1, 2} may be zero or not depending on the type of
passivity of Σ1 and Σ2. Since u1 = u− y2 ⇒ ū1 = πu(u1) =
πu(u− y2) = πu(u)− πu(y2) = πu(u)− ȳ2, and u2 = y1 =
y ⇒ ū2 = πy(u2) = πy(y1) = ȳ1 = ȳ ∈ Y , we conclude that
the solutions (ū1, x̄1, ȳ1) and (ū2, x̄2, ȳ2) satisfy (9) for an
input equal to πu(u), leading to the output ȳ ∈ Y . We can
therefore use these solutions to construct a solution (ū, x̄, ȳ)
to Σfeedback with ū := πu(u) (and, incidentally, ȳ := πy(y)). If
we now consider the storage function S(x1, x2) := S1(x1) +
S2(x2), such that ṡ = ṡ1 + ṡ2, we conclude from (10) that

ṡ � − 2σi,1‖ũ1‖2 − 2σo,1‖ỹ1‖2 − 2σs,1s1 − 2σi,2‖ũ2‖2

− 2σo,2‖ỹ2‖2 − 2σs,2s2 + (ỹ1)
′(ũ1) + (ỹ2)

′(ũ2)

� −2σi,1‖u− y2 − ū+ ȳ2‖2 − 2σo,1‖ỹ‖2 − 2σs,1s1

− 2σi,2‖ỹ‖2 − 2σo,2‖ỹ2‖2 − 2σs,2s2

+ (ỹ)′(u− y2 − ū+ ȳ2) + (ỹ2)
′(ỹ)

� −2(σo,1 + σi,2)‖ỹ‖2 − 2min{σs,1, σs,2}(s1 + s2)

− 2σi,1‖u− y2 − ū+ ȳ2‖2 − 2σo,2‖ỹ2‖2 + (ỹ)′(ũ)

where s(t) := S(x1(t)− x̄1(t), x2(t)− x̄2(t)). The state-
ments C4 and C5 follow directly from the inequality above. For
the remaining cases, we need to construct appropriate bounds
for the term −2σi,1‖u− y2 − ū+ ȳ2‖2 − 2σo,2‖y2 − ȳ2‖2. In
case σi,1, σo,2 > 0, we can use Proposition 2 in the Appendix
to conclude that

−2σi,1‖ũ− ỹ2‖2 − 2σo,2‖ỹ2‖2 � − 2σi,1σo,2

σi,1 + σo,2
‖ũ‖2.

In case σi,1 � 0 and σi,1 + 2σo,2 � 0 we can also use
Proposition 2 to conclude that

−2σi,1‖ũ− ỹ2‖2 − 2σo,2‖ỹ2‖2 �
−σi,1‖ũ‖2 − σi,1‖ỹ2‖2 − 2σo,2‖ỹ2‖2 � −σi,1‖ũ‖2.

In case σo,2 � 0 and 2σi,1 + σo,2 � 0 we can also use
Proposition 2 to conclude that

−2σi,1‖ũ− ỹ2‖2 − 2σo,2‖ỹ2‖2 � −2σi,1‖ũ− ỹ2‖2

− σo,2‖ũ− ỹ2‖2 − σo,2‖ũ‖2 � −σo,2‖ũ‖2.

�
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The following result regarding diagonal interconnections of
linear systems is presented without proof, since it can be easily
derived.4

b) Diagonal composition: Consider a system Σdiag com-
posed of N decoupled linear subsystems with equal dynamics

Σk : ẋk = Axk +Buk, yk = Cxk +Duk

with xk ∈ R
nk , uk, yk ∈ R

m, ∀k ∈ {1, 2, . . . , N}. The over-
all system Σdiag has input u := (u1, u2, . . . , uN ) ∈ R

Nm and
output y := (y1, y2, . . . , yN ) ∈ R

Nm.
Lemma 3 (Diagonal Composition): Consider a pair of linear

subspaces U and Y of Rm and a projection function π of RNm

onto U × U . . .× U︸ ︷︷ ︸
N times

≡ UN of the form

π(u1, u2, . . . , uN ) =

(
N∑
i=1

α1
iui,

N∑
i=1

α2
iui . . . ,

N∑
i=1

αN
i ui

)

for scalars αk
i ∈ R, ∀i, k ∈ {1, 2, . . . , N}. In this case, the

corresponding output will be given by

ȳ = (ȳ1, ȳ2, . . . , ȳN ) =

(
N∑
i=1

α1
i yi,

N∑
i=1

α2
i yi . . . ,

N∑
i=1

αN
i yi

)
.

C7 If all subsystems Σk are strictly passive with respect to
({0},{0}) with passivity margin σ > 0 then Σdiag is strictly
passive with respect to (UN ,YN ) with a projection func-
tion π and passivity margin σ > 0.

C8 If all subsystems Σk are input-feedforward passive with re-
spect to ({0},{0}) with passivity margin σ ∈ R then Σdiag

is input-feedforward passive with respect to (UN ,YN )
with a projection function π and passivity margin σ ∈ R.

C9 If all subsystems Σk are output-feedback passive with
respect to ({0},{0}) with passivity margin σ ∈ R then
Σdiag is output-feedback passive with respect to (UN ,YN )
with a projection function π and passivity margin σ ∈ R.

�

III. SYNCHRONIZATION IN ELECTRICAL NETWORKS

We now focus our attention on the problem of synchronizing
a group of N identical oscillatory systems—henceforth called
agents—whose dynamics are coupled through an interconnec-
tion network that is also a dynamical system. We view this prob-
lem from a design perspective, in the sense that we are given an
interconnection network and our goal is to design the dynamics
of the agents to make sure that the overall system synchronizes
regardless of the initial conditions for the agents and the initial
conditions for the electrical network that interconnects them.

a) Oscillator dynamics: Following the work in [11], [26]
we consider agents that are feedback oscillators consisting
of an asymptotically stable LTI system in positive feedback
with a nonlinear function φ : R → R. This class of oscillatory
systems includes various well-known oscillators such as van

4These proofs can be provided by the authors upon request.

