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1 Introduction

In the behavioral approach, a dynamical system is essen-
tially described through the set of its admissible trajecto-
ries, without making any apriori distinction between in-
put and output variables and without setting any causal-
ity relation between them.

This distinction, which is the characteristic feature of
inpyt/output (I/O) models, can be performed a poste-
riori, introducing the concept of free variables, that are
called in this way because their value can be arbitrarily
assigned. As a consequence we have that, at least for the
class of auto-regressive (AR) systems, we can extract an
/O description [3], starting from a behavioral model.

The first question that naturally srises when dealing
with I/O descriptions is how to define causality. In case
of discrete 2D systems, that is the one we are interested
in, the matter is complex, since the plane Z2 lacks of a
natural total ordering. As a consequence, the choice of
the causality cone C is not as straightforward es in 1D
case. In the classical I/O approach {2], the only admissi-
ble causality cone is ¢ = N?, so that causality is synony-
mous of quarter plane ca.usahty In this paper we consider
an extension to this notion of causality, by assuming that
C is an arbitrary cone in Z2.

The characterization of causality of 2D systems is
based on the concept of 2D proper rational matrix. This
concept has been introduced and analyzed for a partic-
ular class of cones in {4, 1]. The characterization of 2D
proper rational matrices allowed to obtain some interest-

ing existence results regarding causal I/O representations-

of 2D behavioral systems. The aim of this paper is to in-
vestigate the causal /O representation of 2D behavioral
systems in another direction. More precisely, starting
from the kernel representation of a 2D behavioral system,
we want to obtain an efficient method for determining all
the causal relations between the variables of the system,
given in terms of the set of all causality cones. This result
provides a full characterization of the causality structure
of the behavioral system. This problem is solved by ex-

tending the concept of of 2D proper rational matrix to
general cones and by finding a suitable characterization
of this class of rational matrices.

2 Cones and 2D proper rational matrices

In this section we will extend the notions of proper ratio-
nal function and matrix to the 2D case. Some results in
this direction can be found also in [4].

Before giving the definition of properness in the 2D case
we need to introduce the notion of cone and of regular
cone in Z2.

Definition A cone C is a subset of Z2 such that there
exists a pair of elements (d;,d;) € Z2 satisfying

C=Z"n{od+fd; €R? : a,8€R, 0,420},
and such that the matrix D € szz, whose columns co-
incide with d; and ds, is nonsingular det(D) # 0. A cone
C is said to be regular if there exists a pair of elements
(d1,dz) € Z? such that

C = {ad, + fdy : o, f € N}

and such that det(D) = +1, where D is the matrix de-
fined from dy, dy as above.

It can be shown that a regular cone C is always isomor-
phic to NZ. Moreover, given a cone C, it is easy to prove
that, up to a change of coordinates, there is no loss of
generality in assuming it to be specified as

C={(i,5) eN? : j <mi}, (L
where m is a suitable positive rational number.

Given a Laurent polynomial in two indeterminates

E P75

(i.))es

(21, 29) =

where S is a finite subset of Z2, by supp(p) we mean
the set of points (i,;) € Z2 corresponding to nonzero
coefficients of p(zy, 23)

={(,5) ez :

supp(p) pi; # 0}
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Let C be a cone. With the symbol R[z;, 23, 27 !, 27 we
mean the ring of polynomials whose support is contained
in C. Similar definitions can be immediately extended
to polynomial matrices and power series. More precisely,
with the symbol R[z1, z3, 21}, z; *]jc we mean the ring of
formal power series

8(z1,22) = Z 8328, 4.
(hy)ec

Notice that Rz, 22, zl'l, 27 Yc is always a ring, but, un-
less C is regular, this ring lacks of many of the properties
usually possessed by polynomial rings (it can be seen for

instance that it is not in general a unique factorization’

domain).

For sake of simplicity, from now on we will denote by z
the pair (21, 22). Consequently we will use the following
shorthand notations

]R[zvz—I]C = R[zlyz%zl—lvzﬂ_l]c (2)
Rliz,z7"le = Rllz1,22,27%, 23 e ®
R(z) := R(z1,2) 4)

where the latter denotes the field of rational functions in
two indeterminates. )

If we think of a polynomial matrix A(z;,7z) €
R[z,z"1JP*™ as a polyrdomial with matrix coefficients,
we can write it as

A(21,22)= Z A,'jz{z;,

(.j)es

®

where A;; € RP*™ and S is a finite subset of Z2. By
degree-zero coefficient of A(z1,22) we mean the matrix
Apo-

Definition A 2D rational function & € R(z) is said
to be proper with respect to a cone C if there exist
P.q € Rlz,27Yc such'that & = ¢/p and the zero-degree
coefficient of p is nonzero.

We give now a theorem providing several -equivalent
characterizations of 2D proper rational functions. Ob-
serve that the theorem that follows hes already been
proved for regular cones in {4, Lemma 3].

Theorem 1 Let h € R(z) and let C be any cone in Z*.
The following facts are equivalent.

-

1. h is proper with respect to C.

