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Large-scale Nonlinear Networks

Introduction

posing

Power grid Transportation network Artificial neural network
Nonli ity: . .. L .
onlinearity @ “... in Oahu, Hawaii, at least 800,000 micro-inverters interconnect
@ Multiple equilibria photovoltaic panels to the grid... " [I[EEE Spectrum, 2015]
@ Transient stabilit
) y @ "... Americans lost an average of 97 hours a year due to congestion,
@ Congestion costing them nearly 87 billion dollars in 2018 ... " [INRIX report, 2018]
Large-scale: . .
) @ “... autonomous vehicles should fuse a large amount of data from
@ Stochastic cameras, radar and LiDAR sensors ... "

@ Distributed
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Large-scale Nonlinear Networks

Stability and Robustness

Critical task: ensuring safe and reliable operation.

2011 US Southwest blackout

This task is challenging:

@ large size of the networks @ unknown components

@ nonlinear interactions @ dynamic and stochastic environment

My contribution: Tools and techniques from control theory and dynamical systems

Rigorous systematic approaches to ensure safety and resilience J
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Large-scale Nonlinear Networks

Research agenda

Stability and control of large-scale power grids

@ threshold of frequency synchronization
© multi-stability via partitioning the state-space

© dynamic stability of low-inertia power grids

SJ, E. Y. Huang, K. D. Smith, and F. Bullo, Flow and Elastic Networks on the n-torus: Geometry, Analysis, and
Computation, SIAM Review, Research Spotlight, 2021.

SJ and F. Bullo, Synchronization of Kuramoto Oscillators via Cutset Projections, IEEE Transactions on Automatic
Control, 2019.
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Large-scale Nonlinear Networks

Research agenda

Robustness of neural networks

@ elements of a non-Euclidean contraction theory

@ /-norm robustness analysis of implicit neural networks

SJ and A. Davydov and A. Proskurnikov and F. Bullo. Robust Implicit Networks via Non-Euclidean Contractions.

NeurlPS 2021.

A. Davydov and SJ and F. Bullo. Non-Euclidean Contraction Theory for Robust Nonlinear Stability. arXiv:
https://arxiv.org/abs/2103.12263, 2021.
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Large-scale Nonlinear Networks

Research agenda

Resilience of dynamic flow networks

@ extensions of contraction theory for large-scale real-world networks

@ robustness of transportation systems to large-size attacks or perturbations

SJ and P. Cisneros-Velarde and F. Bullo. Weak and Semi-Contraction for Network Systems and Diffusively-Coupled J

Oscillators. |IEEE Transactions on Automatic Control, 2021.

SJ and S. Coogan. Resilience of Input Metering in Dynamic Flow Networks. American Control Conference, to appear, J

2022.
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Presentation outline

@ Robustness of neural networks

o implicit neural networks
@ well-posedness using contraction theory

@ robustness via Lipschitz bounds

@ Resilience of dynamic flow networks

o dynamic flow networks

o dichotomy in asymptotic behavior

@ robustness of transportation networks to failures
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Neural Networks in Autonomous Systems
Robustness issues

Promising performance
® System &
Actuator

@ large amount of data is available

high-dimensional input

Environment

°
@ complicated behaviors
°

little knowledge about the system

Neural Network

Robustness challenges

@ vulnerable to input perturbations

o Safety- and security-critical applications:
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Adversarial Perturbations

Definition and Examples

Small changes in the input lead to /arge changes in the output )

@ C. Szegedy and et. al. Intriguing properties of neural networks. In ICLR, 2014

Camouflage  Camouflage Art  Camouflage Art

Subtle Poster Graffiti (LISA-CNN) _ (GTSRB-CNN)
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Left column is classified correctly but the
three right columns are classified as i + 1
(mod 10)

7333% 66.67%

All images are after perturbation and are classified as 45 mph
speed limit sign
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Robustness of Neural Networks

Lipschitz constant

A rigorous measure for input-output sensitivity of neural networks is
Lipschitz constant J

Input-output Lipschitz constant

IIf(u) — f(v)|| < L|ju— ||, for all w,v e R"

@ most common norms: {5 and f

e /5-norm Lipschitz constant: change in energy-level
e loo-norm Lipschitz constant: component-wise change

@ computing the input-output Lipschitz constant is NP-hard
@A. Virmaux and K. Scaman. Lipschitz regularity of deep neural networks: analysis and efficient estimation. In
NeurlPS, 2018

© extensive research on estimating Lipschitz constant of neural networks

@M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas. Efficient and accurate estimation of Lipschitz

constants for deep neural networks. In NeurlPS, 2019
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Implicit Neural Networks (INNs)

