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Abstract

In this paper we present a mathematical model for the

dynamics of an array of capacitively actuated micro-

cantilevers. We propose a system where the current mea-

sured at each cantilever is used as the sensing signal of the

cantilever state through an observer. We show that such

an array is a spatially invariant system with distributed

control and sensing. For the common case of periodically

excited cantilevers, we show that the underlying dynamics

are those of a periodic system described by a Mathieu equa-

tion. We exploit the spatial invariance of the problem to

design an optimal distributed observer, where the temporal

periodicity is handled using the lifting technique.

1 Introduction

Over the past years, scanning-probe microscopes have

proven to be extremely versatile instruments, for applica-

tions that include, but are not limited to, high resolution

(atomic scale) surface imaging, high density (Gb=cm2) data

storage and retrieval, and optical lithography for advanced

device processing.

The prospect for making miniaturized devices, using batch

processing techniques, has brought the promise of obtain-

ing these very high levels of performance at a limited cost.

However, in order to achieve the anticipated results, an in-

crease in throughput is required.

Research has evolved along two main lines: the integration

of sensors and actuators, and the use of array architectures

of the probes.

The most common solutions for integrated detection

schemes make use of the piezoresistive [4, 6], piezoelectric

[7, 8, 9], thermal expansion [10] or capacitive e�ects [2, 11].

A major advantage of capacitive detection, is the fact that

it o�ers both electrostatic actuation as well as integrated

detection. In particular, the novelty of our sensing scheme

lies in that detection is indirect, meaning that a state ob-

server provides an estimate of the cantilever displacement,

based on the measurement of the current generated. From

1e-mail: napoli@engineering.ucsb.edu
2e-mail: bamieh@engineering.ucsb.edu.

the point of view of implementation, this is a considerable

advantage, since it involves the use of simpler circuitry.

In this paper, we propose a model for this electrostatically

actuated microcantilever. More precisely, the microcan-

tilever constitutes the movable plate of a capacitor and its

displacement is controlled by the voltage applied across the

plates. We show that its dynamics are governed by a special

second order linear periodic di�erential equation, called the

Mathieu equation. After formulating the optimal observer

problem for this periodic system, we demonstrate how its

solution can be approximated to any prescribed degree of

accuracy by solving an almost equivalent problem for a cer-

tain discrete LTI system, obtained by lifting [3] and fast-

sampling the original periodic model. We use this optimal

design as an analysis tool to select the frequency of excita-

tion that corresponds to the best achievable performance.

This procedure, given the set of physical parameters of the

system provides our model with the best combination of

parameters to make it more easily observable. Finally, we

design for this system a suboptimal reduced order observer,

whose parameters are tuned to match the optimal perfor-

mance index as close as possible.

As a second step we consider the connection of several can-

tilevers in an array architecture, where each cantilever is

independently actuated and sensed. Currently, microcan-

tilever arrays are designed with large spacing between the

individual elements. This essentially decouples the dynam-

ics of the individual cantilevers, that can be considered to

behave as isolated units. The drawback of this con�gura-

tion is, of course, a decrease in the potential throughput of

the device. In this paper we want to model a tightly packed

array of microcantilevers, explicitly incorporating their dy-

namical coupling into the model equations. We show that

this system is an example of a spatially invariant system

with distributed control and sensing. By exploiting the

spatial invariance of the problem, it is possible to design

a distributed optimal observer that "electronically" decou-

ples the system, using the methodology of [12, 13, 14] and

the results derived for the single cantilever case. Research

along this line is currently being pursued.

The paper is organized as follows: In Section 2 we develop

the mathematical model of the electrostatically actuated

cantilever. In Section 3 we formulate the optimal observer
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problem and show how to obtain an approximate solution

via lifting and fast-sampling. In Section 4 we use this result

as a guideline for the design of a suboptimal reduced order

observer. In Section 4 we propose a model for the array ar-

chitecture, and �nally we present our conclusions in Section

5.

