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e-mail: turmer@engineering icsb.ed We present a mathematical model for the dynamics of an electrostatically actuated micro-

cantilever. For the common case of cantilevers excited by a periodic voltage, we show that
the underlying linearized dynamics are those of a periodic system described by a Mathieu
equation. We present experimental results that confirm the validity of the model, and in
particular, illustrate that parametric resonance phenomena occur in capacitively actuated
micro-cantilevers. We propose a system where the current measured is used as the sensing
signal of the cantilever state and position through a dynamical observer. By investigating
how the best achievable performance of an optimal observer depends on the excitation
frequency, we show that the best such frequency is not necessarily the resonant frequency
of the cantilever[DOI: 10.1115/1.1767851
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1 Introduction crocantilever. More precisely, in our design the microcantilever
r%onstitutes the movable plate of a capacitor and its displacement is

The recent advances in the field of miniaturization and mic .
fabrication have paved the way for a new range of applicz':ltion%c,)ntrc’lIed by the.voltage. applied across the plates. In order to
bringing along the promise of unprecedented levels of perforl’@easure the cantilever displacement, we propose a novel scheme

mance. In particular, scanning probe devices have proven to gt avoids the use of a high frequency probing signal by the use
extremely versatile instruments, with applications that range fro a dynar_n_lcal stat_e observer, whose input IS the current'through
surface imaging at the atomic sc4lé, to ultra high density data (1€ capacitive cantilever. For the purpose of implementation, this
storage and retrievé®], and to biosensof8,4], to cite but a few. scheme of‘fers S|gn|f|c§1nt advantages as it |n\{olves simpler cir-
The working principle for most of these devices is based on@&ltry- By using an optimal observer, or by tuning the observers
measurement of displacement. As an example, consider imagfRj"S: it is cpncelvable _that a _hlgh fldellty position measurement
in atomic force microscopy: the topography of a sample is recof@h be obtaln_ed,_thus improving resolution in atomic force mi-
structed from the displacement of the cantilever-probe, caused #§SCOPY applications. _ _
the interaction forces with the sam{1&,6]. In biosensors appli- N this paper, we present a model for this electrostatically actu-
cations the displacement of a cantilever can be related to the bid§ed microcantilever. Using simple parallel plate theory and for
ing of molecules on théactivated surface of the cantilever beam,theé common case of sinusoidal excitation, it turns out that its
and is therefore used to compute the strength of these bondsdgdamics are governed by a special second order linear periodic
well as the presence of specific reagents in the solution undéfferential equation, called the Mathieu equation. We produce
consideratiof7,8]. It is clear that the sensitivity of these devicegxperimental evidence that validates the mathematical model, in-
strongly depends on the smallest detectable motion, which poseduging a mapping of the first instability region of the Mathieu
constraint on the practically vs. theoretically achievable perfogquation.
mance. In order to make the gap between the two smaller, while afThe optimal observer problem that was formulated alsid.8]
the same time providing compactness of devices and faster d§-solved here following a different and simpler approach. This
namics, much of the research effort has been focused on the dptimal design is then used as an analysis tool to select the fre-
sign of integrated detection schemes. quency of excitation that corresponds to the best achievable ob-
The most common solutions for integrated detection make userver performance. In other words, the optimal observer design is
of the piezoresistivg9,10], piezoelectrid11-13, thermal expan- used to actually design the systémther than the observyeby
sion [14] or capacitive effect§15—-17. A major advantage of selecting the excitation frequency that produces the least estima-
capacitive detection, is the fact that it offers both electrostatiion error. Interestingly, it turns out that this frequency is not nec-
actuation as well as integrated detection, without the need for assarily the resonant frequency of the cantilever, and it depends on
additional position sensing device. The common scheme usedtlie statistics of the measurement and process noise.
capacitive detection is to apply a second AC voltage at a fre- After the optimal excitation frequency is selected, we design a
quency much higher than the mechanical bandwidth of the cargisboptimal reduced order observer, whose parameters are tuned to
lever. The current output at that frequency is then used to estimaigitch the optimal performance index as close as possible. The
the capacitance, and consequently the cantilever position. Thigension of these results to the array configuration is the subject
sensing scheme is the simplest position detection scheme avgflour current research.
able, however, it is widely believed to be less accurate than opticalThe paper is organized as follows: In Section 2, we develop the
levers or piezoresistive sensing. _ mathematical model of an electrostatically actuated cantilever. In
The device that we propose is an electrostatically actuated rgjection 3, we present the experimental results that validate the
model including, in particular, the mapping of the first instability
Contributed by the Dynamic Systems, Measurement, and Control Division®f T region of the Mathieu equation. In Section 4, we pose the optimal
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Fig. 1 A schematic of an electrostatically driven cantilever