Definition

@ explicit hidden layers are replaced by a single implicit layer

u— - ~{81—~v u -y
€T

1 X2 X3 Tk

000000
O00O000O
000000
O00O000O
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Implicit Neural Networks (INNs)

Definition

@ explicit hidden layers are replaced by a single implicit layer

u— - ~{81—~v u -y
€T

1 X2 X3 Tk

000000
O00O000O
000000
O00O000O

o traditional neural networks:

o = (At + 1), ¥ =
y = Apa® + ¢

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁ’(y) <1 forall z,y €R
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Implicit Neural Networks (INNs)

Definition

@ explicit hidden layers are replaced by a single implicit layer

O O O O
ol o] .[8 S ’
U—lor=orrlo oY u -y
ol |o] |9 O T
O (@) O (@)
L1 i) T3 Tl
o traditional neural networks: e implicit neural networks:
o = ¢ (A 4+ b;), 2% =u r = ®(Az + Bu+b)
y = Apz* +c y=Cr+c

@ activation functions are slope-restricted in [0, 1], i.e., 0 < %ﬁ’(y) <1 forall z,y €R

o O((y1,...,yn)) = (61(y1), ..., dnlyn)) " is a diagonal activation function.
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Implicit Neural Networks (INNs)

Origin and Motivations

@ Origins:
@S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In NeurlPS, 2019
@ L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. SIMODS, 2019

@A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A panacea for
vanishing and exploding gradients? In /CLR, 2020

@ Generalizing feedforward neural networks to fully-connected synaptic matrices

Intuition: 't = ¢;(A;x' +b;) <= 2= ®(Ax+ Bu+b), where A has
upper diagonal structure. J

Aupper-diagonal = :> Acomplete =
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Implicit Neural Networks (INNs)

Origin and Motivations

@ comparable accuracy to traditional neural networks with significant memory reduction

@S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In NeurlPS, 2019

Intuition: implicit neural network = weight-tied infinite-layer network

A
u—r| T1 Ty |——f T3 —| T Y
1 1 1 )

ot = ¢;(A2' + Bju+ b;)) = lim; o 2° = 2* solution to the INN

@ suitable for learning constrained optimization problems

@A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex optimization
layers. In NeurlPS, 2019

Intuition: casting KKT condition as an implicit layer )
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Implicit Neural Networks (INNs)

Origin and Motivations

@ vanishing and exploding gradient
@A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A panacea for

vanishing and exploding gradients? In /CLR, 2020

Intuition: the notion of “autapse” (time-delayed self-feedback) from neuroscience )

Aupper—diagonal = E z> AAutapse =

@ suitable for learning stiff problems or problems with discontinuity

@S. Pfrommer, M. Halm, and M. Posa. ContactNets: Learning discontinuous contact dynamics with smooth,

implicit representations. arXiv preprint, 2020
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Implicit Neural Networks (INNs)

Challenges

Challenge 1: well-posedness, i.e., existence and uniqueness of

r=®(Ax + Bu+b)

Challenge 2: convergence stability, i.e., algorithms for computing the solution of

r=®(Ax + Bu+b)

Challenge 3: computing robustness margin, i.e., estimate Lipschitz bound for INNs

@ Challenge 4: implementing robustness in the training

Goal: develop a rigorous framework to study these challenges J
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Contraction theory

Definitions

& = G(t,x) is contractive if its flow is a contraction map )

ct

SJ (Georgia Tech) Safety and Resilience of Large-scale Networks March 3, 2022 16 /51



Contraction theory

Historical notes
@ Origins
@ D. C. Lewis. Metric properties of differential equations. American Journal of Mathematics, 71(2):294-312, 1949
@ B. P. Demidovich. Dissipativity of a nonlinear system of differential equations. Uspekhi Matematicheskikh Nauk,
16(3(99)):216, 1961

@ C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972.
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Contraction theory

Historical notes
@ Origins
@ D. C. Lewis. Metric properties of differential equations. American Journal of Mathematics, 71(2):294-312, 1949
@ B. P. Demidovich. Dissipativity of a nonlinear system of differential equations. Uspekhi Matematicheskikh Nauk,
16(3(99)):216, 1961

@ C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972.

@ Application in control theory:

@W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696,
1998
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Contraction theory

Historical notes

@ Origins
@ D. C. Lewis. Metric properties of differential equations. American Journal of Mathematics, 71(2):294-312, 1949

@ B. P. Demidovich. Dissipativity of a nonlinear system of differential equations. Uspekhi Matematicheskikh Nauk,
16(3(99)):216, 1961

@ C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972.