Fig. 3. Block diagram for the dynamics of agent Ak , k ∈ {1, 2, . . . , N}.

der Pol oscillator [27], and the FitzHugh-Nagumo system [28].
Specifically, each agent Ak, ∀k ∈ {1, 2, . . . , N} is of the form

ẋk =Aaxk +Baûk, yak = Caxk +Daûk (11a)
ûk =ua

k + φ (yak) (11b)

with state vector xk ∈ R
n, scalar input ua

k ∈ R, and scalar
output yak (see Fig. 3). All N agents are assumed to share the
same dynamics and our goal is for the agents to asymptotically
synchronize in the sense that we want yai (t)− yaj (t) → 0 as
t → ∞, ∀i, j ∈ {1, 2, . . . , N}. In addition, since we desire per-
sistent oscillations, synchronization should not occur through
convergence to an equilibrium point. Therefore the overall
closed-loop system should not have any stable equilibrium
point, but the solutions should remain bounded. These objec-
tives will naturally impose additional constraints on the choice
of the nonlinear function φ(·) in (11), as it will become clear in
Section III-A and C.

Assumption 1 (Agents): The following is assumed about the
agents’ dynamics (11):
A1 The matrix Aa is Hurwitz. �

b) Interconnection network: The agents’ dynamics are
coupled through an LTI system of the form

ẋn = Anxn +Bnun, yn = Cnxn +Dnun (12)

with state vector xn ∈ R
m, input vector un ∈ R

N , and output
vector yn ∈ R

N . The connections between agents through the
network (12) corresponds to

ua = −yn, ya = un (13)

where ua := [ua
1 u

a
2 · · · ua

N ]′ ∈ R
N , and ya := [ya1 ya2 · · ·

yaN ]′ ∈ R
N . Since we are considering equal agents, and we are

interested in defining their consensus/synchronization as equal-
ity of their outputs, by assuming that each agent determines a
unique and well-defined map between its input and output sig-
nals, we must consider interconnection networks that are sym-
metric from the point of view of their access ports, otherwise
the problem would not be well-posed since each agent would
have to exhibit the same output for different input signals, after
achieving the synchronization condition. The interconnection
networks we are interested in arise from electrical networks
composed of inductors, resistors, capacitors, and multi-linear
transformers. Notice that, interestingly, this arrangement (equal
agents and symmetric network) naturally leads to equal sharing
of energy among the agents.

When the vectors un and yn in (12) are associated, respec-
tively, with voltages and currents at the electrical network ports,
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symmetric networks are equivalent to star-shaped electrical
circuits like the one depicted in Fig. 2, with equal connecting
admittances g1(s) = g2(s) = · · · = gN (s) = gb(s), a load ad-
mittance gL(s), and a transfer matrix of the form

G(s) = G′(s) = gb(s)IN − gb(s)
2

Ngb(s) + gL(s)
	1 	1′ (14)

where	1 ∈ R
N denotes a column vector with all entries equal to

one. The scalar transfer matrices gb(s) and gL(s) are positive-
real rational functions, since they represent admittances corre-
sponding to associations of passive components [17].

Assumption 2 (Network): The following is assumed about
the interconnection network (12):
A2 The matrix An is Hurwitz.
A3 The transfer function

G(s) = Cn(sIN −An)
−1Bn +Dn (15)

of (12) is of the form (14), where gb(s) and gL(s) are
positive-real rational functions.

A4 The pair of matrices (U,U), with U := (1/N)	1	1′, com-
mutes with the system (12), i.e.,

G(s)U = UG(s), ∀s ∈ C. (16)

A5 The feedback interconnection of agents and network is well
posed with locally Lipschitz continuous dynamics.5

�
The following result (proved in the Appendix) states ad-

ditional properties of G(s) that follow from the preceding
assumptions.

Lemma 4: Under Assumption 2, the eigenvalues of the trans-
fer function G(s), for each s ∈ C, in (14) are λ1(s) = λL(s),
and λ2(s) = λ3(s) = · · · = λN (s) = λb(s), with

λL(s) =
gb(s)gL(s)

Ngb(s) + gL(s)
=

(
1

gL(s)
N

+
1

gb(s)

)−1

(17)

λb(s) = gb(s) (18)

positive real rational functions. Moreover, the constant vector 	1
is an eigenvector associated with the eigenvalue λL(s), i.e.,

G(s)	1 = λL(s)	1. (19)

�
Remark 5 (Coupling Under Synchronization): Even when

the agents are perfectly synchronized, i.e., ya1(t) = ya2(t) =
· · · = yaN (t), the output of the interconnection network typ-
ically does not converge to zero and the agents’ dynamics
continue to be coupled. To verify that this is so, note that it
follows from (19) that when the inputs to G(s) are identical
periodic signals, the forced response can only be identically
zero if λL(s) has zeros over the imaginary axis and all the
energy of the inputs is concentrated at those frequencies. In

5When the agents do not have direct feedthrough (i.e., Da = 0) and φ is
a locally Lipschitz continuous function, this holds for every interconnection
network.

Fig. 4. Block diagram representation of the overall system (11), (12), (13)
consisting of the nonlinear agents connected through the electrical network.

general, λL(s) has no such zeros. The existence of a coupling
between agents, even under perfect synchronization, similarly
to what was considered in [6] in the context of transient stability
analysis of multimachine power networks, makes the present
synchronization problem distinct from many problems reported
in the literature on nonlinear dynamical systems synchroniza-
tion and multi-agent consensus (e.g., see [19] and references
therein). �

A. Synchronization Result

The interconnection of the network (12) with the agents de-
fined by (11) can be represented by the block diagram in Fig. 4,
where G(s) denotes the network transfer function in (14), A(s)
denotes the transfer function of the diagonal composition of the
LTI systems in (11a)

A(s) = a(s)IN , a(s) := Ca(sIn −Aa)
−1Ba +Da (20)

Φ(ya) := [φ (ya1) φ (ya2) · · · φ (yaN )]′ , ∀ya ∈ R
N .

