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Abstract

In this report we collect and summarize mathematical results and formalism appropri-
ate to describing one-dimensional drift-diffusion processes (stochastic ordinary differential
equations) and related first passage and probability density evolution problems, governed by
the backward and forward Kolmogorov (Fokker-Planck) equations respectively. We start by
reviewing the Neyman-Pearson and Sequential Probability Ratio tests as optimal strategies
for choosing between two alternative hypotheses in the presence of accumulating, noisy data.
The continuum analog of both of these tests is a constant drift-diffusion process, and we give
direct proofs of optimality with respect to reward rate of such a process in the broader class of
Ornstein-Uhlenbeck processes, both in terms of first passages and density evolution. These
correspond to the free response and interrogation protocols used in psychological testing.
We end by considering the effects of variable gain on selected inputs to drift-diffusion and
Ornstein-Uhlenbeck processes, and deriving optimal gain schedules for time-varying signal-
to-noise ratios. Parts of this report are an extended version of the appendix to [1]; others
appear in the paper [2].

1 Introduction

There is a substantial literature in psychology on drift-diffusion processes as models for simple
decision making, especially in two-alternative forced-choice (TAFC) tasks. Laming’s text [3]
introduced the ‘random walk model’ of choice reaction times, although Stone [4] had earlier
applied a statistical procedure, the sequential probability ratio test, to the interpretation of
behavioral data. Ratcliff [5] and Ratcliff et al. [6] provide more recent examples and critical
reviews. The models are discussed in a largely phenomenological manner: parameter fitting to
individual subjects allows accurate reproduction of reaction time distributions and error rates,
and accounts for more subtle effects, but how the drift-diffusion process is realised at the neural
level is not addressed.

However, recent in vivo recordings in behaving primates (e.g. [7]), as well as growing ev-
idence from functional magnetic resonance imaging (fMRI) on human subjects, suggest that
certain groups of neurons (e.g. in monkey lateral interparietal area and frontal eye fields) inte-
grate incoming stimuli in that their mean firing rates increase (approximately linearly) until a
threshold is reached and a decision is made, signalled, for example, by saccade initiation. These
data are very suggestive of drift-diffusion dynamics. (Various mechanisms for neural integration
have been proposed, e.g. [8, 9, 10].) At the same time, several authors have suggested that opti-
mal decision making ideas from information theory and statistical decision theory may provide
a guide to neural realizations [11, 12, 13, 14]. It is therefore useful to review some key properties
of drift-diffusion and related models, and to analyse them in more explicit detail than appears
to have been done previously. For example, while a numerically generated plot of reward rate
versus threshold, similar to (the inverse of) Figure 1 below, appears in [13], to our knowledge
explicit formulae have not previously been published.

In this report we collect and describe mathematical details necessary for solution of first
passage and boundaryless drift-diffusion problems. We consider both pure (constant and time-
dependent) drift and Ornstein-Uhlenbeck processes. The main tools are simple notions from
applied probability, the theory of stochastic ordinary differential equations, and classical per-
turbation and asymptotic methods. Much of the earlier work centered on discrete random walk

1



models, and while exact solutions are available, they are frequently awkward expressions in-
volving infinite sums (cf. Feller [15, Chapter XIV]). Here we focus on continuous models in the
form of stochastic ordinary differential equations, although we first describe how these arise as
limits of a discrete statistical process: the sequential probability ratio test, which is the opti-
mal method of deciding between two alternatives on the basis of noisy accumulating data. It
turns out that the optimal continuous processes admit rather simple exact formulae for such
behavioral observables as mean reaction times and error rates.

Section 2 reviews the classical probability ratio (or maximum likelihood) test, and the se-
quential probability ratio test, and describes how it becomes a drift diffusion process in the
continuum limit. Sections 3 considers the free response protocol, in which subjects make choices
in their own time, and Section 4 addresses the interrogation protocol, in which a decision is
deferred until a cue is presented. The report ends with a discussion of optimal strategies for
varying gain in the presence of data whose signal-to-noise ratio varies with time.

2 Probability Ratio Tests

Suppose we wish to decide whether a random sequence Y = y1, y2, · · · , yN of N independent ob-
servations is drawn from the probability distribution p0(y) (hypothesis H0) or p1(y) (hypothesis
H1). Neyman and Pearson [16] showed that the optimal procedure is to calculate

p1N

p0N
=
p1(y1)p1(y2) · · · p1(yN )

p0(y1)p0(y2) · · · p0(yN )
, (1)

and to accept hypothesis H0 (resp., H1) if p1N

p0N
< K (resp., p1N

p0N
≥ K), where K is a constant

determined by the desired level of accuracy for one of the hypotheses. Setting K < 1 increases
the reliability of the decision to accept H0, at the expense of reducing the reliability of accepting
H1. Since the piN , i = 0, 1 are the probabilities of Y occurring under the hypotheses Hi, setting
K = 1 reduces the procedure to simply determining which hypothesis is most likely (determining
‘maximum likelihood’). In this case, if the hypotheses occur with equal probability, the procedure
guarantees the smallest overall error rate.

However, the Neyman-Pearson procedure is only optimal when the sequence size N is fixed

in advance; when this requirement is relaxed, the optimal procedure is the sequential probability

ratio test, hereafter denoted SPRT. Here A0 and A1 are two given constants, and observations
continue as long as p1n

p0n
satisfies the inequality

A0 <
p1n

p0n
< A1 . (2)

The hypothesis H0 (resp., H1) is accepted at step n as soon as p1n

p0n
≤ A0 (resp., p1n

p0n
≥ A1).

The SPRT was independently developed during World War II by Abraham Wald [17], who was
introduced to the problem by Milton Friedman and W. Allen Wallis while all were members of
the Statistical Research Group at Columbia University [18], and by George Barnard [19, 20] in
Great Britain. Furthermore, Alan Turing and coworkers at Bletchley Park employed the SPRT
to break the Enigma code used by the German navy in World War II [21, 13]. Sadly, both Wald
and Turing died prematurely: Wald died in a plane crash en route to a scientific presentation
in India in 1950, and Turing (apparently) committed suicide in 1954. The field of sequential
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analysis, invigorated by the SPRT, has continued to develop as a very active research area: see,
e.g., [22, 23, 24, 25, 26, 27]; also, see [26] for more on the history of the SPRT.

2.1 Optimality of the sequential probability ratio test

The SPRT is optimal in the following sense. Let P (rej Hi|Hi) be the probability that hypothesis
Hi is true but rejected, i = 0, 1. Also, let Ei(N) be the expected value for the number of
observations required for a decision to be reached when hypothesis Hi is true, i = 0, 1. We then
have the following theorem first proved in [28]; here we sketch the simpler proof given in [29],
cf. [22].

SPRT Optimality Theorem: Among all tests (fixed sample or sequential) for
which

P (rej Hi|Hi) ≤ αi, i = 0, 1,

and for whichE0(N) andE1(N) are finite, the SPRT with error probabilities P (rej Hi|Hi) =
αi, i = 0, 1, minimizes both E0(N) and E1(N).

Sketch of Proof. The proof involves solving the following auxiliary problem. Let w0 (resp., w1)
be the loss associated with choosing H1 when H0 is true (resp., choosing H0 when H1 is true).
Furthermore, let c be the cost associated with each observation. When Hi holds, the risk Ri is
defined to be the sum of the expected loss due to an incorrect decision and the expected cost:

Ri = αiwi + cEi(N), i = 0, 1.

Finally, suppose that a large number of trials are considered, and H1 (resp., H0) is true with
probability Π (resp., 1 − Π). (Note that we adopt the opposite convention to that of [29,
pp. 104-110].) The total average risk associated with a decision procedure δ is then

r(Π, c, w0, w1, δ) = (1 − Π)R0 + ΠR1 = (1 − Π)[α0w0 + cE0(N)] + Π[α1w1 + cE1(N)] . (3)

The proof proceeds by showing that the SPRT minimizes r(Π, c, w0, w1, δ) in the following sense:
given any SPRT with A0 < 1 < A1 (the specific values of A0 and A1 determine the error rates
α0 and α1, see below) and any 0 < Π < 1, there exist positive constants c, w0 and w1 such that
the SPRT minimizes r(Π, c, w0, w1, δ) for those values of Π, c, w0, and w1. We refer the reader
to [29, 22] for details of this argument. Now, let δ∗ be a different decision procedure with error
probabilities α∗

i ≤ αi, and finite expected sample sizes E∗
i (N), i = 0, 1. Then

r(Π, c, w0, w1, δ
∗) = (1 − Π)[α∗

0w0 + cE∗
0(N)] + Π[α∗

1w1 + cE∗
1(N)] .

From the above, we know that for any 0 < Π < 1, we can choose specific (positive) values of c,
w0, and w1 such that

r(Π, c, w0, w1, δ) ≤ r(Π, c, w0, w1, δ
∗),

that is,

(1 − Π)[α0w0 + cE0(N)] + Π[α1w1 + cE1(N)] ≤ (1 − Π)[α∗
0w0 + cE∗

0(N)] + Π[α∗
1w1 + cE∗

1(N)]

≤ (1 − Π)[α0w0 + cE∗
0(N)] + Π[α1w1 + cE∗

1(N)] .

3



Thus,
(1 − Π)E0(N) + ΠE1(N) ≤ (1 − Π)E∗

0(N) + ΠE∗
1(N) .

Since this is valid for any Π, we conclude that

E0(N) ≤ E∗
0(N), E1(N) ≤ E∗

1(N) .

The constants A0 and A1 in the SPRT are related to the error rates α0 and α1 as follows [17,
29]. Consider the set C1 of n-length sequences Y such that the SPRT chooses H1 when Y occurs.
That is, for any Y ∈ C1,

p1(y1)p1(y2) · · · p1(yn) ≥ A1p0(y1)p0(y2) · · · p0(yn).

Integrating this inequality over all of C1,

p1(C1) ≥ A1p0(C1), (4)

where pj(C1) is the probability of making choice 1 given that hypothesisHj is true. By definition,
p1(C1) ≥ 1 − α1 and p1(C0) ≤ α0, so that

1 − α1 ≥ A1α0 ⇒ A1 ≤ 1 − α1

α0
.

Similarly,

α1 ≤ A0(1 − α0) ⇒ A0 ≥ α1

1 − α0
.

The inequalities fail to be equalities because it is possible to overshoot the boundaries A0 or A1.
However, in practice, there is typically little penalty in assuming equality [17, 29]:

A0 =
α1

1 − α0
, A1 =

1 − α1

α0
. (5)

Note that, when using an SPRT with A0 and A1 defined in this way, the condition that A0 <
1 < A1 in the proof becomes

α1

1 − α0
< 1 <

1 − α1

α0
. (6)

Thus, the proof requires that α1 < 1−α0. Now, 1−α0 is the probability of choosing H0 when H0

is true. Thus, the proof requires that the probability of choosing H0 when H1 is true is less than
the probability of choosing H0 when H0 is true. Similarly, it requires that α0 < 1 − α1, that is,
the probability of choosing H1 when H0 is true is less than the probability of choosing H1 when
H1 is true. These are, of course, very reasonable conditions for a decision making procedure.
Wald [17] also gives approximate expressions for the expected numbers of observations Ei(N).
Using (5), these may be written

E1(N) ≈
α1 log

(
α1

1−α0

)

+ (1 − α1) log
(

1−α1

α0

)

E1

(

log
(

p1(y)
p0(y)

)) (7)

E0(N) ≈
(1 − α0) log

(
α1

1−α0

)

+ α0 log
(

1−α1

α0

)

E0

(

log
(

p1(y)
p0(y)

)) , (8)
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where Ei

(

log
(

p1(y)
p0(y)

))

is the expected value of the argument when Hi is true, i = 0, 1.

We also note that the proof in [29] applies to the generalized case of decisions based on
biased data. Suppose that the subject has been told (or has deduced) that the probability of
drawing from the distribution p1(y) (resp. p0(y)) is Π (resp., 1−Π). Then the SPRT continues
as long as

A0 <
Πp1n

(1 − Π)p0n
< A1.

