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Abstract
Modulation of the firing times of neural oscillators has long been an important control objective, with applications including
Parkinson’s disease, Tourette’s syndrome, epilepsy, and learning. One common goal for suchmodulation is desynchronization,
wherein two or more oscillators are stimulated to transition from firing in phase with each other to firing out of phase. The
optimization of such stimuli has been well studied, but this typically relies on either a reduction of the dimensionality of
the system or complete knowledge of the parameters and state of the system. This limits the applicability of results to real
problems in neural control. Here, we present a trained artificial neural network capable of accurately estimating the effects of
square-wave stimuli on neurons using minimal output information from the neuron. We then apply the results of this network
to solve several related control problems in desynchronization, including desynchronizing pairs of neurons and achieving
clustered subpopulations of neurons in the presence of coupling and noise.

Keywords Oscillators · Machine learning · Neurons · Clustering · Control · Dynamic programming

1 Introduction

Oscillators are ubiquitous in biological systems, frommacro-
scopic processes like circadian rhythms (Saini et al. 2019) to
specific internal processes such as cardiac pacemaker cells
and motor control (Schnitzler and Gross 2005). Developing
effective strategies to control these processes has emerged
as an important objective. This is particularly relevant in
neuroscience, where improper behavior of these oscillators
may lead to pathological conditions. Existing strategies for
mitigating this pathological activity, such as deep brain stim-
ulation (DBS) and transcranial magnetic stimulation (TMS),
provide a compellingmotivation to further our understanding
of the control of neural oscillators.
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DBS in particular has seen numerous applications, from
reducing some symptoms in Parkinson’s disease (PD) (The
Deep-BrainStimulation forParkinson’sDiseaseStudyGroup
2001; Adamchic et al. 2014; Lysyansky et al. 2011, 2013)
to treatment for Tourette Syndrome (Savica et al. 2012),
essential tremor, and various other disorders. In DBS, neu-
ral dynamics are modulated by an electrode implanted in the
brain tissue; pulsatile stimuli are sent via the electrode into the
target brain region. Despite its clinical effectiveness, the spe-
cific mechanisms by which DBS influences brain dynamics
are still an open question. Because of this, DBS calibra-
tion typically requires manual tuning of stimulus amplitude
and frequency by a technician after electrode implantation,
and this tuning may need to be occasionally adjusted as the
patient’s neurophysiology evolves over time.

Two of the primary challenges involved in identifying
the precise therapeutic pathways involved in DBS are the
high degree of complexity in neural systems and the rel-
ative lack of in vivo tracking data for these systems. Even
relatively simple models of neurons are typically highly non-
linear and high-dimensional, making prediction of the effects
of a stimulus difficult, thereby hampering the effectiveness of
closed-loop approaches to control. Similarly, most measure-
ments relating to diseases such as PD come from local field
potential (LFP) readings taken between the first and second
of the two successive surgeries required to implant the DBS
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electrode, and we cannot in practice know the full state of the
neuron, even if the underlying model is sound (Kühn et al.
2005; Holt and Netoff 2014).

References Uhlhaas and Singer (2006), Hua et al. (1998),
Chen et al. (2007), Hammond et al. (2007), Levy et al. (2000)
describe examples of pathological synchrony related to a
number of different disorders, while references Tass (2003),
Wingeier et al. (2006), Kühn et al. (2008), Bronte-Stewart
et al. (2009), Wilson et al. (2011), Wilson and Moehlis
(2015) further suggest both experimentally and in simula-
tion that the primary mechanism involved in DBS is the
desynchronization of populations of neurons, specifically in
the subthalamic nucleus (STN). Because of this and other
applications in neuroscience of both synchronization and
desynchronization (Zhao et al. 2011; Titiz et al. 2017), the
objective of influencing the configuration of neurons relative
to each other—either toward an in-phase or anti-phase firing
pattern—is specifically an important goal within the general
field of neural control. Controlling populations or ensembles
of oscillators is a topic area with an extensive literature, both
in the context of biology and elsewhere (Roenneberg et al.
2005; Zalalutdinov et al. 2003; Diekman and Bose 2016).
Clustering is additionally a problem of particular interest
because of its widespread occurrence and applications. As
mentioned previously, clustering configurations appear rel-
evant to the study of pathological conditions, but it is also
present in desirable brain activity, such as language devel-
opment (Power et al. 2012) and visual identification (Liao
et al. 2013). Spike timing within neuron ensembles is also
fundamental, of course, to spiking-timing-dependent plastic-
ity (Rodríguez-Pineda 2000), and modulation of this timing
via clustering can encourage either potentiation or depres-
sion. This naturally extends into applications of Hebbian
learning as well, where we may similarly influence out-
comes by influencing entrainment of oscillators. Clustering
possesses other biological applications as well; entrainment
can have applications to photochemical oscillators (Taylor
et al. 2008), and in Juul et al. (2018) the authors suggest
entrainment may be used to influence embryonic pattern-
ing in mice. The applications of clustering control extend
beyond the sphere of biology as well; the authors of Skardal
and Arenas (2015) suggest applications to both macroscopic
processes and emergent microgrid technologies.

While the presence and applications of oscillators and
clustering are numerous, we choose to focus here on neu-
ral models in particular because they possess two important
qualities that make them especially interesting in the study of
oscillators: neural ensembles are typically not fully observ-
able and are severely underactuated. Continuing with the
example of Parkinson’s disease, there are numerous mod-
els that attempt to characterize the dynamics of the basal
ganglia, such as Holgado et al. (2010), Rubin and Terman
(2004a), Hahn and McIntyre (2010), Otsuka et al. (2004).

These models are developed over the course of numerous
studies using both in vitro and in vivo measurements of
relevant neural regions. However, when it comes to actu-
ally observing these systems, we may possess only a single
biomarker, such as the local field potential. For this reason,
system identification is a problem ofmuch interest in biology
and neuroscience, cf. Villaverde et al. (2019). In addition to
this minimal observability, precise control of neural oscil-
lators is made more challenging by the fact that a single
stimulator may be influencing the dynamics of hundreds, if
not thousands, of neurons, and it is simply impossible to con-
trol such a heavily underactuated system to an arbitrary state.