L . . Fig. 2 SEM image of a polySi cantilever. The inset shows de-
2 Model Description for a Single Cantilever tails of the mechanical connection to the base.

The schematic of a single cantilever sensor is shown in Fig. 1.
It consists of two adjacent electrically conductive beams forming
the two plates of a capacitor. One of the beams is rigid, while the y=cq(t)z+cy(t)Z" +v¢(t), 3)
other (hereafter referred to as the cantilevés fairly soft and _ 5 B 2
represents the movable part of the structure. \l/)vrztta)rg gl,(o\tz/iw 7d°'ii\r/]°twold sint, (1) = €oAVo/d”cost, and
i i i i i f — €o oo .
If the length of the cantilever is much bigger than its distance Introducing the vectox=[z 7], we can derive from2) and

fi th tt late, th it is gi . .
fom the bottom plate, the capacitance is given by (3) the state space representation of the cantilever model
€A ,
C(2)= ﬁ, 1) x"=A(t)x+B(t)u(t)
. T, . =C(t)x+uv(t),

where e,=8.85 10 > As/Vm is the permittivity in vacuumaA is y=ClOx+oi(t)
the area of the plates] is the gap between them armis the Wwhere
vertical displacement of the cantilever from its rest position.

“

The attractive forcel,, between the capacitor plates generated A(t)= 0 ! };
by applying a voltagé&/(t), can be easily found to be —a+2qcoszx -—c
1eA VA1)  1eA z\ 0
= o~ — B=
a 2 d2 ( 2)2 2 d2 1+2d \ (t)r 1
1_ —
d and
where the approximation holds whefd<1. C(t)=[cy(t) co(t)].

Only few algebraic steps are sufficient to derive the equation of . . . ) o .
motion of the cantilever, which is treated as a lumped-paramefdpte that(4) is a linear, time-varying and-periodic model, with
system, and hence described by taking into account its first berd= 27 The next section is devoted to presenting the results of
ing mode only, and neglecting all higher order flexible mode&® experiments that we performed to validate the model.

This approximation is quite common in the study of the dynamic . S .
of scanning probe cantilevefs,19,24. It follows that, if the volt- 3 Experimental Validation of the Cantilever Model
age applied i8/(t) =V, coswt, the equation of motion is given  The device we have used in our experimental setup was a 200
by pumx50 umx2 um highly doped polysilicon cantilever, fabri-
,, , _ cated using the MUMPS/CRONOS process, and with a gap be-

Z'+cz'+(a-2qcos 2)z=uy(t), @ tween the electrodes of aboutu@n. Figure 2 is a micrograph of
where the prime denotes the derivative with respect to the scalbe actual device. The mechanical response of the cantilever was
time 7= w,t; cis a small damping coefficient, both from air fric-tested in vacuumg=8mT), using laser vibrometrj21] to mea-
tion and structural lossea= k/mmg— 1/250AV§/md3w§, kis the sure its displacement and velocity near the free end, when elec-
spring constant of the cantilevey= e,AV2/4mdPw?, and u(t) trostatically driven with different AC voltage signals.
=qdco (t). The first experiments we pgrformed aimed at identifying the

Equation(2) is an instance of the well-known Mathieu equaSyStem as a simple mass-spring-damper model. As a matter of
tion. Its properties are briefly discussed in Section 3. Here we jJ&ct When the amplitud¥/, of the AC actuation voltage is small
point out that whenu(t)=0 andc=0 this equation has very €nough, the coefficieny in equation(2) is negligible, and the
peculiar stability properties, that have been extensively invesg_gam can be described approximately by an ordinary second order
gated. Asa andq vary in R, its stable solutions can be periodic,differential equation
but they never decay to zero. In the case of our interest, where ) 1
u(t)#0 and periodic, we can prove that, for any pair of param- z+ 2§wrz+(wr2— Ewgvg)z: u(t).
etersa andq, the forced equation retains the same stability prop-
erties as the unforced one. Figure 3 shows the magnitude, both measured and identified, of