From (15) and (20), the feedback LTI system shown in the
dashed box in Fig. 4 corresponds to

F (s) = [IN +A(s)G(s)]−1 A(s). (21)

A characteristic of this inner feedback LTI system (proved in
the Appendix) that will be important in the following develop-
ment is the fact that it commutes with the pair of matrices U ,
U ∈ R

N×N .
Lemma 5: Under the assumption that a pair of matrices U ,

U ∈ R
N×N commutes with G(s), i.e., UG(s) = G(s)U , the

same pair of matrices U , U ∈ R
N×N also commutes with the

system F (s) in (21), i.e., UF (s) = F (s)U .
The diagram in Fig. 4 highlights that the system under study

is of the general form considered in Theorem 1, which is the
basis for the key result of this section concerning sufficient
conditions under which the agents’ outputs will become equal.

Theorem 3 (Synchronization): Suppose that Assumptions 1,
2 hold for the system (11)–(13). Any of the following two
sets of conditions C10 or C11 suffices to guarantee that the
agents asymptotically synchronize, in the sense that their inputs
and/or outputs converge to the linear subspace ImU , which
corresponds to the equality of all the inputs and/or outputs.
C10 Suppose that

1) there exists a matrix Pn ∈ R
m×m, Pn = P ′

n > 0,

such that, with T :=

[
Im 0
0 IN − U

]
for U :=

(1/N)	1	1′, σ = σn ∈ R, P = Pn, A = An, B = Bn,
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C = Cn and D = Dn, inequality (8c) is satis-
fied, and, therefore, the interconnection network
(12) is input-feedforward passive with respect to
(ImU, ImU), with passivity margin σn ∈ R;

2) there exists a matrix Pa ∈ R
n×n, Pa = P ′

a > 0, such
that, with T := In+1, σ = σa ∈ R, P = Pa, A =
Aa, B = Ba, C = Ca and D = Da, inequality (8d)
is satisfied, and, therefore (11a) is output-feedback
passive in the usual sense, i.e., it is output-feedback
passive with respect to ({0},{0}), with passivity mar-
gin σa ∈ R; and

3) the nonlinearity φ(·) in (11b) satisfies

(s2 − s1) (φ(s2)− φ(s1)) � 2α(s2 − s1)
2 (22)

∀s1, s2 ∈ R, with α < σa + σn. A saturation func-
tion φ(y) with slope α < σa + σn at the origin sat-
isfies this requirement.

Then both ua = −yn and ya = un converge to the
linear subspace Y := U := ImU , U := (1/N)	1	1′ as t →
∞, along every solution to (11), (12), (13) that is globally
defined and uniformly bounded.

C11 Suppose that
1) there exists a matrix Pn∈R

m×m, Pn=P ′
n>0, such

that, with T :=

[
Im 0
0 IN − U

]
for U := (1/N)	1	1′,

σ = σn > 0, P = Pn, A = An, B = Bn, C = Cn

and D = Dn, inequality (8d) is satisfied, and, there-
fore, the interconnection network (12) is output-
strictly passive with respect to (ImU, ImU), with
passivity margin σn > 0;

2) there exists a matrix Pa∈R
n×n, Pa=P ′

a>0, such
that, with T :=In+1, σ=σa � −2σn, P =Pa, A=
Aa, B=Ba, C=Ca and D=Da, inequality (8c) is
satisfied, and, therefore, (11a) is input-feedforward
passive in the usual sense, i.e., it is input-feedforward
passive with respect to ({0},{0}), with passivity mar-
gin σa � −2σn; and

3) the nonlinearity φ(·) in (11b) satisfies

(s2 − s1) (φ(s2)− φ(s1)) � 2α (φ(s2)− φ(s1))
2 (23a)

∀s1, s2 ∈ R, with{
α < σaσn

σa+σn
, if σa > 0

α < σn

2 , if −2σn � σa � 0. (23b)

Then ua = −yn converges to the linear subspace
Y := U := ImU , U := (1/N)	1	1′ as t → ∞, along every
solution to (11), (12), (13) that is globally defined and
uniformly bounded.

�
Remark 6 (Input/Output Versus Input-Only Convergence):

The condition C11 only guarantees that the inputs of the agents
synchronize. To make sure that their outputs also synchronize
one could require the nonlinearities φ to be injective and
continuous, which would hold, e.g., for a “smooth” saturation
like the arc-tangent function. Alternatively, one could require
the transfer function F (s) depicted inside the dashed box in

Fig. 4 [corresponding to the feedback connection between the
LTI agent subsystems (11a) and the interconnection network
(12)] to be asymptotically stable. We shall find in Section III-C
sufficient conditions for this to hold, which also guarantee that
every solution is globally defined and uniformly bounded. In
addition, in Section IV it will become clear that condition C11
is crucial to investigate the important practical case of elec-
trical networks with inductive elements in the interconnecting
branches. �

To prove Theorem 3 we need the following technical lemma
that we will use to establish the inequalities in Theorem 1.

Lemma 6: Suppose that the pair of projection matrices U ,
U ∈ R

m×m, with U := (1/N)	1	1′, commutes with the LTI
system (5) and that (22) holds. For every pair of solutions
(u, x, y) and (ū, x̄, ȳ) to (5) with ū(t) = π(u(t)) := Uu(t) and
ȳ(t) ∈ ImU , ∀t � 0, the inequality (4c) holds. Similarly, if we
replace (22) by (23a), then (4b) holds instead of (4c). �

Proof of Lemma 6: In view of Lemma 1 (with Y = U ),
the solutions (u, x, y) and (ū, x̄, ȳ) must be related by

ȳ(t) = CeAtx̄(0) + U
(
y(t)− CeAtx(0)

)
= Uy(t) + r(t)

with CeAtx̄(0)∈ ImU and r(t) :=CeAtx̄(0)−UCeAtx(0)∈
ImU , ∀t � 0. We can therefore re-write the left-hand side of
(4c) as

(MΦ(y))′ (y − ȳ) = Φ(y)′M(My − r) = Φ(y)′M2y (24)

where M := I − U and the last equality is a consequence of
the fact that r ∈ ImU . Using the additional fact that M2 = M ,
this simplifies to

Φ(y)′My =

N∑
i=1

φ(yi)(yi − ŷ)

where ŷ = (1/N)
∑N

i=1 yi. Adding and subtracting φ(ŷ) to
φ(yi) and using (22), we conclude that

(MΦ(y))′ (y − ȳ) =

N∑
i=1

(φ(yi)− φ(ŷ) + φ(ŷ)) (yi − ŷ)

� 2α

N∑
i=1

(yi − ŷ)2 + φ(ŷ)

N∑
i=1

(yi − ŷ) = 2α‖My‖2 (25)

where the last equality is a consequence of the fact that∑N
i=1(yi − ŷ) = 0. Since r ∈ ImU , the vector r is orthogonal

to My and therefore

‖y − ȳ‖2 = ‖y − Uy − r‖2

= ‖(I − U)y‖2 + ‖r‖2 ⇒ ‖My‖2 � ‖y − ȳ‖2.