Even setting aside the challenges of low observability and
underactuation, because of the high dimensionality of neural
models, finding control strategies using traditional methods
can prove difficult. One powerful technique for simplifying
this process is phase model reduction, wherein the dynam-
ics of an oscillator with a stable limit cycle are reduced
to a one-dimensional system represented by a variable, θ ,
and parameterized by a natural frequency ω and a function
specifying the responsiveness to external inputs known as
the phase response curve (PRC) (Kuramoto 1984; Brown
et al. 2004; Ermentrout 1996; Hansel et al. 1995; Winfree
2001). With this reduced system, it is straightforward to
apply traditional optimization techniques, such as utilizing
variational calculus to control an oscillator’s period (Li et al.
2013; Moehlis et al. 2006) or applying control to manipu-
late a neural population’s distribution (Monga and Moehlis
2020; Zlotnik and Li 2014; Zlotnik et al. 2016; Matchen
and Moehlis 2018). In Wilson and Moehlis (2014a, b), the
authors address the issue of desynchronization directly, opti-
mizing the response of a population of neurons to inputs
and determining that the best point in an oscillator’s cycle to
stimulate in order to achieve desynchronization is when the
derivative Z ′ (θ) is maximized, cf. Holt et al. (2016).

Although phase model reduction can be a powerful tech-
nique, it is not without drawbacks. First and foremost, phase
model reduction typically can only be considered valid close
to the periodic orbit, especially in highly nonlinear sys-
tems (Kurebayashi et al. 2013). This can be mitigated by
concurrently considering the system’s isostables, an exten-
sion of the model intended to account in part for these
nonlinearities (Wilson and Moehlis 2016; Monga and
Moehlis 2019; Monga et al. 2019). As more dimensions
are added to the system, however, so too does the need for
accurate accounting of the state of the system if closed-loop
control is desired; as previously noted, this is not necessarily
feasible in the context of neural control.

We believe that machine learning, and specifically deep
artificial neural networks (or ANNs), can be particularly
effective in addressing the challenges present in the exist-
ing literature. Despite the moniker, neural networks are not
yet widely used by the neural control community, though
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interest is growing; recent results (Mitchell and Petzold
2018; Nagaraj et al. 2017; Narayanan et al. 2019; Yu et al.
2020) have begun leveraging reinforcement learning and
Q-learning to generate control strategies. Because neuron
response dynamics are highly nonlinear, we believe that
deep neural networks may be able to better accommodate
the range of possible responses than other regression meth-
ods. Additionally, the short timescales involved in neuron
firing (in the case of the STN model presented here, about
30 ms) can allow a neural network training on neural data
to quickly gather a suitably large training set for accurate
prediction and cross-validation onto a developmental set.
Lastly, the “feed-forward” nature of ANNs makes it ideal
for the short-timescale implementation necessary for even-
tual in vivo application as it can be computed explicitly from
a given input, unlike other nonlinear regression strategies.

An ANN consists of a system that maps an input vector
to an output vector via one or more layers; the system is a
“deep” network if at least one of these layers is “hidden,”
meaning it does not map directly to the output. Each layer
is comprised of a number of neurons, each consisting of a
matrix that linearly transforms the output from the previous
layer followed by a nonlinear activation function. Training
a neural network consists of running repeated iterations of
two steps: a forward propagation step followedby abackward
propagation step. In the forward propagation step, the current
parameters of the neural network are used to make a predic-
tion of the output based on the input, which is then compared
to the actual output. This provides a loss function which is
then fed back into the neural network to compute appropri-
ate derivatives for updating the weights on the matrices in
each layer of the neural network. A schematic of this process
is provided in Fig. 1. An appealing aspect of neural net-
works is that it is well established that, for somefinite number
of artificial neurons, any smooth function can be accurately
approximated by a neural network consisting of only a single
hidden layer (Cybenko 1989). In practice, however, it is typ-
ically more efficient to sacrifice breadth—a large number of
neurons in a layer—for depth, a larger number of hidden lay-
ers. Effectively, the deep neural network architecture allows
nonlinearities to compound at each layer, providing for the
approximation of highly nonlinear functions with less com-
putational cost than a simpler, single-hidden layer network.

Challenges arise in the training of such networks, ranging
from computational issues such as failure of convergence to
the global minimum and vanishing or exploding gradients to
broadermodel issues, such as over or underfitting. In general,
local minima are not observed in deep networks because of
the high dimensionality of the system; it has been shown that
local minima are almost certainly global minima and instead
the most problematic points are saddle points (Kawaguchi
2016). There is no universal strategy for eliminating the
other issues that may arise, so neural network design is an

Fig. 1 Schematic of a neural network with one hidden layer. This neu-
ral network contains one hidden layer (in red) with three neurons and an
output layer (in yellow)with one neuron. The input x (blue) is applied to
each neuron in the hidden layer. The outputs of the hidden layer’s acti-
vation function are passed to the output layer, which yields the system’s
estimate ŷ (green). The result is then fed backward for back propagation
(color figure online)

inherently iterative process, where various hyperparameters
(number of layers, number of neurons in each layer, etc.) are
tuned across trials to optimize results; once these hyperpa-
rameters are found, however, pre-existing architectures may
be leveraged to solve similar problems (known as transfer
learning), a common technique in other areas of machine
learning such as image classification (Zhu et al. 2011; Quat-
toni et al. 2008).

In this paper, we seek to develop a marriage of traditional
control techniques and approaches to problem solving with
the functionality that machine learning offers. We specif-
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ically look to develop predictions and control based on a
scarcity of observable data (in this paper, we consider only
firing times) and use that as the basis for control in both
fully actuated, single-neuron control applications and under-
actuated, population-level control schemes. We propose a
deep neural network for prediction of the effects of input
stimuli on a neural oscillator. This network is relatively sim-
ple compared with the architectures commonly employed for
problems such as natural language processing and image pro-
cessing. While our network was trained on a model for STN
neurons, similar or identical architectures (trained on appro-
priate data sets) should be able to obtain similar regressions
for other models. We have intentionally separated the regres-
sion problem from the control applications to demonstrate
how a single network can be applied to solve not just sin-
gular problems in engineering, but instead whole suites of
interrelated problems, allowing users to adapt a pre-existing
network to address novel challenges and questions.