2 Model Description For a Single Cantilever

The design of a single cantilever sensor is shown schemat-

ically in Fig.1. It consists of two adjacent highly doped Si

beams forming the two plates of a capacitor. One of the

beams is rigid, while the other (hereafter referred to as the

cantilever) is fairly soft and represents the movable part of

the structure.
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Figure 1: A schematic of an electrostatically driven can-

tilever.

If the length of the cantilever is much bigger than its dis-

tance from the bottom plate, the capacitance is given by

C(x) =
�oA

d� z
;

where �o = 8:85 10�12As=Vm is the permittivity in vac-

uum, A is the area of the plates, d is the gap between them

and z is the vertical displacement of the cantilever from its

rest position.

If we apply a voltage V (t), the attractive force, Fa, between

the capacitor plates can be easily found to be

Fa =
1

2

�oA

d2
V 2(t)

(1� z

d
)2
�

1

2

�oA

d2
(1 + 2

z

d
)V 2

(t);

where the approximation holds when z

d
<< 1.

Hence, the equation of motion of the cantilever is described

by

m�z + kz =
1

2

�oA

d2
(1 + 2

z

d
)V 2

(t); (1)

where k = Ewt
3

4L3
is the spring constant of the cantilever,

E = 1:7 1011N=m2 is the Young's modulus of silicon, and

L, w, t are respectively length, width and thickness of the

cantilever. In the simulations presented in this paper we

have chosen the following values of the parameters: L =,

w =, t = and d =.

If we apply a sinusoidal voltage V (t) = Vo cos!ot, equation

(1) can be rewritten, after few algebraic steps, as

z00 + (a� 2q cos 2t)z = uf (t); (2)

where the prime denotes the derivative with respect to the

scaled time � = !ot; a = k

m!
2
o

�
1

2

�oAV
2

o

md3!
2
o

, q =
�oAV

2

o

md3!
2
o

, and

uf (t) = q d cos2(t).

Equation (2) is an instance of the Mathieu equation, a

well-known and studied di�erential equation, that arises in

boundary condition problems involving the wave equation.

When uf (t) � 0, this equation has very peculiar stability

properties, that have been extensively investigated. As a

and q vary in RI , its stable solutions can be periodic, but

they never decay to zero. In the case of our interest, where

uf (t) 6= 0 and periodic, we can prove that, for any pair of

parameters a and q, the forced equation retains the same

stability properties as the unforced one, with the only ex-

ception of the curves at the boundary between stable and

unstable regions.

We consider the current generated as the output y of the

system

y = i(t) =
d

dt
(CV ) =

�oA

d2
V

(1� x

d
)
_x+

�oA

d

_V

(1� x

d
)
;

whose �rst order approximation is given by

y = c1(t)z + c2(t)z
0

+ vf (t); (3)

where c1(t) = �
�oAVowo

d2
sin t, c2(t) = �oAVo

d2
cos t, and

vf (t) =
�oAVowo

d
sin t.

Introducing the vector x = [z _z]T , we can derive from

(2) and (3) the state space representation of the cantilever

model
x0 = A(t)x+B(t)uf(t)

y = C(t)x+ vf (t);
(4)

where A(t) =

�
0 1=wo

�a+ 2q cos 2t 0

�
; B =

�
0

1

�
and

C(t) = [c1(t) c2(t)].

Note that (4) is a linear, time-varying and T -periodic

model, with T = 2�. In the next section we will see how,

using lifting and sampling, we can reduce the problem of de-

signing an observer for (4) to an almost equivalent problem

of observer design for a standard LTI model.

3 The Optimal Observer Problem

In this section we address the problem of designing a dy-

namical system capable of providing an estimate x̂ for the

cantilever displacement, based on the measurement of the

current generated. This approach to sensing is particularly

advantageous from the point of view of implementation, as

it requires a simpler circuitry. As a matter of fact, the

extraction of the desired information is left to a software

elaboration of the measurements.