Equivalently, the thresholds Aj are simply multiplied by (1−Π)/Π; i.e., observations are taken
as long as:

1 − Π

Π
A0 <

p1n

p0n
<

1 − Π

Π
A1 . (9)

Thus if the ‘upper’ alternative is more probable (Π > 1/2) both thresholds are shifted down,
and vice versa.

2.2 The sequential probability ratio test optimizes reward rate

Modestly extending the SPRT Optimality Theorem stated above, we now show that the pro-
cedure also optimizes the reward rate introduced in [13]. This requires allowing error rates to
vary as well as seeking to minimize the number of observations required.

As above, we define the error rates (assumed equal) to be

ER = P (rej H0|H0) = P (rej H1|H1) = ǫ ,

and the mean reaction time RT to be the average time needed to make a decision. Furthermore,
we define the reward rate RR to be the probability of a correct response divided by the average
time between responses. Allowing an imposed delay D ≥ 0 between trials and an additional
penalty delay Dp ≥ 0 after incorrect responses, this is:

RR =
1 − ER

RT +D +DpER
. (10)

For a given decision procedure δ∗, suppose that RR is maximized for ER = ǫ∗. (Determining
ǫ∗ may be difficult in practice, because different values for ER generally correspond to different
values for RT.) Now, consider the SPRT δ with ER = ǫ∗. From the SPRT Optimality Theorem,
RT(δ, ǫ∗) ≤ RT(δ∗, ǫ∗). Thus,

RR(δ∗, ǫ∗) =
1 − ǫ∗

RT(δ∗, ǫ∗) +D +Dpǫ∗

≤ 1 − ǫ∗

RT(δ, ǫ∗) +D +Dpǫ∗
= RR(δ, ǫ∗) ;

that is, one can always find an SPRT which yields a reward rate at least as high as that obtained
from the decision procedure δ∗. Furthermore, there will be a particular value of ǫ which gives
the SPRT (and hence the decision procedure) with the largest possible reward rate. This ǫ will
also be difficult to determine in practice because different values for ER generally correspond to
different values from RT: see below. Note that ǫ sets the decision thresholds of the random walk
model (cf. (13)). Thus, in the next section, we will be particularly interested in determining the
thresholds for our constant drift-diffusion equation which give the highest possible reward rate.
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2.3 Random walks and the continuum limit

Following [4], Laming applies the SPRT to a two-alternative forced-choice task in [3]. In such a
task, on each trial a randomly chosen stimulus S0 or S1 is shown to the subject. The subject is
told to give a response Ri if he or she perceives stimulus Si, i = 0, 1. The response made (which
may or may not be correct) and the reaction time (RT) taken to make it are recorded for each
trial.

Laming models this procedure by supposing that decisions are made based on accumulation
of information. Specifically, for each trial the subject makes a series of brief observations of
the stimulus represented by the random sequence y1, y2, · · · , yn. The increment of information
gained from (independent) observation yr is defined to be

δIr = log

(
p1(yr)

p0(yr)

)

, (11)

or the ‘log likelihood ratio’ [12, 13], where pi(y) is the probability distribution for y given that
stimulus Si was presented, i = 0, 1. (Implicitly, the subject has some internal representation of
p0(y) and p1(y).) At the nth observation, the total information accumulated is

In =
n∑

r=1

δIr =
n∑

r=1

log

(
p1(yr)

p0(yr)

)

. (12)

Observations continue as long as I0 < In < I1, where I0 and I1 are constants. The response
R0 (resp., R1) is made at step n if In ≤ I0 (resp., In ≥ I1). Since, from (1),

In = log

(
p1n

p0n

)

,

we see that the accumulation of information according to this formulation is equivalent to making
decisions using the SPRT with I0 = logA0 and I1 = logA1, cf. [17, 13]. For example, if the
desired error rates are α0 = α1 = ǫ, which is reasonable if the signals S0 and S1 are equally
salient, from (5) we take

I0 = log

(
ǫ

1 − ǫ

)

< 0, I1 = log

(
1 − ǫ

ǫ

)

= −I0 > 0, (13)

cf. [3]. (The signs follow from the assumed inequality (6).) If we require equal error rates in the
case of signals of unequal salience, with Π denoting the probability of S1, then multiplying the
boundaries of (5) and taking logs we find:

I0 = log

(
1 − Π

Π

)

+ log

(
ǫ

1 − ǫ

)

, I1 = log

(
1 − Π

Π

)

+ log

(
1 − ǫ

ǫ

)

. (14)

To maintain I0 < 0 < I1 we must select an error rate lower than the smaller of Π and 1 − Π.
Thus, from (12), in logarithmic variables the trajectory In is a discrete-time, biased random

walk with initial condition zero: a new increment of information arrives, and the trajectory is
updated, as the timestep advances from n→ n+ 1 (recall that the increments δIr are assumed
to be independent and identically distributed). Hereafter we treat the continuous-time limit
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I(t) of this process, in which infinitesimal increments of information arrive at each moment in
time (see references in [29]). This limit must be taken with some care in order to preserve the
variability present in (12). Up to an unimportant scale factor between ‘timesteps’ n and the
continuous time t, the limiting procedure is as follows. Let the δIr have mean m and variance
D2 (assumed finite). Then define the family (indexed by N = 1, 2, ...) of random functions of
t ∈ [0, T ], where T is some large time, as follows:

IN (t) =
1√
N

k∑

r=1

(δIr −m) +
1

N

k∑

r=1

δIr , where k = ⌊Nt/T ⌋ . (15)

Here, ⌊Nt/T ⌋ is the largest integer smaller than Nt/T . Note that the first term of (15) is nor-
malized by 1/

√
N and the second by by 1/N , reflecting the different rates at which fluctuations

and means accumulate as the random increments are summed. For any N , IN (t) has mean
m⌊t/T ⌋ and variance D2⌊t/T ⌋; e.g., from (12), In has mean mn and variance D2n. Further-
more, the Donsker Invariance Principle (see Thm. 37.8 of [30]), together with the Law of Large
Numbers, implies that as N → ∞

IN (t) ⇒ DW (t) +mt ≡ I(t) , (16)

where W (·) is a Wiener process (see below) and the convergence of the random functions IN (·)
is in the sense of distributions. In other words, the limiting process I(t) satisfies the stochastic
differential equation

dI = mdt+DdW , I(0) = 0 , (17)

with boundaries I0 < 0 < I1. The drift m and variance D of the δIr and hence of (17) depend
upon the distributions pi(y), cf. (11). For example, in the case of Gaussians

p0(y) =
1√

2πσ2
e−(y−µ0)2/(2σ2) , p1(y) =

1√
2πσ2

e−(y−µ1)2/(2σ2) , (18)

with µ1 > µ0, we have

δIr = log

(
p1(yr)

p0(yr)

)

=
µ1 − µ0

σ2

(

yr −
µ0 + µ1

2

)

, (19)

and if Si is presented, the expected value of yr is E(yr) = µi, and the variance is V ar(yr) = σ2.
Thus, taking expectations and substituting in (19), we obtain

E(δIr) = ±(µ1 − µ0)
2

2σ2
= m, (20)

(the + applies if S1 is presented, the − if S0), and in both cases

V ar(δIr) = µ1 − µ0 = D2, (21)

cf. [12, 13]. If each incremental observation δIr is composed of many subobservations (for
example, from different regions of the visual field, or from large populations of neurons), this
Gaussian assumption is justified by the Central Limit Theorem.
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In the particular case of (19) in which µ1 = −µ0 = A, σ = c, appropriate to tasks such as
the ‘moving dots’ paradigm in which the alternative stimuli are of equal clarity (e.g. [7]), the
simplified form of (19) implies that the accumulating information In is simply a scaled version
of the running total of observations yr:

δIr =
2A

c2
yr ⇒ In =

n∑

r=1

δIr =
2A

c2

n∑

r=1

yr
def
=

2A

c2
yn . (22)

Assuming without loss of generality that S1 is presented, the yr have mean A (and variance c2)
so that, in the continuous time limit analogous to (15), yn converges to y(t), which satisfies the
drift-diffusion stochastic differential equation:

dy = Adt+ c dW ; y(0) = 0 . (23)

The ‘logarithmic’ SPRT involving observations δIr is therefore equivalent to solving the first
passage problem defined by (23) with thresholds y = z1 = c2

2AIi, and Ii as in (13-14).
In the event of unequal salience (Π 6= 1/2), rather than employing the asymmetric boundaries

of (14) we may transform by letting y 7→ y + c2

2A log
(

Π
1−Π

)

, and consider the process (17) with

biased initial data

y(0) =
c2

2A
log

(
Π

1 − Π

)

(24)

and symmetric boundaries

−z < 0 < z =
c2

2A
log

(
1 − ǫ

ǫ

)

. (25)

Thus, when Π 6= 1/2, the process starts closer to the threshold corresponding to the more
probable alternative. We study these and more general drift-diffusion problems in the following
sections.

We emphasize that the constant drift stochastic differential equation (17) or (23) is a par-
ticular limit of the discrete random walk occurring in the SPRT or Neyman-Pearson tests, and
that more general stochastic differential equations, such as Ornstein-Uhlenbeck processes, corre-
spond to other (i.e. non-optimal) decision strategies. In the following sections we analyse these
stochastic processes in both unconstrained (free response) and time-constrained (interrogation)
contexts.

3 Optimal Decisions for the Free Response Protocol

As suggested by the above discussion, we model the decision-making process for the two-
alternative forced-choice task as a one-dimensional drift-diffusion process on the x-axis with
two (symmetric) thresholds x = ±z. The drift term represents the weight of evidence in favor
of one alternative; diffusion arises from unmodelled inputs, represented as white noise. We con-
sider constant and linear (Ornstein-Uhlenbeck) drift processes, both of which arise naturally in
connectionist models of such tasks [1]. In the free response protocol, in which subjects are free
to respond at any time after stimulus onset, we assume that a decision is made when the sample
path first crosses either threshold; thus, we have a first passage problem. Here we summarize
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the derivation of the probabilities of first passages through the thresholds, and of first passage
times to either threshold, from the backward Kolmogorov or Fokker-Planck equation. These
in turn represent expected error and %-correct rates and mean reaction times. We also derive
expressions for the reward rate for these processes, and show explicitly that the constant drift
process allows higher reward rates than are possible from an Ornstein-Uhlenbeck process.

3.1 General considerations

Suppose we have the stochastic differential equation

dx = g(x) dt+
√

D(x) dW , (26)

where (first) passage of the trajectory through x = a (resp., x = b) corresponds to an incorrect
(resp., correct) decision. Here W (t) is a standard Wiener process. Recall that a standard Wiener
process (often called Brownian motion) on the interval [0, T ] is a random variable W (t) that
depends continuously on t ∈ [0, T ] and satisfies the following [31, 32]:

• W (0) = 0.

• For 0 ≤ s < t ≤ T ,
W (t) −W (s) ∼

√
t− sN(0, 1) ,

where N(0, 1) is a normal distribution with zero mean and unit variance. Therefore, the
process is often referred to as Gaussian.

• For 0 ≤ s < t < u < v ≤ T , W (t) −W (s) and W (v) −W (u) are independent.

In numerical simulations, the standard Wiener process is discretized with a timestep dt as

dW ∼
√
dtN(0, 1) .

The probability Πa(x0) of the first passage being through x = a, given that the starting
point is x0, is found from the boundary value problem (see equation (5.2.186) of [31])

g(x0)Π
′
a(x0) +

D(x0)

2
Π′′

a(x0) = 0 ,

Πa(a) = 1, Πa(b) = 0 .