Our paper will proceed as follows. We first describe the
design and training of our neural network, with a brief anal-
ysis of the associated error and comparison to alternative
regression strategies. Then, we describe how we applied the
results of our regression model framework to three prob-
lems of interest: an optimal efficiency control wherein two
neurons are desynchronized as efficiently as possible with
a single square-wave input; a dynamic programming strat-
egy wherein multiple square waves are used each period to
maximally desynchronize a pair of neurons; and a larger-
population clustering application where square-wave inputs
are used to drive a group of neurons into a k-cluster state. We
will show that the networkwas capable of not only successful
applications to these various types of control applications but
also that it is robust in the presence of effects not accounted
for in the initial training protocol, specifically system noise
and electrotonic coupling.

2 Artificial neural network design and
training

A primary goal of this research was to utilize as little infor-
mation as possible when training the neural network and
designing the control. To this end, we assumed that the only
measurement we could recover from the neuron was the
timing of its spikes. The control signal used, however, was
assumed to be known, and is characterized by three variables:
signal amplitude I0, signal width twidth, and signal delay time
tdelay. The delay time is the length of time after the previous
spike that the input stimulus is applied. The system’s output
was the expected value of the neuron’s next firing time, tfinal.
The input x and output ŷ of our neural network can therefore
be written as:

x = [
I0, twidth, tdelay

]T
, (1)

ŷ = E [tfinal|x] . (2)

Theneural networkwas trainedvia random trials ofx selected
uniformly from the ranges 0 ≤ I0 ≤ 25 mA, 1 ≤ twidth ≤ 9
ms, and 0 ≤ tdelay ≤ 33 ms. For each xi , the neural model
was simulated (here, a conductance-based model of the STN
adapted from (Rubin and Terman 2004a); the STN model
used is provided in Appendix 1) and the next spike time yi =
tfinal was recorded. Here, the superscript notation denotes the
i th training example from the data.

Prior to being used to train the neural network, x was
normalized to account for differences in the ranges of I0,
twidth, and tdelay. The transformed x was computed as:

x̂ j = x j − μx j

σx j
, (3)

where μx j and σx j are the arithmetic mean and standard
deviation, respectively, of the j th element of x.

The model was trained using 10,000 random trials, with
70% of the trials used as the training set and the remaining
30% held out for cross-validation. Parameters for the neural
networkwere initialized using theXavier initialization proto-
col (Glorot and Bengio 2010) and updated via batch gradient
descent. Hyperparameters for the number of hidden layers,
the number of neurons per layer, and the learning rate were
tuned using a Bayesian search optimization and optimizing
the harmonic mean HM of the quadratic loss function L
(commonly referred to as the mean-squared error, or MSE)
applied to both the training set and the cross-validation set.
More concretely:

L (
ŷ, y

) = 1

m

m∑

i=1

(
ŷi − yi

)2
, (4)

HM = 2
1

Ltrain
+ 1

LC−V

. (5)

Here, m = 7000 for the training set and m = 3000 for the
cross-validation set. This process yielded a neural network
with 5 hidden layers and neuron numbers whose values are
presented in Table 1. The hidden layers utilized tanh acti-
vation functions, while the output layer contained a linear
activation function to account for the complete range of pos-
sible period measurements. A learning rate of η = 0.0015
was used to achieve convergence, and the model was trained
for 50,000 epochs.

After confirming the model’s accuracy on the training set,
we cross-validated against the held out data to check for over-
fitting. As can be seen in Fig. 2, the model maintained a high
degree of accuracy in this cross-validation.
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Table 1 Neural network hyperparameters

Layer # 1 2 3 4 5

# of neurons 80 100 60 30 80

We note that the use of a neural network to perform this
regression has two primary advantages over other common
regression strategies we considered. First and foremost, the
neural network allows us to achieve a far greater degree of
complexity in the nonlinearities than other general regres-
sion methods, such as polynomial regression or Fourier
coefficient regression. Because neuron dynamics exist in a
high-dimensional, highly complex space, this generality that
the deep neural network provides is especially valuable in
the context of modeling stimulus responses in neurons. A
comparison of the accuracy of our neural network to two
other regression strategies can be found in Table 2. Second,
because future estimations are provided by an explicit, feed-
forward model based on provided input values, the neural
network produces an estimate that is efficient to compute
once the initial training is complete. Other strategies, such as
interpolating from the scattered data, are necessarily slower;
this difference in processing speed can be significant in the
context of on-line neural control, where computational effi-
ciency is of particular importance.

2.1 Evaluation of multiple neurons simultaneously

To extend the ANN to consider a larger population of neu-
rons, the firing times of all neurons in the population were
defined relative to a reference time, selected as the firing time
of the latest-firing neuron in the population. As such, the first
firing time for the last-firing neuron was considered t = 0,
and all other neurons were considered to have first fired at
some offset negative (t < 0) time. The appropriate result
estimation, then, was evaluated as tdelay with this offset sub-
tracted. For example, if the reference neuron fired at 0 ms
and a second neuron fired at−4 ms, then an input that occurs
at tdelay = 5 for the reference neuron occurs at tdelay = 9
for the second neuron. The ANN therefore can be efficiently
used for larger neural populations.

