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Implicit Neural Networks (INNs)

Definitions and motivations

@ Explicit hidden layers are replaced by a single implicit layer
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e traditional neural networks:
X = O(Aix" + Biu + b))
y=0Cxr+c

o ®((y1,---,¥n)) = (®1(01),...,Pn(ys))" is a diagonal activation function.
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e traditional neural networks:
X = O(Aix" + Biu + b))
y=0Cxr+c

o O((y1,...

Implicit neural network

o implicit neural networks:

x = ®(Ax + Bu + b)
y=C+c

¥n) = (®1(01),- -, ®a(ya)) " is a diagonal activation function.



Motivation #1: Generalizing FF to fully-connected synaptic matrices
X = ®(Aix" + Biu+ b)) <= x = ®(Ax + Bu + b), where A
has upper diagonal structure.

Aupper—diagonal = E |:> Acomplete =
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Motivation #1: Generalizing FF to fully-connected synaptic matrices
X = ®(Aix" + Biu+ b)) <= x = ®(Ax + Bu + b), where A
has upper diagonal structure.

Aupper—diagonal = E I::> Acomplete =

Motivation #2: Weight-tied infinite-depth NN — fixed-point of INN

X = O(Ax' + Biu+ b;) = lim;_o, x' = x* solution to the INN

Motivation #3: Neural ODE model (large time) — fixed-point of INN
x=—-x+®PAx+Bu+b) = limie x(t) = x* solution to INN
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Implicit Neural Networks (INNs)

Training implicit network

@ Training INNs:

@ loss function £
@ training data (4, 7)Y,
@ training optimization problem

N
min Z L(yi, Cxi + ¢)
i=1
Xj = CD(AX,‘ + Bu; + b)

o Efficient back-propagation through implicit differentiation
@ Stochastic gradient descent: at each step solve x = ®(Ax + Bu + b).

Challenge #1: well-posedness of fixed-point equation
computing solution of of fixed-point equation }




Robustness of INNs

Adverserial examples

o Adversarial examples: a small change in input causes a big change in
output?
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Robustness of INNs

Adverserial examples

o Adversarial examples: a small change in input causes a big change in
output?

“airliner”

+0.005x ¢

Image credit: MIT CSAIL

@ Robustness measures: input-to-output Lipschitz constant

C. Szegedy, W. Zaremba, |. Sutskever, J. Bruna, D. Erhan, |. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. 2014

© /»-norm Lipschitz constant: not informative in many scenarios
@ /--norm Lipschitz constant: large-scale input wt wide-spread perturbations

Challenge #2: computing robustness margins
Challenge #3: implementing robustness in training J
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initial conditions are forgotten
unique globally exponential stable equilibrium

input-to-state robustness
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accurate numerical integration and fixed-point computation

A vector field G : R" — R" is contracting with respect to the norm || - || iff

u(DxG(x)) < —c, for all x




Contraction theory
Matrix measures

The matrix measure of A € R™*” wrt to || - ||:

_a+hA =1
wi(4) = Jlim, =—p=—

o Directional derivative of norm || - || in direction of A,
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Contraction theory
Matrix measures

The matrix measure of A € R™*” wrt to || - ||:

|ln + hA| — 1
A) = lim ———.
wy(A) = lim, =
o Directional derivative of norm || - || in direction of A,

112(A) = AAmax(A+ AT)
u1(A) fmax aﬂJrZ |a,J Hoo(A) = max 3u+2 agl)

Basic properties:

subadditivity: w(A+ B) < u(A) + u(B),
convexity: w(@A+ (1 —0)B) < 0u(A)+ (1 —0)u(B), VO e]0,1]
norm/spectrum: Re(X) < u(A) < [|A|l, VA € spec(A)




Contraction theory
Non-Euclidean contractions

/> — contraction LMI
p2(DyG(x)) < —c <=  D.G(x)+ D,G(x)" < —cl

@ Monotone Operator Theory
E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational
Mathematics, 15(1):3-43, 2016



Contraction theory
Non-Euclidean contractions

/> — contraction LMI
p2(DyG(x)) < —c <=  D.G(x)+ D,G(x)" < —cl

@ Monotone Operator Theory
E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational

Mathematics, 15(1):3-43, 2016

¢+, — contraction Diagonal Dominance
Hoo(DxG(x)) < —c, == (DxG(x))i + Y [(DxG(x))yl < —¢c, Vi
JF#i

@ Non-Euclidean Monotone Operator Theory



Solvability of fixed-point equations
A contraction-based framework

Problem statement

For a fixed-point equation
x = F(x, u) (for implicit neural networks F(x, u) = ®(Ax + Bu + b))

© when do we have a unique solution?

@ how to efficiently compute it?




Solvability of fixed-point equations
A contraction-based framework

Problem statement

For a fixed-point equation

x = F(x, u) (for implicit neural networks F(x, u) = ®(Ax + Bu + b))

© when do we have a unique solution?

@ how to efficiently compute it?

