Synchronization and Multistability in Oscillator Networks and Power Grids

Saber Jafarpour

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara

February 26, 2019

Acknowledgment

Francesco Bullo UCSB

Elizabeth Huang UCSB

Kevin Smith UCSB

February 26, 2019 2 / 22

Introduction: Coupled oscillators Network

Pendulum clocks: "an odd kind of sympathy" [Christiaan Huygens, Horologium Oscillatorium, 1673]

Models for coupled oscillators: [Arthur T. Winfree, 1967 and Yoshiki Kuramoto 1975]

Introduction: Coupled oscillators Network

Pendulum clocks: "an odd kind of sympathy" [Christiaan Huygens, Horologium Oscillatorium, 1673]

Models for coupled oscillators: [Arthur T. Winfree, 1967 and Yoshiki Kuramoto 1975]

Kuramoto model

- **0 n-oscillators** with phases θ_i ,
- 2 with natural frequencies $\omega_i \in \mathbb{R}$,
- **6** coupling with strength $a_{ij} = a_{ji}$.

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j).$$

● generators ■ and inverters and loads ●

- generators and inverters and loads •
- **2** physics:
 - Kirchhoff and Ohm laws
 - **2** quasi-sync: voltage and phase V_i , θ_i active power p_i

generators and inverters and loads •

- **2** physics:
 - Kirchhoff and Ohm laws
 - **2** quasi-sync: voltage and phase V_i , θ_i active power p_i

- **1** lossless and inductive lines with admittances Y_{ij}
- Ø decoupling of phase and voltage dynamics

New England IEEE 39-bus

Structure-Preserving Model [A. Bergen & D. Hill, 1981]:

Active power dynamics

Generators:	$M_i\ddot{ heta}_i + D_i\dot{ heta}_i =$	$p_i - \sum_j a_{ij} \sin(heta_i - heta_j)$
Inverters:	$\Lambda_i \dot{ heta}_i =$	$p_i - \sum_j a_{ij} \sin(heta_i - heta_j)$
Loads:	$ au_i \dot{ heta}_i \;=\;$	$p_i - \sum_j a_{ij} \sin(heta_i - heta_j)$

where

Active power capacity of line (i, j): $a_{ij} = |Y_{ij}|V_iV_j|$

Structure-Preserving Model [A. Bergen & D. Hill, 1981]:

Active power dynamics

Generators:	$M_i\ddot{ heta}_i + D_i\dot{ heta}_i =$	$p_i - \sum_j a_{ij} \sin(heta_i - heta_j)$
Inverters:	$\Lambda_i \dot{ heta}_i =$	$p_i - \sum_j a_{ij} \sin(heta_i - heta_j)$
Loads:	$ au_i \dot{ heta}_i =$	$p_i - \sum_j a_{ij} \sin(heta_i - heta_j)$

where

Active power capacity of line
$$(i, j)$$
: $a_{ij} = |Y_{ij}|V_iV_j|$

Frequency synchronization = Operating point = Equilibriums

$$p_i = \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

 $\label{eq:Frequency} Frequency \ synchronization = Operating \ point = Equilibriums$

$$p_i = \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

Key questions

Given the network and the power profile:

- **Q1**: does there exist a **stable equilibrium point**?
- Q2: is this stable equilibrium point unique?
- Q3: how to measure the robustness of the synchronization?

Transition to incoherency

Q1: Existence of a sync state:

$$\dot{\theta}_i = p_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

Transition to incoherency

Q1: Existence of a sync state:

$$\dot{\theta}_i = p_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

- sync threshold : "power transmission" vs. "coupling"
- quantify: "power transmission" < "coupling"
- as a function of network parameters

SJ (UCSB)

Coupled Oscillators Networks

Weighted undirected graph with *n* nodes and *m* edges: **Incidence matrix**: $n \times m$ matrix *B* s.t. $(B^{\top}p)_{(ij)} = p_i - p_j$ **Edge weight matrix**: $m \times m$ diagonal matrix \mathcal{A} **Laplacian matrix**: $L = B\mathcal{A}B^{\top}$

Equilibrium point:
$$p = BA \sin(B^{\top}\theta)$$

Algebraic connectivity: $\lambda_2(L) =$ second smallest eig of L

Cycle space: Ker(B) = span of all the cycle vectors

Known results

Given a network and *p*, does there exist angles?

 $p = B\mathcal{A}\sin(B^{\top}\theta)$

synchronization arises if

power transmission < coupling strength

Known results

Given a network and *p*, does there exist angles?