As an extension of this process, an “event horizon” map-
ping was also generated from the ANN’s regression analysis.
To extend the neural network to the case of multiple inputs
within a single cycle, it was necessary to estimate not just
when the neuron was stimulated but also when the stimulus
ends relative to the limit cycle. This was accomplished by
making the simplifying assumption that the neuron rapidly
returns to the limit cycle following the end of a given stim-
ulus. An event horizon time thor disallows subsequent input
stimuli with start times tdelay < thor. The event horizon time

Fig. 2 Analysis of cross-validation data prediction. In the top panel,
predictions are plotted against true values; perfect accuracywould return
a straight line along y = x . As can be seen, almost all predictions have
low error, with some outliers. The center and bottom panels plot the
errors against amplitude and stimulation width, respectively, revealing
that the most challenging stimuli to model tend to be those with high
amplitude and short duration. These represent stimulations near the fir-
ing threshold for the neuron—sufficient stimulation will generate an
all-or-nothing action potential, while insufficient stimulation will sim-
ply return to the limit cycle, meaning a small change in stimulation
parameters can have a strong, divergent effect on the resulting firing
time (color figure online)

was computed as:

thor = T0 − (
ŷ − tdelay − twidth

)
, (6)
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Table 2 Comparison of performance of neural network to other regres-
sion methods

Training error C–V error

Polynomial Fit 0.7787 0.9297

MATLAB scattered interpolant N/A 0.4674

Neural network 0.02688 0.0490

The error was calculated according to the loss function (4). The poly-
nomial interpolation was estimated using a least-squares analysis of
polynomial terms of the type a j,k,l I

j
0 t

k
widtht

l
delay

Fig. 3 Illustration of event horizon mapping. Time increases from 0
going left to right, with the remaining time until a firing event is recorded
indicated by the y-axis. In the top panel, the unperturbed system is
shown by the blue line, while the system subject to the input stimulus u
(shown in the bottom panel) is represented by the red curve. The event
horizon time is computedby translating the remaining timeuntil the neu-
ron fires after the completion of the input stimulus to the corresponding
remaining time relative to the original firing time T0, as indicated by
the green dashed line. The predicted firing time ŷ, meanwhile, is the
time at which the time to fire reaches 0 (color figure online)

where T0 ≈ 30 ms is the natural period of the neuron. For
example, if a stimulus at tdelay = 15 with twidth = 3 causes
the period to change from 24 to 21, although the stimulus
ends at t = 18, its event horizon time would be 21 because it
ends 4 ms prior to the neuron’s firing time. Any subsequent
stimuli that may be applied would need to have a value of
tdelay > 21 since all delay values were considered relative
to the original firing time. This is illustrated in Fig. 3. Addi-
tionally, we note T0 can itself be derived from the neural
network by setting tdelay � T0 for a candidate stimulus (if
tdelay > T0, the stimulus occurs after the next spike, and the
network should predict a firing time that precedes the value
of tdelay). A realization of this event horizon mapping for
twidth = 1 is shown in Fig. 4.

Fig. 4 Event horizon mapping (top) and period gain mapping (bottom)
for twidth = 1. The event horizon mapping is calculated via (6); the
period gain mapping shows the amplitude of the reduction in period
generated by stimulating at the given tdelay and I0. The natural period
of the oscillator T0 is roughly 30 ms (color figure online)

As can be seen in Fig. 4, the relationship between stim-
ulation parameters and firing time is nonlinear and timing-
dependent. As such, the specific effect of an applied current
varies depending on when and how strongly it is applied, but
the underlying dynamics of the STN are not overridden by
the applied stimulus in general. Rather, advancing the firing
time corresponds to an earlier rise in INa that in turn causes
the neuron to reach the threshold for an action potential fir-
ing, while stimuli that do not successfully advance the firing
time show either an increase in the amplitude of IK or neg-
ligible increase in INa. This can be seen for three different
input stimuli in Fig. 5.
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Fig. 5 Response of INa, IK , and V to three different input stimuli. Four
different examples are shown. The top panel of each triplet shows the
voltage trace, while the middle shows the ion currents INa and IK . The
bottom panel shows the applied stimulus. As can be seen, the relation-
ship between input and firing time is nonlinear and works by increasing
the value and growth of INa (color figure online)

3 Maximally efficient desynchronization

We now turn our attention to application of our regression
model to the desynchronization of two neural oscillators. We
consider the voltage traces of two identical uncoupled STN
neurons, V1 and V2. We define the spike time as the time at
which Vi is locally maximal and above a threshold voltage
(here, 0). The initial spike times for the neurons are separated
by some small incrementΔt ; because the neurons are identi-
cal, uncoupled, and at steady state, this spike time difference

will persist from cycle to cycle unless the neurons receive
an input. We define, without loss of generality, V2 to be the
“leading” neuron, meaning V2 fires before V1 and the firing
times can be related by:

t V1spike = t V2spike + Δt, Δt > 0. (7)

If during the subsequent cycle the inter-firing times of V1
and V2 differ by Δtfinal, the total separation between the two
neurons is given by:

Δttotal = Δt + Δtfinal. (8)

Our goal is to increase the value of Δtfinal as efficiently as
possible when the two neurons are subject to a common stim-
ulus. Following our previous work in Matchen and Moehlis
(2018),we therefore design our control tominimize our value
function Q (x, y):

Q =
−

(
t V1final − t V2final

)

α
∫ t
0 I (t)2 dt + ε

, (9)

where α is a weighting term, ε > 0 is an offset to prevent
division by zero if I = 0, and t V1final − t V2final = −Δtfinal. The

values of t V1final and t V2final are computed assuming the neuron
previously fired at t = 0. We additionally note that, since
we are only considering square waves, the integral can be
replaced:

∫ t

0
I (t)2 dt = I 20 twidth. (10)

Because the only difference between the two neurons is the
initial offsetΔt , the final time estimation is just the difference
in the expected values:

t V1final − t V2final = E [y|x1] − E
[
y|x2 = x1 + [0, 0, Δt]T

]
.

(11)

We minimized Q via gradient descent for multiple initial
separations Δt subject to two restrictions:

1. Q was minimized while holding amplitude constant, then
amplitude was varied; and

2. twidth was not allowed to decrease below twidth = 0.5.