We consider the current generated as the oytiithe system. the frequency response of this model, excited by a square-rooted
Its first order approximation is given by sinusoidal signal. A least square fitting of the data gives a resonant
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Fig. 3 Frequency response of the capacitive cantilever: the
dashed line corresponds to measured data, the solid one is its

least fit . . . . .
east square f cient to describe the rich dynamics exhibited by the system and

we need to refer again to ECR). This equation is an example of

. . _ . adamped Mathieu equation with forcing, a well known and stud-
frequency of approximatelf, = 50,800 Hz, a damping coefficient e periodic differential equation. As a matter of fact, an extensive
£=2.1x10"4, while the quality factolQ=2200 turns out, as ex- |iterature exists on its standard form
pected, to be quite high. The values of these parameters were
confirmed by time domain identification experiments as well. If Z'+(a—2qcos 2)z=0, (5)
we consider that the Young’s modulus for_Cronos’ polysilicon is ) ) ) .
E=158+10 GPa, its density ip=2300 Kg/n?, we can infer from that has neither damping nor external forcing and that was first

the identified data that the effective length of the capacitor platei§roduced by Mathieu to model the vibrational modes of a
aboutL=160um. stretched membrane having an elliptical boundary.

A second set of experiments aimed at identifying the value of The stability of linear periodic differential equations, like Eq.
the so-called “electrostatic resonancey), responsible for the (2), is determined by the eigenvalues of its state transition matrix
shift in the effective resonant frequenay;, of the cantilever over one period. More precisely, the equation is stable if these
with the voltage appliedwZ;=w?—1/202V2. A linear fit of the eigenvalues are smaller than one, and unstable if at least one is
experimental data points gives a valueuff—2.638 [rad/\2], in larger than ong22]. Unfortunately, it is usually not possible to
good agreement with its theoretical val(see Fig. 4 compute this matrix analytically, hence the analysis makes use of

As the amplitude of the driving signal increases, so does t proximate tools, like averaging or perturbation-methods. For

value ofq and this approximation of the model is no longer apt- e specific case of E@5), a detailed derivation, using perturba-

propriate. Therefore, we have to return to the original E2), tion methods, of the stable/unstable .regions as a function of the
which will be analyzed in detail in the next section. parametersa and g can be found for instance if23]. Figure 5
portrays these characteristic tongue-like shaped regions. In par-
3.1 The Mathieu Equation and Parametric Resonance. ticulal‘, and we omit here the details for the sake of bl‘evity, itis
When the amplitude of the forcing signal is large, the time invarpot difficult to prove that instabilities occur at=n? neN.
ant approximation introduced in the previous section is not suffi- In terms of the physical parameters of the device, the driving
frequencies that cause unstable responses in the system are given

by
4
5.0035 %12 ; : 20,
* Exp. Data (O - nel,

— —— DC Offset=-.110.3V ||
N e AT - - DCOffset=-4t01.1V _ _ ) o _ o
= 50025) i when using a square-rooted sinusoidal driving signal. Similarly,
§ ' the boundaries of the first instability region, givendoy 1+ q for
o s509f 1 (5), in terms of frequency and amplitude of excitation turn out to
g | be defined by
T 50015
§ 5001 1 1) eAV,
g w§:4wr2—4<11§) °.
2 509051 1 md®
o . . . . .
g 5.09r . It is worth noting at this point that the presence of a damping
< term, whose existence we have neglected so far, has the effect of
@ 50895 1  shifting the tongues upwards in tleeq parameter space. In our
€ ool § setup, this is of little consequence, because the magnitude of the

shift is quite small. However this is not always the case and in fact

5.0885; o3 02 03 04 5 02'6 o7 Itis the reason why parametric resonance is difficult to observe at
Effective Input DC Component (Vgc +.5"V

ac) the macroscale. Figure 6 is a comparison between the experimen-

tal data relative to the boundaries of the first instability region, and
Fig. 4 Electrostatic resonance. The dots represent measured the same curves obtained from two sets of parameters: the solid
values of resonance frequency, the solid line is their linear fit. lines come from fitting these experimental data points, the dash-
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Fig. 6 First instability region: experimental data points excitation

