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Abstract

In this paper we extend the result of Youla on
the parametrization of output feedback stabilizing con-
trollers to spatially-invariant distributed systems. We
also introduce a new definition of 3 norm and solve the
related optimization problem, using the parametriza-
tion obtained. Finally, we apply the methodology pre-
sented in the paper to the case of a multicantilever
structure.

1 Introduction

Recent technological advances in the field of micro
devices have made feasible the implementation of new
control structures, consisting of large arrays of spatially
distributed actuators and sensors. In turn, these archi-
tectures have generated an increasing interest in spatio-
temporal systems, which represent the right mathemat-
ical tool to model and study the resulting systems.

An important subclass, within this large family, is
represented by spatially invariant systems, whose dy-
namics are invariant with respect to translation in the
spatial coordinates. :

This property of spatial invariance turns out to be
crucial. As a matter of fact, underthis hypothesis, we
can-apply the Fourier transform in the spatial variable
and associate with the distributed system a one dimen-
sional parametric model, which is equivalent to the orig-
inal one (see [1]).

We will now briefly introduce linear spatially-
distributed continuous time systems. We refer the in-

terested reader to {1, 2] for the main results concernmg-

this topic.
In a state-space approach, spatially invariant dis-

tall the authors belong to the Departement.of Mechanical En-
gineering, University of California, Santa Barbara, CA 93106,
U.5.A.. Research supported by NSF under Career award ECS-
96-24152 and ynder Grant ECS-9632820, and by AFOSR under
Grant F49620-97-1 -0168

Bassam Bamieh

e-mail: bamieh@bessel.ece.ucsb.edu

Mohammed Dahleh !
e-mail: da.hleh@engineering.ucsb‘gdu

329

tributed systems are described by a set of equations

j’?:c(t,k) = Axz(t,k) + Bxu(tk)
(1)
y(t, k) = Cxz(t,k) + Dwultk)

where t € R is the time variable, k € Z is the spatial
coordinate, 4, B,C and D are linear convolution oper-
ators on !3(Z) and ‘ x  denotes the operation of spatial
convolution.

If we apply the Fourier transform in the spatial do-
main, we can associate the two dimensional system (1)
with an equivalent one dimensional parametric system

#(¢,6)
#(t,0)

The equivalence between (1) and (2) is established in
(2,1}

= A()2(t,6) + B(9)a(t,0)

= C(0)3(4.0) + DO)t,0). P

2 Controller parametrization

Given a plant P, the parametrization of all feedback
stabilizing controllers is an important tool, that enables
the development of synthesis techniques for robust con-
trol. As a matter of fact, once this parametrization is
available, it is possible to set criteria to choose, among
the admissible controllers, the one which better satisfies
some other specific performance objective.

In the one dimensional case, the problem of param-
eterizing all stabilizing controllers has been solved by
Youla using the coprime factorization technique.

The extension of this methodology to the class of
spatially-invariant systems requires some care. First of
all, we have to 'deal with the problem of the coprime
factorization of a 2D transfer function.

While in the case of rational functions with real co-
efficients such a factorization always exlsts, in the 2D
case the result is not immediate.

Lemma 2.1 [8] Consider a transfer function G(s,6)
which has @ realization (2). IfVé € [0,2x], (A(8), B(6)) -
is' stabilizable and (C(6), A(R)) is detectable, then there



exist a right and a left coprime factorization of G(s,8)
3

over the ring R of rational functions in s, with coeffi-
cients in 1,(Z), R = [11(Z)](s).

From this lemma, it follows that the parametrization of
all stabilizing controllers in terms of their input/output
transfer function is given by

{(¥r - QN) =X, + QD))
{(-Xi+ D:QYi + N, Q)

G=NrDr_1 =D]_1M1

C Qe R}

Q € R}.

3 The H; norm for two dimensional systems

One of the typical performance objectives in the one
dimensional case is the minimization of the 3 norm of
the system transfer matrix, which corresponds in the
time domain to minimizing the energy of the output for
an impulse of unit length.

When dealing with two dimensional spatio-temporal
signals, it seems natural to define the 2D impulse as an
impulse in the time domain (i.e. a signal concentrated
at the origin of time}), whose associated 1;(Z) sequence
in the spatial domain has unit norm. In the scalar case
this gives

t=0
t #0,
with g(k) €15(Z) and such that 372° _{g(k)]* < 1.