Inequality (4c) follows from this and (25).
To prove (4b), we go back to (24) and re-write it as

(MΦ(y))′ (y − ȳ)

= (MΦ(y))′ My

= (MΦ(y))′ (My − 2αMΦ(y)) + 2α ‖MΦ(y)‖2

=
N∑
i=1

(
φ(yi)− φ̂(y)

)′ (
yi − ŷ − 2αφ(yi) + 2αφ̂(y)

)
+ 2α ‖MΦ(y)‖2
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where φ̂(y) := (1/N)
∑N

i=1 φ(yi). Adding and subtracting
φ(ŷ) and using (23a), we conclude that

(MΦ(y))′ (y − ȳ)− 2α ‖MΦ(y)‖2

=

N∑
i=1

(
φ(yi)− φ(ŷ) + φ(ŷ)− φ̂(y)

)′

×
(
yi − ŷ − 2αφ(yi) + 2αφ̂(y)

)

�
N∑
i=1

2α (φ(yi)−φ(ŷ))2−2α (φ(yi)−φ(ŷ))
(
φ(yi)−φ̂(y)

)

+
(
φ(ŷ)− φ̂(y)

)′ (
yi − ŷ − 2αφ(yi) + 2αφ̂(y)

)
.

Since
∑N

i=1 yi − ŷ =
∑N

i=1 φ(yi)− φ̂(y) = 0 and also∑N
i=1(φ(yi)− φ(ŷ))2 − (φ(yi)− φ(ŷ))(φ(yi)− φ̂(y)) = 0,

we conclude that the above inequality simplifies to

(MΦ(y))′ (y − ȳ) � 2α ‖MΦ(y)‖2

which concludes the proof since this is precisely equivalent
to (4b). �

Proof of Theorem 3: We start by considering the condi-
tions C10. From Theorem 2, since inequality (8d) is satisfied
and the system (11a) commutes with the trivial pair of matrices
U = 0, Y = 0, each LTI agent subsystem is output-feedback
passive with respect to ({0},{0}), with passivity margin σa ∈
R. We then conclude from Lemma 3, condition C9, with αk

i =
(1/N), ∀i, k ∈ {1, 2, . . . , N}, and for U = (1/N)	1	1′, that the
diagonal composition of the LTI systems with dynamics (11a)
is output-feedback passive with respect to (ImU, ImU), for
the projection function πu(z) = Uz, ∀z ∈ R

N , with passivity
margin σa ∈ R. Notice that (12) is input-feedforward passive
with respect to (ImU, ImU) for the projection function πy(z) =
Uz, ∀z ∈ R

N , with passivity margin σn ∈ R, because, from
Assumption 2, (12) commutes with the pair (U,U), and since
the inequality (8c) is satisfied, we can apply Theorem 2. We
can now use Lemma 2, condition C5, to conclude that the
feedback connection between the LTI agent subsystems (11a)
and the interconnection network (12) (which is depicted inside
the dashed box in Fig. 4) is output-feedback passive with
respect to (ImU, ImU), considering the projection function
π(z) = Uz, ∀z ∈ R

N , with passivity margin σa + σn ∈ R. To
apply Theorem 1 to the feedback system shown in the dashed
box in Fig. 4, it remains to verify that (4c) holds with α <
σ := σa + σn. From Lemma 5 it follows that UF (s) = F (s)U ,
which allow us to use Lemma 6 to conclude that the inequality
(4c) indeed holds.

We now consider the conditions C11. From Theorem 2, since
inequality (8c) is satisfied and the system (11a) commutes with
the trivial pair of matrices U = 0, Y = 0, each LTI agent sub-
system is input-feedforward passive with respect to ({0},{0}).
We then conclude from Lemma 3, condition C8, with αk

i =
1/N , ∀i, k ∈ {1, 2, . . . , N}, and for U = (1/N)	1	1′, that the
diagonal composition of the LTI systems with dynamics (11a)
is input-feedforward passive with respect to (ImU, ImU) for
the projection function πu(z) = Uz, ∀z ∈ R

N , with passivity

Fig. 5. Block diagram representation of the local linearization of the overall
system (11), (12), (13) around an equilibrium point for which all agents exhibit
the same output yeq ∈ R, where γ := (dφ/dy)(yeq).

margin σa ∈ R. Since (12) commutes with the pair (U,U)
and (8d) holds, we conclude from Theorem 2 that the inter-
connection network (12) is output-strictly passive with respect
to (ImU, ImU) for the projection function πy(z) = Uz, ∀z ∈
R

N , with passivity margin σn > 0. We can now use Lemma 2,
condition C6, to conclude that the feedback connection between
the LTI agent subsystems (11a) and the interconnection network
(12) (which is depicted inside a dashed box in Fig. 4) is input-
strictly passive with respect to (ImU, ImU), for the projection
function π(z) = Uz, ∀z ∈ R

N , with passivity margin

σ =

{ σaσn

σa+σn
, if σa > 0

σn

2 , if −2σn � σa � 0.