In the LFT framework, the observer problem can be formu-

lated as an H
1

�ltering problem, by de�ning the variable

z = x�x̂ (estimation error), and considering the generalized

plant (see Fig.2)

Ggen :=

2
4 A(t) [M 0] 0

I 0 -I

C(t) [0 N] 0

3
5=

2
4 A(t) B1 0

C1 0 D12

C2(t) D21 0

3
5;
(5)

where the exogenous input w = [d n]T represents process

and measurement noise, the matrices A(t), C(t) are as in (4)
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and the input u = x is the output of the observer system.

Notice that we don't need to account for the signals uf and

vf in (4): since they are known, their presence does not

a�ect the observer design.

Ggen

obs

w

u

z

y

G

Figure 2: A schematic of the observer problem.

In this framework the optimal observer problem amounts at

�nding a dynamical system Gobs such that the H1 norm

of the transfer function Tzw from w to z is minimized. If

the system is time-invariant, and has the structure of (5), it

turns out that Gobs is a Luenberger observer, whose gain L

comes from the solution of an appropriate Riccati equation.

3.1 The Lifted System

The lifting technique is a very useful theoretical tool for

dealing with periodic systems. The idea of the lifting is

to associate with a T -periodic system G, an equivalent dis-

crete time-invariant system Ĝ. Intuitively speaking, this is

done by decomposing the input and output signals of G into

a sequence of segments, corresponding to the signals over

successive intervals of length T . It can be proved (see [3]

for instance) that this induces a rearrangement of the orig-

inal T -periodic system G, such that its lifted equivalent Ĝ

is shift invariant. In fact, there is a strong correspondence

between a system and its lifting, that preserves not only

algebraic system properties, such as cascade decomposition

and feedback, but also internal stability and induced sys-

tem norms. This latter property is of particular interest to

us, in view of the observer problem we aim at solving.

Even though the equivalent lifted system has the much de-

sirable properties of being linear, shift-invariant and norm

preserving, it is in�nite dimensional (since by construction

its input/output spaces are in�nite dimensional). There-

fore, the observer design problem, as we have formulated it

above, is not easily solvable, as it would involve an in�nite

dimensional minimization.

The approach we follow, along the lines of [1], is to convert

this in�nite dimensional minimization to an almost equiva-

lent �nite dimensional problem. This problem corresponds

to the optimal observer design for the �nite dimensional

system obtained by fast sampling (5). Here, by almost

equivalent we mean that the problem we �nally solve is

an approximation of the original one. It has been proved in

[1] that this approximation converges at the rate of 1=N , if

T=N is the sampling period. Hence, by increasing the num-

ber of samples per period we can approximate the optimal

solutions of the original system to any prescribed degree of

accuracy (see [1]).

In [1], analytical expressions to compute the system ma-

trices corresponding to the approximate problem are pro-

vided. Unfortunately, these formulas require the computa-

tion of the state transition matrix of the original system.

This problem, in general and with very few exceptions, is

not solvable if the system is time-varying. The Mathieu

equation is not such an exception. However, rearranging

the terms in equations (5), and introducing the �ctitious

output

yo = [1 0]x = Cox;

we can isolate the time-invariant part of the state equation

in (5) and view its time-varying part as a feedback from the

output yo

x
0 = Aox +B1w +B3v

z = C1x +D12u

y = C2(t)x +D21w

yo = Cox

v = �K(t)yo;

(6)

where Ao =

�
0 1=wo

�a 0

�
, B3 =

�
0

1

�
and K(t) =

2q cos 2t. The advantage is that rewriting the system in

this form we are able to compute the state space represen-

tation.