 $p = B\mathcal{A}\sin(B^{\top}\theta)$

synchronization arises if

```
power transmission < coupling strength
```

Equilibrium angles (neighbors within $\pi/2$ arc) exist if $\|B^{\top}p\|_2 < \lambda_2(L)$ for all graphs (Old 2-norm T) (Old ∞ -norm T)

Known results

Given a network and *p*, does there exist angles?

 $p = B\mathcal{A}\sin(B^{\top}\theta)$

synchronization arises if

power transmission < coupling strength

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

$$\begin{split} \|B^\top p\|_2 &< \lambda_2(L) \quad \text{for all graphs} & (\text{Old } 2\text{-norm T}) \\ \|B^\top L^\dagger p\|_\infty &< 1 \quad \text{for trees, complete} & (\text{Old } \infty\text{-norm T}) \end{split}$$

Novel: algebraic potential theory

Novel: algebraic potential theory

Novel: algebraic potential theory

- if G acyclic, then $\mathcal{P} = I_m$
- 2) if G unweighted, then \mathcal{P} is an orthogonal projection

③ if $R_{\text{eff}} \in \mathbb{R}^{n \times n}$ are effective resistances, then $\mathcal{P} = -\frac{1}{2}B^{\top}R_{\text{eff}}B\mathcal{A}$

SJ (UCSB)

Rewriting the equilibrium equation

Find sufficient conditions on B, A, p s.t. there exists a solution θ to:

 $p = B\mathcal{A}\sin(B^{\top}\theta)$

Rewriting the equilibrium equation

Find sufficient conditions on B, A, p s.t. there exists a solution θ to:

 $p = B\mathcal{A}\sin(B^{\top}\theta)$

Key idea: Node vs. Edge	
$p = B\mathcal{A}\sin(B^ op heta)$	Node balance eq. \mathbb{R}^n
\$	
$B^ op L^\dagger p = \mathcal{P} \sin(B^ op heta)$	Edge balance eq. \mathbb{R}^m

Rewriting the equilibrium equation

Find sufficient conditions on B, A, p s.t. there exists a solution θ to:

 $p = B\mathcal{A}\sin(B^{\top}\theta)$

Key idea: Node vs. Edge	
$p = B\mathcal{A}\sin(B^ op heta)$	Node balance eq. \mathbb{R}^n
\uparrow	
$B^ op L^\dagger p = \mathcal{P} \sin(B^ op heta)$	Edge balance eq. \mathbb{R}^m

• Edge variables: $x = B^{\top}\theta$ and $z = B^{\top}L^{\dagger}p$

Find sufficient conditions on $z \in Im(B^{\top})$ s.t. there exists solution x to:

$$z = \mathcal{P}\sin(x) = \mathcal{P}[\operatorname{sinc}(x)]x$$

Brouwer's Fixed-Point: A unifying theorem

2 look for $x \in \mathcal{B}_p(\gamma) = \{x \mid ||x||_p \le \gamma\}$ solving

 $\mathcal{P}[\operatorname{sinc}(x)]x = z \quad \iff \quad x = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z =: h(x)$

Brouwer's Fixed-Point: A unifying theorem

2 look for
$$x \in \mathcal{B}_p(\gamma) = \{x \mid ||x||_p \le \gamma\}$$
 solving

 $\mathcal{P}[\operatorname{sinc}(x)]x = z \quad \iff \quad x = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z =: h(x)$

③ define min amplification factor of $\mathcal{P}[\operatorname{sinc}(x)] : \operatorname{Im}(B^{\top}) \to \operatorname{Im}(B^{\top})$ $\alpha_{\rho}(\gamma) := \min_{\|x\|_{\rho} \leq \gamma} \min_{\|y\|_{\rho} = 1} \|\mathcal{P}[\operatorname{sinc}(x)]y\|_{\rho}$

Brouwer's Fixed-Point: A unifying theorem

2 look for
$$x \in \mathcal{B}_p(\gamma) = \{x \mid ||x||_p \le \gamma\}$$
 solving

 $\mathcal{P}[\operatorname{sinc}(x)]x = z \quad \iff \quad x = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z =: h(x)$

③ define min amplification factor of $\mathcal{P}[\operatorname{sinc}(x)] : \operatorname{Im}(B^{\top}) \to \operatorname{Im}(B^{\top})$ $\alpha_{\rho}(\gamma) := \min_{\|x\|_{\rho} \leq \gamma} \min_{\|y\|_{\rho} = 1} \|\mathcal{P}[\operatorname{sinc}(x)]y\|_{\rho}$