To apply Theorem 1 to the feedback in Fig. 4, it remains to
verify that (4b) holds with σ > α. From Lemma 5 it follows that
UF (s) = F (s)U , which allow us to use Lemma 6 to conclude
that the inequality (4b) indeed holds. �

B. Avoiding Unbounded Solutions or Trivial Synchronization

Theorem 3 in the previous section provides conditions to
guarantee that the inputs of the agents converge to each other,
for every globally defined and uniformly bounded solution.
However, in practice we would like to guarantee that syn-
chronization does not occur by convergence to an equilibrium
point, since the goal is to obtain synchronized oscillations.
In addition, we would like to guarantee that every solution is
globally defined and bounded.

From the block diagram of the overall system depicted in
Fig. 4 we conclude that if the nonlinearity Φ is bounded and the
transfer function F (s) is BIBO stable,6 then every solution is
globally defined and uniformly bounded solution.

Regarding the possibility of synchronization by convergence
to an equilibrium point for which all agents exhibit the same
constant output yeq ∈ R, one can also conclude from Fig. 4 that
the local (in)stability of such equilibrium point is determined
by the (in)stability of the feedback connection between the
transfer function F (s) and the linearization of Φ around the
equilibrium output, which is depicted in Fig. 5. The following
result summarizes these observations.

Proposition 1: Suppose that the agent’s nonlinearity φ is
bounded and that the LTI system represented by block dia-
gram in Fig. 5 is BIBO stable for γ = 0 and unstable for

6Since the blocks A(s) and G(s) in Fig. 4 correspond to asymptotically
stable linear systems (cf. Assumptions 1 and 2), one need not worry about
unstable cancelations in their feedback interconnection.
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γ := (dφ/dy)(yeq), with yeq ∈ R a constant value. Then every
solution to the original system (11), (12), (13) is globally
defined and bounded. Moreover, any equilibrium point corre-
sponding to each agent having the same constant output value
yeq ∈ R is unstable. �

The instability of the linear system in Fig. 5 depends on
the non-trivial stability analysis of the resulting Multiple-
Input/Multiple-Output (MIMO) system. However, thanks to
the symmetry of the problem (equal agents and symmetric
interconnection network), this turns out to be easily performed
through a root-locus analysis of only two Single-Input/Single-
Output (SISO) transfer functions, independently of the number
of agents involved. This result was inspired by the bifurcation
analysis proposed in [11], which was extended to account for a
symmetric interconnection structure with memory.

Lemma 7: Suppose that Assumptions 1 and 2 hold. To
determine the poles of the LTI system represented by the block
diagram in Fig. 5, in order to investigate the local linear stability
of the system shown in Fig. 4, is equivalent to find the roots
s ∈ C of the following two characteristic equations:

1− γ hL(s) = 0, 1− γ hb(s) = 0 (26)

where hL(s) := a(s)/(1 + a(s)λL(s)), and hb(s) :=
a(s)/(1 + a(s)λb(s)), with λL(s), λb(s), and a(s) defined in
(17), (18), and (20), respectively. �

Notice that the analysis of the two root-loci mentioned above
will be instrumental in Section III-C to design the nonlinearity
φ in (11b), in the sense that we will be able to choose the
value of γ := (dφ/dy)(yeq) that avoids trivial synchronization
by guaranteeing that the local linear dynamics around the
equilibrium point is unstable.

Proof of Lemma 7: The transfer function of the LTI sys-
tem represented by block diagram in Fig. 5 is given by

T (s) = (IN − γA(s) +A(s)G(s))−1 A(s)

=

(
1− γa(s)

a(s)
IN +G(s)

)−1

where we used the fact that A(s) = a(s)IN . Therefore s ∈ C

is a pole of the transfer function if and only if det(((1−
γa(s))/a(s))IN +G(s)) = 0, which is to say that −((1−
γa(s))/a(s)) is an eigenvalue of G(s). In view of Lemma 4,
we conclude that s ∈ C is pole when either one of the following
two conditions hold:

−1− γa(s)

a(s)
=λL(s) ⇔ 1− γhL(s) = 0

−1− γa(s)

a(s)
=λb(s) ⇔ 1− γhb(s) = 0

which concludes the proof. �

C. Constructive Approach to Synchronization

Our goal in this section is to provide a step-by-step procedure
to design each agent (11), particularly the nonlinear function φ
in (11b), such that: (i) there will be no unbounded solutions;

and (ii) the agents will not reach synchronization by simply
exhibiting the same constant value at their outputs:

Step 1) Determine any values yeq ∈ R for which the system
could have an equilibrium point for which all agents
exhibit the same output yeq ∈ R. In view of (19),
such yeq ∈ R must satisfy

yeq = a(0)φ ((1− λL(0)) yeq) (27)

where λL(s) and a(s) are defined in (17) and (20),
respectively. Notice that yeq = 0 will always be a
possible solution to this equation.

Step 2) Draw the two root-loci in (26) and determine the
range Γunstable ⊂ (0,∞) of values of γ for which
at least one of the root loci has an unstable root.
Note the minus sign in (26), which corresponds to
a positive feedback and changes some of the rules
normally used to sketch the root-locus.

Step 3) Verify that the LTI system F (s) in Fig. 5 is BIBO
stable, such that every solution to (11), (12), (13)
is globally defined and uniformly bounded solution.
A possible conservative approach is to ensure that
for γ ↓ 0+ all roots of both root-loci—which are the
roots of 1 + a(s)λL(s) and 1 + a(s)λb(s)—lie in
the open left-hand side complex plane, since asymp-
totic stability implies BIBO stability in this case.
Generically this will hold under the assumptions of
Theorem 3 because this result requires the agents’
transfer function a(s) to be passive and both λL(s)
and λb(s) are positive-real transfer functions (cf.
Assumption 2) and, therefore, they are passive LTI
systems too.

Step 4) Determine the largest value for σ=σn for which

inequality (8c) is satisfied, with T :=

[
Im 0
0 IN−U

]
,

U :=(1/N)	1	1′, P =Pn, A=An, B=Bn, C=Cn

and D=Dn. Determine also the largest value for
σ=σa for which inequality (8d) holds, with T :=
In+1, P =Pa, A=Aa, B=Ba, C=Ca and D=Da.

