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In this paper we will present a model for an array of microcantilevers that are used in Atomic
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Force Microscopy and nano-scale manufacturing. The microcantilevers are connected to each
other through a common base, and are individually actuated. The sensors are also integrated

on each microcantilever. We consider the problem of controlling a tightly packed array of
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identical microcantilevers that are dynamically coupled. This system is an example of a
spatially-invariant system with a distributed array of sensors and actuators. We exploit the
spatial invariance of the problem to design optimal ¥, controllers for this array. An analytic
expression for the optimal controller is derived in the transformed domain, and estimates of

the coupling range of the controller is obtained.

1 Introduction

For the past ten years the Atomic Force Microscope (AFM) has
been developed as a tool for material imaging and characterization.
The basic operation of an AFM depends on the detection and
control of the deflection of a microcantilever interacting with the
surface being analyzed (Binni et al., 1994; Sarid, 1994). The
widespread use of the AFM in applications that range from elec-
tronic to biological is a testimony to the importance of this device.

Throughput in AFM’s is limited by the mechanical properties of
the microcantilevers and by the detection and control design. A
very important objective is to increase the throughput by improv-
ing both the design of the microcantilevers and the control system.
Recently, a new approach for increasing the throughput was de-
veloped where an array of microcantilevers are used to simulta-
neously image a surface. Control of the individual microcantile-
vers is achieved by a piezoelectric actuator and a piezoresistive
sensor integrated on the microcantilever (Minne et al., 1995;
Minne et al., 1996). :

Currently, microcantilever arrays are being designed with large
spacing between the individual elements. This essentially decouples
the dynamics of the individual cantilevers and thus renders them
controllable in a similar manner to the traditional AFM. The drawback
of large spacing is of course the decrease in potential ‘throughput of
the device. It is our objective in this paper to demonstrate a control
architecture that explicitly incorporates this dynamical coupling in a
tightly packed array of individually actuated microcantilevers. Thus,
the dynamical decoupling is essentially achieved “electronically” by
means of a distributed controller.

Our basic system model is that of an array of microcantilevers
interacting with surface forces of a sample. Each microcantilever is
modeled as a mass-spring system, and the interaction between a
microcantilever and a sample is modeled as a Van der Waals poten-
tial. The Van der Waals potential models both the long range attrac-
tive forces as well as the short range repulsive forces. The interaction
between the individual microcantilevers is modeled by a coupling
matrix acting on the vector of displacements of the microcantilevers.

Assuming that the individual cantilevers are identical, the system -

turns out to possess a certain spatial invariance property. By exploit-
ing this property, we design ¥, optimal controllers using the meth-
odology of Bamieh et al. (1998a), Bamieh (1997), and Bamich et al.
(1998b). The dependence of each local controller on measurements
. from nearby microcantilevers is quantified by analyzing the analytic-
ity of the optimal controllers in the transformed domain.
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The paper is organized as follows: In Section 2 we develop the
mathematical model of the microcantilever array and sample, in
Section 3 we construct an optimal %, controller, in Section 4 we
analyze the optimal controller to construct suboptimal controllers
with limited sensor measurements, and finally we present our
conclusions in Section 5.

2 Model Description

After presenting a model for a single cantilever, we show how to
model an array of microcantilevers. We then show how this model fits
within the general framework of spatially invariant systems.

2.1 Single Microcantilever Model. In the unimodal approx-
imation, the cantilever-tip-sample system is modeled by a sphere of
radius R and mass m, which is suspended by a spring of stiffness k.
The deflection from the equilibrium position, Z, which represents the
distance from the microcantilever to the sample when only the gravity
is acting on it, is measured by x. The interaction with the sample is
modeled by the Lennard-Jones potential,
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whose two terms describe, respectively, the short range repulsive
forces and the long range attractive forces between the molecules
of the tip and those of the surface. A, and A, are the Hamacker
constants for the repulsive and attractive potentials. The net energy
of the system scaled by the effective mass m of the cantilever is
given by
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where w; = Vki/m is the first modal frequency of the system
o® = A /A, and D = A,R/6k. Note that H(x, %,.Z), which is the
Hamiltonian of the system, is a constant of the dynamics (invariant
of motion) since there is no dissipation.