 $\|z\|_p \leq \gamma \alpha_p(\gamma) \implies h \text{ satisfies Brouwer on } \mathcal{B}_p(\gamma)$

 $\|B^{\top}L^{\dagger}p\|_{p} \leq \gamma \alpha_{p}(\gamma) \quad \text{for all graphs} \qquad (\text{New } p\text{-norm } \mathsf{T})$

 $\alpha_p(\gamma) := \min \text{ amplification factor of } \mathcal{P}[\operatorname{sinc}(x)]$

 $\|B^{\top}L^{\dagger}p\|_{p} \leq \gamma \alpha_{p}(\gamma) \quad \text{for all graphs} \qquad (\text{New } p\text{-norm } \mathsf{T})$ $\alpha_{p}(\gamma) := \text{min amplification factor of } \mathcal{P}[\text{sinc}(x)]$

• Caveat: $\alpha_p(\gamma)$ requires solving a non-convex optimization problem!

 $\|B^{\top}L^{\dagger}p\|_{p} \leq \gamma \alpha_{p}(\gamma) \quad \text{for all graphs} \qquad (\text{New } p\text{-norm } \mathsf{T})$ $\alpha_{p}(\gamma) := \text{min amplification factor of } \mathcal{P}[\text{sinc}(x)]$

Caveat: α_p(γ) requires solving a non-convex optimization problem!
Algebraic manipulation ⇒ lower bound α_p(γ).

 $\|B^{\top}L^{\dagger}p\|_{p} \leq \gamma \alpha_{p}(\gamma) \quad \text{for all graphs} \qquad (\text{New } p\text{-norm } \mathsf{T})$ $\alpha_{p}(\gamma) := \text{min amplification factor of } \mathcal{P}[\text{sinc}(x)]$

Caveat: α_p(γ) requires solving a non-convex optimization problem!
Algebraic manipulation ⇒ lower bound α_p(γ).

 $\|B^{\top}L^{\dagger}p\|_{p} \leq \gamma \alpha_{p}(\gamma) \quad \text{for all graphs} \qquad (\text{New } p\text{-norm } \mathsf{T})$ $\alpha_{p}(\gamma) := \text{min amplification factor of } \mathcal{P}[\text{sinc}(x)]$

Caveat: α_p(γ) requires solving a non-convex optimization problem!
Algebraic manipulation ⇒ lower bound α_p(γ).

For $p = \infty$, the new test for all graphs $\|B^{\top}L^{\dagger}p\|_{\infty} \le g(\|\mathcal{P}\|_{\infty})$ (New ∞ -norm T)

Function g is strictly decreasing

$$g(x) = \frac{y(x) + \sin(y(x))}{2} - x \frac{y(x) - \sin(y(x))}{2} \Big|_{y(x) = \arccos(\frac{x-1}{x+1})}$$

 $K_{\rm C}$ = critical coupling of Kuramoto model, computed via MATLAB *fsolve* $K_{\rm T}$ = smallest value of scaling factor for which test *T* fails

	Critical ratio $K_{\rm T}/K_{\rm C}$				
Test Case	Old 2-norm T	New ∞ -norm T	$Old \propto -norm T$	New ∞ -norm T	
		$g(\ \mathcal{P}\ _{\infty})$	Approx.test	$\alpha_{\infty}(\pi/2)$	
IEEE 9	16.54 %	73.74 %	92.13 %	85.06 % [†]	
IEEE RTS 24	3.86 %	53.44 %	89.48 %	89.48 % [†]	
New England 39-bus	2.97 %	67.57 %	100 %	$100~\%^\dagger$	
IEEE 118	0.29 %	43.70 %	85.95 %	*	
IEEE 300	0.20 %	40.33 %	99.80 %	*	
Polish 2383	0.11 %	29.08 %	82.85 %	*	

[†] *fmincon* has been run for 100 randomized initial phase angles.

fmincon does not converge.

Mutlistable equilibrium points

Q2: Is the equilibrium point unique?

$$\dot{ heta}_i = p_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

Mutlistable equilibrium points

Q2: Is the equilibrium point unique?

$$\dot{ heta}_i = p_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

• multistable sync : "cycle structure" and "state space"

quantify: "cycle structure" vs "multistable sync"

SJ (UCSB)

Coupled Oscillators Networks

16 / 22

Algebraic graph theory on *n*-torus

Key question

How to localize stable equilibrium points?

Winding number

Algebraic graph theory on *n*-torus

Key question

How to localize stable equilibrium points?

Winding number

2

 θ_{2}

Winding partition of the *n*-torus

Winding vector

Given a graph G with a cycle basis $\Sigma = \{\sigma_1, \dots, \sigma_{m-n+1}\}$ and $\theta \in \mathbb{T}^n$.

