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Motivation: Large-scale Nonlinear Networks

Power grids Brain neural network Transportation network

Nonlinearity:

; o @ “... As [power] systems become more heavily loaded,

@ Multiple equilibria nonlinearities pl. . ingly i :

play an increasingly important role in power
@ Transient stability system behavior ... " [l. Hiskens,1995]
@ Cluster synchronization o . . .
@ “... in Oahu, Hawaii, at least 800,000 micro-inverters

Large-scale: interconnect photovoltaic panels to the grid... " [|IEEE

@ Stochastic Spectrum, 2015]

@ Distributed
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Presentation outline

@ non-Euclidean contraction theory

@ one-sided Lipschitz constant
@ characterization of contraction wrt non-Euclidean norms
@ contraction-based small gain theorem

o weakly-contracting systems

o definition and examples
@ dichotomy in asymptotic behavior
o example: distributed primal-dual

@ semi-contracting systems

o definition and examples
@ convergence to invariant subspaces

o example: diffusively-coupled oscillators
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Contraction theory: a brief review

Definition

Definition: Contracting systems

x = f(t,x) is contracting wrt to || - || with rate ¢ > 0:

Ix(2) = (D)l < e=[1x(0) = y(0)]|-

Contracting system: flow is a contracting map.

o y()
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Contraction theory: a brief review
Historical notes

@ B. P. Demidovich. Dissipativity of a nonlinear system of differential equations.
Uspekhi Matematicheskikh Nauk, 16(3(99)):216, 1961

@ Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis
for non-linear systems.
Automatica, 34(6):683-696, 1998

@ Differential framework: F. Forni and R. Sepulchre. A differential Lyapunov framework for
contraction analysis.
IEEE Trans. Autom. Control, 59(3):614-628, 2014

@ Non-Euclidean contraction: S. Coogan. A contractive approach to separable Lyapunov
functions for monotone systems.
Automatica, 106:349-357, 2019

@ Review: M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and
synchronization of complex networks via contraction theory.
In Complex Systems and Networks: Dynamics, Controls and Applications, pages 313—-3309.
Springer, 2016

@ Review: Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A
brief introduction and some open problems.
In Proc CDC, pages 3835-3847, Dec. 2014
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Contraction theory: a brief review
Properties of contracting systems

Highly ordered asymptotic and transient behaviors:

@ initial conditions are forgotten

@ no overshoot in distance between trajectories

@ time-invariant f: unique globally stable equilibrium
@ periodic f: unique globally stable periodic solution
o

robustness properties: input-to-state stability even in the presence of
unmodeled dynamics.
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Contraction theory: a brief review
Role of non-Euclidean norms
Why non-Euclidean norms?

@ systematic and efficient stability analysis:
e conservation law: 1lx=c
e geometric symmetry: f(x+1,) = f(x)
@ /{>-norm gives conservative estimates:
e contraction: lack of symmetry in dynamics: 5%2 #* Z—Z

e nonlinearity: frequency instability in power grids, cluster synchronization in
Brain neural networks

@ error analysis for large-scale networks:

xENO, o) = E(|x[13) = no?,
E(|x]12) ~ 2In(n)o?
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Characterization of contracting systems
Contraction tests

Fundamental Question

How to check if a system is contracting?

@ wrt £>-norm

@ Differential condition: Linear matrix inequality
@ Integral condition: one-sided Lipschitz constant

@ wrt non-Euclidean norms

@ Differential condition: matrix measure

o Differential conditions computationally intensive

o Differential conditions challenging for switching systems
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One-sided Lipschitz constant: scalar vector fields

Let x = f(x), where f : R —» R:

Lipschitz constant £ € R

f(x) = f) <llx—y] = —AL<f(x)</

One-sided Lipschitz constant b € R

(x=y)f(x) = f(y) < b(x—y)? = f(x)<b
(F(x) = f(y),x —y) < blx — y|?

o By the Growall-Bellman Lemma: |x(t) — y(t)| < eb|y(0) — x(0)|.

@ Numerical analysis: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary
Differential Equations I. Nonstiff Problems.