(circles ) and curves with identified parameters. Inset: effect of
damping visible on experimentally measured data, marked with

circles. . . . .
and for driving frequencies near the first parametric resonance, the

frequency response of the cantilever has the shape depicted in Fig.
) o 9. The two curves reproduced represent the data collected by
dotted ones come from the frequency response identification. T&§geeping the driving frequency from low to high points and
inset shows the experimentally observed upwards shift of the ufom high to low (o points, as indicated by the arrows. The ver-
stable region with damping. _ o tical axis represents the amplitude of the peridtiialf frequency
Inside the instability region the cantilever oscillation does n@fe|ocity of the beam, while the horizontal axis is the frequency of
grow unbounded, as predicted from the previous linear analySiscitation.
In reality, physical limiting nonlinear effects always come into Thjs kind of plot is typical of oscillators having a cubic nonlin-
play and cause the system to settle down into a steady statedgrity (Duffing). What is worth pointing out here is the sharp
spons€[24]. As a consequence, the linear spring model needs g§@nsition of the output respongeertical segment of- datg that
be corrected to include a cubic term marks the entrance into the parametric region. Since this transition
7'+ ¢7' +(a—2q cos 2)z+ a,3= (1), (6) always occurs for the same value,, related to the resonant
frequency of the beam, the phenomenon has potentially many
whose origin is both mechanical, because of the large displaegyplications, from the realization of mechanical filters to ex-
ment of the beam, and electrostatic. tremely sensitive mass sensors. Inside the parametric region, the
What we really see when driving the cantilever in parametrigystem exhibits a stable periodic oscillation, whose amplitude de-
resonance regime is a subharmonic 2:1 oscillation of the begpeases as the driving frequency increases, until it goes to zero
[24], which vibrates at half the frequency of excitation, as showiipon exiting the region. Note that the size of the intefva w,]
in Fig. 7, which reproduces data collected from the oscilloscopgerresponds to the width of the parametric tongue represented in
Note also that during the transition from non-parametric to pargig. 6 for the input amplitude value considered. If we invert the

metric region, the response shows a characteristic exponengighcess and start decreasing the frequency, the output amplitude,
growth (see Fig. 8 Above the critical driving voltage amplitude,
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plitude (A=10V). The solid and dashed lines have been added
Fig. 7 Cantilever response in parametric resonance (oscillo- to the experimental data points  (marked with o and +) to facili-
scope data ) tate the reading.
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which is zero at the beginning, starts to increase as soon as ygere the exogenous input=[d n]” represents process and
enter the parametric region. This subharmonic periodic solutigheasurement noise, the matrigk&), C(t) are as in(4) and the
remains stable even after leaving the region and its amplitufighut u=7 is the output of the observer system. Notice that we
keeps increasing. However, it is only a matter of time before d.fon’t need to account for the signals andv; in (4): since they
collapses to zero. The location of this second jump is not predigire known, their presence does not affect the observer design. In
able and depends on the amplitude of the frequency decrementgs framework, the optimal observer problem amounts to finding
This behavior can be explained and predicted mathematlcaaydynamica| systent,,s such that theH., norm of the transfer

by using averagingj24,25. As a matter of fact, the relative mag-function T3, from w to z is minimized. If the system is time-
nltude of the (?Oefﬁcients in Eq6) allows us to rewrite it in the invariant, and has the structure (@4, it can be proved thab s is
following fashion an observer, whose galncomes from the solution of an appro-

S NS g _ 3 priate algebraic Riccati equation.

2+ ezt z=e(~ (3120, €05 2)2-ag2"), ™ It turns out[27] that the same holds true in the time varying
wherea=1+e€a;, q;=q/e andag=az/e. We refer the inter- case, where the algebraic equation is replaced by a periodic dif-
ested reader 192426 for a detailed analysis. In brief, we as-ferential Riccati equation
sume the solutions to be of the formft) = A(t)cost+B(t)sint,
with A and B slowly varying functions of time. It can be shown

