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We present a mathematical model for the dynamics of an electrostatically actuated m
cantilever. For the common case of cantilevers excited by a periodic voltage, we show
the underlying linearized dynamics are those of a periodic system described by a Ma
equation. We present experimental results that confirm the validity of the model, a
particular, illustrate that parametric resonance phenomena occur in capacitively actu
micro-cantilevers. We propose a system where the current measured is used as the s
signal of the cantilever state and position through a dynamical observer. By investig
how the best achievable performance of an optimal observer depends on the exc
frequency, we show that the best such frequency is not necessarily the resonant fre
of the cantilever.@DOI: 10.1115/1.1767851#
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1 Introduction
The recent advances in the field of miniaturization and mi

fabrication have paved the way for a new range of applicatio
bringing along the promise of unprecedented levels of per
mance. In particular, scanning probe devices have proven t
extremely versatile instruments, with applications that range fr
surface imaging at the atomic scale@1#, to ultra high density data
storage and retrieval@2#, and to biosensors@3,4#, to cite but a few.

The working principle for most of these devices is based o
measurement of displacement. As an example, consider ima
in atomic force microscopy: the topography of a sample is rec
structed from the displacement of the cantilever-probe, cause
the interaction forces with the sample@5,6#. In biosensors appli-
cations the displacement of a cantilever can be related to the b
ing of molecules on the~activated! surface of the cantilever beam
and is therefore used to compute the strength of these bond
well as the presence of specific reagents in the solution un
consideration@7,8#. It is clear that the sensitivity of these device
strongly depends on the smallest detectable motion, which pos
constraint on the practically vs. theoretically achievable per
mance. In order to make the gap between the two smaller, whi
the same time providing compactness of devices and faster
namics, much of the research effort has been focused on the
sign of integrated detection schemes.

The most common solutions for integrated detection make
of the piezoresistive,@9,10#, piezoelectric@11–13#, thermal expan-
sion @14# or capacitive effects@15–17#. A major advantage of
capacitive detection, is the fact that it offers both electrosta
actuation as well as integrated detection, without the need fo
additional position sensing device. The common scheme use
capacitive detection is to apply a second AC voltage at a
quency much higher than the mechanical bandwidth of the ca
lever. The current output at that frequency is then used to estim
the capacitance, and consequently the cantilever position.
sensing scheme is the simplest position detection scheme a
able, however, it is widely believed to be less accurate than op
levers or piezoresistive sensing.

The device that we propose is an electrostatically actuated
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crocantilever. More precisely, in our design the microcantile
constitutes the movable plate of a capacitor and its displaceme
controlled by the voltage applied across the plates. In orde
measure the cantilever displacement, we propose a novel sch
that avoids the use of a high frequency probing signal by the
of a dynamical state observer, whose input is the current thro
the capacitive cantilever. For the purpose of implementation,
scheme offers significant advantages as it involves simpler
cuitry. By using an optimal observer, or by tuning the observ
gains, it is conceivable that a high fidelity position measurem
can be obtained, thus improving resolution in atomic force m
croscopy applications.

In this paper, we present a model for this electrostatically ac
ated microcantilever. Using simple parallel plate theory and
the common case of sinusoidal excitation, it turns out that
dynamics are governed by a special second order linear peri
differential equation, called the Mathieu equation. We produ
experimental evidence that validates the mathematical model
cluding a mapping of the first instability region of the Mathie
equation.

The optimal observer problem that was formulated also in@18#
is solved here following a different and simpler approach. T
optimal design is then used as an analysis tool to select the
quency of excitation that corresponds to the best achievable
server performance. In other words, the optimal observer desig
used to actually design the system~rather than the observer!, by
selecting the excitation frequency that produces the least est
tion error. Interestingly, it turns out that this frequency is not ne
essarily the resonant frequency of the cantilever, and it depend
the statistics of the measurement and process noise.

After the optimal excitation frequency is selected, we desig
suboptimal reduced order observer, whose parameters are tun
match the optimal performance index as close as possible.
extension of these results to the array configuration is the sub
of our current research.