Springer, 1993
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Contraction for /> norm

For x € R" and differentiable f:
x = f(t, x)

For P=PT = 0, define ||x]|3 = x " Px
equivalent properties:

Q osL: (f(t,x) — f(t,y))TP(x —y) < —cllx — y||3, for all x,y, t
@ LMI: PDf(t,x) + Df(t,x)T P < —2cP for all x, t,

Q dIS: DT|x(t) — y(t)||p < —c||x(t) — y(t)]||p, for all soltns x(-), y(-)
Q IS: |Ix(t) — y(t)|lp < e~ <(t=10)||x(ty) — y(to)||p, for all soltns x(-), y(-)

If f not differentiable, then osL <= dIS <= IS

Question: How to extend osL and LMI to non-Euclidean norms? )
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Matrix measures
Definition and properties

The matrix measure of A € R"™" wrt to || - ||:

.|+ hA| =1
Q(A) = lim ———.
py (A) = lim, .
o Directional derivative of norm || - || in direction of A,

@ Logarithmic norm:T. Strém. On logarithmic norms.
SIAM Journal on Numerical Analysis, 12(5):741-753, 1975

e spectral property: —||All = R(\) < py.(A) < [|A]], for every X € spec(A)

X A
A € spec(A) a(A) = maxR(N)
—lAl —p(=4)  minR(A) X ; u(A) 1A
X logarithmic
inefficiency
X
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Weak semi-inner products
Definition and properties

A weak semi-inner product (WSIP) is [-,-] : R” x R” — R satisfying
Q [x1 +x2,y] < [x1,y] + [x2,y] and x — [x, y] is continuous,
Q [ax,y] = [x,ay] = a[x,y] for & >0 and [—x, —y] = [x, y].
Q [x,x] >0, for all x #0,
O 1< bl Iyl
Q (compatibility) [x, x] = ||x||* for all x

@ Extension of semi-inner product: G. Lumer. Semi-inner-product spaces.
Transactions of the American Mathematical Society, 100:29-43, 1961
@ Properties:

Matrix measure: w(A) = sup [Ax,x],
lIxlI=1

Norm derivative formula: Ix()|IDT||x(t)|| = [x(¢), x(¢)] -
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Norm WSIP Matrix measure

fiz,p1/2(A) = min{b € R | ATP + PA < 2bP}

:
[Ix[lp = VxT Px [[X’y]]Q,Pl/Q =x Py — max x' PAx
IIxllp=1
P e 2— —2\T A P=2\T A
I, = (32 1xl?) Iyl = WIE 2ol Tx  m(A) = max (xo|x” )T Ax
i
p €], 00]
mA)= _max (a+ i)
N , el :
=8 Doyl = Iylssign() x =
! = sup sign(x) Ax
lIx[l1=1
Hoo(A) = {nfax (a,, + Z | )
Il = max byl = max yix ietlom VT

i€l (y)
= max_max xj(Ax);
[Ixlco=1 i€ oo (x)

Table of norms, WSIPs, and matrix measures for weighted ¢», ¢, for p € (1,00), ¢1, and
Lo norms. Note: Io(x) ={i € {1,...,n} | |x| = |Ix]|..}-
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Contraction for arbitrary norm

For x € R" and differentiable f:
x = f(t,x)
For norm || - || with matrix measure p(-) and compatible WSIP [-, ],

equivalent properties:

@ osL: [f(t,x) — f(t,y),x —y] < —c|lx — y||* for all x,y, t >0,
Q@ MM: u(Df(t,x)) < —c, forall x,t >0,

Q dIS: DF|Ix(t) — y(t)[| < —clIx(t) — y(t)]], for soltns x(-), y(-),
Q IS: ||x(t) — y(t)|| < e=<t=0)||x(to) — y(to)]|, for all soltns x(-), y(*)
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Measure Demidovich One-sided Lipschitz

bound condition condition
p2,p(Df(x)) < —c  PDF(x) + Df(x)"P < —2¢P (x=n)TP(f(x) = () < —clix—yl7

mp(DF(x)) < —c  (volvI” )T Df(x)v < —c]lv||3 ((x=y)olx =y )T (F(x) = f()) < —cllx - ylI5
m(Df(x)) < —c  sign(v) " Df(x)v < —c|lvll; sign(x —y) " (f(x) = f(y)) < —clx =yl
Hoo(DF(x)) < —c l,gj(xv)Vi(Df(X)V),- < —clvIZ e (= yi)(fi(x) = fi(y) < —cllx = yl%

