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Abstract— In this paper we present a mathematical model for
the dynamics of an electrostatically actuated micro-cantilever.
For the common case of cantilevers excited by a periodic voltage,
we show that the underlying linearized dynamics are those of a
periodic system described by a Mathieu equation. We present
experimental results that confirm the validity of the model, and
in particular illustrate that parametric resonance phenomena
occur in capacitively actuated micro-cantilevers. The combined
parametric/harmonic mode of operation is investigated as well
and experimental data are provided.

I. I NTRODUCTION

Resonant mode operation of micro and nano-scale oscilla-
tors have gained wide interest for applications including filters,
amplifiers, non-linear mixers, atomic scale imaging, biological
and chemical sensors.

The working principle of these devices is based on mea-
surement of displacement. Hence, their sensitivity strongly
depends on the smallest detectable motion. As the size of
the components gets smaller, so does the magnitude of their
displacement, with the result that the transduction mechanism
has to operate close to the background noise. This drawback
motivates the interest in amplification schemes in the mechan-
ical domain, includingparametrically excitedexcited systems,
which are systems described by differential equations in which
the input appears as a time-dependent coefficient. In particular,
their characteristic is that large responses can be generated
even if the excitation frequency is far away from the system’s
natural frequency.

The device that we propose is an electrostatically actu-
ated microcantilever. Cantilever geometries are particularly
interesting, due to their wide range of applications, including
small force detection [1], [2] , AFM, mechanical filters for
telecommunication [3], and chemical sensor arrays [4]. In our
design the microcantilever constitutes the movable plate of
a capacitor and its displacement is controlled by the voltage
applied across the plates.

In this paper, we present a model for this electrostatically
actuated microcantilever. Using simple parallel plate theory
and for the common case of sinusoidal forcing, the dynamics
are governed by the Mathieu equation. We produce experimen-
tal evidence that validates the mathematical model, including a

mapping of the first instability region of the Mathieu equation.
While parametric amplification has been discussed in small
scale resonant systems [5], [6], [7], [8], [9], [1], to our
knowledge this is the first experimental mapping of the first
parametric instability region in a micro-cantilever resonator.

The paper is organized as follows: In Section 2 we develop
the mathematical model of an electrostatically actuated can-
tilever. In Section 3 we present the experimental results that
validate the model including, in particular, the mapping of the
first instability region of the Mathieu equation. In Section 4 we
analyze the behavior of the cantilever in combined harmonic
and parametric resonance mode of operation. Finally, we
present our conclusions in Section 5.

II. M ODEL DESCRIPTIONFOR A M ICRO CAPACITIVE

CANTILEVER

From parallel plate theory, neglecting the asymmetry in
electric field for a cantilever, the attractive force,Fa, between
the capacitor plates generated by applying a voltageV (t), can
be expressed as

Fa =
1
2

εoA

d2

V 2(t)
(1− z

d )2
≈ 1

2
εoA

d2
(1 + 2

z

d
)V 2(t),

where the approximation holds whenzd << 1. Hereεo is the
permittivity in vacuum,A is the area of the plates,d is the
gap between them andz is the vertical displacement of the
cantilever from its rest position.

Only few algebraic steps are necessary to derive the equa-
tion of motion of the cantilever, which ifV (t) = Vo cos ωot,
is given by

z′′ + cz′ + (a− 2q cos 2t)z = uf (t), (1)

where the prime denotes the derivative with respect to the
scaled timeτ = ωot; c is a small damping coefficient,
presumed viscous,a = k

mω2
o
− 1

2
εoAV 2

o

md3ω2
o
, k is the spring constant

of the cantilever,q = εoAV 2
o

4md3ω2
o
, anduf (t) = q d cos2(t).