The paper is organized as follows: In Section 2, we develop
mathematical model of an electrostatically actuated cantilever
Section 3, we present the experimental results that validate
model including, in particular, the mapping of the first instabili
region of the Mathieu equation. In Section 4, we pose the opti
observer problem for time varying systems and in Section 5,
design a suboptimal reduced order observer. Finally, we pre
our conclusions in Section 6.
al
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2 Model Description for a Single Cantilever
The schematic of a single cantilever sensor is shown in Fig

It consists of two adjacent electrically conductive beams form
the two plates of a capacitor. One of the beams is rigid, while
other ~hereafter referred to as the cantilever! is fairly soft and
represents the movable part of the structure.

If the length of the cantilever is much bigger than its distan
from the bottom plate, the capacitance is given by

C~z!5
eoA

d2z
, (1)

whereeo58.85 10212 As/Vm is the permittivity in vacuum,A is
the area of the plates,d is the gap between them andz is the
vertical displacement of the cantilever from its rest position.

The attractive force,Fa , between the capacitor plates genera
by applying a voltageV(t), can be easily found to be

Fa5
1

2

eoA

d2

V2~ t !

S 12
z

dD 2 '
1

2

eoA

d2 S 112
z

dDV2~ t !,

where the approximation holds whenz/d!1.
Only few algebraic steps are sufficient to derive the equation

motion of the cantilever, which is treated as a lumped-param
system, and hence described by taking into account its first b
ing mode only, and neglecting all higher order flexible mod
This approximation is quite common in the study of the dynam
of scanning probe cantilevers@5,19,20#. It follows that, if the volt-
age applied isV(t)5Vo cosvot, the equation of motion is given
by

z91cz81~a22q cos 2t !z5uf~ t !, (2)

where the prime denotes the derivative with respect to the sc
time t5vot; c is a small damping coefficient, both from air fric
tion and structural losses,a5k/mvo

221/2eoAVo
2/md3vo

2, k is the
spring constant of the cantilever,q5eoAVo

2/4md3vo
2, and uf(t)

5qd cos2 (t).
Equation~2! is an instance of the well-known Mathieu equ

tion. Its properties are briefly discussed in Section 3. Here we
point out that whenuf(t)[0 and c50 this equation has very
peculiar stability properties, that have been extensively inve
gated. Asa andq vary in R, its stable solutions can be periodi
but they never decay to zero. In the case of our interest, wh
uf(t)Þ0 and periodic, we can prove that, for any pair of para
etersa andq, the forced equation retains the same stability pro
erties as the unforced one.

We consider the current generated as the outputy of the system.
Its first order approximation is given by

Fig. 1 A schematic of an electrostatically driven cantilever
320 Õ Vol. 126, JUNE 2004
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y5c1~ t !z1c2~ t !z81v f~ t !, (3)

where c1(t)52eoAVowo /d2 sin t, c2(t)5eoAVo /d2 cost, and
v f(t)5eoAVowo /d sin t.

Introducing the vectorx5@z ż#T, we can derive from~2! and
~3! the state space representation of the cantilever model

x85A~ t !x1B~ t !uf~ t !
(4)

y5C~ t !x1v f~ t !,

where

A~ t !5F 0 1

2a12q cos 2t 2c
G ;

B5F0

1G
and

C~ t !5@c1~ t ! c2~ t !#.

Note that~4! is a linear, time-varying andT-periodic model, with
T52p. The next section is devoted to presenting the results
the experiments that we performed to validate the model.

3 Experimental Validation of the Cantilever Model
The device we have used in our experimental setup was a

mm350 mm32 mm highly doped polysilicon cantilever, fabri
cated using the MUMPS/CRONOS process, and with a gap
tween the electrodes of about 2mm. Figure 2 is a micrograph o
the actual device. The mechanical response of the cantilever
tested in vacuum (p58mT), using laser vibrometry@21# to mea-
sure its displacement and velocity near the free end, when e
trostatically driven with different AC voltage signals.

The first experiments we performed aimed at identifying t
system as a simple mass-spring-damper model. As a matte
fact, when the amplitudeVo of the AC actuation voltage is sma
enough, the coefficientq in equation~2! is negligible, and the
beam can be described approximately by an ordinary second o
differential equation

z̈12jv r ż1S v r
22

1

2
ve

2Vo
2D z5u~ t !.