If we denote with sk the N dimensional vector containing

theN samples of s(t) corresponding to the k-th time period,

[kT; (k + 1)T )

sk :=

2
66664

s(kT )

s(kT + T
N
)

s(kT + 2T
N
)

...

s((k+ 1)T � T
N
)

3
77775;

the state equations of the approximate problem (lifted and

sampled) corresponding to (6) turn out to be

xk+1 = Axk +B1wk +B3vk
zk = C1xk +D11wk+ D12uk +D13vk
y
k

= C2xk +D21wk +D23vk
y
ok

= Coxk +Do1wk +D02vk
vk = �K y

ok
;

(7)

where the presence of the new Dij matrices is a result of
the lifting. The analytical expression of all the matrices in
(7) can be computed following the indications given in [1],
with the exception of those coming from the time-varying
part of the system (equations 3-5 in 7), which are

C2 =

h
C0 e

AT
o
TsC

T
1

N

e
2AT

o
TsC

T
2

N

� � � e
AT
o
Ts(N�1)C

T

1� 1

N

iT

D21=

2
6666664

D21 0 0 : : : 0

C 1

N

B̂1 D21 0 : : : 0

C 2

N

e
AoTs B̂1 C 2

N

B̂1 D21

.
.
. 0

.

.

.
.
.
.

.
.
.

.

.

.

C
1� 1

N

e
AoTs(N�2)B̂1 : : : C

1� 1

N

B̂1 D21

3
7777775

D23=

2
6666664

0 0 0 : : : 0

C 1

N

B̂3 0 0 : : : 0

C 2

N

e
AoTs B̂3 C 2

N

B̂3 0
.
.
. 0

.

.

.
.
.
.

.
.
.

.

.

.

C
1� 1

N

e
AoTs(N�2)B̂3 : : : C

1� 1

N

B̂3 0

3
7777775
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and

K =

2
66664

2q 0 : : : 0

0 2q cos( T
N
) 0 : : : 0

0 0 2q cos( 2T
N
) 0

... : : :
. . .

0 : : : 2q cos(N�1
N

T )

3
77775 ;

with

e
AoTs =

�
cos

p
aTs

1p
a
sin

p
aTs

�
p
a sin

p
aTs cos

p
aTs

�
;

Ck = C2(KT ) and B̂j is the sampled matrix corresponding
to Bj in (6). Finally, by de�ning the following matrices

F = A�B3 K(I +Do2K)
�1

Co;

G1 = B1 � B3 K(I +Do2K)
�1

Do1;

H1 = C1 �D13 K(I +Do2K)
�1

Co;

H2 = C2 �D23 K(I +Do2K)
�1

Co;

J11 = D11 �D13K(I +Do2K)
�1

Do1;

J21 = D21 �D23K(I +Do2K)
�1

Do1;

and J12 = D12, the generalized plant associated to the

approximate problem is given by

Gapprx :=

2
4 F G1 0

H1 J11 J12

H2 J21 0

3
5 ; (8)

and describes a �nite dimensional discrete time-invariant

system. For this system we can apply known results from

classical system theory.

4 6 8 10 12 14

x 10
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0.3
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0.4

0.42

w
o
 [rad/sec]

H
∞

−
no

rm

w
0,min

=67620;

H∞−norm=0.24;

Figure 3: H1�norm vs. frequency of excitation.

Figure (3) describes the dependence of the closed loop H1
norm from the frequency of excitation, !o. The range of

frequencies considered is chosen to be around the resonant

frequency of the cantilever, !r = 51kHz. Based on the

analysis of this plot, we have chosen !o = 67620, which

corresponds to a minimumvalue in the optimal performance

index (H1 � norm = 0:24). In the next section we will see

how to use this information to design a suboptimal reduced

order observer.

4 The reduced order observer

The idea behind a reduced order observer is to use the in-

formation about the state of the system that is provided by

the output signal and leave to the observer the task of esti-

mating a smaller portion of the state vector. We refer the

interested reader to any book on linear systems theory for

the details of this standard technique. Here we just want to

provide the expression of the matrix T
�1 that de�nes the

required change of coordinates,

T
�1

=

�
H(t)

C(t)

�
=

�
c
�1
1 cost �c�12 sint

c2sint c1cost

�
;

where ci, i = 1; 2 are the constant coeÆcients of ci(t) in

(4), T�12C1 and det(T�1) = 1 at each t. Notice that to be

well-de�ned, this change of coordinates requires to consider

a 'noiseless' output, i.e. ~y = C(t)x.