Introducing the state variables x; = x and x, = %, we can derive
from (2) the equations which govern the dynamics of a single
cantilever
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In order to study the qualitative behavior of the system, it is
convenient to perform the following change of variables. By
setting T’ = w,¢, and dividing the left and right-hand sides of (3)
and (4) by Z, = 3(2D)"*, we get
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where, &, = xJZ,, &, = x)w,Z,,d =%, a0 =Z/Z,,and 3, =
a/Z,. Notice that the prime denotes the derivative with respect to
non-dimensional time 7. Z, is the critical value of Z, below which
the attractive force is greater than the spring force, and in the
absence of the repulsive force the surface snaps the tip into contact
(Ashhab et al., 1997a). Note that the equations describing the
"dynamics of the dimensionalized system (3) and (4) and of the
nondimensionalized one (5) and (6) are formally the same. Hence,
we can study the dynamical behavior of the former, using the
equations of the latter, :

As a varies over [0, =], the number of equilibrium points of the
system varies too. In particular, in Ashhab et al. (1997b) it is
shown that there are two critical values of @, a,, and a,,. When
a < a,, there is only one equilibrium point. If o, < a < a,, the
equilibrium points become three. Finally, if @ > a,, there is again
only one equilibrium point.

2.2 Array of Microcantilevers. A microcantilever structure
consists of an array of microcantilevers connected to the same
beam. :

Though each cantilever is actuated independently, the presence of
the beam implies that its dynamics is affected by the behavior of the
others. As a consequence, the model we introduced for the single
cantilever has to be modified to take into account this correlation. In
this work we model this interaction via a symmetric infinite matrix
a;; so that the state equations for the ith cantilever become

L £1:(0) = &,(1) ) _
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Notice that the symbol ¢ from now on denotes the nondimensional
time, introduced in the previous section, Moreover, due to the fact
that the microcantilevers are similar, the coefficients a;; satisfy
@ix = @y, and decay as k goes to infinity.

Equations (7) and (8) give a local description of the system,
where by local we mean limited to the ith cantilever. In order to
build a model for the whole microcantilever system, we can
associate with each element a local state variable

fl,,»(t)}

§ 0= Lz,.-(t)

which is a two-dimensional variable, where i € 7, is the spatial
coordinate and ¢ € R-is the time variable. Hence the whole
multicantilever will be described by a global state variable
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which is an infinite dimensional vector. Now, linearization of Eqgs.
(7) and (8) around an equilibrium point leads to the following
expression for the local model
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Notice that the state matrix is block Toéplitz. As we will see, it is
possible to formulate this problem in the framework of the theory
of spatially-invariant distributed continuous-time systems.

2.3 The Microcantilever Array as a Spatially-Invariant
System. Spatially-distributed continuous time systems are a par-
ticular class of multidimensional systems. From the input/output
point of view, they are represented by the relationship

yi, 5= [ wli—j, t=Du(, 0ldr, (0)
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where + € R is the time variable, and i € Z is the spatial -
coordinate. A system with input/output relationship (10) is causal
in time, but not in space and is invariant in both time and space.
This means that if y(i, £) is the output response resulting from
input u(i, t), then y(i — k, t — 7) is the output response resulting
from input u(i ~ k, t — 7). i

The Fourier transform represents a convenient mathematical
tool to study these systems. If we apply the Fourier transform in
the spatial domain, which for a two-dimensional signal is defined
as

©
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we can associate the two dimensional system with a one dimen-
sional parametric system, which is equivalent to the former, but
that can be analyzed using well-known results from classical
systems theory. We refer the interested reader to (Kamen, 1985)
for the main results concerning this approach in the study of
spatially invariant distributed systems. A

In this work we will explicitly use an important result that was
shown in Bamieh (1997), concerning the optimal control of this
class of systems. Namely, in Bamieh (1997) it is shown that when
the underlying dynamics of the system and the performance ob-
jective are spatially invariant, then optimal controllers will also
have a spatial invariant structure.