This follows from the backward Kolmogorov or Fokker-Planck equation [31]. Letting

ψ(x) = exp

(∫ x

a

2g(y)

D(y)
dy

)

, (27)

we obtain the error rate

ER = Πa(x0) =
F b

x0

F b
a

, (28)

where

F x2

x1
=

∫ x2

x1

dy

ψ(y)
. (29)
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(Note that equations (5.2.189) and (5.2.190) of [31] are incorrect.) The probability that a correct
decision is made is

1 − ER =
F x0

a

F b
a

. (30)

The mean first passage time T (x0), where the starting point is x0 and passage is through
x = a or x = b, is found from the boundary value problem (see equation (5.2.154) of [31])

g(x0)T
′(x0) +

D(x0)

2
T ′′(x0) = −1 ,

T (a) = T (b) = 0.

This also follows from the backward Kolmogorov or Fokker-Planck equation [31]. Letting

f(y) =
2

ψ(y)

∫ y

a

ψ(s)

D(s)
ds, Gx2

x1
=

∫ x2

x1

f(y)dy , (31)

the mean reaction time is (see equation (5.1.158) of [31]).

RT = T (x0) =
F x0

a Gb
x0

− F b
x0
Gx0

a

F b
a

. (32)

As in §2, we define the reward rate RR to be the probability of a correct response divided
by the average time between responses. Allowing an imposed delay D ≥ 0 between trials and
an additional penalty delay Dp ≥ 0 after incorrect responses,

RR =
1 − ER

RT +D +DpER
. (33)

We will find it more convenient to consider 1/RR, which, using (28), (32), and (33), may be
written as:

1

RR
= D +Gb

x0
+ (D +Dp −Gx0

a )
F b

x0

F x0
a
. (34)

3.2 The constant drift-diffusion equation

As our first example, consider the constant drift-diffusion equation

dy = Adt+ c dW , y(0) = y0 , (35)

with thresholds ay = −z, by = z. Without loss of generality, we take A > 0. Letting y = Ax
and defining

z̃ =
z

A
> 0, ã =

(
A

c

)2

> 0, (36)

equation (35) becomes

dx = dt+
1√
ã
dW (37)

with thresholds a = −z̃, b = z̃, and initial condition x0 = y0

A : a special case of (26) with
g(x) = 1, D(x) = 1

ã .

10



3.2.1 Error rates, mean reaction times, and reward rates

From (27), (29) and (31) it is readily shown that

ψ(y) = e2ã(y+z̃), f(y) = 1 − e−2ã(y+z̃) ,

and

F x0

a =
1

2ã

(

1 − e−2(z̃+x0)ã
)

, F b
x0

=
e−2z̃ã

2ã

(
e−2x0ã − e−2z̃ã

)
, F b

a =
1

2ã

(
1 − e−4z̃ã

)
,

Gx0

a = z̃ + x0 +
1

2ã

(

e−2(z̃+x0)ã − 1
)

, Gb
x0

= z̃ − x0 +
1

2ã
e−2z̃ã

(
e−2z̃ã − e−2x0ã

)
.

Thus, via (28), (32) and (34) we have:

ER =
1

1 + e2z̃ã
−
{

1 − e−2x0ã

e2z̃ã − e−2z̃ã

}

, (38)

RT = z̃ tanh(z̃ã) +

{
2z̃(1 − e−2x0ã)

e2z̃ã − e−2z̃ã
− x0

}

, (39)

1

RR
= z̃ +D + (D +Dp − z̃)e−2z̃ã +

{
(1 + e2z̃ã)[(D +Dp − z̃)(1 − e2x0ã) + x0e

2x0ã(1 − e2z̃ã)]

e2z̃ã(e2(z̃+x0)ã − 1)

}

. (40)

Note, in particular, that the error rate (38) may be made as small as we wish for a given drift
and noise variance, by picking the threshold z̃ ∼ z sufficiently high.

These expressions allow biased initial data, as suggested by the unequal salience case of
Section 2.3, cf. equations (24-25), but for the remainder of this section and throughout the next
we shall assume equal salience and unbiased initial data x0 = 0, in which case the expressions
in braces in (38-40) vanish identically.

Remark: We note that the expressions (38-39) agree with the analogous expressions for the
discrete SPRT given in Section 2. Specifically, for unbiased initial data and equal error rates
α0 = α1 = ǫ, the scaled threshold definition of (25) may be rearranged to give

ǫ =
1

1 + exp
(

2Az
c2

) =
1

1 + e2z̃ã
,

and (7-8) reduce to

[

(1 − 2ǫ) log

(
1 − ǫ

ǫ

)]/(
2A2

c2

)

= z̃ tanh(z̃ã) .

3.2.2 Optimizing reward rates for unbiased data

Suppose that we want to know the critical value of z̃, say z̃c, which maximizes the reward rate
RR, or, equivalently, which minimizes 1/RR. Setting ∂

∂z̃

(
1

RR

)∣
∣
z̃=z̃c

= 0, z̃c is found from

e2z̃cã − 1 = 2ã(D +Dp − z̃c) . (41)

11



The LHS of (41) vanishes at z̃c = 0 and is monotonically increasing in z̃c, while the RHS is
positive at z̃c = 0 (provided D and/or Dp is nonnegative) and is monotonically decreasing in
z̃c. There is thus a unique solution to (41). Moreover, it is a minimum because, using (41) to
eliminate (D +Dp), we have

∂2

∂z̃2

(
1

RR

)∣
∣
∣
∣
z̃=z̃c

= 2ãe−2z̃cã[1 + e2z̃cã] > 0 . (42)

Thus, reward rate is maximized with respect to z̃ at z̃ = z̃c(ã, D,Dp). We note that since the
LHS of (41) is greater than 2z̃cã, it is necessary that z̃c < (D +Dp)/2.

Finally, it is useful to give limiting expressions for (40) for small and large z̃. Taylor expand-
ing (40) in z̃ about z̃ = 0, we find that for small z̃,

1

RR
≈ 2D +Dp − 2ã(D +Dp)z̃. (43)

On the other hand, using
lim

α→∞
αne−αã = 0 (44)

for any integer n ≥ 0 we find that for large z̃

1

RR
≈ D + z̃. (45)

Figure 1 shows a plot of 1/RR as a function of z̃, including the small and large z̃ approximations,
for the parameters

ã = 1, D = 10, Dp = 20.

Note that for these parameters, it is numerically determined that

z̃c = 2.02115,
1

RR

∣
∣
∣
∣
z̃c

= 12.5124, RR|z̃c
= 0.0799.

Remark: The error rate and reaction time expressions of (38-39), along with the condi-
tion for maximization of reward rate (41), permit us to derive a relationship among these two
experimentally-measurable quantities and the inter-trial and penalty delays D and Dp, imposed
by the experimenter. Specifically, for the unbiased (x0 = 0) case, from (38) we have

e2z̃ã =
1 − ER

ER
,

and rewriting (39) as

z̃ = RT

(
e2z̃ã − 1

e2z̃ã + 1

)

=
RT

1 − 2ER
,

we may solve for z̃ and ã in terms of RT and ER to obtain:

z̃ =
RT

1 − 2ER
, ã =

1 − 2ER

2RT
log

(
1 − ER

ER

)

. (46)

12



In case of optimality, z̃ is given by (41), which, using (46), can be rewitten as:

D +Dp = z̃

(

1 +
e2z̃ã − 1

2z̃ã

)

= RT

(

1

1 − 2ER
+

1

ER log
[

1−ER
ER

]

)

. (47)

Then, for error rates meaured under different imposed delays, one can compare subjects’ actual
mean reaction times with the optimal ones predicted by (47).

In the drift-diffusion model, the reaction time represents only the time taken to render a
decision, e.g. the duration of neural integration until the firing rate reaches threshold [7]. In
behavioral experiments, the measured reaction time includes additional ‘fixed’ durations required
for visual processing and initiation of motor commands, which must typically be fitted as an
additive constant (Tf ). This requires modifying (47) to obtain:

[behavioral response time] − Tf = (D +Dp + Tf )

(

1

1 − 2ER
+

1

ER log
[

1−ER
ER

]

)−1

; (48)

see [1] for details.

3.3 The Ornstein-Uhlenbeck process

As our second example, consider the Ornstein-Uhlenbeck process

dy = (λy +A) dt+ c dW , (49)

with thresholds ay = −z, by = z. Letting

y = −A
λ

+Ax

and using z̃, ã as defined in (36),

dx = λx dt+
1√
ã
dW , (50)

with thresholds a = −z̃ + 1/λ, b = z̃ + 1/λ; that is, equation (26) with g(x) = λx, D(x) = 1/ã.

3.3.1 Error rates, mean reaction times, and reward rates

Suppose we have an unbiased initial condition, i.e., y0 = 0 ⇒ x0 = 1/λ. Then

ψ(y) = eλã(y2−(z̃−1/λ)2), f(y) = 2ãe−λãy2

∫ y

−z̃+1/λ
eλãs2

ds,

13



giving

F x0

a =
1

2

√
π

ãλ
eλã(−z̃+1/λ)2

[

erf

(√

ã

λ

)

− erf

(√

ã

λ
(1 − λz̃)

)]

,

F b
x0

=
1

2

√
π

ãλ
eλã(−z̃+1/λ)2

[

erf

(√

ã

λ
(1 + λz̃)

)

− erf

(√

ã

λ

)]

,

F b
a =

1

2

√
π

ãλ
eλã(−z̃+1/λ)2

[

erf

(√

ã

λ
(1 + λz̃)

)

− erf

(√

ã

λ
(1 − λz̃)

)]

,

Gx0

a =
2

λ







∫
√

ã
λ

√
ã
λ
(1−λz̃)

D(z)dz +

√
π

2
K

[

erf

(√

ã

λ
(1 − λz̃)

)

− erf

(√

ã

λ

)]





,

Gb
x0

=
2

λ







∫
√

ã
λ
(1+λz̃)

√
ã
λ

D(z)dz +

√
π

2
K

[

erf

(√

ã

λ

)

− erf

(√

ã

λ
(1 + λz̃)

)]





.

Here erf(z) = 2√
π

∫ z
0 e

−t2dt denotes the error function, erfc(z) = 2√
π

∫∞
z e−t2dt = 1 − erf(z) is

the complementary error function (used below),

D(z) = e−z2

∫ z

0
et

2

dt (51)

is known as Dawson’s integral, and we write

K =

∫
√

ã
λ
(1−λz̃)

0
et

2

dt.

Note that these formulae apply to both positive and negative λ, via the definition of the error
function with imaginary argument: 2√

π

∫ z
0 e

t2dt = erfi(z) = i erf(−iz).

Using the above expressions in (28), (32), and (33), we obtain

ER =

erf

(√
ã
λ(1 + λz̃)

)

− erf

(√
ã
λ

)

erf

(√
ã
λ(1 + λz̃)

)

− erf

(√
ã
λ(1 − λz̃)

)
def
=

erfc(·)
erfc(+) − 1

erfc(−)
erfc(+) − 1

, (52)
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RT =
2

λ

[

erf

(√
ã
λ(1 + λz̃)

)

− erf

(√
ã
λ(1 − λz̃)

)] ×







[

erf

(√

ã

λ

)

− erf

(√

ã

λ
(1 − λz̃)

)]
∫
√

ã
λ
(1+λz̃)

√
ã
λ

D(z)dz

+

[

erf

(√

ã

λ

)

− erf

(√

ã

λ
(1 + λz̃)

)]
∫
√

ã
λ

√
ã
λ
(1−λz̃)

D(z)dz







=
2

λ







[
erfc(−)
erfc(+) −

erfc(·)
erfc(+)

]

D1 −
[

erfc(·)
erfc(+) − 1

]

D2

erfc(−)
erfc(+) − 1






, (53)

1

RR
= D +

2

λ
D1 + (D +Dp −

2

λ
D2)







erf

(√
ã
λ(1 + λz̃)

)

− erf

(√
ã
λ

)

erf

(√
ã
λ

)

− erf

(√
ã
λ(1 − λz̃)

)







= D +
2

λ
D1 + (D +Dp −

2

λ
D2)







erfc(·)
erfc(+) − 1

erfc(−)
erfc(+) −

erfc(·)
erfc(+)






. (54)

Here

erfc(·) = erfc

(√

ã

λ

)

, erfc(+) = erfc

(√

ã

λ
(1 + λz̃)

)

, erfc(−) = erfc

(√

ã

λ
(1 − λz̃)

)

,

D1 =

∫
√

ã
λ
(1+λz̃)

√
ã
λ

D(z)dz, D2 =

∫
√

ã
λ

√
ã
λ
(1−λz̃)

D(z)dz.