2. There exists a unique formal power series'y €
Rflz,z ¢ such that for all p,q € Riz,z"Yc such
that h = q/p we have that

py=gq.

3. Letp,q € R[z,z7Y] be coprime polynomials such that
h = q/p. Then there exists ny,ny € Z such that

(0) 5= 25, §i= 2% € Rlz,z~c;

() The zero-degree coefficient of p is nonzero.

Notice that for general cones condition 3 provides the
only way to check algorithmically the properness of a 2D
rational function. We consider now the matrix case.

Definition A 2D rational matrix H € B(z)P*™ is said
to be proper with respect to a cone C if its entries are 2D
rational functions that are proper with respect to C.

We give also in this case a theorem providing several
equivalent characterizations of a 2D proper rational ma-
trix.

Theorem 2 Let H € R(z)?*™. The following facts are
equivalent.

1. H is proper with respect to a cone C.

2. There ezist P € Rlz,2z7 1|2 and Q € B[z, 275" ™
such that H = P71Q and such that the degree-zero
coefficient of P is an invertible square matriz.

3. There exists a unique formal power series ¥ ¢

Rf[z, 27 Y|E*™ such that for all P € Rlz.271[2*” and

 Q €R[z,z7 2™ such that H = P~1Q we have that
PY =Q.

The definition of 2D properness, by translating matrix
properness into scalar properness, provides in this case
the only way to verify algorithmically whether a rational
matrix is proper or not. An efficient algorithmic check
can be done as follows:

Algorithm: Given a rational matrix H € R(z)?*™.

1. Represent it as H = [gi;/py], where g;;.p;; €

Rfz,z™!] are coprime.

. Let p be the least common multiple of p;; and g;; :=
%i5p/pi; so that H = [§;;/p].

. We have that H is proper w.r. to a cone C if and
only if there exists ny,ny € Z such that

8) pi=iop, Gy = 2270 € Bz s e,

b) The zero-degree coefficient of  is nonzero.

3 2D systems in the behavioral approach

In the behavioral approach a dynamical system is defined
by a triple = (T, W, B), where T is the time domain, W
is the signal alphabet and B ¢ W7, the behavior, is the
set of admissible trajectories. For 2D systems we assume
that T = Z? and W = R?. We refer the interested reader
to (3] for a more complete introduction to 2D behavioral
systems theory.

An important subclass of 2D systems is constituted by
the so-called auto-regressive (AR) 2D systems. They are
2D systems whose behavior is given by the set of solutions
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we (RYZ” (setof all g-dimensional signals defined on Z2)
of a linear difference equation of the following kind

> Ryw(h+ik+5) =0,

(i.5)es

Y(h,k) € Z®  (6)

where R;; € R'*? and S is a finite subset of Z2.

that any polynomial matrix

R= 3" Ryziz € Rlz,z~xe

(i.j)es

Notice

naturally induces a polynomial linear operator
Rona) : @)% — ®)Z,

in the following way

(Rlon,02)w)(hy k) = D Riyw(h+i, k+3), Y(h,k) € Z2.

In this way we have that the behavior B determined by
the difference equation (6) coincides with ker R0y, 04)
and that the behavior of an AR system can always be
represented as the kernel of a polynomial linear operator
which is called kernel representation.

e

4 Passing from kernel to input/output
representations

Given a behavioral model of a dynamical system, we
could wonder whether an input /output representation of
the same system can be obtained or not. The answer
to this question implies to settle a cause-effect relation
between the components of the signal. It can be proved
(see {3]) that if

rank R(z1,2;) = p,

then it is possible to split the components of w in m :=
9~ p inputs (free variables) and p outputs (non-free vari-
ables). More precisely, if S is any permutation matrix
such that
RS =[P|~q],

where P & Rfz,z7'['*?, Q € Rz, z71)ixap) apng
rank P = p, then we say that the pair of matrices (P, Q)
provides an input-output representation of the system be-
cause they satisfy the properties of the following defini-
tion. )

Definition [3, 4] Given a 2D AR system
(Z*,R9, ker R(q, 02)), the difference equation

)

where p+m = ¢, P € R[z,z7!]'*7, Q ¢ R[z,z1**™ and
where y € (R*)Z” and 4 € (R™% is an input/output
representation (I/O representation) of X if

P(o1,02)y = Q(o1, 03)4,

, where §

1. B'= {S [jﬂ ¢ Ploy, o)y = Q(amf-z)“}

is a suitable ¢ X ¢ permutation matrix;

2. uis free, ie. for all u € (BR™Z there exists y e
(RP)Z such that (7) holds;

3. no other component in y is free.

Observe that, starting from an AR behavioral model,
it is possible to extract finitely many different I/0 de-
scriptions. They are obtained by choosing different per-
mutation matrices S, with the only rank condition to be
satisfied.

The concept of causality is strictly related with I/0
Tepresentations. In the 2D case its definition is more
involved than for 1D systems, since there are different
possible ways to order the time domain T = Z2. As a
consequence, there is more freedom in the choice of the
causality cone. Given a cone C, by the symbol (IP:"')-CZ)
we mean the set of all m-dimensional signals defined on
Z? and supported in C.