Step 5) Pick for φ a saturation function with slope at the ori-
gin equal toα∈Γunstable∩ (−∞, σn+σa) and break-
points sufficiently large so that (dφ/dy)(yeq)=α.

Remark 7 (Practical Issues): In view of Lemma 7,
Proposition 1, and Theorem 3, this guarantees that the agents
will synchronize (since α < σn + σa) and that this will not
occur by convergence to a stable equilibrium point (since
(dφ/dy)(yeq) ∈ Γunstable). In practice, typically there will still
exist equilibrium points embedded in stable manifolds. How-
ever, the local instability of the equilibria guarantees that these
manifolds have dimensions that are strictly smaller than that
of the state space and therefore the set of initial conditions
from which the system will converge to these equilibria has
Lebesgue measure zero. Among all possible values for α in
Γunstable ∩ (−∞, σn + σa), the largest value for α is typically
desirable as it will lead to trajectories that most rapidly move
away from the equilibrium point. The positions of the saturation
breakpoints also determine the saturation levels, which can be
used to enforce a desired amplitude for the oscillations [20].



TÔRRES et al.: SYNCHRONIZATION OF IDENTICAL OSCILLATORS COUPLED THROUGH A SYMMETRIC NETWORK WITH DYNAMICS 3237

The procedure outlined above may fail because the set
Γunstable ∩ (−∞, σn + σa) is empty. In this case, one would
need to redesign the agent’s transfer function a(s) to make sure
that one can get sustained synchronized oscillations. The usual
rules used to sketch the root-locus can be useful to accomplish
this task, with the caveat that we are now interested in making
the system unstable instead of stable.

D. Special Case: Electrical Network With Resistive
Interconnecting Branches

In the context of small power networks, such as the ones
relevant to the problem of designing redundant systems based
on parallel connected Uninterruptible Power Supplies (UPS)
(see, e.g., [2], [9], [29], and references therein), one could
have essentially purely resistive connecting admittances if the
cable lengths are short enough [30], i.e., g1(s) = g2(s) = . . . =
gN (s) = 1/rb in Fig. 2, for some rb > 0. The result that fol-
lows shows that for such networks one can explicitly compute
the passivity margin σn that appears in Theorem 3. Moreover,
this margin is independent of the number of agents N and
becomes very large when the resistive connecting admittances
are small.

Corollary 1: The electrical network shown in Fig. 2, under
Assumption 2, and considering the voltages v1, v2, . . . , vN
as inputs and the corresponding currents i1, i2, . . . , iN as
ouputs, with g1(s) = g2(s) = · · · = gN (s) = 1/rb and rb >
0, is input-strictly passive with respect to (ImU, ImU), when
U := (1/N)	1	1′, with passivity margin σn := (1/2rb) > 0. �

Proof of Corollary 1: Assume first that there is a proper
admittance transfer function associated with the load. In this
case, there exists a minimal state-space realization for the SISO
LTI system representing the load admittance of the form

ẋL = ALxL +BLuL, yL = CLxL +DLuL (28)

where xL ∈ R
m, uL ∈ R is a voltage input, yL ∈ R is the

corresponding current output. Using the Thevenin equivalent
circuit [31] obtained by opening the branch corresponding
to the load, one has that uL(t) = vth(t)− reqyL(t), where
req = rb/N is the Thevenin equivalent resistance, and vth(t) =

((1/N)	1′)un(t) is the resulting open-circuit voltage depending
on the value of the vector of applied voltages un(t) = ya(t) to
the electrical network. The corresponding outputs of the elec-
trical network (i.e., the corresponding currents through the con-
necting branches) are given by ynk(t) = (1/rb)(u

n
k(t)− uL(t)).

From these considerations and identifying the state vector xn of
the electrical network with the state vector associated with the
load xL, one obtains the following minimal realization (12) for
the electrical network G(s):

An =AL −
[

rb
(N + rbDL)

]
BLCL (29a)

Bn =

[
1

(N + rbDL)

]
BL

	1′ (29b)

Cn =

[
1

(N + rbDL)

]
	1CL (29c)

Dn =

(
1

rb

){
IN −

[
1

(N + rbDL)

]
	1 	1′

}
. (29d)

If instead of a proper admittance, there is a proper impedance
transfer function associated with the load, then there still exists
a minimal state-space realization (28) for the SISO LTI system
representing the load, but uL(t) ∈ R is now a current input
and yL(t) ∈ R the corresponding voltage output. By using the
Norton equivalent circuit [31] obtained by short circuiting the
branch corresponding to the load and following the same ap-
proach as before, one obtains the following minimal realization
(12) for the electrical network G(s):

An =AL −
[

N

(rb +NDL)

]
BLCL (30a)

Bn =

[
1

(rb +NDL)

]
BL

	1′ (30b)

Cn = −
[

1

(rb +NDL)

]
	1CL (30c)

Dn =

(
1

rb

){
IN −

[
1

(rb +NDL)

]
	1 	1′

}
. (30d)

On the other hand, by noticing that, for M = IN − U , 	1′M =
	1′ − (1/m)	1′	1	1′ = 0, we conclude that for both (29) and
(30) we have that BnM = 0, C ′

nM = 0, DnU = UDn, and
D′

nM = (1/rb)(IN − U). Therefore, the commuting condi-
tions in (16) hold. Moreover, (8c) is equivalent to find P =
Pn = P ′

n > 0, such that

T ′
[
Qn Sn

S′
n Rn

]
T � 0

Qn = PnAn +A′
nPn � 0

Rn = 2 [2σn − 1/(rb)] (IN − U) � 0

Sn = 0. (31)

From Assumption 2, since the electrical network is an asymp-
totically stable LTI system,7 we know that there exists a positive
definite matrix Pn such that PnAn +A′

nPn < 0. And since
(IN − U) has an eigenvalue at 0 and the remaining equal to
1, we conclude that (IN − U) is positive semi-definite. This
means that (31) is feasible if, and only if, σn � (1/2rb). �

E. Special Case: RLC Agent Dynamics

Inspired by the dynamics of a (passive) RLC band-pass filter,
we consider agents dynamics (11a) with