Infinite layer interpretation: convergence of the Picard iterations
XK1 = F(xk u)

Banach Fixed-point Theorem: ||D,F(x, uv)| < 1.



Solvability of fixed-point equations
A contraction-based framework

Fixed-point of = Equilibrium point of
x = F(x, u) x = —x+ F(x, v)

@ Contraction theory: existence and uniqueness of equilibrium point
u(DxF(x, u)) < 1.

o u(DyF(x,u)) < 1is less conservative than ||D,F(x, u)| < 1.



Solvability of fixed-point equations
A contraction-based framework

Fixed-point of = Equilibrium point of
x = F(x, u) x = —x+ F(x, v)

@ Contraction theory: existence and uniqueness of equilibrium point
u(DxF(x, u)) < 1.

o u(DyF(x,u)) < 1is less conservative than ||D,F(x, u)| < 1.

Theorem: Fixed-point via matrix measure condition
If 1(DxF(x,u)) <1 then

@ F has a unique fixed-point x;.

Q X1 = (1 — a)xk + aF(x¥, u) converges to x, for 0 < a < a*.




Well-posedness of INNs
Computing fixed-points

x = ®(Ax + Bu+ b)

Theorem: Fixed-points of INNs
If 1oo(A) < 1, then

@ there exists a unique fixed-point,
@ for a €]0,(1 — min;(a;;)—)) 1], the average map is a contraction map:

Ny(x) == (1 — a)x + a®(Ax + Bu + b)

© minimal contraction factor is

1 — poo(A)+

Lip(Nyr)=1— ————
Ip( « ) 1— min,-(a,-,-)_




Well-posedness of INNs
Computing fixed-points

x = ®(Ax + Bu+ b)

Theorem: Fixed-points of INNs
If poo(A) < 1, then

@ there exists a unique fixed-point,

@ for a €]0,(1 — min;(a;;)—)) 1], the average map is a contraction map:
Ny(x) :== (1 — a)x + a®(Ax + Bu + b)

© minimal contraction factor is

1 — poo(A)+

Lip(Np») =1 — —————~—
Ip( * ) 1-— min,-(a,-,-),

Interpretation: The iteration x*™1 = N, (x*) is Euler discretization of

x=—x+ $(Ax + Bu+ b)



Robustness of fixed-point equations
Input-to-state Lipschitz bounds

Problem statement

How does the fixed-point of x = F(x, u) change with u?




Robustness of fixed-point equations
Input-to-state Lipschitz bounds

Problem statement

How does the fixed-point of x = F(x, u) change with u?

Theorem: Input-to-state Lipschitz bounds

X is a fixed-point of x = F(x, u) and p(DxF) < 1, then

u

[l = vl

_ < 7w W
I =X < T2 e




Robustness of INNs
Computing the Lipschitz bounds

x = ®(Ax + Bu + b),
y=Cx+c

@ How to compute Lipschitz bounds in INNs?

u — x* = vy
~— =~

Lip, .  Lipe_,,

Lip,_,, = Lip,_,,~Lip,-_,,



Robustness of INNs
Computing the Lipschitz bounds

x = ®(Ax + Bu + b),
y=Cx+c

@ How to compute Lipschitz bounds in INNs?

u — x* = vy
~— =~

Lip, Lip,«_,,

Lip,_,, = Lip,_,,~Lip,-_,,

Theorem: Input-to-output Lipschitz constant
if 1too(A) < 1 then

. 1Blloc | Clloc
L =
Py T 1 fe(A)r




Training INNs

Well-posedness condition + promoting robustness

How to train well-posed and robust INNs?
@ Loss function £
@ Training data (u;, y;))Y,
N
min. ;ﬁ(y;, Cxi+c)+ A Lip,,
Xj = (D(AX,' + BZI\, + b)

Hoo(A) <,

@ v < 1l is a hyperparameter
@ )\ > 0 is a regularization parameter.



Training INNs

Well-posedness condition + promoting robustness

How to train well-posed and robust INNs?
@ Loss function £
@ Training data (u;, y;))Y,

N
min. ;ﬁ(y;,Cx;+C)+ A Lip,.,

xi = ®(Ax; + Buj + b)
too(A) < 7,

@ v < 1l is a hyperparameter
@ )\ > 0 is a regularization parameter.

Theorem: Parametrization of /,,-measure constraint

Hoo(A) <~y <= ITst. A=T+|T|L, +~l,.




Numerical Experiments
Robustness of INNs

@ MNIST handwritten digit dataset
@ implicit neural network order: n =100
@ Loss function: cross entropy

@ perturbation: inversion attack
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Numerical Experiment

Robustness of INNs

@ Tradeoff between accuracy and robustness

Test error vs Lipschitz constant on MNIST handwritten digits Accuracy vs perturbation on MNIST handwritten digits
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Conclusions

@ Non-Euclidean contraction theory using matrix measures

Existence, uniqueness, and computing fixed-points of INNs

@ Robustness margins of INNs using input-to-output Lipschitz constants

Improve robustness in training using Lipschitz bounds