Note that, in contrast to the constant drift (λ = 0) case of (38), (52) implies that even as
the threshold z̃ ∼ z is taken to infinity, the error rate remains strictly positive. Indeed, we have:

lim
z̃→∞

ER =
1

2

[

1 − erf

(√

ã

λ

)]

, (55)

which only approaches zero as λ→ 0. See Figure 2.

3.3.2 Asymptotics for small λ and small and large z̃

Equipped with the exact expressions (52-54), in principle we can numerically calculate ER,
RT, and 1/RR for any values of the parameters z̃, ã, λ,D, and Dp. However, the evaluation of
the integrals in the formulas becomes difficult for small λ, which turns out to be the region of
greatest interest. Also, it is difficult from the exact formulae to see how ER, RT, and 1/RR vary
with the parameters. To gain insight into these issues, we now expand the expressions for small
λ. Note that we treat z̃ as an O(1) quantity to obtain the following expansions.
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First, we recall the expansion of the complementary error function for large z [33, equation
(7.1.23)]:

erfc(z) =
e−z2

√
πz

(

1 − 1

2z2
+

3

4z4
+ · · ·

)

.

This gives

erfc(−)

erfc(+)
= e4z̃ã

(
1 + λz̃

1 − λz̃

)
(

1 − λ
2ã(1−λz̃)2

+ 3λ2

4ã2(1−λz̃)4
+ · · ·

)

(

1 − λ
2ã(1+λz̃)2

+ 3λ2

4ã2(1+λz̃)4
+ · · ·

)

= e4z̃ã

(

1 + 2z̃λ+
2z̃(z̃ã− 1)

ã
λ2

)

+ O(λ3), (56)

erfc(·)
erfc(+)

= e2z̃ã+z̃2ãλ(1 + λz̃)

(

1 − λ
2ã + 3λ2

4ã2 + · · ·
)

(

1 − λ
2ã(1+λz̃)2

+ 3λ2

4ã2(1+λz̃)4
+ · · ·

)

= e2z̃ã

(

1 + z̃(1 + z̃ã)λ+
z̃

2ã
(z̃3ã3 + 2z̃2ã2 − 2)λ2

)

+ O(λ3). (57)

We also use the following expansion for Dawson’s integral from [34] equation (42.6.6), valid for
large z:

D(z) =
1

2z
+

1

4z3
+

3

8z5
+ · · · .

This implies that

D1 =
z̃

2
λ+

z̃(1 − z̃ã)

4ã
λ2 +

z̃(9(1 − z̃ã) + 4z̃2ã2)

24ã2
λ3 + O(λ4), (58)

D2 =
z̃

2
λ+

z̃(1 + z̃ã)

4ã
λ2 +

z̃(9(1 + z̃ã) + 4z̃2ã2)

24ã2
λ3 + O(λ4). (59)

Using these formulas in (52), (53), and (54) gives the approximations

ER = ER0 + λER1 + λ2ER2 + O(λ3), (60)

where

ER0 =
1

1 + e2z̃ã
,

ER1 =
z̃e2z̃ã

e4z̃ã − 1
(z̃ã− tanh(z̃ã)),

ER2 = z̃e2z̃ã(−4z̃ãe2z̃ã(−1 + e2z̃ã) + 2(−1 + e2z̃ã)2(1 + e2z̃ã) + z̃3ã3(−1 + e2z̃ã)(1 + e2z̃ã)2

−2z̃2ã2(1 + e2z̃ã + e4z̃ã + e6z̃ã))/(2ã(−1 + e2z̃ã)2(1 + e2z̃ã)3),

RT = RT0 + λRT1 + λ2RT2 + O(λ3), (61)

where
RT0 = z̃ tanh(z̃ã),
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RT1 = z̃

{
tanh(z̃ã) − z̃ã

2ã
+

2z̃e2z̃ã

e4z̃ã − 1
[e2z̃ã(1 − tanh(z̃ã)) − (1 + z̃ã)]

}

,

RT2 = z̃(−12z̃4ã4e2z̃ã(−1 + e2z̃ã)(1 + e2z̃ã)2 + 9(−1 + e2z̃ã)3(1 + e2z̃ã)2

+4z̃2ã2(−1 + e2z̃ã)3(1 − e2z̃ã + e4z̃ã) + 24z̃3ã3e2z̃ã(1 + e2z̃ã + e4z̃ã + e6z̃ã)

−3z̃ã(−1 + e2z̃ã)2(3 + 13e2z̃ã + 13e4z̃ã + 3e6z̃ã))/(12ã2(−1 + e2z̃ã)2(1 + e2z̃ã)3),

1

RR
= A0 + λA1 + λ2A2 + O(λ3), (62)

where
A0 = z̃ +D + (D +Dp − z̃)e−2z̃ã,

A1 = z̃

[
(1 − z̃ã)(1 − e−2z̃ã)

2ã
− (D +Dp)e

−2z̃ã + (D +Dp − z̃)z̃ãe−2z̃ã

(
e2z̃ã + 1

e2z̃ã − 1

)]

,

A2 = z̃(−6z̃4ã4(1 + e2z̃ã)2 − 3z̃ã(−1 + e2z̃ã)(−5 + 2e2z̃ã + 3e4z̃ã + 4ã(D +Dp))

+3(−1 + e2z̃ã)2(3(−1 + e2z̃ã) + 4ã(D +Dp))

+6z̃3ã3(−1 + 4e2z̃ã + e4z̃ã + ã(1 + e2z̃ã)2(D +Dp))

−4z̃2ã2(−(−1 + e2z̃ã)3 + 3ã(−1 + 2e2z̃ã + e4z̃ã)(D +Dp)))/(12ã2e2z̃ã(−1 + e2z̃ã)2).

Here the O(λ2) expressions were obtained using Mathematica. Notice that for λ = 0, equa-
tions (60), (61), and (62) are identical to equations (38), (39), and (40). We verify the validity
of these approximations in Figures 3, 4, and 5.

It is also instructive to find approximations for 1/RR for small and large z̃; to obtain these,
we start with the expression for 1/RR valid to O(λ2), then consider the limit in z̃. Using an
analogue to (44), we find that for small z̃

1

RR
≈ 2D +Dp − 2ã(D +Dp)z̃, (63)

as for the constant drift-diffusion equation (cf. (43)). For large z̃,

1

RR
≈ D + z̃ + λ

z̃

2

(
1

ã
− z̃

)

+ λ2z̃

(
9(1 − z̃ã) + 4z̃2ã2

12ã2

)

(64)

→ λ2z̃3

3
for z̃ → ∞. (λ 6= 0)

The validity of these results is examined in Figure 6.

3.3.3 Optimizing reward rates for unbiased data

We now show that (z̃, λ) = (z̃c, 0), where z̃c is found from (41), minimizes 1/RR, i.e., maximizes
RR. First, using (41), we have

∂

∂z̃

(
1

RR

)∣
∣
∣
∣
(z̃,λ)=(z̃c,0)

=
∂A0

∂z̃

∣
∣
∣
∣
z̃=z̃c

= 0. (65)
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Now, from (62),

∂

∂λ

(
1

RR

)∣
∣
∣
∣
(z̃,λ)=(z̃c,0)

= A1|z̃=z̃c

= z̃ce
−2z̃cã

[
(1 − z̃cã)(e

2z̃cã − 1)

2ã
− (D +Dp) + (D +Dp − z̃c)z̃cã

(
e2z̃cã + 1

e2z̃cã − 1

)]

.(66)

Solving (41) for e2z̃cã and substituting into (66), we find that all terms cancel, i.e.,

∂

∂λ

(
1

RR

)∣
∣
∣
∣
(z̃,λ)=(z̃c,0)

= 0. (67)

The point (z̃, λ) = (z̃c, 0) is called a stationary point because conditions (65) and (67) are
satisfied.

The condition for the stationary point (z̃, λ) = (z̃c, 0) to be a local optimum involves the
Hessian of 1/RR evaluated at the stationary point, i.e.,

H ≡






∂2

∂λ2

(
1

RR

)
∣
∣
∣
(z̃,λ)=(z̃c,0)

∂2

∂z̃∂λ

(
1

RR

)
∣
∣
∣
(z̃,λ)=(z̃c,0)

∂2

∂z̃∂λ

(
1

RR

)
∣
∣
∣
(z̃,λ)=(z̃c,0)

∂2

∂z̃2

(
1

RR

)
∣
∣
∣
(z̃,λ)=(z̃c,0)




 . (68)

The stationary point is a local minimizer (resp., maximizer) of 1/RR if H is positive (resp.,
negative) definite, that is, if H has two positive (resp., two negative) eigenvalues. If H has one
positive and one negative eigenvalue, then the stationary point is called a saddle point, and it
is neither a local minimizer nor a local maximizer.

From (42),

∂2

∂z̃2

(
1

RR

)∣
∣
∣
∣
(z̃,λ)=(z̃c,0)

=
∂2A0

∂z̃2

∣
∣
∣
∣
z̃=z̃c

= 2ãe−2z̃cã[1 + e2z̃cã] > 0. (69)

Using this we conclude that if det(H) > 0, then H is positive definite. Using (41) to eliminate
(D +Dp),

∂2

∂λ2

(
1

RR

)∣
∣
∣
∣
(z̃,λ)=(z̃c,0)

= 2A2|z̃=z̃c

=
z̃c[15(e2z̃cã − 1)2 − 9z̃cã(e

4z̃cã − 1) + 3z̃3
c ã

3(e4z̃cã − 1) − 2z̃2
c ã

2(1 + 10e2z̃cã + e4z̃cã)]

6ã2e2z̃cã(e2z̃cã − 1)
,

∂2

∂z̃∂λ

(
1

RR

)∣
∣
∣
∣
(z̃,λ)=(z̃c,0)

=
∂A1

∂z̃

∣
∣
∣
∣
z̃=z̃c

=
z̃c(1 + e2z̃cã)(1 − e2z̃cã + z̃cã(1 + e2z̃cã))

e2z̃cã(1 − e2z̃cã)
.

From these expressions, after simplifying, the condition that det(H) > 0 becomes

0 < det(H) = z̃c(1 + e2z̃cã)(15(e2z̃cã − 1)3 + 4z̃2
c ã

2(e2z̃cã − 1)3 − 12z̃3
c ã

3e2z̃cã(1 + e2z̃cã)

−12z̃cã(e
2z̃cã − 1)2(1 + e2z̃cã))/(3ãe4z̃cã(e2z̃cã − 1)2). (70)
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For example, for
ã = 1, D = 10, Dp = 20,

recalling that z̃c = 2.02115, we find that

H =

(
3.9253 −2.2487
−2.2487 2.0351

)

, det(H) = 2.9317 > 0;

thus, (z̃, λ) = (z̃c, 0) is a local minimizer of 1/RR, that is, a local maximizer of RR. For reference,
the eigenvalues of H for these parameters are 5.4194 and 0.5410. Although we have not been
able to prove that det(H) is positive for all possible parameter values, it is found numerically to
be true for all choices considered: see Table 1. We can interpret these results as follows: given
λ, it is possible to choose z̃c(λ) (say, by choosing the threshold z) to maximize the reward rate
RR; however, it is even better to first adjust so that λ = 0, then choose z̃ to maximize RR. This
is illustrated in Figure 7, which also emphasizes that care must be used in applying the O(λ)
formulas.

We note that, even though the parameters in the Ornstein-Uhlenbeck first passage problem
may be reduced to three: z̃, ã and λ (or two, if we take λ = 0 at its optimal value), it is
still of interest to see how the threshold zc that maximizes RR depends upon the original drift
and noise r.m.s. parameters A, c, and on the delay parameters D, Dp. Figure 8 illustrates
these dependences, and also shows the approximations valid for small and large values of the
parameters:

zc ≈ A

2
(D +Dp) , for large c, or small D +Dp, or small A,

zc ≈ c2

2A
log

[
2A2

c2
(D +Dp)

]

, for small c, or large D +Dp, or large A.