Aa =

[
0 1

la

− 1
ca

− 1
raca

]
Ba =

[
0
1
ca

]
Ca = [ 0 1 ] Da = 0 (32)

a(s) =
s
ca

s2 + ω0

Q s+ ω2
0

, ω2
0 :=

1

laca
, Q :=

ra
laω0

. (33)

Since a(0) = 0, the only value yeq ∈ R for which the overall
system could have an equilibrium point for which all agents

7Actually, it is possible to show that every such symmetric electrical network
with resistive only branches is asymptotically stable, and Assumption 2 is
automatically fulfilled.
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Fig. 6. Three agents interconnected by means of a symmetric star-shaped
electrical network to supply energy to the reactive load represented by R1, R2,
C1 and L1.

exhibit the same output must be yeq = 0 [cf. (27)]. Therefore,
in applying the procedure outlined in Section III-C to select the
nonlinearity φ, we only need to make sure that (dφ/dy)(0) ∈
Γunstable ∩ (0, σn + σa).

The result that follows shows that the passivity margin of
such agents is solely determined by the value of the resistance
ra and that one can independently select the passivity margin,
the center frequency ω0, and the quality factor Q. A high quality
factor will result in low harmonic distortion for the agents’
outputs, because each agent will filter out all but the input
harmonic with frequency close to ω0 (cf. Fig. 4).

Lemma 8: The agent subsystem (11a) with (32) is output-
strictly passive in the usual sense, i.e., it is output-strictly
passive with respect to ({0},{0}), with passivity margin σa =
1/(2ra) > 0. Moreover, one can select the RLC parameters
to obtain arbitrary positive values for the passivity margin σa,
center frequency ω0, and quality factor Q by setting

ra =
1

2σa
, la =

1

2Qσaω0
, ca :=

2Qσa

ω0
. (34)

�
Proof of Lemma 8: For these agents, (8d) is equivalent to

P = Pa = P ′
a > 0, PaAa +A′

aPa + 4σaC
′
aCa � 0, PaBa =

C ′
a, because Da = 0. Since Pa =

[
p11 p12
p12 p22

]
, we conclude

from PaBa = C ′
a that we must have p12 = 0, and p22 = ca. In

this case, PaAa +A′
aPa + 4σaC

′
aCa � 0 becomes[

0 p11

la
− 1

p11

la
− 1 4σa − 2

ra

]
� 0 ⇔ p11 = la, σa � 1

2ra

which confirms that the passivity margin is indeed 1/(2ra).
The formulas in (34) are then obtained by solving (33) for the
desired values of ω0 and Q. �

IV. NUMERICAL RESULTS

In this section we provide numerical results for the inter-
connection network shown in Fig. 6, with N = 3 agents with
RLC dynamics (see Section III-E). The following parameters
were used for the agents: ω0 = 2π × 60 rad/s, Q = 1500, σa =
0.0025, leading through (34) to ra = 200 Ω, la = 0.530 mH,

Fig. 7. Root-loci corresponding to the characteristic equations in (26). The
“∗” denotes the position of the poles for γ = 2.0025 showing that 1−
γhL(s) = 0 has a pair of complex conjugate unstable roots, making this a suit-
able value for the parameter α. (a) Root locus of hL(s); (b) root locus of hb(s).

ca = 13.263 mF. Two cases were considered for the network:
(i) lb = 0, and (ii) lb = 1 mH. In both cases the following
parameters were used: rb = 0.25 Ω, R1 = 3 Ω, L1 = 1 mH,
C1 = 100 μF, R2 = 100 Ω.

For lb = 0, in view of Corollary 1, the network is input-
strictly passive with respect to (ImU, ImU), U := (1/N)	1	1′

with passivity margin σn := 1/(2rb) = 2. The associated root
loci in (26) are depicted in Fig. 7 and exhibit at least one
unstable root for γ � 0.17. To maximize the instability of the
pole at the origin, we selected a value for α just below the
upper bound of σa + σn = 2.0025, below which Theorem 3,
condition C10, can guarantee synchronization. The nonlinearity
φ was chosen to be a saturation function with slope at the
origin equal 2α and breakpoints at ±15.59. The values of these
breakpoints are selected to obtain oscillations with amplitude
of 120 volts. Fig. 8 shows a simulation of the closed-loop
for which the agents were initialized with very distinct initial
conditions to emphasize the global nature of the convergence
results. At steady state, the agents’ outputs exhibit a Total
Harmonic Distortion—THD of about 0.41%.

When lb = 1 mH, the electrical network is not input-strictly
passive, and condition C10 in Theorem 3 cannot be applied
anymore. To see this, notice that the direct application of input
voltage signals, at t = 0, will not result on instantaneous power
dissipation in the resistances rb if the currents in the intercon-
necting branches are initially zero. However, condition C11
still applies, because the electrical network is output-strictly
passive with respect to (ImU, ImU), with passivity margin
σn = 0.125 = (rb/2) > 0, as it can be verified by computing
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Fig. 8. Simulated results for the 3-agent network shown in Fig. 6, with lb = 0.
We can see in plot 8(a) that the voltage amplitudes take less than 0.8 sec to reach
their steady-state values. The plot 8(b) is focused on the first 0.2 sec of the same
simulation, where we can see that the agents synchronize much faster, in less
than 30 ms.

the LMI (8d). In addition, since the agent subsystem is output-
strictly passive with respect to ({0},{0}) (c.f. Lemma 8),
incidentally the agent subsystem is also input-feedforward pas-
sive with respect to ({0},{0}) with passivity margin σa = 0.
By performing the same root loci analysis in Lemma 7, but
now considering the new interconnecting admittance gb(s) =
(lbs+ rb)

−1, one can show that there is at least one unsta-
ble root for γ � γmin = 0.1005. From Theorem 3, condition
C11, synchronization of the inputs to the electrical network is
guaranteed by choosing the nonlinearity φ as a saturation
function with slope at the origin equal 1/(2α) � γmin, with
1/(2α) > (1/σn). In addition, the feedback composition be-
tween agents’ LTI subsystems and the electrical network, de-
picted in Fig. 4 as F (s), is asymptotically stable (this can be
confirmed in the root loci analysis for γ = 0). This fact together
with the network symmetry and the synchronization of agents’
inputs are sufficient to guarantee that the outputs of the agents
will synchronize as shown in Fig. 9. The saturation function
breakpoints were adjusted to ±9.5, and the slope 1/(2α) = 10,
resulting in an amplitude of 120 volts in steady-state, with THD
of less than 0.3%.