Equation (1) is an instance of the well-known Mathieu
equation. In the next section we will briefly discuss its
peculiar stability properties, and demonstrate how they can be
advantageously exploited from an engineering point of view.
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III. E XPERIMENTAL VALIDATION OF THE CANTILEVER

MODEL

The device we have used in our experimental setup was a
200µm × 50µm × 2µm highly doped polysilicon cantilever,
fabricated using the MUMPS/CRONOS process, and with a
gap between the electrodes of about2µm. The mechanical
response of the cantilever was tested in vacuum (p = 8mT ),
using laser vibrometry [11] to measure its displacement and
velocity near the free end, when electrostatically driven with
different AC voltage signals. Measurement of the frequency
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Fig. 1. Frequency response of the capacitive cantilever: the dashed line
corresponds to measured data, the solid one is its least square fit.

response, subject to small excitation, as in [11] yields a
first natural frequency of approximatelyfr = 50800Hz, a
damping coefficientc = 2.1 × 10−4, and a quality factor of
Q = 2200. The values of these parameters were confirmed by
time domain identification experiments as well.

As the amplitude of the driving signal increases, so does the
value ofq and this linear time-invariant approximation of the
model is no longer appropriate. Therefore, we have to return
to the original equation (1).

A. The Mathieu equation and Parametric Resonance

Extensive literature exists on the standard form of the
Mathieu equation,

z′′ + (a− 2q cos 2t)z = 0. (2)

Its stability properties have been thoroughly investigated as
a function of a and q. By means of perturbation analysis
methods, it is possible to determine the values of these
parameters that correspond to unstable behavior.

In particular, it is not difficult to prove that instabilities occur
at a = n2, n ∈ NI [15], and that the boundaries of the first
instability region, for small values ofq, are given bya =
1± 2q. In terms of the physical parameters of the device, the
driving frequencies that cause unstable responses in the system
are given by

ωo ≈
2ωr

n
n ∈ NI ,

while the boundaries of the first instability region, in terms of
frequency and amplitude of excitation, are defined by

ω2
o = 4ω2

r − 4(1∓ 1
2
)
εAV 2

o

md3
.

It is worth noting that the presence of a damping term, whose
existence we have neglected so far, has the effect of shifting
the tongues upwards in thea-q parameter space requiring a
minimum threshold voltage for parametric resonance. This is
the reason why parametric resonance is difficult to observe at
the macroscale. The experimentally determined boundary of
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Fig. 2. The thin line (overlaying the dots) is an experimentally determined
map of the first parametric resonance region in the microcantilever. The dotted
line shows the analytical result, using the Q and natural frequency determined
from experiment, and the solid line shows the analytical result when using Q
and natural frequency and electrostatic stiffness determined from experiment.

the first instability region is shown in Fig.2.
Inside the instability region the cantilever oscillation does

not grow unbounded, but rather saturates at a large amplitude.
This is explained by nonlinear effects, which cause the system
to settle into a steady state response [10]. For large oscillation
amplitudes, both the linear spring model and the electrostatic
force need to be corrected by adding cubic terms [13]. Hence
the equation of motion (1) becomes

z′′ + (a− 2q cos 2t)z + a2z
3 = uf (t), (3)

where a2 denotes the effective cubic stiffness of the beam,
which includes both electrostatic and structural contributions.
What we observe when driving the cantilever in parametric
resonance regime is a subharmonic 2:1 oscillation of the beam
[10], which vibrates at half the frequency of excitation, as
shown in Fig.3 a)). Note also that during the transition from
non-parametric to parametric region, the response shows a
characteristic exponential growth (see Fig.3 b)).

Above the critical driving voltage amplitude, and for driving
frequencies near the first parametric resonance, the response
of the cantilever has the behavior depicted in Fig.4. The two
curves represent data collected by sweeping the frequency
from low to high (black ’+’ points) and from high to low
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Fig. 3. Time series of a typical input and output inside the first ’tongue’.
Note the response is at half the driving frequency.

(grey ’o’ points), as indicated by the arrows. In area III,
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Fig. 4. Frequency response above critical driving voltage amplitude when
operating near the first ’tongue’ (Vo = 10V ).

the system has one stable solution, which upon entering
the parametric region II, bifurcates into a stable periodic
motion and an unstable (experimentally unobservable) one.
The periodic solution grows in amplitude asω continues to
decrease. When the system leaves the parametric region, area
I, the stable periodic solution at some point collapses to the
trivial solution, which is stable again.