The physical and, consequently, the mathematical structure of
the multicantilever model allows us to embed it in the class of
spatially invariant systems. In fact, while the number of cantilevers
in any practical system will necessarily be finite, in the limit for a
large number of cantilevers spatially distributed models represent
the correct abstraction. In particular, in view of their spatial in-
variance, this implies that in order to study the multicantilever, we
do not need to deal with the infinite dimensional model (9), but that
we can use instead the parametrized local model. i

The linearized model that we obtained earlier can be conve-
niently modified in the following way
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where we have added an external input, and where o is a convo-
lution operator »

[x(, ]G, 1) = 3, A x(, 1),

defined as
2d 4354 .
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A= (a + &) 15(e + £14)
a; i#0,

If we now apply the discrete Fourier transform in the spatial
domain, we get the one-dimensional parametric system

&, r)=[a(0)\) (1)]§(A, t)+-[?]u(A, 0, (12

where
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3 ¥, Optimal Controller

As shown in Bamieh et al. (1998a), once we have parameterized
the distributed problem by a family of finite dimensional state
space problems through the application of the Fourier transform,
we can use the same results of classical finite dimensional x,
theory (see Bamieh et al., 1998a; Kamen, 1985). More precisely,
after using spatial transforms, the problem can be stated as the
minimization of the cost functional

27 ©
J= %f f [g()_\, D*QE(A, 1) + u(A, £)*Ru(A, £)]dtdA
0 0

subject to

€A, 1) = FQ)ER, 6) + BOYu(r, 1),

with &A, 0) = £,(A). Since the system is stabilizable, its unique
solution is given by the feedback control law

u(A, 1) = =R(N)B*(A)P(MEQ, 1)

where P(A) is the positive definite solution of the parameter-
dependent algebraic Riccati equation

FXAPQA) + PMF() + (V)
= P(M)B(AM)RTY(A)B*(M)P(A) = 0. (14)

In our case, the staté model is given by (12), and if we take

#=lo 7] 2-[3 2]

the matrix which defines our stabilizing controller is

KQ) = ~[a(A) + Ja(W)T¥ ¢ V2a(A) + 2 Va(\) 2+ g + q],

where a(\) is as defined in Eq. (13). Notice that this controller is
not a dynamical system: it merely performs algebraic operations

on its input data. The fact that K (A) is irrational in A means that the

controller needs to look at distant points to compute the control
input at each given point. In real time, the feedback control law is
implemented using the coefficients of a Laurent series expansion
of K(A) in an open annulus that contains the unit circle. If K(z) is
the analytic extension of K(A) in such an annulus, its Laurent
power series expansion will be
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so that the resulting optimal control law is given by

ulh, 1) = 2 KG)Eh — i, 1).

j= o0

From an implementation point of view, the issue of how large is
the number of state variables the controller needs to know is
crucial. If the Laurent expansion coefficients of K(X) decay to zero
fast enough, it is reasonable to expect that a satisfactory subopti-
mal control law can be achieved by truncating the infinite series
expansion.

4 Suboptimal Controllers and CommunicationRahge

The analytic properties of the feedback matrix K(A) have a
strong impact on the structure of the optimal control law. By
analyzing K(A) we want to derive some information concerning
the possibility of implementing a suboptimal control law, through
the truncation of the above series (15). Therefore, it becomes
important to determine the decay rate of its coefficients.

This information is related to the location in the complex plane
of the singularities of (15). More precisely, the decay rate of the
coefficients of (15) corresponding to positive powers of z is
determined by the singularity

Ay = min {A(K): |A(K)| > 1}

while for the decay rate of the coefficients corresponding to
negative powers of z we have to consider

An = max {MK): |A(K)| < 1}.