3.4 Biased decisions

As discussed at the end of Section 2, the SPRT allows for unequal prior stimulus probabilities by
biasing the thresholds, or, equivalently, biasing the initial condition taken in the drift-diffusion
process, cf. (24). We consider this only for the (optimal) constant drift process (35)-(37). As
above, we denote the probability of stimuli S1 and S0 (drifts ±A) as Π and 1 − Π respectively,
and the error rates and mean reaction times as ER(±), RT(±). The net error rate and mean
reaction time are then given by:

NER = Π ER(+) + (1 − Π)ER(−) and NRT = Π RT(+) + (1 − Π)RT(−) . (71)

We note that error rates and reaction times for biased initial data, as given in (38-39), apply
to the case A > 0, but that the reflection transformation x 7→ −x takes sample paths of (37)
with A > 0 to those for A < 0; we may thus simply substitute −x0 for x0 in those expressions
to obtain ER(−) and RT(−), which yields:

NER =
1

1 + e2z̃ã
−
{

1 − Πe−2x0ã − (1 − Π)e2x0ã

e2z̃ã − e−2z̃ã

}

, (72)

NRT = z̃ tanh z̃ã+ 2z̃

{
1 − Πe−2x0ã − (1 − Π)e2x0ã

e2z̃ã − e−2z̃ã

}

+ (1 − 2Π)x0 . (73)
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Table 1: Critical value z̃c from (41) and det(H) from (70) for various choices of ã and D +Dp.

ã D +Dp z̃c det(H)

0.1 0.1 0.0498754 9.48718 ×10−13

0.1 1 0.487711 7.60411 ×10−7

0.1 3 1.39326 0.000347637
0.1 10 3.9603 0.116954
0.1 30 8.36411 5.41652
0.1 100 14.4806 70.2726

1 0.1 0.0487712 7.6042 ×10−9

1 1 0.39603 0.00116954
1 3 0.836411 0.0541652
1 10 1.44806 0.702726
1 30 2.02115 2.93172
1 100 2.63835 8.53829

3 0.1 0.046442 3.86264 ×10−7

3 1 0.278804 0.00601835
3 3 0.464314 0.0656822
3 10 0.673718 0.325746
3 30 0.861587 0.875563
3 100 1.06465 1.97395

10 0.1 0.039603 1.16954 ×10−5

10 1 0.144806 0.00702726
10 3 0.202115 0.0293172
10 10 0.263835 0.0853829
10 30 0.319395 0.177656
10 100 0.37988 0.338872

30 0.1 0.0278804 6.01835 ×10−5

30 1 0.0673718 0.00325746
30 3 0.0861587 0.00875563
30 10 0.106465 0.0197395
30 30 0.124865 0.0357598
30 100 0.144971 0.061673

100 0.1 0.0144806 7.02726 ×10−5

100 1 0.0263835 0.000853829
100 3 0.0319395 0.00177656
100 10 0.037988 0.00338872
100 30 0.0434912 0.00555057
100 100 0.0495152 0.00884229
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Use of the appropriate (optimal) biased initial condition (24), which may be written in the
following form in the scaled variables

x0 =
y0

A
=

1

2ã
log

(
Π

1 − Π

)

⇔ e2x0ã =
Π

1 − Π
, (74)

then gives the final expressions:

NER ≡ 1

1 + e2z̃ã
, (75)

NRT = z̃ tanh z̃ã+
(1 − 2Π)

2ã
log

(
Π

1 − Π

)

. (76)

It is interesting to note that, for fixed z̃ and ã, the ER takes the same value for all 0 ≤ Π ≤ 1
and that DTs decrease symmetrically from the maximum at Π = 1/2 to zero at Π = 1/(1+e±2z̃ã),
for which values the initial condition falls on a threshold. Moreover, the biased initial condition
(74) also maximizes the reward rate. Modifying the definition of (33) to read

NRR =
1 − NER

NDT +D + T0 +DpNER
, (77)

a lengthy calculation reveals that

∂

∂z̃
(NRR) =

∂

∂x0
(NRR) = 0 (78)

with x0 given by (74) and z̃ by the solution z̃o of

e2z̃oã − 1 = 2ã(D +Dp − z̃o) + (1 − 2Π) log

(
Π

1 − Π

)

. (79)

We have checked (numerically) that this critical point is indeed a maximum. Hence, noting that
the final term in (79) is even about Π = 1/2 and strictly negative for Π 6= 1/2, this formula shows
explicitly how optimal thresholds are lowered in choice tasks with stimuli of unequal salience.
Moreover, we may compute a relationship among the salience Π, the total delay D + Dp and
the signal-to-noise ratio ã at which the optimal bias and optimal threshold coincide. Setting
xo = z̃o and replacing them in (79) by means of (74), we obtain:

ã =

[
2Π−1
1−Π + 2Π log

(
Π

1−Π

)]

2(D +Dp)
. (80)

Note that, as expected, (80) gives ã = 0 for Π = 1/2, and ã increases as Π increases from 1/2 or
D+Dp decreases with Π 6= 1/2. For ã less than the value given by (80), xo > z̃o, which implies
that the more salient stimulus should be selected immediately upon presentation.

3.5 More on optimal thresholds

3.5.1 Dependence of the optimal threshold on experimental delays

In this Section we show that the dependence of the optimal threshold on D+Dp (rather than D
and Dp separately) is true for any decision maker. Consider a decision maker whose error rate
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ER(z) and reaction time RT(z) are functions of the decision threshold z. As for the previous
decision models, for the optimal threshold the derivative of 1/RR must be equal to zero. Using
elementary calculations we compute the derivative:

∂

∂z

(
1

RR

)

=
RT′(z) + ER′(z) (D +Dp) − RT′(z)ER(z) + RT(z)ER′(z)

(1 − ER(z))2

Note that the above derivative does not depend on D and Dp separately, but only depends
on D+Dp. Therefore the optimal threshold must also depend only on D+Dp for any decision
maker.

3.5.2 Reward rates with uncertain thresholds

In this subsection we consider the case in which a small error of ε is made in estimation of the
optimal threshold z̃o. We show that overestimation of the threshold results in higher reward
rate than underestimation of the threshold, i.e.:

RR(z̃o + ε) − RR(z̃o − ε) > 0. (81)

The implication is that, if the threshold cannot be set precisely, the best alternative is to set it
slightly too high (on average). Behavioral data presented in [1] is consistent with this prediction,
presumably due to adaptive learning strategies employed by task participants.

From Taylor expansion we obtain:

RR(z̃o + ε) = RR(z̃o) + RR′(z̃o)ε+
RR′′(z̃o)

2
ε2 +

RR′′′(z̃o)

6
ε3 + O(4) + O(5),

RR(z̃o − ε) = RR(z̃o) − RR′(z̃o)ε+
RR′′(z̃o)

2
ε2 − RR′′′(z̃o)

6
ε3 + O(4) −O(5).

Since z̃o is the threshold maximizing RR, thus RR′(z̃o) = 0, and hence

RR(z̃o + ε) − RR(z̃o − ε) =
RR′′′(z̃o)

3
ε3 + O(5).

To prove (81), it therefore suffices to show that RR′′′(z̃o) > 0. In the beginning of this section
we noticed that instead of considering RR, it is more convenient to consider its inverse 1/RR;
let us denote it by f = 1/RR. Using the chain rule and the fact that f ′(z̃o) = 0 we compute
that:

RR′′′(z̃o) =
∂3

∂z̃3

(
1

f(z̃o)

)

= − f ′′′(z̃o)

(f(z̃o))
2 .

Since the denominator of the above equation is positive, for small ε inequality (81) is equiv-
alent to f ′′′(z̃o) < 0. Elementary calculations show that

f ′′′(z̃o) = −4ã2e−2z̃oã (3 + 2ã(D +Dp − z̃o)) ,

and substituting the condition for the optimal threshold (41) into this equation, we obtain

f ′′′(z̃o) = −4ã2e−2z̃oã
(
2 + e2z̃oã

)
< 0 ,

which yields (81).
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4 Optimal Decisions under the Interrogation Protocol

We now suppose that subjects are interrogated at a fixed time after stimulus onset, and required
to respond as soon as possible after interrogation. The appropriate model is again a drift-
diffusion process, but now sample paths are assumed to evolve freely until interrogation, at
which instant we interpret the probability of responses R0 and R1 by asking if a given sample
path is closer to the threshold at y = −z or the threshold at y = +z, respectively (cf., for
example, [9]). This is the continuum analog of the Neyman-Pearson test. Specifically, we
evaluate the integrals of the probability distribution of solutions of the forward Kolmogorov or
Fokker-Planck equation between −∞ and 0 and 0 and +∞ respectively, to evaluate the expected
%-correct and error rates. Note that, in this case a sample path may cross and recross either
threshold multiple times, or cross neither, during the interval before interrogation.

4.1 General considerations

There are two common ways to interpret the stochastic differential equation (26). In the Itô
(resp., Stratonovich) interpretation, stochastic integrals are approximated according to a “left-
hand” (resp., “midpoint”) sum [31, 32]. Taking the Itô interpretation, the probability distri-
bution function p(x, t) for solutions to (26) satisfies the forward Kolmogorov or Fokker-Planck
equation (see (4.3.20) of [31], with corrected typo)

∂p(x, t)

∂t
= − ∂

∂x
[g(x)p(x, t)] +

1

2

∂2

∂x2
[D(x)p(x, t)]. (82)

If, on the other hand, (26) is considered according to the Stratonovich interpretation, it may be
shown to be equivalent to the Itô stochastic differential equation (see Eqn. (4.3.40) of [31])

dx =

[

g(x) +
1

2

√

D(x)
∂
√

D(x)

∂x

]

+
√

D(x)dW (t),

with associated forward Kolmogorov or Fokker-Planck equation (see (4.3.45) of [31])

∂p(x, t)

∂t
= − ∂

∂x
[g(x)p(x, t)] +

1

2

∂

∂x

[
√

D(x)
∂

∂x
[
√

D(x)p(x, t)]

]

. (83)

In the following we consider cases where D is independent of x; then the Itô and Stratonovich
interpretations give identical equations.