Table of equivalences between measure bounded Jacobians, differential Demidovich and
one-sided Lipschitz conditions. Note: Io(v) ={i € {1,...,n} | |vi| = |Iv|}-
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Contraction-based small-gain theorem
Setting

@ n interconnected systems x; = f;(x;, x_;) where x; € RV

@ Lyapunov functions V; : RNV — Rso:

A%
L Vi(xi) = Wﬁ'(xiax—i) < &i(Vi(xi), V-i(x=))

o Classical small-gain:

gi(v) = —ai(vi) + > vi(v)

JF#i

for class Ko functions a;, ;.

Comparison system

Study properties of

\-I:g(V)7 g:(g1,~--,gn)T

for v e RL,.
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Contraction-based small-gain theorem
Main result

o V(x) = (Vi(x1), -, Valxa)) "
o [.-], r is associated with [[R(:)||», for p € [1,00], R € R™" non-negative.

Theorem: Contraction-based small-gain

If there exists ¢ > 0 such that for all v>w > 0,

[g(v) — g(w),v —w], p < —cllv —wl2 g,

Then

V(e < e[V (x(0)]lp.R

For R = diag(n) where n € RZ,

e if p € [1,00), sum-separable Lyapunov function: >_"_; n? VP (x;)

1

@ if p = 0o, max-separable Lyapunov function: max;{n;V;(x;)}
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Contraction-based small-gain theorem
Proof of the main result

[x.¥l,r <[z:¥], g . for every x <z and y > 0.

IV () o DH IV (X(E) o8 = [[\'/(x(t)), V(x(t))]]p)R Norm derivative formula

[[ (V(x(1)), V(x()], - Key Lemma
—c|lV(x(t)lI3

bR osL

@ Unlike classical small-gain theorems we do not need g to be monotone.
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Presentation outline

@ non-Euclidean contraction theory

@ one-sided Lipschitz constant
@ characterization of contraction wrt non-Euclidean norms
@ contraction-based small gain theorem

o weakly-contracting systems

o definition and examples
@ dichotomy in asymptotic behavior
o example: distributed primal-dual

@ semi-contracting systems

o definition and examples
@ convergence to invariant subspaces

o example: diffusively-coupled oscillators
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Contraction theory for networks

Challenge: many real-world networks are not contracting.

Network flow system x = f(x) preserving commodity x:

constant = 1, x(t)
— 0=1,]x(t) =1, f(x(t))
= 0, =1, Df(x(t))

If additionally f has Metzler Jacobian, then u1(Df(x)) = 0.

SJ (UCSB) Non-Euclidean Contraction Theory May 3, 2021 21 /39



Weakly-contracting systems
Definition and examples

Definition: Weakly-contracting systems

x = f(t,x) with f continuously differentiable in x is weakly-contracting wrt || - ||:

- (DF(,x)) < 0

© 6060 ©O0

Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (¢1-norm)

Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill,
1981) (¢1-norm and £oo-norm)

Daganzo's cell transmission model for traffic networks (Daganzo, 1994), (¢1-norm)

compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al.,
1978). (¢1-norm)

saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958).
(¢2-norm)
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Weakly-contracting systems

Part I: Dichotomy in asymptotic behavior

Theorem: Dichotomy for weakly-contracting systems

For a weakly-contracting system x = f(x), either

@ £ has no equilibrium and every trajectory is unbounded, or
@ f has at least one equilibrium x* and every trajectory is bounded.

& = =221 + 2 1= —1 &1 = —1 +sin(xz) + 3

To = —T1 T = 21 9 = 11
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Weakly-contracting systems
Part II: bounded trajectory case

Theorem

If x = f(x) is weakly-contracting and f has at least one equilibrium x* then:

*

(i) each equilibrium x** is stable with weak Lyapunov function x — ||x — x**

(i) if the norm || - || is a (p, R)-norm, p € {1,00} and f is piecewise real analytic,
then every trajectory converges to the set of equilibria,

(iii) x* is locally asy stable = x* is globally asy stable.