@ Application in control theory:

@W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696,
1998

@ Reviews:

Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open
problems. In Proc CDC, pages 3835-3847, Dec. 2014

@ M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of complex
networks via contraction theory. In Complex Systems and Networks: Dynamics, Controls and Applications, pages
313-339. Springer, 2016

@ H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675
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Contraction theory
Properties

- y(h)

Yo el

o ' unit disk with radius e~

Highly ordered transient and asymptotic behavior:

@ time-invariant G: unique globally exponential stable equilibrium
two natural Lyapunov functions

@ periodic G: contracting system entrain to periodic inputs

© strong robustness properties: contractivity rate is natural measure of robust stability
input-to-state stability in presence of un-modeled dynamics

@ accurate numerical integration and efficient methods for their equilibrium computation
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Contraction theory
Matrix measures

The matrix measure of A € R™*™ wrt to || - ||:

.| +RA|| -1
J(A) = lim —————.
) (4) hoo+ h
e Directional derivative of norm || - || in direction of A,
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Contraction theory
Matrix measures

The matrix measure of A € R™*™ wrt to || - ||:

.| +RA|| -1
J(A) = lim —————.
) (4) hoo+ h
e Directional derivative of norm || - || in direction of A,

2(A4) = EAmac( A+ AT)
ui(A) = max (aj; + Z \aw Poo(A) = max (aii + Z Jag))
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Contraction theory

Matrix measures

The matrix measure of A € R™*™ wrt to || - ||:

.| +RA|| -1
J(A) = lim —————.
) (4) hoo+ h
e Directional derivative of norm || - || in direction of A,

2(A4) = EAmac( A+ AT)
ui(A) = max (aj; + Z \aw Poo(A) = max (aii + Z Jag))

@ One-sided Lipschitz constant

@ E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. 1993

o Logarithmic norm

@T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 1975
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Contraction theory

Contraction via matrix measures

& = G(t,x) is contractive if its flow is a contraction map J

Dynamical system & = G(¢,x) is contracting with respect to the norm || - || iff

w(DG(t, ) < —c, for all z,¢
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Contraction theory

Non-Euclidean contractions

{5 — contraction LMI
p2(DG(t,z)) < —¢ <=  DG(t,z) + DG(t,z)" < —cI

@ Monotone Operator Theory

@ E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 2016
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Contraction theory
Non-Euclidean contractions

{5 — contraction LMI
p2(DG(t,z)) < —c <= DG(t,x) + DG(t,z)" < —cI

@ Monotone Operator Theory

@ E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 2016

{1 /¢~ — contraction Diagonal Dominance
too(DG(t,2)) < —c, <= (DG(t,x))s + Z |(DG(t,z))ij| < —c, Vi
J#i
ul(DG(t7$)) < —¢, — (DG(t,l’))“ + Z |(DG(75,1’))”| < —¢, Vi
JF#i
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Solvability of fixed-point equations
A contraction-based framework

Challenge 1: well-posedness and Challenge 2: convergence stability )

Problem statement

For a fixed-point equation
x = F(z,u) (for implicit neural networks F(z,u) = ®(Azx + Bu + b))

@ when do we have a unique solution?

@ how to efficiently compute it?
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Solvability of fixed-point equations
A contraction-based framework
Challenge 1: well-posedness and Challenge 2: convergence stability )

Problem statement

For a fixed-point equation

x = F(z,u) (for implicit neural networks F(z,u) = ®(Azx + Bu + b))

@ when do we have a unique solution?

@ how to efficiently compute it?

Banach Fixed-point Theorem: if | D,F(z,u)|| < 1, then z = F(z,u) has a unique solution
by the Picard iterations
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Solvability of fixed-point equations
A contraction-based framework

Fixed-point of
r =F(z,u) t=—x+F(z,u)

Equilibrium point of

@ Contraction theory: existence and uniqueness of equilibrium point

u(DyF(z,u)) < 1.
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Solvability of fixed-point equations
A contraction-based framework

Fixed-point of
r =F(z,u) t=—x+F(z,u)

Equilibrium point of

@ Contraction theory: existence and uniqueness of equilibrium point

u(DyF(z,u)) < 1.