4.2 The Ornstein-Uhlenbeck process

We again consider the Ornstein-Uhlenbeck process of (49):

dy = (λy +A) dt+ c dW . (84)

Including the limit λ→ 0, this encompasses both the cases treated above.
The forward Kolmogorov or Fokker-Planck equation governing the evolution of p(y, t)dy, the

probability that a solution of (84) occupies a point in [y, y + dy] at time t, is

∂p

∂t
= − ∂

∂y
((λy +A)p) +

c2

2

∂2p

∂y2
; y ∈ (−∞,∞) , t ≥ 0 . (85)
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This initial-boundary value problem is solved by an evolving normal distribution:

p(y, t) =
1

√

2πν2(t)
exp

[−(y − µ(t))2

2ν2(t)

]

, (86)

with

µ(t) =
A

λ

(

eλt − 1
)

+ y0e
λt and ν2(t) =

c2

2λ

(

e2λt − 1
)

, (87)

where we have assumed the (general, possibly biased) initial condition p(y, 0) = δ(y − y0)
corresponding to starting all paths of (84) at y(0) = y0. Note that the expressions of (87) for
mean and variance hold for both positive and negative λ, and that as λ→ 0, they approach the
corresponding expressions for the constant drift case:

µ(t) |λ=0= At+ y0 and ν2(t) |λ=0= c2t . (88)

Assuming that the upper threshold y = +z represents the correct choice, the probabilities
of correct and incorrect choices being made upon interrogation at time t are therefore:

P(correct) = 1 − ER =

∫ ∞

0
p(y, t) dy and P(incorrect) = ER =

∫ 0

−∞
p(y, t) dy . (89)

Using the change of variables

u =
y − µ√

2ν2
,

and the expressions (86) for p, the first of these integrals becomes

P(correct) =

∫ ∞

− µ√
2ν2

1√
π
e−u2

du =
1

2

[

1 + erf

(
µ√
2ν2

)]

, (90)

and consequently we also have

P(incorrect) = ER =
1

2

[

1 − erf

(
µ√
2ν2

)]

. (91)

4.2.1 Minimizing error rate for unbiased choices

We first consider the case of unbiased initial data, appropriate to choice tasks with alternatives
of equal probability. Using (87) with y0 = 0, the argument of the error functions in (90-91)
takes the form

µ√
2ν2

def
= f(λ;A, c) =

A

c

√

(eλt − 1)

λ(eλt + 1)
. (92)

Since erf(·) is a monotonically increasing function of its argument on (−∞,∞), the probability
of making a correct decision will be maximized (and the error rate minimized), by selecting the
maximum admissible value of this expression. The appropriate constraints are to fix A and t and
maximize (92) over λ ∈ (−∞,+∞). We claim that the unique (global) maximum is achieved
for λ = 0:

lim
λ→0

f(λ;A, c) =
A

c

√

t

2
. (93)
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To prove this it suffices to show that ∂f
∂λ = 0 at λ = 0 and ∂f

∂λ is strictly positive (resp., negative)
for λ < 0 (resp., λ > 0). We compute

∂f

∂λ
=
A

2c

√

λ(eλt + 1)

eλt − 1

[
2λteλt − e2λt + 1

λ2(eλt + 1)2

]

def
=

A

2c
F (λ, t) (2λteλt − e2λt + 1) , (94)

where F (λ, t) is a bounded positive quantity for λ 6= 0, t > 0 and the expression as a whole
vanishes (∼ −λt5/2) at λ = 0. The final quantity in parentheses in (94) is positive (resp.
negative) for λ < 0 (resp. λ > 0), as required. We conclude that the optimal strategy is to set
λ = 0.

4.2.2 Minimizing error rate for biased choices

We now repeat the calculations allowing biased initial data and unequal prior probabilities for
the two alternatives. As in our review of SPRT in Section 2, let Π denote the probability of
a stimulus corresponding to the upper threshold, with drift +A, and 1 − Π correspond to −A.
Letting ER(±) = ER(±A, λ, c, x0) denote the error rates in the two cases, the net error rate is:

NER = Π ER(+) + (1 − Π)ER(−) . (95)

ER(+) is given by substitution of the general (y0 6= 0) expressions of (87) into (91). To obtain
ER(−) we observe that the reflection transformation y 7→ −y takes sample paths of (84) with
A > 0 to those for A < 0; we may thus simply substitute −y0 for y0 in (87), obtaining:

NER =
1

2

[
1 − Π erf(f+) − (1 − Π) erf(f−)

]
, (96)

where

f± = f±(λ, y0;A, c) =
A

c

√

(eλt − 1)

λ(eλt + 1)
± y0

c

√

λe2λt

e2λt − 1
, (97)

and, for future use:

∂f±

∂y0
= ±1

c

√

λe2λt

e2λt − 1

def
= ±∂fy0

,

∂f±

∂λ
=

A

2c
F (λ, t) (2λteλt − e2λt + 1) ± y0

2c
√
λ

(

eλt(e2λt − 1 − 2λt)

(e2λt − 1)
3

2

)

def
= ∂fλ1

± ∂fλ2
.(98)

To minimize the net error rate we compute the partial derivatives of (96):

∂

∂y0
(NER) =

1√
π

[
−Π exp[−(f+)2] + (1 − Π) exp[−(f−)2]

]
∂fy0

, (99)

∂

∂λ
(NER) = − 1√

π

[(
Π exp[−(f+)2] + (1 − Π) exp[−(f−)2]

)
∂fλ1

+
(
Π exp[−(f+)2] − (1 − Π) exp[−(f−)2]

)
∂fλ2

]
. (100)
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Setting (99) equal to zero and using (97) we obtain

exp[(f+)2 − (f−)2] =
Π

1 − Π
⇒ 4Ay0e

λt

c2(eλt + 1)
= log

(
Π

1 − Π

)

, (101)

and substituting (101) into (100) and using the properties of ∂fλ1
derived directly below equation

(94), we conclude that

λ = 0 and y0 =
c2

2A
log

(
Π

1 − Π

)

(102)

at the critical point.
To check that this is indeed a minimum we compute the Hessian matrix of second partial

derivatives at (102), obtaining

∂2

∂y2
0

(NER) =
2√
π

Π exp[−(f+)2]
(
f+ + f−

)
[∂fy0

]2 =
2√
π

Π exp[−(f+)2]
A√
2tc3

,

∂2

∂λ2
(NER) =

2√
π

Π exp[−(f+)2]
(
f+ + f−

)
[∂fλ2

]2 =
2√
π

Π exp[−(f+)2]
Ay2

0t
3

2

4
√

2c3
,

∂2

∂y0∂λ
(NER) =

2√
π

Π exp[−(f+)2]
(
f+ + f−

)
[∂fy0

∂fλ2
] =

2√
π

Π exp[−(f+)2]
Ay0

√
t

2
√

2c3
.(103)

The second variation is therefore positive semidefinite, vanishing only along the line

y0 =
c2

2A
log

(
Π

1 − Π

)[

1 − λt

2

]

,

and direct computations of NER (for all parameters we sampled) show that the point (102) is
indeed a minimum along this line.

4.3 ERs for the bounded diffusion model

Here we describe interrogation protocol ERs for a variant of the models considered above,
in which trajectories x(t) are restricted to remain within the interval [−z, z]. This situation
approximates the limits imposed by the finite dynamic range of the firing rates of neurons [1];
note that the no-flux boundaries used here play a completely different role from the absorbing
thresholds used to model the free response protocol. For simplicity, we consider only the constant
drift-diffusion model, rescaled without loss of generality so that c = 1:

dx = Adt+ dW . (104)

To simplify the following calculations, we set the boundaries at 0 and 2z and the (symmetric)
initial condition x(0) = z. We first show how to calculate the probability distribution p(x, t) of a
solution occupying the point x at time t. The ER is then found by integration of this probability
distribution over the appropriate range.

The probability distribution p(x, t) for solutions of (104) satisfies the forward Kolmogorov
or Fokker-Planck equation

∂p(x, t)

∂t
= −A∂p(x, t)

∂x
+

1

2

∂2p(x, t)

∂x2
, (105)
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and the assumption that x ∈ (0, 2z) implies the following no-flux boundary condition:

−Ap(x, t) +
1

2

∂p(x, t)

∂x
= 0, at x = 0 and x = 2z . (106)

To solve (105) we separate variables [35] and seek a solution of the form

p(x, t) =
∞∑

j=1

aj(t)φj(x) ; (107)

obtaining the following eigenvalue problem

1

2
φ′′ −Aφ′ + λφ = 0 ; −2Aφ(0) + φ′(0) = 0 = −2Aφ(2z) + φ′(2z) , (108)

and the ODE for the time-dependent coefficients aj(t):

ȧj = −λjaj ⇒ aj(t) = aj(0)e−λjt . (109)

Applying the boundary conditions to the general solution

φ = e(A±
√

A2−2λ)x (110)

of (108), we find a single eigenvalue λ0 = 0 with eigenfunction φ0(x) = e2Ax and an infinite set
of the form

λj =
j2π2

8z2
+
A2

2
, φj(x) = eAx

[

cos

(
jπx

2z

)

+
2Az

jπ
sin

(
jπx

2z

)]

. (111)

Hence, from (107), the general solution of the Fokker-Planck equation may be written as

p(x, t) = a0(0)e2Ax +
∞∑

j=1

aj(0)e−λjt eAx

[

cos

(
jπx

2z

)

+
2Az

jπ
sin

(
jπx

2z

)]

. (112)

The coefficients aj(0) are obtained from the initial probability distribution p(x, 0) = p0(x).
To compute them, it is convenient to use a weighted inner product with respect to which the
(non-normalized) eigenfunctions (111) are orthogonal. Upon multiplication by e−2Ax the non
self-adjoint boundary value problem (108) becomes a regular Sturm-Liouville problem [35]:

(e−2Axφ′)′ + 2λe−2Ax φ = 0 , (113)

and hence the eigenfunctions are pairwise orthogonal with respect to the weighted inner product:

(φj , φk)A =

∫ 2z

0
φj(x)φk(x) e

−2Ax dx = ckδjk , for j, k = 0, 1, 2, . . . , (114)

with normalization constants

c0 =
e4Az − 1

2A
, and ck = z

(

1 +
4z2A2

k2π2

)

for k ≥ 1 . (115)
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Setting t = 0 in (112), equating to p0(x), and taking inner products, we therefore obtain

aj(0) =
(p0, φj)A

cj
, for j ≥ 0 . (116)

Now as t→ ∞, the terms in the sum of (112) all decay to zero and p(x, t) approaches the equi-
librium probability distribution p∞(x) = a0(0)e2Ax, so for normalized initial data

∫
p0(x)dx = 1

it must follow that
∫ 2z

0
a0(0)e2Axdx = 1 ⇒ a0(0) =

1

c0
=

2A

e4Az − 1
. (117)

For the delta function initial condition p0(x) = δ(x − z), the remaining coefficients for j ≥ 0
may be computed directly from (116) as:

aj(0) =
e−Az

[

cos
(

jπ
2

)

+ 2Az
jπ sin

(
jπ
2

)]

z
(

1 + 4z2A2

j2π2

) =
e−Az

[

(−1)
j

2

(
1+(−1)j

2

)

+ 2Az
jπ (−1)

j−1

2

(
1−(−1)j

2

)]

z
(

1 + 4z2A2

j2π2

) .

(118)
Finally, the ER at a fixed time t is computed in a manner analogous to (89) by integrating

(112):

ER =

∫ z

0
p(x, t) dx =

1

1 + e2Az
+

∞∑

j=1

aj(0)e−λjt
2zeAz sin

(
jπ
2

)

jπ
. (119)

Note from the form of the equilibrium probability density p∞(x) given above that, unlike for
the unbounded constant drift (i.e., λ = 0) diffusion model, the ER for asymptotically long
interrogation times is nonzero.

For the sake of computational efficiency, we suggest the following simple numerical scheme
to calculate the density p(x, t) and the resulting ER. The probability distribution is taken to
be Gaussian (as for unbounded diffusion) until a time t = t∗ when 10−6 (e.g.) of the mass lies
outside [0, 2z]. For t > t∗, the above expression is used with aj(0) obtained from (117), (118),
and with the series truncated at J chosen such that the error of approximating the Gaussian
N(x, t = t∗) by probability distribution pJ(x, t = t∗) of (112) with J terms in the sum is less
than 10−6, i.e.:

∫ 2z

0
(N(x, t = t∗) − pJ(x, t = t∗))2 dx < 10−6 .

This gives rise to the density shown in Fig. 9.

5 Variable gain in drift-diffusion and O-U processes

We end this report by considering a related optimization strategy for decision tasks in which
the drift (signal strength) and diffusion constant (noise strength) terms vary in time. Thus, we
ask how the gain applied to inputs to a decision unit might be chosen to minimize interrogation
protocol error rates or to speed forced response decisions at a fixed error rate, all in the presence
of changing signal-to-noise ratios. We start with a pure drift-diffusion case and move on to O-U
processes. We end by showing that, with optimal gain, both cases reduce to drift-diffusion, as
the SPRT predicts. This material is developed in greater detail, and the variable gain parameter
related to the dynamics of the modulatory brain nucleus locus coeruleus, in [2].
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5.1 Decision models with variable gain, signal, and noise

In this section we introduce three models with time dependent signal strength, noise amplitude,
and gain. The first is a variant of the pure drift-diffusion process considered above, in which
both drift and diffusion terms are multiplied by a common gain g(t):

τcdx = g(t)[A(t) dt+ c(t) dWt] ((pure) drift-diffusion model) . (120)

The time constant τc is introduced for consistency with the models below, and we only consider
the case of unbiased initial data x(0) = 0.