The first condition was applied to recognize that control may
be subject to specific constraints, such as a particular ampli-
tude or performance characteristics (desynchronization time
or total energy). The second condition was to ensure the
model did not minimize the cost by reducing twidth to a phys-
ically unrealizable negative number.
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Fig. 6 Optimal twidth (solid line, scaling on left y-axis) and tdelay
(dashed line, scaling on right y-axis) for desynchronizing a pair of
neural oscillators as a function of stimulus amplitude I0 for three dif-
ferent initial separations. As can be seen, all three separations show the
same general trend in terms of the optimal signal, with shorter signals
typically preferred at higher amplitude (color figure online)

The most energy-efficient signal for desynchronizing a
pair of neural oscillators as a function of amplitude I0 is
shown in Fig. 6. To validate the results of the control, the
error in the output when applied to the original ODE was
calculated as:

errrel =
√(

Δtfinal,est − Δtfinal,sim
)2

∣∣Δtfinal,sim
∣∣ , (12)

where Δtfinal,sim and tfinal,est are the simulation and machine
learning-derived values of t V1final − t V2final, respectively. Both
this error and the absolute error (Δt f inal,est − Δt f inal,sim)
are shown in Fig. 7.We see that the model performs well out-
side of small-amplitude signals regardless of the separation:
because the response to small-amplitude signals is relatively
small, the relative effectiveness is limited by the underlying
accuracy of the model. We note, however, that the model per-
forms exceedingly well outside of these extreme cases, with
relative errors under 10% and absolute errors on the order of
less than 1% of the STN neuron’s period.

4 Dynamic programming desynchronization

The use of multiple inputs to optimally desynchronize a pair
of neurons over a single cycle was carried out by leverag-
ing dynamic programming. In the interest of computational
efficiency, we opted for a two-level approach to dynamic pro-
gramming: on a cycle-to-cycle level, the control was greedy,
attempting to maximize the desynchronization, while indi-
vidual inputs within the cycle were found recursively by
working backward from the final state, here Δttotal = T0

2 .
The process within a given cycle proceeded as follows:

potential choices of I0 and tdelay were griddedwhile twidth was

0 5 10 15 20
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10

0 5 10 15 20
0
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0.3

Fig. 7 Relative (top) and absolute (bottom) errors by amplitude for
three different initial separations. Although absolute error is low across
all samples and lowest for the smallest separation (Δt = 0.2 ms), the
relative error for the smallest separation is highest because the true
measured improvement is near 0; for a portion of the signal range, in
fact, the change is sufficiently small that there is no measured change,
causing the denominator of the relative error to be identically 0 (this
can be seen in the plot up to roughly 2 mA). However, for most ampli-
tudes and stimulation lengths, both the relative and absolute errors are
insignificant and near 0 as stimulation amplitude increases (color figure
online)

held constant. Additionally, aminimum time of 3ms between
input stimuli was imposed. For a selected

(
I0, tdelay

)
pair, a

binary search function was used to find the spike time differ-
ence that, when the pair of neurons is subjected to the given
stimulus, would result in the desired final spike time differ-
ence. This process was then iteratively repeated for every
input stimulus whose event horizon was less than tdelay − 3
(with the difference accounting for the enforced minimum
time between firing).

The goodness of a given sequence of control stimuli was
determined via a value function:

P = Δtfinal − Δtinitial − β I 20 , (13)

where β represents a weighting of the input stimulus power
relative to the time improvement and Δtini tial represents the
separation at the start of the given cycle; in general, a higher
value of β should produce lower-energy desynchronizations
requiring more cycles to complete, while a lower value of β
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should produce higher-energy desynchronizations requiring
fewer cycles to complete.

The input stimulus sequence that maximized P deter-
mined the endpoint for the previous cycle’s optimization
problem. For each cycle, the same process was applied until
the start point for a given cycle terminated at a spike time
difference of less than 1 ms. The process for a given cycle is
presented in Fig. 8.

The success of our dynamic programming approach shows
that the perturbations to the limit cycle introduced by the
applied control were sufficiently weak to allow the neuron
to return to its limit cycle in a short timeframe, thereby
extending the functionality of the regression model to input
sequences. The value of an input sequence was calculated
using the neural network according to (13). The end separa-
tionΔtfinal was taken to be half the neuron’s natural period, or
roughly 15 ms. Two different values of β were used to verify
the existence of distinct control schemes depending on the
relative weighting of energy cost. The faster-responding sys-
tem used a value of β = 0.01, while the slower-responding
system used a value of β = 0.1.

After the input sequence was calculated from dynamic
programming applied to the ANN, it was applied to the full
ODE to verify the result. Rather than using the input sequence
as an open-loop stimulus, the firing time of the reference
neuron was used as the basis for setting the next cycle’s input
sequence (that is, tdelay was computed relative to the recorded
spike time, not the neural network’s estimate of the spike
time. Because of the observed accuracy limitations at small
input magnitudes and small separations seen in Fig. 7, inputs
for the dynamic programming analysis were constrained to
the range of 5 ≤ I0 ≤ 10. Results can be seen in Fig. 9. These
results are consistent with expectations: as in the case of
the efficient stimulus calculation, the dynamic programming
yields a highly accurate final result, and the smaller β value
returns a more-responsive input sequence offset by a higher
energy cost. We note that, again consistent with prior results,
performance does degrade if I0 is allowed to take on smaller
values or if the starting condition requires the neurons to be
significantly closer (on the order of Δt = 0.1 instead of
Δt ≈ 1).

Larger inputs can also present challenges for multiple-
input control applications. This is a byproduct of the under-
lyingneural network,whichonly predicts thenext firing time;
larger stimuli will yield a correct prediction of the firing time,
but the firing of the subsequent spike will not occur exactly
a full period later even if no additional stimulus is applied.
Although beyond the scope of this paper, future work may
be warranted on predicting these aftereffects of stimulation
in addition to the immediate effect.