Idea of the proof

w(Df(z)) <0

™ is locally asym stable
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Example: Primal-dual algorithm
Distributed implementation over networks

Optimization problem

min f(x) = min fi(x)

xERK XERK £
i=1

Distributed implementation

@ n agents communicate over a undirected weighted graph G,

@ agent i have access to function f; and can exchange x; with its neighbors.

xERK

min i fi(x;)
i=1

X1 =Xop=...=Xp

In matrix form by assuming x = (x',...,x,; )" € R:

n
min z;f;(x,-)
P

(L ® /k)X =0,y
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Example: Primal-dual algorithm
Distributed implementation over networks

If each f; is continuously differentiable in x;:

Lagrangian

£(x,v) = D0y fix) + 0T (Le hx

Distributed primal-dual algorithm (component form):

. oL
X; = 8x, = —Vfi(x) Zau s

Y = E aj;
! 81/, = i(

Distributed primal-dual algorithm (vector form):

x ==Vf(x)—(L® v,
v=(L® l)x
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Example: Primal-dual algorithm
Stability and rate of convergence

Assume
Q f has a minimum x* € R¥X,
@ for each i € {1,...,n}, f is twice differentiable, V2£;(x) = 0 for all x, and
V2fi(x*) = 0, and
© the undirected weighted graph G is connected with Laplacian L.

Theorem: Distributed primal-dual dynamics

The distributed primal-dual algorithm
@ is weakly-contracting wrt £>-norm,
Q (x(t),v(t)) = (L, @ x*, 1, ®v*), with v* = >"7_, 14(0),

—V3f(x*) —
V() e Ik} ) where

exponential convergence rate is —q, (
o p g ess |: L ® Ik 0

Oess(A) == max{R(A) | A € spec(A) \ {0}}.
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Semi-contracting systems
Semi-norms

@ |dea: flows converges to each other only in certain directions.

Definition: Semi-norms

-l is a semi-norm if
Q |levll = [elllv|ll, for every v € R™ and ¢ € R;
Q |lv+ wl| < [lvl + [lwll, for every v, w € R".

@ Define the subspace Ker ||-|| = {v € R" | ||v]| = 0}.
e Example: for k < n, R € R**" and norm || - ||, we get [|x|| = ||Rx||.

@ Example: for a network G with edge set £ and incidence matrix B:

lelle = max. | — 5] = 18T xl

For strongly connected graphs Ker ||| = span{1,}
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Semi-contracting systems
Matrix semi-measures

Definition: Matrix semi-measures

The matrix semi-measure of A € R"*" wrt ||||||:

s+ hA| -1
A= lim —.
wi (A) = lim :
@ Directional derivative of ||-|| in direction of A.

o if Ker ||| is invariant under A then R(A) < py.(A), for every
)\ € SpeCKer I”I”L(AT)
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Semi-contracting systems
Definition and examples

Definition: Semi-contracting systems

x = f(t,x) with f continuously differentiable in x is semi-contracting wrt the
semi-norm ||-[| with rate ¢ > 0:

- (DF(t,x)) < —¢

© Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill,
1981), (¢1-norm)

@ Chua’'s diffusively-coupled circuits (Wu and Chua, 1995), (¢2-norm)
© morphogenesis in developmental biology (Turing, 1952), (¢1-norm)

@ Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (¢1-norm)

SJ (UCsB) Non-Euclidean Contraction Theory May 3, 2021 30 /39



Semi-contracting systems

Semi-contraction and asymptotic behavior

Theorem: Semi-contracting systems

Consider x = f(t,x) with f continuously differentiable in x and assume
o f is semi-contracting wrt the semi-norm ||-|| with rate ¢ > 0, and
o (Affine invariance): f(t,x* + Ker ||-[|) € Ker|||-|| for every t
Then,
Q for every trajectory x(t),

Ix(t) = x*[I < e=“[Ix(0) = x|, for every t > 0.