Next we introduce two decision models, both in wide use, for the mean activity of pairs of
mutually inhibiting neural populations. Each population making up such a pair accumulates
evidence for one of the two possible stimuli. The first system, the leaky integrator connectionist

model [36, 9], is:

τcdx1 =
[
−x1 − βfg(t)(x2) + a1(t)

]
dt+

c(t)√
2
dW 1

t (121)

τcdx2 =
[
−x2 − βfg(t)(x1) + a2(t)

]
dt+

c(t)√
2
dW 2

t , (122)

where the state variables xj(t) denote the mean input currents to cell bodies of the jth neural
population, the integration implicit in the differential equations modelling temporal summation
of dendritic synaptic inputs ([37] and references therein). Additionally, the parameter β sets
the strength of mutual inhibition via population firing rates fg(t)(xj(t)), where fg(t)(·) is the
sigmoidal ‘activation’ (or ‘frequency-current’ or neural ‘input-output’) function to be described
shortly. The stimulus signal received by each population is aj(t), and the noise terms polluting

this signal are c(t)dW j
t , where c(t) sets r.m.s. noise strength and the (independent) increments

dW j
t are as above. Finally, the time constant τc reflects the rate at which neural activities decay

in the absence of inputs and respond to input changes.
Under the free-response paradigm a decision is made and the response initiated when the

firing rate fg(t)(xj) of either population first exceeds a preset threshold zj ; it is normally assumed
that z1 = z2 = z. For the interrogation protocol, the population with greatest activity xj (and
hence also firing rate) at the interrogation time t determines the decision. We also assume that
activities decay to zero after response and prior to the next trial, so that the initial conditions
for (121-122) are xj(0) = 0.

The subscript in fg(t)(·) indicates dependence on the time-varying gain, or sensitivity, g(t) of
the neural populations: gain sets the slope of the activation function. For example, the logistic
function

fg(t)(x) =
1

1 + exp (−4g(t) (x− b))
=

1

2
[1 + tanh (2g(t)(x− b))] (123)

has maximal slope g(t). While this specific form is not required for the results derived below,
we do assume that fg(t) takes its time-dependent maximal slope g(t) at some time-independent
point, as for (123).

As already mentioned, the connectionist model describes the time evolution of current inputs.
A second model is derived in [38], cf. [39, 40, 41], in which the firing rates of neural populations
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are themselves integrated over time. The version of this firing rate model that we study here is:

τcdy1 =
[
−y1 + fg(t) (−βy2 + a1(t))

]
dt+ g(t)

c(t)√
2
dW 1

t (124)

τcdy2 =
[
−y2 + fg(t) (−βy1 + a2(t))

]
dt+ g(t)

c(t)√
2
dW 2

t . (125)

Here, the yj are the firing rates of population j and other terms are as above, and we assume that
the strength of firing rate fluctuations in response to noise in inputs scales with g(t) (i.e., with
the maximal sensitivity of firing rates to the deterministic component of the input). As above,
we take initial conditions yj(0) = 0. In the interrogation protocol, the decision is again that
which corresponds to the greatest firing rate yj at the interrogation time. Threshold-crossing in
the free-response case is detected directly via yj = zj .

Note that the firing rate model (124-125) is a standard two-unit recurrent neural network
with additive noise [42], and that the main difference between the connectionist and firing rate
models is whether all of the deterministic inputs, or just the activity of the opposing population,
appear inside the function fg(t)(·). See [2], cf. [37], for more on the relationship between these
models.

5.2 One dimensional reductions and linear filters

As discussed above and in [9], in the forced response (interrogation) protocol, the choice j =
1 or 2 is made according to which of the two neural populations has the greatest activity or
firing rate at interrogation time t. Therefore, knowledge of the difference

y(t)
△
= y1(t) − y2(t) or xc(t)

△
= x1(t) − x2(t) (126)

determines the outcome and reduction of the original two-dimensional problem to a single vari-
able does not inherently imply any loss in accuracy. For example, if the difference in firing
rates is described by a time-dependent probability density p(y, t) (whose distribution represents
variability across behavioral trials), then the error rate at interrogation time t is

ER =

∫ ∞

0
p(y, t)dy (127)

if alternative 2 was presented (that is, if a2 > a1 for t > ts), and

ER =

∫ 0

−∞
p(y, t)dy (128)

if alternative 1 was presented. Similar conclusions hold for the connectionist model.
For the free choice protocol the situation is more subtle. The single variable x or y is sufficient

to characterize the decision only if the probability density of solutions to (124-125) or (121-122)
has approximately collapsed along a one-dimensional ‘decision manifold.’ Below we will simply
assume that this collapse has occurred; however, [1, 2] demonstrate that this assumption holds
for fairly broad sets of parameters.
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To derive equations for the differences introduced in (126), we linearize the activation func-
tions around the point where they take their maximal slope. For (123), this gives

fg(t)(x) ≈
1

2
+ g(t)(x− b) , (129)

an approximation which we use below. Substituting this into Eqns. (121-122) and subtracting
gives the following equation for the difference xc ≡ x1 − x2 :

τcdxc = [−xc + βg(t)xc + a(t)] dt+ c(t)dWt (connectionist model) ; (130)

similarly, for the difference y ≡ y1 − y2 Eqns. (124-125) give

τcdy = [−y + g(t) (βy + a(t))] dt+ g(t)c(t)dWt (firing rate model) . (131)

Eqn. (120) and the one-dimensional reductions of the connectionist and firing rate equations
(130) and (131) are Ornstein-Uhlenbeck processes, (affine-) linear in the activities x, xc, and y
and in the input

B(t)
︸︷︷︸

input

= a(t)
︸︷︷︸

signal

+ c(t)
dWt

dt
︸ ︷︷ ︸

noise

. (132)

We may explicitly solve all these SDEs, for a given realization of the Wiener Ws, s ∈ [0, t], to
obtain respectively

x(t) =

∫ t

0

g(s)a(s)

τc
ds+

∫ t

0

g(s)c(s)

τc
dWs (133)

for the drift diffusion model,

xc(t) =

∫ t

0

a(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

ds+

∫ t

0

c(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

dWs

(134)
for the connectionist model, and

y(t) =

∫ t

0

a(s)g(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

ds+

∫ t

0

c(s)g(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

dWs

(135)
for the firing rate model. Here, dWs is an increment of a Wiener process as above, and we have
assumed unbiased initial data x(0) = y(0) = z(0) = 0. These expressions all take the form

w(t) =

∫ t

0
K(t, s)a(s)ds+

∫ t

0
K(t, s)c(s)dWs , (136)

and so we conclude that (133-135) all compute linear filters of their inputs.
At any fixed time t, w(t) is a gaussian-distributed random variable with mean

∫ t
0 K(t, s)a(s)

and variance
∫ t
0 K

2(t, s)c2(s)ds. Using this fact, after a change of variables the error rate ex-
pression (128) becomes

ER =
1

2



1 − erf





∣
∣
∣

∫ t
0 K(t, s)a(s)

∣
∣
∣

∫ t
0 K

2(t, s)c2(s)ds







 . (137)
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5.3 Optimal signal discrimination in the one-dimensional models

5.3.1 Optimal statistical tests

Given only the noisy input function (132), consider the task of discriminating between the
presentation of time-dependent signals a(t) and −a(t) (hypotheses 1 and 0, resp.). The likelihood
distributions (now themselves time-dependent) that correspond to an increment of input dB(t) =
±a(t)dt+ c(t)dWt are, analogously to (18),

p0(t)(dB(t)) =
1

√

2πc2(t)dt
e−(dB(t)+a(t)dt))2/(2c2(t)dt) , (138)

p1(t)(dB(t)) =
1

√

2πc2(t)dt
e−(dB(t)−a(t)dt))2/(2c2(t)dt) . (139)

The corresponding increment of liklihood evidence is, following (11),

dI(t) = log

(
p1(dB(t))

p0(dB(t))

)

= k
a(t)

c2(t)
dB(t) , (140)

where k (here taken equal to 2 log(e)) generally depends on the base of the logarithm. Substi-
tuting for the definition of dB(t) as an increment of our input, we have the differential equation
for the total information I(t) accumulated at time t

dI(t) = k
a(t)

c2(t)
[a(t) dt+ c(t) dWt] , (141)

which may be integrated to yield:

I(t) =

∫ t

0
k
a2(s)

c2(s)
ds+

∫ t

0
k
a(s)

c(s)
dWs . (142)

Comparing with Eqn. (136) shows that the optimal filter is

K(t, s) = k
a(s)

c2(s)
: (143)

this is the matched filter for white noise which is fundamental in signal processing [43]. Note
that, in (141-142) only the signal-to-noise ratio (a/c) appears.

Thus, with correctly chosen gains (and hence optimal, matched filters), all three of the
models can perform the Neyman-Pearson test. For the SPRT, the models must implement not
only these optimal filters, but also thresholds at appropriate values. For the pure drift-diffusion
and firing rate model, this is straightforward (see [2, 1]); however, for in the connectionist case,
non-constant thresholds will result from time-varying gain schedules, complicating the situation.

5.3.2 A direct proof that the kernel K(t, s) = k a(s)
c2(s)

is optimal in the interrogation

paradigm

As follows from its matched filter property, the linear filter K(t, s) = k a(s)
c2(s)

which computes log

likelihood l(t) for inputs with white noise also produces, for all times t, a filtered (and gaussian)
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version w(t) of the input (Eqn. (136)) with a maximal integrated signal-to-noise ratio

F [K; a, c](t) =

∣
∣
∣

∫ t
0 K(t, s)a(s)ds

∣
∣
∣

√

E

(∫ t
0 K(t, s)c(s)dWs

)2
=

∣
∣
∣

∫ t
0 K(t, s)a(s)ds

∣
∣
∣

√
∫ t
0 K

2(t, s)c2(s)ds
. (144)

For completeness, we now demonstrate this directly.
Minimization of the error rate (127) or (128) for (fixed) interrogation at time t = T is achieved

by maximizing F over all possible kernels K(s). This problem in the calculus of variations is
solved by computing the first and second variations, with respect to K, of the functional F ,
setting the first to zero to determine a candidate K̄ for the optimal K, and evaluating the second
at K̄ to check that D2

KF is negative (semi-) definite. Henceforth we drop explicit reference to
the (fixed, arbitrary) interrogation time t = T in the function K and write K(T, s) = K(s). We
compute:

δF

δK
= lim

ǫ→0

d

dǫ
F [K + ǫγ; a, c](T ) = lim

ǫ→0

d

dǫ







∫ T
0 a(s)[K(s) + ǫγ(s)] ds

[

2
∫ T
0 c2(s)[K2(s) + 2ǫg(s)γ(s) + ǫ2γ2(s)] ds

] 1

2







= lim
ǫ→0

1√
2

{∫ T
0 a(s)γ(s) ds

[H(T, ǫ)]
1

2

−
∫ T
0 a(s)[K(s) + ǫγ(s)] ds

∫ T
0 c2(s)[K(s)γ(s) + ǫγ2(s)] ds

[H(T, ǫ)]
3

2

}

=

∫ T
0 a(s)γ(s) ds

∫ T
0 c2(s)K2(s) ds−

∫ T
0 a(s)K(s) ds

∫ T
0 c2(s)K(s)γ(s) ds

√
2
[∫ T

0 c2(s)K2(s) ds
] 3

2

, (145)

where H(T, ǫ) =
∫ T
0 c2(s)[K2(s) + 2ǫK(s)γ(s) + ǫ2γ2(s)] ds. Setting (145) equal to zero and

using the fact that the variation γ(s) is arbitrary, we conclude that the critical point indeed

occurs at K̄(s) = k a(s)
c2(s)

, as given by (143).