Figure 3 shows the magnitude, both measured and identified
the frequency response of this model, excited by a square-ro
sinusoidal signal. A least square fitting of the data gives a reso

Fig. 2 SEM image of a polySi cantilever. The inset shows de-
tails of the mechanical connection to the base.
Transactions of the ASME
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frequency of approximatelyf r550,800 Hz, a damping coefficien
j52.131024, while the quality factorQ52200 turns out, as ex
pected, to be quite high. The values of these parameters
confirmed by time domain identification experiments as well.
we consider that the Young’s modulus for Cronos’ polysilicon
E5158610 GPa, its density isr52300 Kg/m3, we can infer from
the identified data that the effective length of the capacitor plat
aboutL5160mm.

A second set of experiments aimed at identifying the value
the so-called ‘‘electrostatic resonance,’’ve , responsible for the
shift in the effective resonant frequency,veff , of the cantilever
with the voltage applied,veff

2 5vr
221/2ve

2Vo
2. A linear fit of the

experimental data points gives a value ofve
252.63e8 @rad/V2#, in

good agreement with its theoretical value~see Fig. 4!.
As the amplitude of the driving signal increases, so does

value of q and this approximation of the model is no longer a
propriate. Therefore, we have to return to the original Eq.~2!,
which will be analyzed in detail in the next section.

3.1 The Mathieu Equation and Parametric Resonance.
When the amplitude of the forcing signal is large, the time inva
ant approximation introduced in the previous section is not su

Fig. 3 Frequency response of the capacitive cantilever: the
dashed line corresponds to measured data, the solid one is its
least square fit

Fig. 4 Electrostatic resonance. The dots represent measured
values of resonance frequency, the solid line is their linear fit.
Journal of Dynamic Systems, Measurement, and Control
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cient to describe the rich dynamics exhibited by the system
we need to refer again to Eq.~2!. This equation is an example o
a damped Mathieu equation with forcing, a well known and stu
ied periodic differential equation. As a matter of fact, an extens
literature exists on its standard form

z91~a22q cos 2t !z50, (5)

that has neither damping nor external forcing and that was fi
introduced by Mathieu to model the vibrational modes of
stretched membrane having an elliptical boundary.

The stability of linear periodic differential equations, like Eq
~2!, is determined by the eigenvalues of its state transition ma
over one period. More precisely, the equation is stable if th
eigenvalues are smaller than one, and unstable if at least on
larger than one@22#. Unfortunately, it is usually not possible to
compute this matrix analytically, hence the analysis makes us
approximate tools, like averaging or perturbation-methods.
the specific case of Eq.~5!, a detailed derivation, using perturba
tion methods, of the stable/unstable regions as a function of
parametersa and q can be found for instance in@23#. Figure 5
portrays these characteristic tongue-like shaped regions. In
ticular, and we omit here the details for the sake of brevity, it
not difficult to prove that instabilities occur ata5n2, nPN.

In terms of the physical parameters of the device, the driv
frequencies that cause unstable responses in the system are
by

vo'
2v r

n
nPN,

when using a square-rooted sinusoidal driving signal. Simila
the boundaries of the first instability region, given bya516q for
~5!, in terms of frequency and amplitude of excitation turn out
be defined by

vo
254v r

224S 17
1

2D eAVo

md3
.

It is worth noting at this point that the presence of a dampi
term, whose existence we have neglected so far, has the effe
shifting the tongues upwards in thea-q parameter space. In ou
setup, this is of little consequence, because the magnitude o
shift is quite small. However this is not always the case and in f
it is the reason why parametric resonance is difficult to observ
the macroscale. Figure 6 is a comparison between the experim
tal data relative to the boundaries of the first instability region, a
the same curves obtained from two sets of parameters: the s
lines come from fitting these experimental data points, the da

Fig. 5 Mathieu equation: the shaded areas correspond to un-
stable behavior
JUNE 2004, Vol. 126 Õ 321
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dotted ones come from the frequency response identification.
inset shows the experimentally observed upwards shift of the
stable region with damping.

Inside the instability region the cantilever oscillation does n
grow unbounded, as predicted from the previous linear analy
In reality, physical limiting nonlinear effects always come in
play and cause the system to settle down into a steady stat
sponse@24#. As a consequence, the linear spring model need
be corrected to include a cubic term

z91cz81~a22q cos 2t !z1a2z
35uf~ t !, (6)

whose origin is both mechanical, because of the large displ
ment of the beam, and electrostatic.