Winding vector:
$$\mathbf{w}_{\Sigma}(heta) = [w_{\sigma_1}(heta), \dots, w_{\sigma_{m-n+1}}(heta)]^{ op} \in \mathbb{Z}^{m-n+1}$$

Winding partition of the *n*-torus

Winding vector

V

Given a graph G with a cycle basis $\Sigma = \{\sigma_1, \dots, \sigma_{m-n+1}\}$ and $\theta \in \mathbb{T}^n$.

Vinding vector:
$$\mathbf{w}_{\mathbf{\Sigma}}(heta) = [w_{\sigma_1}(heta), \dots, w_{\sigma_{m-n+1}}(heta)]^{ op} \in \mathbb{Z}^{m-n+1}$$

Winding cells: equivalence classes

Given a graph G with a cycle basis Σ . For every $\mathbf{u} \in \mathbb{Z}^{m-n+1}$

(Winding cell \mathbf{u}) = all $\theta \in \mathbb{T}^n$ s.t. $\mathbf{w}_{\Sigma}(\theta) = \mathbf{u}$.

$$\mathbf{u} = -1$$
 $\mathbf{u} = 0$ $\mathbf{u} = +1$
SJ (UCSB) Coupled Oscillators Networks February 26, 2019 18 / 22

At-most uniqueness in winding cells

Winding partition of *n*-torus

$$\mathbb{T}^n = \bigcup_{\mathbf{u} \in \mathbb{Z}^{m-n+1}} (\text{Winding cell } \mathbf{u})$$

$$p_i = \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

u = -1 u = 0 u = +1

At-most uniqueness in winding cells

Winding partition of *n*-torus

$$\mathbb{T}^n = \bigcup_{\mathbf{u} \in \mathbb{Z}^{m-n+1}} (\text{Winding cell } \mathbf{u})$$

$$p_i = \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

 $\mathbf{u} = -1$

At-most uniqueness

There is either **zero** or **one** stable equilibrium point (neighbors within $\pi/2$ arc) in each winding cell.

Existence/Computation

Key question

How to check if we have a stable equilibrium point inside a winding cell?

Key question

How to check if we have a stable equilibrium point inside a winding cell?

Nodal Balance

$$egin{cases} p = B\mathcal{A}\sin(B^{ op} heta), \ neighbors within \ \gamma \ arc \end{cases}$$

Edge Balance

$$\begin{cases} B^{\top} L^{\dagger} p = \mathcal{P}_{\mathrm{cut}} \eta, & \|\eta\|_{\infty} \leq \sin(\gamma), \\ \mathcal{P}_{\mathrm{cyc}}(\operatorname{arcsin}(\eta) - 2\pi C_{\Sigma}^{\dagger} \mathbf{u}) = \mathbb{O}_{m}. \end{cases}$$

- $\bullet \ \mathcal{P}_{cut}$ is the projection onto the cutset space
- $\bullet \ \mathcal{P}_{\mathrm{cyc}}$ is the projection onto the cycle space
- Separates the cycle flows and cutset flows
- Highlights the role of the winding vector

Iterations for edge balance equations

$$\eta^{(k+1)} = B^{\top} L^{\dagger} p + \mathcal{P}_{cyc} \Big(\eta^{(k)} - \cos(\gamma) \big(a \sin_{\gamma}(\eta^{(k)}) - 2\pi C_{\Sigma}^{\dagger} \mathbf{u} \big) \Big).$$

- Start from any $\eta^{(0)} \in \mathbb{R}^m$
- The sequence is **contractive** and always converges (to a vector η^*)
- If $\|\eta^*\|_{\infty} > \sin(\gamma)$: no stable equilibrium point in winding cell u.
- If $\|\eta^*\|_{\infty} \leq \sin(\gamma)$: one stable equilibrium point in winding cell u;

$$\theta^* = L^{\dagger} B \mathcal{A}(asin(\eta^*) - 2\pi C_{\Sigma}^{\dagger} \mathbf{u})$$

Summary and future work

Contributions

- geometry of cutset projection operator
- family of sufficient sync conditions
- partiton of *n*-torus based on winding vector
- localize the equilibrium points using winding cells

Contributions

- geometry of cutset projection operator
- family of sufficient sync conditions
- partiton of *n*-torus based on winding vector
- localize the equilibrium points using winding cells

Future research

- close the gap between sufficient and necessary conditions
- region of attraction of stable equilibrium points
- generalizations to other oscillator models.