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Introduction

Definition

A control system on Rn is a finite family of vector fields
Σ = {X1,X2, . . . ,Xm}.

We assume that the vector fields X1,X2, . . . ,Xm are real analytic.

A trajectory of Σ is a concatenation of integral curves of the vector
fields {X1,X2, . . . ,Xm}.
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Reachable sets

Given a control system Σ = {X1,X2, . . . ,Xm} on Rn and a point
x0 ∈ Rn, we define

Reachable set of Σ from the point x0:

RΣ(x0) = {φXi1
t1
◦φ

Xi2
t2
◦ . . . ◦φ

Xik
tk (x0) |

ti > 0, i1, i2, . . . , ik ∈ {1, 2, . . . ,m}}.

Reachable set of Σ in times less than T from the point x0:

RΣ(< T , x0) = {φXi1
t1
◦φ

Xi2
t2
◦ . . . ◦φ

Xik
tk (x0) |

ti > 0,
k∑

i=1

tk < T , i1, i2, . . . , ik ∈ {1, 2, . . . ,m}}.
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Accessibility

Local accessibility

A control system Σ is locally accessible from x0 if RΣ(x0) has nonempty
interior.
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Accessibility

Small-time local accessibility

A control system Σ is small-time locally accessible from x0 if, for every
small enough t, the set RΣ(< t, x0) has nonempty interior.
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Controllability

Local controllability

A control system Σ is locally controllable from x0 if RΣ(x0) contains a
neighbourhood of x0.
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Controllability

Small-time local controllability

A control system Σ is small-time locally controllable from x0 if, for
small enough t, the set RΣ(< t, x0) contains a neighbourhood of x0.
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Characterization of small-time local accessibility

Small-time local accessibility of a real analytic control system Σ
from x0 can be characterized in terms of Lie brackets of vector fields
of the family Σ at the point x0.

Theorem (H. J. Sussmann and V. Jurdjuvic 1972)

A real analytic control system Σ = {X1,X2, . . . ,Xm} is small-time locally
accessible from x0 if and only if

span (Lie({X1,X2, . . . ,Xm})) (x0) = Rn.

Is there a similar characterization for STLC of Σ form x0 using the
Lie brackets of vector field of Σ at x0?
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Small-time local controllability

Sufficient condition:
1 H. J. Sussmann 1978, 1983, 1986,
2 R. M. Bianchini and G. Stefani 1993,
3 R. Hirschorn and A. D. Lewis 2004,
4 M. I. Krastanov 2009.

Necessary condition:
1 G. Stefani 1986,
2 M. Kawski 1987,
3 M. I. Krastanov 1998.

Necessary and Sufficient conditions for some specific classes of
systems:

1 C. O. Aguilar and A. D. Lewis 2012,
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Reachability and finite differentiation

A nice feature of small-time local accessibility is that it is
recognizable in finite number of differentiation.

Example

Consider the system Σ = {X1,X2} on R2 such that

X1(x , y) = ∂
∂x , X2(x , y) = −x ∂

∂y ,

It is easy to see that
[X1,X2](0, 0) = − ∂

∂y ,

and
span {X1(0, 0), [X1,X2](0, 0)} = R2.

Therefore Σ is small-time locally accessible from (0, 0).
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Reachability and finite differentiation

Example

Now consider another control system Θ = {Y1,Y2} defined as

Y1(x , y) = ∂
∂x , X1(x , y) = ∂

∂x ,

Y2(x , y) =
(
x + x2 + xy

)
∂
∂y , X2(x , y) = x ∂

∂y ,

Then
[Y1,Y2](0, 0) = − ∂

∂y ,

and therefore Θ is small-time locally accessible from (0, 0).

Conclusion: any perturbation of Σ around (0, 0) by terms of order 2
or higher is still small-time locally accessible.
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Reachability and finite differentiation

Do we have similar feature for STLC?

Conjecture A (A. Agrachev 1999)

Let Σ be a real analytic control system which is STLC from x0. Then
there exists N ∈ N such that any other control system Θ with the same
Taylor polynomials of order N around x0 is STLC from x0?
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Control Variations

A useful tool for studying STLC is control variation.

Control Variations

Let U = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}. Then a control
variation is a map us : [0, s]→ U .

we define the time-varying vector field X (t, x , us) as

X (t, x , us) = X i (x), if us(t) = (0, 0, . . . , 1, 0, . . . , 0).

Control variation: approximate the reachable sets of a system for
small-enough time.
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Control Variations

Higher-order tangent vectors

Let us be a control variation for Σ and m ∈ Z≥0. Let x(t, us) be the
solution of the initial value problem

dx

dt
(t) = X (t, us).

Then v ∈ Rn is called an m-th order tangent vector to Σ at point x0 if
we have

x(s, us) = x0 + vsm + o(sm).

where lims→0
o(sm)
sm = 0.

the cone generated by all m-th order tangent vectors of Σ at point
x0 is denoted by Km

Σ,x0
.

For l ≤ m, we have Km
Σ,x0
⊆ K l

Σ,x0
.
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Open mapping theorem

Control variations can be used to find admissible directions in the
reachable set of the system for small enough time.

How to show STLC using control variations? We use a suitable open
mapping theorem.