To compute the second derivative we differentiate the expression within braces in the penul-
timate step of (145) with respect to ǫ once more, set ǫ = 0, and evaluate the resulting expression
at the critical point (143), obtaining:

δ2F

δK2

∣
∣
∣
∣
K=K̄

= −
∫ T
0 c2(s)K̄2(s) ds

∫ T
0 c2(s)γ2(s) ds−

(∫ T
0 c2(s)K̄(s)γ(s) ds

)2

√
2
[∫ T

0 c2(s)K̄2(s) ds
] 3

2

≤ 0 . (146)

In the last step we appeal to Schwarz’s inequality. This proves that the second variation is
negative semidefinite, and vanishes identically only for variations γ(s) = κK̄(s) in the direction
of K̄ (as expected from (143), which contains the arbitrary ‘scaling’ parameter k).

Substituting (143) into (144) we obtain

F [ḡ; a, c](T ) =

√

1

2

∫ T

0

a2(s)

c2(s)
ds , (147)
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and using (137), we obtain the minimum possible error rate for interrogation at time t:

ER =
1

2



1 − erf





√

1

2

∫ T

0

a2(s)

c2(s)
ds







 . (148)

Since the integrand (a/c)2 is non-negative, the error rate continues to decrease or at worst
remains constant as T increases.

5.4 Optimal gains for the three models

We now ask what functional form of g(t) optimizes performance for Eqns (133-135), thereby
computing optimal gain trajectories for the (reduced) drift-diffusion, connectionist, and firing
rate models. The method is to set K(s) = K̄(s) in (136) and comparing the resulting integrands
with those in the SDE solutions (133-135).

5.4.1 Pure drift-diffusion model

Comparing (136) with (133), we see that the optimal gain is simply K̄:

ḡdd(s) = τcK̄(s) = τck
a(s)

c2(s)
; (149)

thus, there is a continuum of optimal schedules differing only by a multiplicative scale factor.

5.4.2 Connectionist model

Equations (136) and (134) give

τcK̄(s) = τck
a(s)

c2(s)
= exp

(
1

τc

∫ T

s
[βḡc(s

′) − 1] ds′
)

, (150)

where ḡc is the optimal gain for the connectionist model. Taking the log of this expression,
differentiating with respect to s, and solving for ḡc(s), we obtain:

ḡc(s) =
1

β

[

1 − τc
d

ds
log

(
a(s)

c2(s)

)]

. (151)

Note that ḡc is unique and in particular, independent of k and of the interrogation time T .
However, ḡc is not required to be positive, so may not always be physically admissable. The

form of ḡc may be interpreted as follows. When
(

a(s)
c2(s)

)

is decreasing, ḡc(s) > 1/β and the O-U

process (130) is unstable; hence solutions ‘run away,’ in the direction x(s), emphasizing higher-

fidelity information that was previously collected. When
(

a(s)
c2(s)

)

is increasing, ḡc(s) < 1/β, the

O-U process is stable, and the linear term in (130) is attractive, thereby discounting previously
integrated information in favor of the higher-fidelity input currently arriving.

We note as above that, because the ‘output’ neural activity is determined by a gain-dependent
function of the dynamical variable x in the connectionist model (see text following Eqns. (121-
122)), transient gain schedules also adjust the position of free-response thresholds with respect
to x. We leave an exploration of this effect, which does not enter the interrogation protocol or
affect the firing rate model, for future studies.
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5.4.3 Firing rate model

Equations (136) and (135) give

τcK̄(s) = τck
a(s)

c2(s)
= ḡf (s) exp

(
1

τc

∫ T

s
[βḡf (s′) − 1] ds′

)

. (152)

Defining f(s) = τck
a(s)
c2(s)

e
1

τc
(T−s), differentiating with respect to s, and restricting to positive

functions ḡf , a and c2 (which we justify below), (152) yields

f ′(s) =
d

ds

[

ḡf (s) exp

(
1

τc

∫ T

s
βḡf (s′)ds′

)]

= ḡ′f (s) exp

(
1

τc

∫ T

s
βḡf (s′)ds′

)

− β

τc
ḡ2
f (s) exp

(
1

τc

∫ T

s
βḡf (s′)ds′

)

= ḡ′f (s)
f(s)

ḡf (s)
− β

τc
ḡf (s)f(s) . (153)

Rewriting (153), we obtain

dḡf (s)

ds
=

β

τc
ḡ2
f (s) + ḡf (s)

f ′(s)

f(s)
=
β

τc
ḡ2
f (s) + ḡf (s)

d

ds
log (f(s))

=
β

τc
ḡ2
f (s) + ḡf (s)

[
d

ds
log

(
a(s)

c2(s)

)

− 1

τc

]

. (154)

Thus, the condition for optimal gain in the linearized firing rate model is a differential equa-
tion, unlike the algebraic relationships for the drift-diffusion and connectionist cases. Note that
solutions to (154) initialized at positive values remain positive for all time, since the equation
has an equilibrium at ḡf = 0, preventing passage through this point. This justifies our as-
sumption of positive ḡf above and ensures that the optimum gain is ‘physical’ this sense. In
fact, (154) may be solved explicitly using the integrating factor I(s) = exp

(∫ s
0 l(s

′)ds′
)
, where

l(s′)
△
= d

ds′ log
(

a(s′)
c2(s′)

)

− 1
τc

, yielding

ḡf (s) =
exp

(∫ s
0 l(s

′)ds′
)

β
τc

∫ s
0

[

exp
(∫ s′

0 l(s′′)ds′′
)]

ds′ + 1
g(0)

. (155)

The integral equation (152) specifies only an arbitrary, positive final condition ḡf (T ) = k a(T )
c2(T )

for (154), since k is itself arbitrary. Any solution of (154) with positive initial condition (as long
as it is defined) therefore delivers a member of the continuum of optimal gain functions for
the linearized firing rate model. This is in contrast to the unique optimal gain (151) in the
connectionist model, and, since the different ḡf generally have different forms (see below), it
also contrasts with the multiplicity of ‘scaled’ optimal drift-diffusion gain functions (149). The
optimality of ḡf schedules with such different forms follows from the fact that gain multiplies the
inputs to the firing rate model (131). For example, optimal gain schedules with (βḡf (s)−1) < 0
may implement the SPRT even when the signal-to-noise-ratio is constant (see Example 1 below),
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because discounting of previously integrated evidence is compensated for via weighting incoming
evidence by a decreasing function ḡf (s).

Example 1: We assume constant signal amplitude a(s) ≡ a and constant noise strength
c(s) ≡ 1. Additionally, we set τc = 1 and omit this parameter in this and the next example.
Equation (149) gives the family of optimal gain functions for the drift-diffusion model,

ḡ(s) ≡ ka , (156)

and Eqn. (151) gives unique optimal gain for the connectionist model

ḡc(s) ≡
1

β
, (157)

hence reducing the connectionist to the pure drift-diffusion (i.e., λ = 0) model. Meanwhile,
Eqn. (154) yields the differential equation

d

ds
ḡf (s) = βḡ2

f (s) − ḡf (s) . (158)

Initial conditions ḡf (0) ∈ [0, 1/β] decay to the fixed point at ḡf = 0, while for ḡf (0) > 1/β, gain
functions increase to ∞ (in finite time). The initial condition ḡf (0) = 1/β yields the constant
gain function ḡf (s) ≡ 1/β, for which the linearized firing rate model again becomes pure drift-
diffusion. The distinction with the connectionist model is, of course, that there are other optimal
gain functions giving λ 6= 0. See Fig. 10, which illustrates several optimal functions ḡf for the
case of constant a and c; these include, but are not limited to, the constant value ḡf ≡ 1/β. All
such ḡf ’s yield identical error rates of 0.24 for interrogation at time T = 2.

Example 2: We assume now assume that signal amplitude smoothly rises from a low level
a0 > 0 (e.g., before stimulus, when only expectation or bias enter neural integrators) to a
higher level ā + a0 (e.g., after stimulus is presented). We use the sigmoidal function a(s) =
a0 + ā

1+exp(−4r(τ−s)) , so that the increase in signal occurs around time s = τ with maximum rate

r, and additionally, we again take constant noise strength c(s) ≡ 1. Then, Eqn. (149) gives

ḡ(s) ≡ ka(s) , (159)

and Eqn. (151) yields

ḡc(s) =
1

β
[1 − l(s)] , (160)

where the function l(s) = d
ds log

(

a0 + ā
1+exp(−4r(τ−s))

)

is a single-peaked ‘bump’ function.

Meanwhile, Eqn. (154) yields the differential equation

d

ds
ḡf (s) = βḡ2

f (s) + ḡf (s) [l(s) − 1] . (161)

Solutions ḡf (s) > 0 that lie to the left of 1
β [1− l(s)] at any time s decrease toward 0; those that

lie to the left increase. While a(s) is increasing, this dividing point is itself further to the left,
so that more trajectories increase (temporarily). See Fig. 11, which illustrates different optimal
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ḡf functions. The optimal performance yielded by (all three of) these these functions was 96.2
percent correct; for comparison, the non-optimal ‘pure drift’ gain ḡf (s) ≡ 1/β produces only
87.4 percent correct for the parameters of Fig. 11.

Of special interest are solutions of the type highlighted in Fig. 11 (the lowest-valued optimal
ḡf (s)), because such physically plausible gain functions remain bounded. A class of optimal gain
functions of this form, determined by their (sufficiently small) initial conditions, will always exist
for any given parameters in the logistic a function. We observe that the ‘decay-rise-decay’ ḡf (s)
dynamical pattern resembles the function that could be produced by dissipating pulses of the
neuromodulator norepinephrine delivered to decision areas of the cortex via the locus coeruleus,
hence providing a clue that this brainstem organ may be assisting near-optimal decision making.
See [2] for more detail.
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Figure 1: 1/RR vs. z̃ for constant drift-diffusion equation with ã = 1, D = 10, Dp = 20. The
solid line shows the exact result given by (40), while the dashed lines show the small and large
z̃ approximations given by (43) and (45).
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Figure 2: Error rate ER vs. z̃ for ã = 1 and λ values as shown.
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Figure 3: Validity of approximations for z̃ = 1, ã = 1, D = 10, and Dp = 20. Here the +’s are
from the exact formulas (52), (53), and (54), and the solid (resp., dashed) lines are results from
(60), (61), and (62) to O(λ2) (resp., O(λ)).
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Figure 4: Same as Fig. 3 but with z̃ = 2.
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Figure 6: Validity of approximations for ã = 1, D = 10, Dp = 20. (Top) λ = −0.1, (middle)
λ = 0.1, (bottom) λ = 0.2. Here the +’s are from the exact formula (54), and the solid (resp.,
dot-dashed) lines are results from (62) to O(λ2) (resp., O(λ)). The dashed lines show the small
and large z̃ approximations given by (63) and (64).
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Figure 8: Threshold zc which optimizes RR as a function of the original system parameters,
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Figure 9: The probability density for solutions to the bounded diffusion model at three times,
with parameters A = z = 1.
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Figure 10: Optimal gain in the firing rate model for constant signal strength a(s) ≡ 0.5 (solid
line) and constant noise amplitude c(s) ≡ 1 (dotted line). Parameters: T = 2, β = 0.5. Three
optimal gain functions ḡf obtained by solving (154) are shown as chain-dotted lines; all of these
produced optimal performance with 76.0 percent correct responses (error rate = 0.24). Note
that the optimal gain functions include, but are not limited to, ḡf (s) ≡ 1/β.
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Figure 11: Optimal gain in the firing rate model for sigmoidally increasing signal strength
a(s) = a0 + ā

1+exp(−4r(τ−s)) (solid line) and constant noise amplitude c(s) ≡ 1 (dotted line).
Parameters: a0 = 0.01, ā = 1, r = 30, τ = 3, T = 5, β = 2. Three optimal gain functions
ḡf obtained by solving (154) are shown as chain-dotted lines; all of these produced optimal
performance with 96.2 percent correct responses (error rate = 0.038), compared with the non-
optimal 87.4 percent correct value for constant g(s) ≡ 1/β (not shown). The bold chain-dotted
line is an example of an optimal gain function with the decay-rise-decay form discussed in the
text.
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