Fig. 8 Process flowchart for dynamic programming application. This
process was carried out independently from cycle to cycle until the
terminating condition was reached (color figure online)

5 Clustering of neurons

5.1 Control policy

Clustering, in which oscillators form discrete, finite groups
with similar characteristic behaviors, was accomplished by
defining a cost function related to the input stimulus and the
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Fig. 9 Computed stimuli and output for dynamic programming
approach to desynchronization,β = 0.1 (top) andβ = 0.0001 (bottom).
For both trials, twidth = 3. Note that both accurately yield a final target
separation of ≈ 15 ms, but β = 0.0001 results in an input sequence
that is higher in energy and faster in response (color figure online)

change in a state function. This state function was adapted
from the standard order parameter Rk (`)where Rk represents
the kth-order parameter and is defined as Daido (1996):

|Rk (`)| = 1

N

∣∣
∣∣∣

N∑

l=1

eikθl

∣∣
∣∣∣
. (14)

Clustering has emerged as a potential solution to prob-
lems such as Parkinson’s disease. In Adamchic et al. (2014),
a quadripolar stimulator providing identical but phase-
separated stimuli at each of its four poles showed clinical
improvement in patients, and Tass (2003) suggests cluster-
ing as themechanism for coordinated reset. Here, we attempt
to recreate the effects of coordinated reset—grouping of sub-
populations of neurons—using an identical common input to
all neurons instead of four distinct signals.

Because we are solely interested in the magnitude of Rk ,
for simplicity of notation in this chapter we will henceforth
understand Rk to be the real-valued magnitude |Rk (`)| as
defined in (14). Here, θ is interpolated fromwhen the neuron
previously fired relative to the natural period of the neuron.
Assuming the lth neuron fired at t = 0, then, θl is represented
as a linear transformation:

θl (t) = 2π t

T
. (15)

Order parameters are frequently used for analysis in cluster-
ing problems, cf. (Tass 2003). In the order parameter context,
R1 (`) = 1 implies the oscillators are perfectly clustered
in a single-cluster configuration, while R1 (`) = 0 suggests
desynchrony or a larger number of clusters instead. It should
be noted, however, that one drawback of the order parameter
is that, for k ≥ 2, the distributions that generate Rk = 1 are
non-unique. For example, the one-cluster case of R1 = 1 also
yields R2 = 1, R3 = 1, etc. In contrast, an optimally dis-
tributed two-cluster system,with an equal number of neurons
in each cluster and the clusters π radians out of phase with
each other, would still have R2 = 1, but R1 would instead
equal 0. R4, however, would also equal 1.

This ambiguity provides a challenge for utilizing order
parameters as a basis for control rather than as simply a diag-
nostic tool for the effectiveness of a control. Controlling to a
two-cluster state, for example, requires not only mandating
R2 = 1 but also that R1 = 0; more generally, a k-cluster
state is better defined according to:

Rl =
{
0, l < k

1, l = k
. (16)

In general, we seek a cost function Ck (`) that satisfies:

Ck (`) =
k∑

l=1

αl Rl (`) , (17)

such that that Ck is minimized when (16) is satisfied. A sec-
ond constraint results from the existence of undesirable local
minima resulting from the definition of the order parame-
ters. Suppose, for example, k = 2 and R1 ≈ 1. In this case,
R2 ≈ 1 as well. If α1 = −α2 = 1, then Ck ≈ 0 and the
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Fig. 10 Effect of αl selection on existence of local minima in Ck . To
illustrate the potential existence of local minima related to coefficient
selection, here we examine the k = 2, N = 2 case. As can be seen in
the top panel, forΔθ < π

2 , R2 decreases more rapidly than R1, creating
a local minimum at Δθ = 0 when α1 = −α2. The bottom panel shows
Ck (normalized such that Ck (Δθ = 0) = 0 and minCk = −1) for
different choices of α1 relative to α2. At α1 ≈ −4α2, the fixed point at
Δθ = 0 loses its stability (color figure online)

global minimum is Ck = −1. However, R1 = R2 = 1 is a
local minimum of the cost function, as desynchronizing from
the single-cluster state causes the value of R2 to change more
rapidly than that as R1 (this can be shown by differentiation;
for an example, see Fig. 10). Therefore, some care must be
used in selecting αl to derive a valid cost function.

We derive here an approximate sufficient condition for the
k = 2 case, noting that a similar analysis can be iteratively
carried out for k > 2 as well. At the undesirable, one-cluster
fixed point, the derivative with respect to the j th neuron’s
phase θ j may be written as:

∂Ck

∂θ j
=

N∑

l=1

[
2

α1

R1

(
sin θl cos θ j − cos θl sin θ j

)

+4
α2

R2

(
sin 2θl cos 2θ j − cos 2θl sin 2θ j

)]
. (18)

Additionally, at this undesired fixed point, ∂Ck
∂θ j

= 0. A nec-
essary and sufficient condition for this point to be unstable is

that, for |ε| � 1, ∂Ck
∂θ j

∣∣
∣
θ j+ε

< 0. We make use of the Taylor

approximations:

sin (x + ε) = sin x + ε cos x + O
(
ε2

)
;

sin (2x + 2ε) = sin 2x + 2ε cos 2x + O
(
ε2

)
;

cos (x + ε) = cos x − ε sin x + O
(
ε2

)
;

cos (2x + 2ε) = cos 2x − 2ε sin 2x + O
(
ε2

)
.

. (19)

Additionally, we note that at the undesirable, one-cluster
fixed point:

sin θ j ≈ sin θl ∀l ∈ N

and

cos θ j ≈ cos θl ∀l ∈ N .

(20)

These approximations allow us to rewrite the derivative as:

∂Ck

∂θ j

∣∣
∣∣
θ j+ε

= −2ε
α1

R1

∑

l 
= j

(
cos2 θl + sin2 θl

)

−8ε
α2

R2

∑

l 
= j

(
cos2 2θl + sin2 2θl

)
, (21)

where we have additionally used the fact that (18) is equal to
0 at the fixed point. Further simplifying, we find:

− 2ε (N − 1)
α1

R1
− 8ε (N − 1)

α2

R2
< 0; (22)

rearranging and solving the inequality with R1 = R2 = 1
yields the condition:

α1 > −4α2. (23)

To aid performance, for our analysis we empirically found
a simpler and more conservative bound was useful; for the
N = 50 system considered below, the coefficients αl for the
k-cluster problem were written as:

αl =
{
Nk−l+1, l < k

−N , l = k
. (24)

We note that we have made no claims or statements about
reachability or controllability with this analysis, only that the
condition provided is sufficient to overcome an empirically
observed pitfall of order parameter-based control.