What we really see when driving the cantilever in parame
resonance regime is a subharmonic 2:1 oscillation of the b
@24#, which vibrates at half the frequency of excitation, as sho
in Fig. 7, which reproduces data collected from the oscillosco
Note also that during the transition from non-parametric to pa
metric region, the response shows a characteristic expone
growth ~see Fig. 8!. Above the critical driving voltage amplitude

Fig. 6 First instability region: experimental data points
„circles … and curves with identified parameters. Inset: effect of
damping visible on experimentally measured data, marked with
circles.

Fig. 7 Cantilever response in parametric resonance „oscillo-
scope data …
322 Õ Vol. 126, JUNE 2004
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and for driving frequencies near the first parametric resonance
frequency response of the cantilever has the shape depicted in
9. The two curves reproduced represent the data collected
sweeping the driving frequency from low to high~1 points! and
from high to low ~o points!, as indicated by the arrows. The ve
tical axis represents the amplitude of the periodic~half frequency!
velocity of the beam, while the horizontal axis is the frequency
excitation.

This kind of plot is typical of oscillators having a cubic nonlin
earity ~Duffing!. What is worth pointing out here is the shar
transition of the output response~vertical segment of1 data! that
marks the entrance into the parametric region. Since this transi
always occurs for the same valuev1 , related to the resonan
frequency of the beam, the phenomenon has potentially m
applications, from the realization of mechanical filters to e
tremely sensitive mass sensors. Inside the parametric region
system exhibits a stable periodic oscillation, whose amplitude
creases as the driving frequency increases, until it goes to z
upon exiting the region. Note that the size of the interval@v1 v2#
corresponds to the width of the parametric tongue represente
Fig. 6 for the input amplitude value considered. If we invert t
process and start decreasing the frequency, the output amplit

Fig. 8 Exponential growth of oscillation following parametric
excitation

Fig. 9 Frequency response above critical driving voltage am-
plitude „AÄ10 V…. The solid and dashed lines have been added
to the experimental data points „marked with o and ¿… to facili-
tate the reading.
Transactions of the ASME
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which is zero at the beginning, starts to increase as soon a
enter the parametric region. This subharmonic periodic solu
remains stable even after leaving the region and its amplit
keeps increasing. However, it is only a matter of time before
collapses to zero. The location of this second jump is not pred
able and depends on the amplitude of the frequency decreme

This behavior can be explained and predicted mathematic
by using averaging@24,25#. As a matter of fact, the relative mag
nitude of the coefficients in Eq.~6! allows us to rewrite it in the
following fashion

z̈1cż1z5e~2~a112q1 cos 2t !z2a31z
3!, (7)

where a511ea1 , q15q/e and a315a3 /e. We refer the inter-
ested reader to@24–26# for a detailed analysis. In brief, we as
sume the solutions to be of the formz(t)5A(t)cost1B(t)sin t,
with A and B slowly varying functions of time. It can be show
@24# that these coefficients are described by the following sys
of nonlinear coupled ordinary differential equations~ODEs!

A85
1

2
~a121!B1

3a31

8
B~A21B2!,

(8)

B852
1

2
~a111!A2

3a31

8
A~A21B2!,

which can be solved numerically to obtain the regions of param
ric resonance. The phase portrait resulting from this analysi
shown in Fig. 10. Corresponding regions in the parameter spac
Figs. 9 and 10 have been labeled with the same number, to h
light the fact that the theoretical analysis indeed confirms the
perimental findings.

4 The Optimal Observer Problem
In this section, we address the problem of designing a dyna

cal system capable of providing an estimateẑ for the cantilever
displacement, based on the measurement of the current gene
This approach to sensing is particularly advantageous from
point of view of implementation, as it requires a simpler circuit
As a matter of fact, the extraction of the desired information is
to a software elaboration of the measurements.

In the LFT framework, the observer problem can be formula
as anH` filtering problem @18#, by defining the variablez̃5z
2 ẑ ~estimation error!, and considering the generalized plant~see
Fig. 11!