From the analytical expression of the matrix Ki (A), it follows that
such singularity points are solutions of the equations

a(Ay*+ ¢ = 0
and
2a(\) +2a(\) ¥ g+ ¢ =0, 17
which are equivalent, respectively, to
a(\) xifg=0, (18)
and
a(A) +§--— 1=0. 19

Analyzing the expression of a(A)

2d 43,54

= — _ + —l'kA’
(a+ fl,i)3 15(“ + fl.i)g k%w e

a(A) = -1+

it is easy to see that, when the number of interacting cantilevers N
is finite, (16) and (17) are reciprocal equations of degree N, with
N even.

Reciprocal equations with even degree are equations of the form

ax®™ + bx¥ 1 4 ox%2 4 4 gk
+...+exP+bx+a=0, (20
that can be easily rewritten as
a(xb + x78 + bkt + k) 4 c(x* 2+ x4
. +r=0.
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Fig. 1 A schematic of a multicantilever structure

Defining 7 := x + x7', it is not difficult to verify that > — 2 =
x*+x% 8 — 3t =x>+ x and, in general, x" + x " is a
polynomial of degree m in ¢. It follows that the reciprocal equation
(20) can be rewritten as an equation of degree k in the variable ¢.
Hence, the solution of a reciprocal equation of degree 2k can in
general be reduced to solving one polynomial equation of degree
k, as well as at most k quadratic equations. In what follows, we use
this property to reduce the order of the polynomials defining the
singularities and find an explicit analytical expressions for them.
We explicitly consider, at first, the case where the dynamics of
each cantilever is affected only by the presence of the two closest
cantilevers, i.e., the case where in (8) only a, = a_, are different
from zero. It follows that, from (16), we obtain four singularity
points, which after some algebraic calculations, are given by

Ao Lazive 1 jfaxije)t
1,2,3,4 2 a, -—2 a, ’

while from (17) we get

ldagg+qg—4 1 4ag+ q — 4\ 2
T e

gvhege in both cases @y = —1 — 2d/(ae,+ £,))* + 42°d/[15(cx +
&.0°L

In the simulations that we performed, we set @ = 1.2 and 3 =
0.03. For this value of « the nonlinear system has three equilibrium
points, therefore it can be associated with three linearized systems.
Figure 2 shows how the maximum and minimum modulus singu-
larities, respectively A, and A,,, move as a, varies in [a/8, ay/4}
for these three systems. As expected, the value of A, tends to
decrease, while the value of A,, tends to increase, meaning that the

Minimum modulus singularity at the three equilibrium points
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Fig. 2 Variation of the minimum and maximum modulus singularities
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Minlmum modulus singularity at the three equilibrium points
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Fig. 3 Variation of the minimum and maximum modulus singularities

decay rate of the coefficients becomes slower: as the influence of

. the neighbouring cantilevers becomes stronger, the controller

needs more information to stabilize and optimize the performance
of the system. .

We then considered the case of four interacting cantilevers. The
explicit expression for the singularities is, from (16)

a \/af ~ 4a,(a, * i+Jg — 2a,)

)‘1.. Y T —402 402
e ( a,+\/;f‘—4a2(aoii\/a—2a2))z_4
2 2a, 2a, ’
and from (17)
a; \/af—az(4ao+q—4—8a2)
Ag. 2= —7—%
402 402
)
L (_ﬂ.,. \/af—a2(4ao+q—4—8a2)) .
2 2a, 2a, :

Simulations show that the decay rate of the coefficients of X is
slower as in Fig. 3. '

5 Conclusion

The new techniques of optimal contro! of spatially invariant
systems were used to design optimal controliers for an array of
microcantilevers that is used to increase throughput in atomic force
microscopy. Analytical formulas were obtained for the optimal
controlier, which were then used to design suboptimal controllers
with limited communication from the sensors. The use of the
spatial invariance properties of the system was crucial in develop-
ing finite dimensional controllers.
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