@ every trajectory converges to x* + Ker ||-||-

@ partial contraction and horizontal contraction
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Example: Diffusively-coupled oscillators

@ n agents connected by a weighted undirected graph G,

e identical internal dynamics f : R>g x RX — R*
).(;Zf(t,X;)—Zlea,'j(X;—Xj), iE{l,...,n}J
@ synchronization:

limesoo [IXi — xj]| =0 for every i, j J

synchronization of diffusively-coupled oscillators:

@ contractivity of the internal dynamics
@ strength of the diffusive coupling
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Example: Diffusively-coupled oscillators

Introduce a local-global mixed norm: (2, p)-tensor norm on R = R"” @ Rk

i i in2)? ~ i
lulloy = inf { (S IVI3IWZ) " [u="v @ w}.
i=1

=

@ closely related to, but different from, the projective tensor product norm

R. A. Ryan. Introduction to Tensor Products of Banach Spaces.
Springer, 2002

o different from the mixed global norm

G. Russo, M. Di Bernardo, and E. D. Sontag. A contraction approach to the hierarchical
analysis and design of networked systems.

IEEE Trans. Autom. Control, 58(5):1328-1331, 2013

@ Global norm: />-norm for the interactions between agents

@ Local norm: {,-norm for internal dynamics of each agent
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Example: Diffusively-coupled oscillators

The orthogonal projection P € R™*"

n—=1 1 1
1oad 1
T n n n
P=l—11,1 = ,
1 _1 n—1
n n

o (P ® Ix)x measures dissimilarity of the states x;
x=1,x" =

(PR I)x=(P®k)(1,®x*) =PLl, ® x* = Opp_1yxk-
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Example: Diffusively-coupled oscillators

@ G is an undirected weighted graph with Laplacian L,
e pefl,o0], Q € Rk*k

X; = f(t,X,') — Z;:l a,-j(x,- —XJ)7 | € {1, 500 H}J

Theorem: diffusively-coupled oscillators are semi-contracting

Suppose that
tp,(Df (t,x)) < Xao(L) —c, for every t, x

then
@ the dynamics is semi-contracting wrt || - [|(2,),(P2q);
@ for every trajectory x(t),
Ix(t) — 1, ® Xave(t)H(2,p),(’P®Q) < 67Ct||x(0) -1,® Xave(0)||(27p)7(7>®0)~
@ the system achieves synchronization: lim;_oo x(t) = 1, ® Xaye(t)

where xave(t) = 1 577 | x;(t)
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Example: Diffusively-coupled oscillators

tp,@(Df(t,x)) < Ao(L) — c, for every t, x J

o trade off between internal dynamics and coupling strength
o f time-invariant: every trajectory converges to the unique equilibrium point.
o f periodic: every trajectory converges to the unique periodic orbit.

o Unstable dynamics f, sufficiently strong coupling = Ay(L) large = the
network synchronizes.
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@ notion of one-sided Lipschitz constant and weak semi-inner product

characterization of contraction wrt non-Euclidean norms

@ contraction-based small-gain theorem

@ two extensions of classical contraction:

o weak contraction
@ semi-contraction

properties of weakly-contracting and semi-contracting systems
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Future research

contraction-based compositional analysis of interconnected systems

@ scalable stability certificates using non-Euclidean contraction.

computing equilibra of contracting and weakly-contracting systems
o explicit and implicit integration algorithms
@ accelerated convergence.

optimization algorithms using contraction theory

@ extension to gradient descent algorithms and time-varying algorithms.
@ connection with discrete-time algorithms for optimization.

implicit deep learning using contraction theory

@ use contraction condition for well-posedness in the optimization problem.
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Contraction-based small gain theorem
A simple example

Consider the following system on R?:

x1=—x1+ 3X§X1 — Xf’
Xp = —Xp — 3xfx2 — xg

and pick Vi(x;) = x? for i € {1,2}. Then

Vi= -2V +6VV2 —2V2 < -2V +6Vi V2 := g (Wi, Vo)
Vo= —2V5 — 6V2Vy —2V3 < 2V, — 6V2V; := go( V4, Vo)

but g = (g1,42) " is not monotone. However, for every v > w > 0,,

[g(v) — g(w),v —w],
—2v; + 2wy + 6v1v22 — 6W1W22

= [Vl —wr vy — W2] —2vy + 2wy — 6vEva + 6wiws

< =2l —wif? = 2[vs — wof? = =2||v — w3
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