Fig. 10 Phase portrait of Eq. „6…. The labelling corresponds to
the regions of Fig. 9.
Journal of Dynamic Systems, Measurement, and Control
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GgenªF A~t) @M 0# 0

I 0 2I

C~t) @0 N# 0
G5F A~t) B1 0

C1 0 D12

C2(t) D21 0
G , (9)

where the exogenous inputw5@d n#T represents process an
measurement noise, the matricesA(t), C(t) are as in~4! and the
input u5 ẑ is the output of the observer system. Notice that
don’t need to account for the signalsuf andv f in ~4!: since they
are known, their presence does not affect the observer desig
this framework, the optimal observer problem amounts to find
a dynamical systemGobs such that theH` norm of the transfer
function Tz̃w from w to z̃ is minimized. If the system is time-
invariant, and has the structure of~9!, it can be proved thatGobs is
an observer, whose gainL comes from the solution of an appro
priate algebraic Riccati equation.

It turns out @27# that the same holds true in the time varyin
case, where the algebraic equation is replaced by a periodic
ferential Riccati equation

Ṗ~ t !5A~ t !P~ t !1P~ t !A~ t !82P~ t !C~ t !8R21C~ t !2
1

g2
IP~ t !

1B~ t !B~ t !8. (10)

As a matter of fact, if the periodic non-negative definite soluti
of this equation,P(t), is stabilizing, the optimal filter is an ob
server given by

ż̂5A~ t !ẑ1P~ t!C~ t!8@y~ t !2C~ t !ẑ#.

While we do not want necessarily to implement this optimal o
server, we want to propose a method where we use the dri
frequencyvo as a design parameter in~10! and tune its value so
that the closed loop system has the minimum attainableH` norm.

This procedure requires to compute the periodic stabilizing
lution of ~10! for different values of the driving frequencyvo . In
order to do so, we defined the mappingP:Rn3n→Rn3n,

P~M !5M2P~T!,

whereP(T) is the solution, computed at time T of

Ṗ5AP1PA82PRP1Q, P~0!5M .

If M is a matrix corresponding to any of the steady state perio
solutions, thenP(M )50. Thus the problem is converted to find
ing the fixed points of this equation. This can be done numeric
by using the secant method and defining the iterative scheme

Mk115Mk2@Mk2Mk21#@P~Mk!2P~Mk21!#21P~Mk!.

Figure 12 describes the dependence of this norm on the
quency of excitationvo . The parameters of the cantilever used

Fig. 11 A schematic of the observer problem
JUNE 2004, Vol. 126 Õ 323
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this analysis are those indicated in the previous Section. In
ticular, we used the effective value of the length obtained by id
tification. Notice that the minimum is reached at different valu
of the driving frequency, depending on the measurement n
weight n and not necessarily coinciding with the resonance f
quency. We note here that the analysis in this paper is done s
for the optimal observer design problem. In any realistic appli
tion of micro-cantilevers, there will be other control objectives
well. The problem set up then would involve a compound c
function that involves both observations and control. For suc
problem, the best driving frequency will probably be differe
than the ones obtained here, and its value will depend on
particular tradeoffs between control and estimation. The fram
work we present in this paper should be easily extended to in
porate control objectives as well.

5 The Reduced Order Observer
A reduced order observer allows us to exploit the informat

about the state of the system that is provided by the output si
and leave to the observer the task of estimating a smaller po
of the state vector. We refer the interested reader to any boo

Fig. 12 H`-norm vs. frequency of excitation

Fig. 13 Performance of the observers in the presence of mea-
surement noise and initial estimation error. The dashed line is
the measured position signal, the solid line its estimate. a … Op-
timal observer b … Reduced order observer.
324 Õ Vol. 126, JUNE 2004
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linear systems theory for the details of this standard techniq
Here we just want to provide the expression of the matrixT21 that
defines the required change of coordinates,

T215FH~ t !
C~ t ! G5Fc2

21cost 2c1
21sin t

c1sin t c2cost
G ,

where ci , i 51, 2 are the constant coefficients ofci(t) in ~4!,
T21PC1 and det(T21)51 at eacht. Notice that to be well-defined,
this change of coordinates requires to consider a ‘noiseless’
put, i.e. ỹ5C(t)x.