The sharp transition of the output response (vertical segment
of ’+’ data) marks the entrance into the parametric region.
Since this transition always occurs for the same valueω1,
related to the resonant frequency of the beam, the phenomenon
has potentially many applications, from the realization of
mechanical filters to extremely sensitive mass sensors. The
authors are pursuing both of these applications [13][14]

IV. COMBINED HARMONIC-PARAMETRIC RESPONSE WITH

CUBIC NONLINEARITY

When driving the system with a sinusoidal voltage,V (t) =
VDC + Vo cos ωt, equation (3) becomes

z′′ + cz′ +(a−2p cos t−2q cos 2t)z +a2z
3 = uf (t)+up(t),

(4)
where p = εoAVDCVo

md3w2
o

and up(t) = pd cos t. When the fre-
quency of the driving signal is close to the resonant frequency
wo of the cantilever, the effect of thecos 2t term in the
coefficient of z and thecos t term in the direct excitation
are of the leading order. To obtain the first order parametric
response, we can consider (4) to be a harmonic oscillator with
a perturbation and re-write it as follows

z′′ + cz′ + z = ε((−a1 + 2q1 cos 2t)z + a21z
3 + p1 cos t),

wherea = 1+εa1, q1 = q/ε, a21 = a2/ε, p1 = p/ε. By means
of perturbation analysis methods, if we assume the solution to
be of the formz(t) = A(η) cos t + B(η) sin t, with η = εt
corresponding to the slow varying time scale, we obtain the
following slow flow equations,

dA
dη = B

2 (a1 − 1) + 3a21B
8 (A2 + B2)− p1,

dB
dη = −A

2 (a1 + 1)− 3a21A
8 (A2 + B2).

These non-linear coupled ODEs can be readily solved nu-
merically to obtain the regions of parametric resonance. This
analysis predicts bi-stable non-trivial response in certain re-
gions in the driving frequencyamplitude plane. In fact, this has
been observed experimentally and the steady-state frequency
sweep response above a critical amplitude of drive is shown
in Fig.5. The symbol ’�’ corresponds to the frequency being 
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Fig. 5. Combined harmonic/parametric frequency response. Note that there
are bistable regions (I and III) on either side of the parametric tongue (II).

swept up and the symbol ’o’ to the frequency being swept
down. The figure also shows the time response when the
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cantilever forcing is changed from a non-parametric region
to a parametric region. Notice that the rate of growth, initially
characteristic of harmonic resonance, becomes exponential,
as expected for parametric mode of oscillation. Fig.6 shows
the mapping of the parametric resonance region in the drive
amplitude-frequency plane. The effect of the direct forcing

Fig. 6. The first instability region with combined harmonic and parametric
excitation. Note that at the boundary between regions I and II, there is still a
distinctly sharp transition between small and large amplitude response, making
it useful for applications.

is to transform the trivial stable solution into a non-trivial
frequency dependent stable periodic solution. When driven in
region I or III, the response of the cantilever is one of the two
stable states, depending on the initial conditions. This confirms
what is seen in the experiments. The presence of the direct
driving harmonic component changes the parametric frequency
response of the cantilever [12]. The change can be explained if
the direct harmonic component is smaller than the parametric
drive by an order of magnitude (which is true in our case) by
perturbation analysis of the governing equation. The overall
response is richer than the pure parametric case because of
the presence of bi-stable regions. The sharp transition from a
small periodic response to a large one with change of drive
frequency is also seen in this case. Hence applications that
use these sharp transitions can be implemented in this mode
as well. As it is extremely hard to avoid a harmonic forcing
term in most sinusoidally driven applications, the presence of
a sharp transition is extremely promising.

V. CONCLUSIONS

We present a thorough modeling, analysis and experimental
verification of using mechanical domain nonlinearity to am-
plify motion in the resonant mode operation of a microscale
cantilever. The model presented here takes into account non-
linearity in mechanical and electrostatic domains. We have
provided experimental validation of the mathematical model,
which included the mapping of the first region of instability
of the Mathieu equation. We have analyzed the behavior

of the oscillator when a DC offset term is added to the
sinusoidal forcing signal and explored, the combined paramet-
ric/harmonic mode of operation. From this work, many sensing
applications can be realized, utilizing the sharp transitions
from non-resonant to resonant state, which are present in the
combined as well as the isolated parametrically resonant state.
Filters and sensors using this mechanism are being explored. In
addition, an extension to multi-cantilever arrays is also being
investigated. This result offers designers tangible guidelines
needed to implement novel parametric devices.
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