Definition The I/O representation (7) is said to be
causal with respect to the cone C if for any u € (IF!'")%.2
there exists y € (R”)Z” such that (7) holds.

Notice that the definition above suggests that the in-
fluence of u on y is causal with respect to C. In can
be shown moreover [4, Lemma 1] that y in the previous
definition is uniquely determined from u.

5 Characterization of causal I/O repre-
sentations

In [4], a characterization of causal I/O representations
with respect to regular cones has been given. Our aim
bere is to extend and generalize those results to gen-
eral cones. Some of these results can be generalized in
a straightforward way. This is the case for Proposition 3
[4], which will be used in the next. This proposition,
stated for regular cones, guarantees that the causality of
an I/O representation

Ploy,02)y = Q(oy1,09), (8)

depends only on a coprime representation of the poly- ’
nomial matrices specifying the system. So, if P &
R[z,271P*? and Q € R[z,z~1P*™ are coprime polyno-
mial matrices such that

P=FP, Q=Fg,

with F a full column rank polynomial matrix of suitable
dimensions, then (8) is causal with respect to a regular
cone C, if and only if

P(al,az)y = Q(Uly o2)u

is causal with respect to it. Itis easy to see that the proof
still holds if we consider general cones.
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Let (P, Q) be an I/O representation of a 2D AR system
which is causal w.r. to a cone C. Define the inputs 69,
1=1,...,m, as

80)(t) = {

where ¢; is th(ﬂe i~th vector of the canonical base in R™.
If ) € (RP )(Z; is the corresponding output, namely

t=(0,0)
otherwise

€
0

P(D’]_, UZ)y(i) = Q(U)_,Ug)(s(i), (9)

we define the impulse response of the 2D system to be
the matrix valued sequence

Y=, ..y e @ <™.

It is worth pointing out that, as shown in [4], the
causality of an I/O representation is equivalent to the
existence of the impulse response, since the impulse re-
sponse determines the way in which the system maps
input signals supported in C into output y by the convo-
lution

y(hk):= D Y(h—ik~juli,j).
G.N)eZ?

Notice that, since u and Y are both supported in C, the.
sum is always finite and moreover also the support of y
is included in C.

Now we are in a position to state the following theorem
which allows us to characterize the causality structure of
a 2D AR system.

Theorem 3 Let
P(oy,02)y = Q{o1,02)u (10)

with P € Rlz,27''*P .and Q € R[z,2~1]"*™, be an I/0
representation of a 2D AR system. Then (10) is causal
w.r. to a cone C if and only if the rational matriz H €
R(z)?*™ such that Q = PH is proper w.r. to the cone

6 Minimal causality cones

Consider an I/O representation (P, Q). Theorem 3 allows
us to determine the set of all cones C such that (P, Q) is
causal w.r. to C. These cones are called causality cones
for the I/O representation. Notice that, if C is a causality
cone and C' 2 C, then also C’ is a causality cone. There-
fore the set of causality cones is completely determined
by its finite subset M(P, Q) constituted by the minimal
causality cones. )

In practice the construction of this set reduces to a sim-
ple procedure based on the previous theorem. Let H &
R(z)P*™ be the rational matrix such that Q = HP and
represent it as H = [gi;/pi;], where qy,pi; € R[z,z7!]
are coprime. Let p be the least common multiple of Dij

and g;; = gi;p/p;; so that H = [§;;/p]. As suggested in
the algorithmic check of properness proposed above, H is
proper w.r. to a cone C if and only if there exist ny.ny € 7
such that § := 2" 237p, §i; := 27 23°G;; € R[z. 2" ¢ and
the zero-degree coefficient of p is nonzero. For this reason
the finite set of minimal causality cones can be obtained
from the polynomials p and §;; in the following way:

1. Determine the convex hull of supp (p) and from this
the finite set V = {v1,...,vx} of the vertices of this
convex hull.

2. For each v; € V' consider the following set of cones

C(vi) = {C : v ~C 2 supp (p) U| Jsupp (i;)}-

i

3. It is clear that, when the set C(v;) is nonempty. it
contains a cone C; that is smaller than every other
cone in C(v;). Then by Theorem 3 the set M(P.Q)
of the minimal causality cones for the I/O represen-
tation (P, Q) coincides with the set of all the cones

i

It may happen that, for a given I/O representation
(P, Q), the set M(P, Q) is empty. However there exists a
certain freedom in constructing I/O representation from
a kernel representation, which corresponds to the freedom
that there exists in the choice of p linearly independent
columns in a rank p polynomial matrix R € R[z,z~1){*q
providing the kernel representation of the AR system.
The family of the sets M(P, Q), when (P, Q) varies in the
set of all possible I/O representations of the AR system,
provides a complete description of its causality structure.
It is important to notice that, as a direct consequence of -
[4, Theorem 2|, we have that there always exists a I/O
tepresentation (P, Q) such that M(P, Q) is nonempty.
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