The equations of the observer turn out to be

_̂v = (A11(t) + L(t)A21(t))v̂ +M(t)y

x̂ = T (t)

�
v̂ � L(t)y

y

�
;

where A11; A21;M are �-periodic matrices that can be com-

puted from the system matrices in (4). L(t) is the design

parameter, through which we can in
uence the behavior of

the observer.

The state estimation error, ex = x� x̂ is described by

ex = T

�
ev

0

�
+

�
0 0

0 0
Dx(t)

�
w; (9)

where ev is governed by the equation _ev = (A11+LA21)ev+

Bv(t)w and the matrices Dx,Bv are known functions of the

system matrices. L needs to be chosen so that (9) is asym-

potically stable. For a T -periodic system this is equiva-

lent to say that its characteristic multipliers, which are the

eigenvalues of the state transition matrix computed at T ,

are in norm less than 1, j�(�(T ))j < 1. Since (9) is scalar,

�(T ) can be easily computed

�(T ) = e

R
T

0

(A11+LA21)(�)d�
;

and the condition on the characteristic multipliers is equiv-

alent to the condition
R T

0
(A11 + LA21)(�)d� < 0. In par-

ticular, we have

A11+LA21 = d1 sin(2t)+d2 sin(4t)+L(t)[d3+d4 cos(2t)+d5 cos(4t)];

where di are known functions of the system parameters. By

taking L(t) = k cos(2t+ �) the stability condition becomes

kd3� cos � > 0, which poses a constraint on the choice of

k and �. For instance, for the value of the parameters we

have considered so far in our simulations, it turns out that

we must have

k cos(�) < 0:

Figure (4) shows simulation results for two values of k and

� = 0, in the absence of noise: as expected the error dy-

namics are asymptotically stable.

However, we want to select the parameters of this observer

not only to ensure stable error dynamics, but also to op-

timize its performance, with the H1-norm as its measure.

Figure (5) depicts the value of this norm as k and � vary in

RI + and [0 2�) respectively. Based on this plot, a better

informed choice of k and � turns out to be k = 0:001 and

� = 3:63, which give H1-norm=45.
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Figure 4: Estimation error for di�erent values of the ob-

server gain k (� = 0).
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Figure 5: Estimation error for di�erent values of the ob-

server gain k (� = 0): a) k > 0 cos(�) < 0, b)

k < 0 cos(�) > 0.

5 Array of Microcantilevers

In this section we investigate the properties and derive a

mathematical model for the parallel connection of electro-

statically actuated microcantilevers.
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Figure 6: A schematic of the multicantilever array.

In this con�guration, the bottom rigid plates of each

cantilever-capacitor are connected to a common base, as

shown schematically in Fig.(6), and all cantilevers are

driven at the same voltage. Though each cantilever is in-

dependently actuated, its dynamics are in
uenced by the

electric fringing �elds generated by the capacitors nearby.

As a consequence, the model we introduced for the single

cantilever has to be modi�ed to take into account this in-

teraction.

In the model we propose, we consider that the cantilevers

exert a repulsive force on each other, since they are all pos-

itively charged. In this work we describe this interaction

via a point charge model.

The idea is shown schematically in Fig.(7), that depicts only

the case of two capacitors. Each cantilever is represented as

a charged particle, qi = CiVi, and the mutual interaction is

p

+ + + + + + +                   + + + + + + +

r

d-z
d-z

q

i

i+1

i+1Fa

+  +  +  +  +               +  +  +  +  +  +

Figure 7: A schematic of the coupling capacitance model.

described by Coulomb's law

Fij = 1
4��o

qiqj

r2

= �oA
2

4�
V 2

(d�zi)(d�zj)[p
2

ij
+(zi�zj)

2]
;

where pij = ji � jjp is the pitch distance between the i-th

and j-th capacitors, and zi is the vertical displacement of

the i-th cantilever. We assume that the lateral sti�ness of

the cantilevers is high enough to prevent any lateral motion,

so that the only component of the force that really a�ects

their behavior is the vertical, whose �rst order approxima-

tion is

F
?

ij = cij(zi � zj)V
2
; (10)

with cij =
�oA

2

4�d2p3
ij

.