B 1
[24] that these coefficients are described by the following systerrrp(t):A(UP(UJr P(OHA(D)' = P(H)C(t)'R™IC(t) —IPO)

of nonlinear coupled ordinary differential equatioi@DES 4
3as, +B(1)B(1)’. (10)
A'=5(a;—1)B+ TB(A2+ B?), As a matter of fact, if the periodic non-negative definite solution

(8) of this equationP(t), is stabilizing, the optimal filter is an ob-
1 3as; server given by
B’=—§(a1+1)A—TA(A2+Bz), _
z=A(t)z+P(t)C(t)'Ty(t)— C(1)Z].
which can be solved numerically to obtain the regions of param hil d t i iIv o imol t thi timal ob-
ric resonance. The phase portrait resulting from this analysis | ie we do not want necessarily to implement this optima’ o

shown in Fig. 10. Corresponding regions in the parameter spac SGfVer, we want to propose a method where we use the driving
Figs. 9 and 10 have been labeled with the same number, to hi fruencyw, as a design parameter {10) and tune its value so

light the fact that the theoretical analysis indeed confirms the e -?rtr;[ige ?loocseeéjulroeor%Sﬁisrtgsmt:acz*eu?je'r:;qrgurgr?;ﬁ::ngggﬁ;m so-
perimental findings. p q p p g

lution of (10) for different values of the driving frequeneay, . In
order to do so, we defined the mappiRgR"*"—R"*",
4 The Optimal Observer Problem PM)=M—=P(T),
In this section, we address the problem of designing a dynanffhereP(T) is the solution, computed at time T of
cal system capable of providing an estimatéor the cantilever o_ r_ _
displacement, based on the measurement of the current generated. P=AP+PA'=PRP+Q, P(0)=M.
This approach to sensing is particularly advantageous from tHeM is a matrix corresponding to any of the steady state periodic
point of view of implementation, as it requires a simpler circuitrysolutions, ther’?(M)=0. Thus the problem is converted to find-
As a matter of fact, the extraction of the desired information is lefing the fixed points of this equation. This can be done numerically
to a software elaboration of the measurements. by using the secant method and defining the iterative scheme:
In the LFT framework, the observer problem can be formulated M _ 1
as an™., filtering problem[18], by defining the variablg=z Mice 1= M= [Mic= Mic- 1 TAMi) = P(My-2) 1" P(M).-
— 7 (estimation error, and considering the generalized plésee Figure 12 describes the dependence of this norm on the fre-
Fig. 11 quency of excitationv, . The parameters of the cantilever used in
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Fig. 14 Components of P(t)

this analysis are those indicated in the previous Section. In par-
ticular, we used the effective value of the length obtained by iden-
tification. Notice that the minimum is reached at different valudiiear systems theory for the details of this standard technique.
of the driving frequency, depending on the measurement noisere we just want to provide the expression of the mafrix that
weight n and not necessarily coinciding with the resonance frelefines the required change of coordinates,

quency. We note here that the analysis in this paper is done solely

for the optimal observer design problem. In any realistic applica- T 1= H(D) _ €, “cost ¢y "sint
tion of micro-cantilevers, there will be other control objectives as C(t) cysint C,Cost
well. The problem set up then would involve a compound cost erec,, i=1, 2 are the constant coefficients oft) in (4),

function that involves both observations and control. For such\?gjl 1'and defl )= i ice th b lI-defined
problem, the best driving frequency will probably be differenf . e C"and defl )Tl at eaclt. Notice that to evv‘e -ae |ne,,
than the ones obtained here, and its value will depend on thiS change of coordinates requires to consider a ‘noiseless’ out-
particular tradeoffs between control and estimation. The framBUt'h"e'y:C_(t)x'  the ob b
work we present in this paper should be easily extended to incor-1 "€ €guations of the observer turn out to be
orate control objectives as well. x -
P ) 0= (Apa(D) + L(DA(1)D + M(b)y
5 The Reduced Order Observer v—L(t)y

A reduced order observer allows us to exploit the information y

about the state of the system that is provided by the output sigigdereA,,, A,;, M are m-periodic matrices that can be computed
and leave to the observer the task of estimating a smaller portiggm the system matrices if4). L(t) is the design parameter,
of the state vector. We refer the interested reader to any book @fough which we can adjust the behavior of the observer.