If we now apply this input to our system, which in
input/output form is represented by

g(k)

a(t, k) ={ o

t. 00
vek)= [ 13 wle-nk= i,
oo
we get
+00
y(tk) = Y wltk-g(),
j=~o00

or, equivalently, if we take the Fourier transform in the
spatial coordinate

y(t,0) = wt, #)g(6).

We define the H2P norm of a transfer function w(t, )
to be

liytls -

[|wllyzo = .
M gla<a Ngllz

It can be proved [3] that
» +o00
llwllgo = [ sup / w(t,)%d)?.
0€(0,20] Jo

An analogous result holds in the multivariable case too.
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4 H2P norm minimization

Let T, denote the transfer function from the ex-
ogenous inputs w to the regulated outputs z, in the
standard configuration for robust control [2]. We want
to solve the following optimization problem

rv= ”Tzwnﬂgbv

inf
K stabilizing
that is we want to find a controller, which is internally
stabilizing and which minimizes the #}”-norm of the
transfer matrix between w and 2, T

Theorem 4.1 [3] Let T,,, be as above. Then

sup ”Tzw”2 = l zwu%

inf SUP
Katnb:lumg 6€(0,27]

inf
00,27 ]Kstabtlzung

This theorem is key to solving our optimization prob-
lem. The auxiliary problem introduced in the theorem
implies that solving our problem is equivalent to solving
a standard #Hs minimization problem for the 1D para-
metric system and then taking the supremum over ¢ for
the overall cost. In [2] it is shown that this problem
can be solved using the same results of classical finite
dimensional M, theory. The difference is that in this
latter problem, the controller is no more unique.

Using the parametrization of stabilizing controllers
introduced in Section 2, we can state our problem in
the SISO case as a model matching problem

v(#) = inf

h(s,0) —
q€L1(Z)(s) llx(e.6)

u(s,f)g(s, ), (4
where h and u are fixed elements in I (Z)(s). If u has no
zeros on the imaginary axis for every 6, then the solution
can be found using standard tools of finite dimensional
systems.

There is one last thing that we want to stress. The
controller that we obtain in this way has the same dy-
namical symmetries as the plant. That is, it is not only
a distributed system, but it is also time/space invariant.
The results in (2] show that, when the underlying dy-
namics of the system and the performance objective are
spatially invariant, there is no performance loss in re-
stricting the design to controllers which are themselves
spatially invariant. This result is significant from the
implementation point of view, since it implies that one
only need to design the controller for a single actuator
and all other controllers will be obtained by symmetry.

5 An example: H, optimal control of an array
of microcantilevers

In this section we will apply the theory we devel-
opped in the previous sections to an array of microcan-
tilevers that are used in Atomic Force Microscopy and
nano-scale manufacturing. A multicantilever structure



consists of an array of microcantilevers that are con-
nected to each other through a common base, and are
individually actuated. The sensors are also integrated
on each microcantilever. Hence, the physical and, con-
sequently, the mathematical structure of the multican-
tilever model allows us to embed it in the class of spa-
tially invariant systems. The following parameterized
model is from {4]

i(t,o) = [ a?ﬂ) (1) ]z(t,G) + [ g ]u(t,a)
y = [1 0]=9),

where a(f) = a_1e% + ap + a1677° models the inter-
action of a cantilever with the sample and with the
two closest cantilevers. The problem we want to solve
is the minimization of the H3P-norm of the distur-
bance/output transfer function, Ty4. The problem can
: . . _2kikas+k3+k3a(o

be stated as in (4), with h = ~Hpahianal) and
u= —;mﬁ?ﬁk—l‘ k; are the elements of the static
feedback and observer, which are used to obtain a co-
prime factorization [3]. In the hypothesis 22 > 1, u
has no imaginary zeros for any 8 € [0, 2x]. Therefore
the M2 optimal problem has a solution. It turns out
that the controller is described by the following trans-
fer function

o(s,8) = ngs® + nas* +n3s® +nys? +nys+ng

! st + d3s8 + dps? + dy !
and the closed loop transfer function is
_ nys® +nyst +n3s® s’ sty

(8 + /a(8))2(s% + ko5 — a(f) + k)2
The coefficients n; and d; are either rational or irrational
functions of a(6) (see [3]).

The improperness of C is due to the plant being
strictly proper. By lowpass-filtering ¢, we can get a
sequence of proper controllers, that achieve the infimum
of the norm.

yd
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