Theorem (M. Kawski 1990)

If Km
Σ,x0

= Rn, then there exists C ,T > 0 such that

B(x0,Ct
m) ⊆ RΣ(< t, x0), ∀t ∈ [0,T ].
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Example

Example

Consider the control system Σ = {X1,X2,X3,X4} on R2.

X1(x , y) = ∂
∂x , X3(x , y) = − ∂

∂x ,

X2(x , y) = x ∂
∂y , X4(x , y) = −x ∂

∂y .

Then we have

cone (X1(0, 0),X2(0, 0),X3(0, 0),X4(0, 0)) = x-axis.

By choosing the control variation us : [0, s]→ U as

us(t) =


(1, 0, 0, 0) t ∈ [0, s4 ),

(0, 1, 0, 0) t ∈ [ s4 ,
s
2 ),

(0, 0, 1, 0) t ∈ [ s2 ,
3s
4 ),

(0, 0, 0, 1) t ∈ [ 3s
4 , s).
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Example

Example

Then we have

x(s, us) = φX1
s
4

◦φX2
s
4

◦φ−X1
s
4

◦φ−X2
s
4

=
1

16
[X2,X1](0, 0)s2 + o(s2) =

1

16

∂

∂y
s2 + o(s2).

Thus [X2,X1](0, 0) is a tangent vector of order 2. Similarly, we can show
that [X1,X2](0, 0) is a tangent vector of order 2.

cone(X1(0, 0),X3(0, 0), [X1,X2](0, 0), [X2,X1](0, 0)) = R2.

This implies that Σ is STLC form (0, 0). Moreover, for small enough t,
we have

B(0,Ct2) ⊆ RΣ(< t, 0)
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The growth rate of reachable sets

Suppose that we have a real analytic control system Σ. We find a finite
family of control variations for Σ at point x0 such that

1 their associated higher-order tangent vectors are of order at most m,

2 the cone generated by these higher-order tangent vectors is the
whole Rn.

Then Σ is STLC form x0. Moreover, there exists C ,T > 0 such that

B(x0,Ct
m) ⊆ RΣ(< t, x0), ∀t ∈ [0,T ].
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The growth rate of reachable sets

Can we prove STLC of every system using the above method?

Conjecture B (A. Agrachev 1999)

Let Σ be a real analytic control system which is STLC from x0. Then
there exist N ∈ Z>0 and C ,T > 0 such that

B(x0,Ct
N) ⊆ RΣ(< t, x0), ∀t ∈ [0,T ].
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Main theorem

Theorem

Let Σ = {X1,X2, . . . ,Xm} be a real analytic control system and there
exist C ,T > 0 such that

B(x0,Ct
N) ⊆ RΣ(< t, x0), ∀t ∈ [0,T ].

Let Θ = {Y1,Y2, . . . ,Ym} be another real analytic control system such
that

for every i ∈ {1, 2, . . . ,m}, the first N-terms in the Taylor series of
Xi and Yi around x0 agree.

Then Θ is STLC from x0.

In particular, this theorem proves that conjecture B implies
conjecture A.
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Brouwer fixed-point theorem

The Brouwer fixed-point theorem is one of the most fundamental
existence theorem in mathematics.

Brouwer fixed-point theorem

Let K be a compact and convex set in Rn and f : K → K is continuous.
Then f has at least one fixed point (i.e., there exists x ∈ K such that
f (x) = x).

There are many different generalizations of the Brouwer fixed-point
theorem.

Definition

A map f : K → K is half-continuous if, for every x ∈ K such that
f (x) 6= x , there exist p ∈ Rn and a neighbourhood U of x such that

p. (f (y)− y) > 0, ∀y ∈ U.
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Brouwer fixed-point theorem

.
y

p
.

f (y)

Brouwer fixed-point theorem (P. Bich 2006)

Let K be a compact and convex set in Rn and f : K → K be
half-continuous. Then f has at least one fixed point.

Idea of the proof: For every t small enough, we have
B(x0,

C
2 t

N) ⊆ RΘ(< t, x0)
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Sketch of proof

Fix t > 0 small enough.

Σ

.
x0

Θ

.
x0

ξt 0

Rp

ξt maps every φ
Xi1
t1
◦φ

Xi2
t2
◦ . . . φ

Xik
tk (x0) to (t1, t2, . . . , tk , 0, 0, . . . , 0) in

Rp.
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Sketch of proof

Σ

.
x0

Θ

ξt

ηt
0

Rp

ηt maps every (t1, t2, . . . , tp) in Rp to φ
Yi1
t1
◦φ

Yi2
t2
◦ . . . φ

Yip

tp (x0).
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Sketch of proof

Σ

.
x0

Θ

ξt

ηt

F t

0

Rp

F t : B(x0,Ct
N) ⇒ RΘ(< t, x0) defined as F t = ηt ◦ ξt .
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Sketch of proof

Fix y ∈ B(x0,
C
2 t

N) and define G t
y : B(x0,Ct

N) ⇒ Rp as

G t
y (x) = x − F t(x) + y .

G t
y is multi-valued and has a half-continuous selection

g t
y : B(x0,Ct

N)→ Rp.

Σ and Θ have the same Taylor polynomials of order N around x0,
therefore g t

y

(
B(x0,Ct

N)
)
⊆ B(x0,Ct

N).

By the generalized Brouwer fixed point theorem g t
y has a fixed point.

x ∈ x − F t(x) + y ⇒ y ∈ F t(x)

y ∈ RΘ(< t, x0).
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