The state estimation errcg,=z—7Z is described by

z=T(1)

1

€
= 0.04 :
c
2
= 0.031 .
o
o
0.02f _
= 0.01f b
2
T 0 -
= @
E E
k= 5
c O -0.01
il
-g -0.02H
o
-0.03f ]
Time [s x10 _ ‘ . . \
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Fig. 13 Performance of the observers in the presence of mea- Time [s] x10

surement noise and initial estimation error. The dashed line is
the measured position signal, the solid line its estimate. a ) Op- Fig. 15 Expected current signal from experimental velocity
timal observer b ) Reduced order observer. and position data
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Fig. 16 Estimation error for different values of the observer gain: a ) k>0 cos (¢)<0, b) k<0 cos (¢)>0

0 0 the latter is affected more heavily by the presence of noise, as
e, expected. The price to pay for its simpler dynamics is a degrada-

&=T ot D) |w, (11)  tion of its performance.
0 0 For this reason, we want to select the parameters of this ob-

server not only to ensure stable error dynamics, but also to opti-
mize its performance, with th¥..-norm as its measure. The com-
. putation of theH..-norm of a periodic system, as our closed loop
system matrices. system is, represents a difficulty. We have overcome it by using

L(t) needs to be chosen so tHal) is asymptotically stable. |iging [2g] and fast-sampling29] techniques. In fact it has been
For aT-periodic system this is equivalent to say that its characs -\ an in[29] that as the fast sampling rate=N/T, T period of
teristic multipliers, which are the eigenvalues of the state tran :

) - 8 . He system, grows, the approximate sampled model converges to
tion matrix @ over on periodT, are in norm less than 1, the original one with a rate of i

IN(@(T))|<1. Since we are dealing with a scalar systebT) Figure 16 depicts the value of the closed loop nornk asd ¢

can be easily computed vary in R and [0 2m) respectively. Based on this plot, a better
(I)(T):efg(A11+ LAp(0)do infqrmeq choice ok and ¢ turns out to be&k=0.001 and$=3.63,
which give H..-norm=45.

and the condition on the characteristic multipliers is equivalent to

the conditionfg(AllnL LA, (o)do<0. While it can be seen that

a static gainL would be enough to guarantee the stability of the

error dynamics(see Fig. 1B if we choose it time-varying, .

L(t)=k cos@t+), we can use the parametess k and ¢ to © Conclusions

optimize its performance. In particular, it can be seen that for a A mathematical model for an electrostatically actuated micro-

sinusoidal input the stability condition is met fer=2 and by cantilever has been derived based on the idealization of a movable

taking c/2+kd,m cos¢$>0, wherec is the damping coefficient of plate capacitor. In contrast to standard capacitive sensing schemes

(2) andd, is a known function of the system parameters. which use a high frequency parasitic signal, we proposed an ob-
Figure 13 compares the performance of a static reduced ordefver based design using the current generated in the microcan-

observer [ =L,) to the optimal observer described in the previtilever plates. Our model for the cantilever dynamics is governed

ous section Il =P(t)C(t)"). Figure 14 shows the components oby a special second order differential equation with periodic co-

P(t), obtained as a solution {d0) for y=10. At this moment the efficients, the Mathieu equation. We have provided experimental

implementation of the circuit to measure the current is still undemlidation of the mathematical model, which included the map-

study. Therefore, we have generated the current signal startjpigg of the first region of instability of the Mathieu equation. We

from the experimentally measured velocity and position, using tlve formulated the optimal observer problem for the cantilever

non linear modeli (t)=d/dt[C(x,t)V(t)], whereC(x,t) is the based on current measurement. The performance of this sensing

capacitancg1l), and V(t) is the input voltage. Gaussian noisescheme in simulations proves to be excellent.

corresponding to a S/N of approximately 12.5, has been added td-urther work on these devices involves on the one hand the

mimic a real measuremefgee Fig. 15 experimental implementation of the current sensing scheme,
As can be seen, the estimate of both observers converges quitéch involves the measurement of fairly small currents in the

fast to the measured displacement signal: only four cycles for thenge of pico-Ampers. On the other hand, the extension of this

optimal observer and six for the reduced order observer. Howevegrk to coupled multi-micro-cantilveres is also being pursued.

where e, is governed by the equatio®,=(A;;+LAz)e,
+B,(t)w and the matrice®,, B, are known functions of the
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