V. CONCLUSION

We analyzed the synchronization of multiple identical non-
linear oscillators through a multiple-input/multiple output sym-
metric dynamical network and provide a constructive procedure
for the design of the oscillators relying on sufficient conditions
for output synchronization. These conditions are related to a

Fig. 9. Simulated results for the 3-agent network shown in Fig. 6, with lb =
1 mH. We can see in plot 9(a) that the voltage amplitudes take approximately
1 sec to reach their steady-state values. The plot 9(b) is focused on the first
0.2 sec of the same simulation, where we can see that the agents synchronize
much faster, in less than 140 ms, but still slower than the case lb = 0.

newly introduced notion of passivity with respect to input/
output manifolds.

Two key aspects distinguish this work from most of the
previous research in this area: the coupling between oscillators
persists even after they attain synchronization, and the intercon-
nection structure is a dynamical system.

The conditions provided to establish synchronization are
sufficient but not necessary, which leaves room for improving
the results presented. In fact, simulation studies indicate that
more relaxed conditions should be possible. On the other hand,
at least for the special case of resistive-only interconnecting
branches (Section III-D), the sufficient conditions do not de-
pend on the number N of interconnected agents.

While we establish that the inputs and outputs of the oscil-
lators asymptotically synchronize with persistent oscillations,
we do not provide explicit mechanisms to control the am-
plitude of the oscillations, or to verify that the oscillations
will be almost sinusoidal signals. Since this is crucial for the
design of electric power supplies, the constructive procedure
presented here needs to be augmented with a mechanism to
regulate the magnitude of the oscillations (the authors have
some preliminary results in this direction [20], [21], but for-
mal convergence proofs are still lacking), and to enforce a
prescribed upper bound on the Total Harmonic Distortion
(THD) associated with the signals generated by the nonlinear
oscillators.
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APPENDIX

Proposition 2: Given N vectors a1, a2, . . . , aN ∈ R
n and N

scalars α1, α2, . . . , αN > 0∥∥∥∥∥
N∑

k=1

ak

∥∥∥∥∥
2

�

⎛
⎝ N∑

j=1

α−1
j

⎞
⎠ N∑

k=1

αk‖ak‖2.

�
Proof of Proposition 2: We prove this result by induction

on N . The basis of induction N = 1 holds with equality. To
prove the induction step, we pick some N > 1 and conclude
from Young’s inequality that for every ε > 0∥∥∥∥∥

N∑
k=1

ak

∥∥∥∥∥
2

�
∥∥∥∥∥

N∑
k=1

ak

∥∥∥∥∥
2

+ ‖aN‖2 + 2

∥∥∥∥∥
N∑

k=1

ak

∥∥∥∥∥ ‖aN‖

� (1 + ε−1)

∥∥∥∥∥
N−1∑
k=1

ak

∥∥∥∥∥
2

+ (1 + ε)‖aN‖2.

Using the induction hypothesis, we then obtain∥∥∥∥∥
N∑

k=1

ak

∥∥∥∥∥
2

� (1 + ε−1)

⎛
⎝N−1∑

j=1

α−1
j

⎞
⎠N−1∑

k=1

αk‖ak‖2

+ (1 + ε)‖aN‖2.

The result follows from setting:

ε =

⎛
⎝N−1∑

j=1

α−1
j

⎞
⎠αN ⇔ 1 + ε =

⎛
⎝ N∑

j=1

α−1
j

⎞
⎠αN

⇔ (1 + ε−1)

⎛
⎝N−1∑

j=1

α−1
j

⎞
⎠ =

N∑
j=1

α−1
j

�
Proof of Lemma 4: Defining ĝ(s) = gb(s)

2/(Ngb(s) +
gL(s)), from (14) one has that

λk(s)vk = G(s)vk =
[
gb(s)IN − ĝ(s)	1 	1′

]
vk

⇒
[
gb(s)− λk(s)

ĝ(s)

]
︸ ︷︷ ︸

μk

vk = 	1	1′vk

and therefore, λk(s)=gb(s)−μkĝ(s), with the eigenvalues μk

of the constant matrix E = 	1	1′ given by μ1 = N , μ2 = 0, μ3 =
0, . . . , μN = 0. In this case, λ1(s) = gb(s)−Nĝ(s) = λL(s),
and λ2(s) = λ3(s) = · · · = λN (s) = gb(s) = λb(s). Since
λb(s) = gb(s) and λL(s) = ((N/gL(s)) + (1/gb(s)))

−1, it
follows that both λL(s) and λb(s) are admittances of equivalent
circuits, since λL(s) corresponds to the series connection of
the admittance gb(s) and an admittance gL(s)/N . From the
assumption that the electrical network is comprised only by
passive elements, it follows that λL(s) and λb(s) are positive
real transfer functions [17]. In addition, from (14), one has that

G(s)	1 =

(
gb(s)−

Ngb(s)
2

Ngb(s) + gL(s)

)
	1 = λL(s)	1.

�

Proof of Lemma 5: First notice that A(s) = a(s)IN ⇒
UA(s) = A(s)U , i.e., system A(s) commutes with the pair of
matrices U , U ∈ R

N×N . This, together with the assumption
that UG(s) = G(s)U , leads to

[I +A(s)G(s)]U =U [I +A(s)G(s)]

U [I +A(s)G(s)]−1 = [I +A(s)G(s)]−1 U

with the last step obtained by multiplying the left and right
hand sides of the previous expression by [I +A(s)G(s)]−1.
Therefore, since A(s)U = UA(s)

F (s)U = [I +A(s)G(s)]−1 A(s)U

=U [I +A(s)G(s)]−1 A(s) = UF (s).

�
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