Note that, due to the symmetry of the array, the coeÆcients

cij are even functions of j, i.e. ci;j = ci;�j . Moreover, as

it is reasonable to expect from a physical argument, their

value decays to zero as j tends to in�nity.

Taking into account this coupling force (10), the state equa-

tions for the i-th cantilever become

x1(t; i)
0 = 1

wo

x2(t; i)

x2(t; i)
0 = (�â+ 2q̂ cos 2t)x1(t; i) + u(t; i)+

+
P

j 6=i
[aij � aij cos 2t]x1(t; j);

(11)

where i is the spatial variable introduced to denote the can-

tilevers in the array, aij =
V 2

o

2wo

cij , â = a + �a, q̂ = q � �a
2
,

with �a sum of the convergent series �a =
P

j 6=i
aij .

Equations (11) provide a local description of the system,

where by local we mean limited to the i-th cantilever. How-

ever, no term in equations (11) is speci�c to the i-th can-

tilever, that is, modulo a shift in the spacial index, these

equations describe the dynamical behavior of any cantilever

in the structure. Systems that satisfy this property are

called spatially-invariant [5] and in our case, more precisely,

distributed spatially-invariant, since all the elements of the

array are actuated and sensed independently.

It has been shown that, by applying the Fourier transform

in the spatial domain, which for a two-dimensional signal is

de�ned as

V (�; t) =

1X

k=�1

v(k; t)e
�ik�

;

it is possible to associate a two dimensional distributed sys-

tem with a one dimensional parametric system, which is

equivalent to the former, but that can be analyzed using

well known results from classical systems theory. We refer

the interested reader to [5] for the main results concerning

p. 5
4278



this approach in the study of spatially invariant distributed

systems.

As we pointed out before, the physical and, consequently,

the mathematical structure of the multicantilever model al-

lows us to embed it in the class of spatially invariant sys-

tems. This means that in order to study the multicantilever,

we do not need to deal with the in�nite dimensional model

corresponding to the complete stucture, but that we can

use instead the parametrized local model

x(t; �)
0
=

�
0 1

wo

�a(�) + 2q(�) cos 2t 0

�
;

where a(�) = â �
P

1

k=�1

k 6=0

ake
�ik� and q(�) = q̂ �

1

2

P
1

k=�1

k 6=0

ake
�ik�.

At this point, we can proceed in a way which is formally

analogous to the single cantilever case. A detailed analysis

and results, both theoretical and simulation, are the subject

of our present research.

6 Conclusions

In this paper we have derived a mathematical model for an

electrostatically actuated microcantilever, considered both

as a single unit sensor/actuator and as an element of an

array architecture. In both cases, the microcantilever con-

stitutes the movable plate of a capacitor and its displace-

ment is controlled by the voltage applied across the plates.

The current generated is used as the sensing signal. In the

case of a single cantilever, its dynamics are regulated by a

special second order di�erential equation with periodic co-

eÆcients, the Mathieu equation. As for the array con�gura-

tion, we have shown that the system is an example of a spa-

tially invariant system with distributed control and sensing,

property which will be used in the design of a distributed

observer for the cantilevers displacements. We have formu-

lated the optimal observer problem for the single cantilever

and shown that its solution can be approximated to any pre-

scribed degree of accuracy by solving an almost equivalent

problem for a standard LTI discrete system, obtained by

lifting and fast-sampling the original periodic system. This

design has been used to select the frequency of excitation

that makes our model more easily observable. Moreover, it

has been used as a benchmark to compare the performance

of a reduced order observer and tune its parameters. The

extension of these results to the array con�guration is the

subject of our current research.
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