5.2 Population clustering simulation results

A population of 50 neurons was simulated using the neural
network. For each cycle, an input was selected by finding
the minimal value on a three-dimensional grid of values for
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(
I0, twidth, tdelay

)
of the cost of the input according to the

overall cost:

Q = Ck + α I 20 twidth, (25)

where α was set to 0.01 and Ck was of the form defined in
(17).

Fifty different trials were run with initial firing times for
each neuron randomly selected from a normal distribution
(μ = 0, σ = T

8 ). Once optimal input stimuli were gen-
erated via the neural network, the inputs were applied to
the full ODE model. Phase values at the end of the simula-
tion were calculated as the time that had elapsed since the
neuron had last fired divided by the natural period T0 and
multiplied by 2π . Boxplots of these simulation results for
two-cluster and three-cluster control objectives are shown
in Fig. 11. For both control objectives, the median values
for the desired order parameter (R2 for two clusters and
R3 for three clusters) were statistically significantly higher
than the other two-order parameters. The largest difference
between the neural network’s predicted results and the full
simulation’s output is that lower-order parameters, notably
R1, are not as effectively eliminated in the simulation when
compared to the neural network’s expectation. This is again
consistent with the previous analysis of the regression; these
errors are largely due to the inability to accurately distin-
guish the effects of input stimuli when two neurons are very
close (< 1 ms). As a result, while in the neural network the
correct number of neurons may end up in each cluster (ide-
ally, balanced equally) which in turn leads the lower-order
parameters to approach zero, the network simply does not
have the precision in practice to correctly cleave the initial
distribution when the stimulus is applied to the simulation,
resulting in slightly imbalanced (but still strong) clusters. A
characteristic resulting output for the three-cluster case (with
values of R1, R2, and R3 close to the median values for the
ODE output) is additionally shown in Fig. 12. We note that
despite the values of R1 and R2 both hovering around 0.2 for
this realization, a distinct three-cluster state does emerge by
the end of the simulation time.

5.3 Extension to noisy oscillators

An important measure of robustness when designing control
algorithms is sensitivity to noise, so we applied the neural
network’s generated stimulation patterns to a noisy version of
the ODE to evaluate its response. The same initial conditions
and generated stimulation patterns from the previous section
were again used, but an additive Gaussian white noise term
was included in the equation for V̇ :

V̇ = · · · + ση (t) , (26)

Fig. 11 Boxplots of order parameters for 50 trials of two-cluster (top)
and three-cluster (bottom) control objectives. Although there are some
errors when comparing the predictions from the neural network (in
green) to the actual output from the ODE system (in red), we can see
that the neural network performs well and successfully maximizes the
correct order parameter in both control objectives (color figure online)

where σ is the standard deviation of the noise and η (t) is
the Gaussian distribution with mean 0 and standard devia-
tion 1, and the sampling of the distribution is independent
and identically distributed such that 〈η (t) η (s)〉 = δ (t − s).
Numerical simulation for the noisy oscillatorswas carried out
using a 4th-order Runge–Kutta solver adapted for noise. The
2nd-order solver was explicitly derived in Honeycutt (1992),
and the derivation there can, as noted in the original paper, be
extended to higher-order Runge–Kutta solvers; a 4th-order
adaptation is presented in Durham (2007). Differing magni-
tudes of noise were added to the simulation; as can be seen in
Fig. 13, even for highly noisy systems, the control sequence
developed under the no-noise condition retained success in
achieving the appropriate clustering.

5.4 Control in the presence of coupling

The other important measure of robustness is how well the
control maintains validity when we consider interactions
between the neurons. To this end, we carried out the same
protocol as previously but included all-to-all electrotonic
coupling in addition to noise. For all trials, the standard devia-
tion of the voltage noisewas set toσ = 5. For the electrotonic
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Fig. 12 ODE simulation output with final order parameter values R1 =
0.1747, R2 = 0.2686, and R3 = 0.8392. This particular realization
was selected for its closeness to the median results, suggesting it is
representative of an average clustering sequence. The top panel shows
voltage traces for the 50 simulated neurons; we note that though they
start normally distributed, they end in a clear three-cluster configuration.
The bottom panel shows the computed applied control input which was
identically and simultaneously applied to all neurons to generate the
three-cluster configuration (color figure online)

coupling, we implement the interaction between neurons as
in Johnston and Wu (1995) and considered different values
of the coupling strength ae:

ΔV̇i = ae
N

N∑

j=1

(
Vj − Vi

)
. (27)

Otherwise, as in the case of considering noisy oscillators, the
neurons were stimulated using the same stimulation parame-
ters developed for the noise-free, uncoupled scenario. Three
levels of coupling were considered: ae = 0.01, ae = 0.1,
and ae = 1.0, which correspond to weak, moderate, or
strong coupling, respectively. As can be seen in Fig. 14,
weak coupling has little impact on the results, while the con-
trol sequence still generally performs well with moderate
coupling (though performance is degraded when compared
to the uncoupled baseline). We additionally note that the
two-cluster control objective outperforms the three-cluster
objective, demonstrating it is easier to achieve fewer clus-
ters. This is particularly pronounced in the case of moderate
coupling,where there is far less of a dropoff in performance in
the case of two clusters than for three, while strong coupling
is impossible for the control sequences for either objective
to overcome without modification. This indicates that when
only moderate or weak coupling is expected, we need not

Fig. 13 Boxplots for 50 trials with additive Gaussian noise of differing
magnitudes for two clusters (top) and three clusters (bottom). Even for
the high-variance case σ = 10, the clustering control sequence is still
successful in generating clusters, indicating the robustness of the control
algorithm (color figure online)

modify our approach, but in applications where the coupling
strength is expected to be much larger, it may be necessary to
supplement the base model with some additional estimation
of the effect of coupling. This is in contrast to the influence of
noise, which showed far less effect on the outcome even for
large values of the noise. Most likely, this is because noise
does not introduce new stable configurations in the sameway
coupling does and its average effect is 0 in the case of white
noise, independent of the magnitude of the standard devia-
tion. Therefore, noise is roughly as likely to cause a neuron
to fire earlier than anticipated as it is to cause the neuron to
fire later than anticipated, so in the aggregate, its effect on the
accuracy of the control is less pronounced. We would likely
see larger effects if the neural network used the voltage traces
of the neurons directly in making predictions, but since only
the firing times are recorded, individual fluctuations have lit-
tle effect on the overall system.