The equations of the observer turn out to be

v̇̂5~A11~ t !1L~ t !A21~ t !!v̂1M ~ t !y

ẑ5T~ t !F v̂2L~ t !y
y G ,

whereA11, A21, M arep-periodic matrices that can be compute
from the system matrices in~4!. L(t) is the design parameter
through which we can adjust the behavior of the observer.

The state estimation error,ez5z2 ẑ is described by

Fig. 14 Components of P„t …

Fig. 15 Expected current signal from experimental velocity
and position data
Transactions of the ASME



Fig. 16 Estimation error for different values of the observer gain: a … kÌ0 cos „f…Ë0, b… kË0 cos „f…Ì0
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ez5TFev

0 G1F 0 0

Dz~ t !

0 0
Gw, (11)

where ev is governed by the equationėv5(A111LA21)ev
1Bv(t)w and the matricesDz , Bv are known functions of the
system matrices.

L(t) needs to be chosen so that~11! is asymptotically stable.
For a T-periodic system this is equivalent to say that its char
teristic multipliers, which are the eigenvalues of the state tra
tion matrix F over on periodT, are in norm less than 1
ul(F(T))u,1. Since we are dealing with a scalar system,F(T)
can be easily computed

F~T!5e*0
T
~A111LA21!~s!ds,

and the condition on the characteristic multipliers is equivalen
the condition*0

T(A111LA21)(s)ds,0. While it can be seen tha
a static gainL would be enough to guarantee the stability of t
error dynamics~see Fig. 13!, if we choose it time-varying,
L(t)5k cos(at1f), we can use the parametersa, k and f to
optimize its performance. In particular, it can be seen that fo
sinusoidal input the stability condition is met fora52 and by
takingc/21kd4p cosf.0, wherec is the damping coefficient o
~2! andd4 is a known function of the system parameters.

Figure 13 compares the performance of a static reduced o
observer (L5L0) to the optimal observer described in the pre
ous section (L5P(t)C(t)8). Figure 14 shows the components
P(t), obtained as a solution to~10! for g510. At this moment the
implementation of the circuit to measure the current is still un
study. Therefore, we have generated the current signal sta
from the experimentally measured velocity and position, using
non linear modeli (t)5d/dt@C(x,t)V(t)#, where C(x,t) is the
capacitance~1!, and V(t) is the input voltage. Gaussian nois
corresponding to a S/N of approximately 12.5, has been adde
mimic a real measurement~see Fig. 15!.

As can be seen, the estimate of both observers converges
fast to the measured displacement signal: only four cycles for
optimal observer and six for the reduced order observer. Howe
Journal of Dynamic Systems, Measurement, and Control
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the latter is affected more heavily by the presence of noise
expected. The price to pay for its simpler dynamics is a degra
tion of its performance.

For this reason, we want to select the parameters of this
server not only to ensure stable error dynamics, but also to o
mize its performance, with theH`-norm as its measure. The com
putation of theH`-norm of a periodic system, as our closed loo
system is, represents a difficulty. We have overcome it by us
lifting @28# and fast-sampling@29# techniques. In fact it has bee
proven in@29# that as the fast sampling ratef 5N/T, T period of
the system, grows, the approximate sampled model converge
the original one with a rate of 1/N.

Figure 16 depicts the value of the closed loop norm ask andf
vary in R and @0 2p! respectively. Based on this plot, a bett
informed choice ofk andf turns out to bek50.001 andf53.63,
which giveH`-norm545.

6 Conclusions
A mathematical model for an electrostatically actuated mic

cantilever has been derived based on the idealization of a mov
plate capacitor. In contrast to standard capacitive sensing sche
which use a high frequency parasitic signal, we proposed an
server based design using the current generated in the micro
tilever plates. Our model for the cantilever dynamics is govern
by a special second order differential equation with periodic
efficients, the Mathieu equation. We have provided experime
validation of the mathematical model, which included the ma
ping of the first region of instability of the Mathieu equation. W
have formulated the optimal observer problem for the cantile
based on current measurement. The performance of this sen
scheme in simulations proves to be excellent.

Further work on these devices involves on the one hand
experimental implementation of the current sensing sche
which involves the measurement of fairly small currents in t
range of pico-Ampers. On the other hand, the extension of
work to coupled multi-micro-cantilveres is also being pursued
JUNE 2004, Vol. 126 Õ 325
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