6 Conclusion

Wedeveloped a fully connected deep neural network capable
of making accurate predictions of the firing time of a neu-

123



232 Biological Cybernetics (2021) 115:219–235

Fig. 14 Boxplots for weak, moderate, and strong coupling for two clus-
ters (top) and three clusters (bottom). The results behave as expected,
with the predictions of the neural network performingworse as coupling
strength increases. Despite this, the control strategy shows significant
resilience in the presence of weak to moderate coupling, with clear ele-
vations in the appropriate order parameter compared to the other order
parameters (color figure online)

ron model when trained on a corpus of data. This network
significantly outperformed other feed-forward approaches to
regression provided equivalent data, such as interpolation and
polynomial regression. We found the network to be nearly
uniformly accurate, struggling only in cases of short, high-
amplitude signals on the edges of our training dataset.

Having verified the validity of the model, we considered
three different strategies andobjectives for control. In ourfirst
two examples, we sought to desynchronize a pair of neurons,
first as efficiently as possible with a single input, then by
implementing dynamic programming to develop an optimal
sequence of stimulations. We showed the model was able to
accurately desynchronize the neurons in both of these trials.
Lastly, we shifted our focus to an underactuated ensemble of
neural oscillators. After developing a control protocol based
on the order parameters of the ensemble, we showed effective
control could be generated to achieve either two- or three-
cluster configurations, even in the presence ofGaussianwhite
noise or weak to moderate electrotonic coupling.

We believe an interesting area for further development
is generalizing the control input signal and finding ways to
adaptively learn optimal signals. We intend to extend this

work in future research to an orthogonal basis of input sig-
nal parameters, such as Legendre polynomials, that includes
the square waves considered here but additionally allows for
more varied control input schemas.

We additionally note that there are some considerations
that have been excluded from this analysis but would be of
interest in the future. First, although the control examples
presented in this paper have centered around clustering neu-
ral populations, in applications such as DBS for Parkinson’s
disease, the specific mechanism by which stimulation alle-
viates symptoms are at best unclear, and clustering and/or
desynchronizationmay be either unnecessary or undesirable.
One advantage of the formulation presented here is that it is
largely agnostic to the specific control objective: application
of the strategies outlined here relies only on developing a
function that evaluates the relative goodness of a particular
configuration of oscillators and that can be measured via or
associated with the firing times of the neurons.

Second, we note that the control strategies presented here
should ultimately be verified experimentally, though this is
beyond the scope of this paper. The soundness of maximally
efficient desynchronization has previously been explored by
Faramarzi andNetoff (2021), but its integrationwithmachine
learning and use in larger populations remains to be exper-
imentally verified, as do the dynamic programming-based
desynchronization algorithms presented here.

Acknowledgements This work was supported by National Science
Foundation Grant No. NSF-1264535/1631170.

STN neuronmodel

The STN neuron model is adapted from the interconnected
model of the basal ganglia presented in Rubin and Terman
(2004a, b), in turn adapted from Terman et al. (2002). The
governing ODEs are:

V̇ = − (I + INa + IK + IAHP + ICa + It ) + I0 + I (t)

(28)

ḣ = φ
h∞ − h

τh
(29)

ṅ = φ
n∞ − n

τn
(30)

ṙ = φr
r∞ − r

τr
(31)

˙[Ca] = εφ (−ICa − It − kCa [Ca]) , (32)

with φ = 0.75, φr = 0.5, and ε = 5E − 5. We note here
that whereas in the prior two conductance-based models, the
variables consisted of the voltage V and then a set of gating
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Table 3 Constants for STN
neuron model from Terman
et al. (2002); Rubin and Terman
(2004a, b)

Variable Value Description

VNa 55 mV Sodium current reversal potential

VK −80 mV Potassium current reversal potential

V −60 mV Leak current reversal potential

VCa 140 mV Calcium current reversal potential

ḡNa 37.5 nS/µm2 Maximum sodium current conductance

ḡK 45 nS/µm2 Maximum potassium current conductance

ḡ 2.25 nS/µm2 Maximum leak current conductance

ḡT 0.5 nS/µm2 Maximum T-type calcium current conductance

ḡAHP 9 nS/µm2 Maximum afterhyperpolarization potassium current conductance

ḡCa 0.5 nS/µm2 Maximum high-threshold calcium current conductance

I0 25 mA Base current

variables, here [Ca] refers to the concentration of calcium
ions within the neuron.

The auxiliary equations are:

s∞ = 1

1 + e− V+39
8

(33)

m∞ = 1

1 + e− V−30
15

(34)

h∞ = 1

1 + e
v+39
3.1

(35)

n∞ = 1

1 + e
v+32
−8

(36)

τh = 1 + 500

1 + e
V+57

3

(37)

τn = 1 + 100

1 + e
v+80
26

(38)

τr = 7.1 + 17.5

1 + e
V−68
2.2

(39)

T∞ = 1

1 + e
V+63
−7.8

(40)

rnew = 1

1 + e
r−0.25
−0.07

− 1

1 + e− 0.25
−0.07

. (41)

Using these, we can calculate the various currents as:

I = ḡ (V − V) (42)

INa = ḡNam∞3h (V − VNa) (43)

IK = ḡK n
4 (V − VK ) (44)

IAHP = ḡAHP (V − VK )
[Ca]

[Ca] + k1
(45)

ICa = ḡCas∞2 (V − VCa) (46)

IT = ḡT T∞3rnew
2 (V − VCa) . (47)

The associated constants are listed in Table 3.
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