Theorem: Fixed-point via matrix measures Theorem: Fixed-point via norm
If u(DyF(z,u)) <1 then If || DyF(z,u))|| <1 then
© F has a unique fixed-point z};. @ F has a unique fixed-point z;;.
Q@ 2 = (1 — a)z* + aF (2", u) converges Q 2! = F(z2*, u) converges to z7.
to a2y, for 0 < o < ™.
<

@S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions.
In NeurlPS, Dec. 2021b
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Solvability of fixed-point equations
A contraction-based framework

pu(DgF(z,u)) < 1is less conservative than ||D,F(x,u)|| < 1. J

e F(xz,u) = Az + Bu with A = [a b]

b a
b b
foo(A) <1 ||A”oo <1
unbounded bounded
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Well-posedness of INNs
Computing fixed-points

z=®(Az+ Bu+b)

Theorem: Fixed-points of INNs Theorem: Fixed-points of INNs

If oo (D®(x)A) < 1, for every x, then If [D®(z)A| s < 1, for every x, then
O there exists a unique fixed-point, @ there exists a unique fixed-point,
Q for a €0, (1 — min;(a;;)—))~!], the @ the Picard iterations

average map is a contraction map: PR @(Awk + Bu+b)
No(2) := (1 — o)z + oB(4s + Bu + ) ) is a contraction map.

SJ (Georgia Tech) Safety and Resilience of Large-scale Networks March 3, 2022



Well-posedness of INNs
Computing fixed-points

z=®(Az+ Bu+b)

Theorem: Fixed-points of INNs

Theorem: Fixed-points of INNs

If poo(A) < 1, then If |Aljoe < 1, then
@ there exists a unique fixed-point, @ there exists a unique fixed-point,
Q for a €]0, (1 — min;(az;)—)) 1], the @ the Picard iterations

average map is a contraction map:
= &(Az® + Bu +b)

No(z) := (1 — a)r + a®(Az + Bu +b)

is a contraction map.
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Well-posedness of INNs
Computing fixed-points
z=®(Az+ Bu+b)

Theorem: Fixed-points of INNs

Theorem: Fixed-points of INNs

If poo(A) < 1, then If |Aljoe < 1, then
@ there exists a unique fixed-point, @ there exists a unique fixed-point,
Q for a €]0, (1 — min;(az;)—)) 1], the @ the Picard iterations

average map is a contraction map:
= &(Az® + Bu +b)

No(z) := (1 — a)r + a®(Az + Bu +b)

is a contraction map.

The iteration 2*+1 = N, (2¥) is Euler discretization of

i =—x+ ®(Az + Bu+b)

@S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions.
In NeurlPS, Dec. 2021b
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Robustness of fixed-point equations
Input-to-state Lipschitz bounds

Challenge 3: Robustness margins J

Problem statement

How does the fixed-point of © = F(x,u) change with u?
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Robustness of fixed-point equations

Input-to-state Lipschitz bounds

Challenge 3: Robustness margins J

Problem statement

How does the fixed-point of © = F(x,u) change with u?

Theorem: Input-to-state Lipschitz bounds Theorem: Input-to-state Lipschitz bounds

x} is a fixed-point of z = F(z,u) and x} is a fixed-point of x = F(x,u) and
u(DyF) < 1, | DsF|l <1,
R | DuF]l 5 [ DuFll
— < ————lu — = < 20 |y —
oy~ 3l < 2 s = It~ =3l < s el = o

@S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions.
In NeurlPS, Dec. 2021b
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Robustness of INNs
Computing the Lipschitz bounds

r = ®(Axr + Bu+b),
y=Czx+c

@ How to compute Lipschitz bounds in INNs?

k . . .
uw = o =y = Lip,,, =Lip, ,;-Lip;_,,

Lipy o Lipg* —y
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Robustness of INNs
Computing the Lipschitz bounds

r = ®(Axr + Bu+b),
y=Czx+c

@ How to compute Lipschitz bounds in INNs?

uw = o =y = Lip,,, =Lip, ,;-Lip;_,,

~~ ~—
Lipu—)z* Lipz*—>y
Theorem: Input-to-output Lipschitz Theorem: Input-to-output Lipschitz
if 4oo(A) < 1 then if [|Allooc < 1 then
Lo = 1BlclCllse o = 1BlllCles.
YUY T — o (A) Y 1= (Al

@S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions.
In NeurlPS, Dec. 2021b
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Implicit Neural Networks (INNs)

Interpretations and comparisons

Intuition #1: Weight-tied infinite-depth NN — fixed-point of INN

el

contraction of 2! = ®(Az® + Bju + b;) = lim;_,o, 2° = z* solution to the INN
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Implicit Neural Networks (INNs)

Interpretations and comparisons

Intuition #1: Weight-tied infinite-depth NN — fixed-point of INN

i ’ A
z T x3 T

contraction of 2! = ®(Az® + Bju + b;) = lim;_,o, 2° = z* solution to the INN

Intuition #2: Neural ODE model (infinite time) — fixed-point of INN

t| r f,; t

contraction of & = —x + ®(Azx + Bu+b) =  limy_o z(t) = z* solution to INN

time

@R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. In NeurlPS,

2018

SJ (Georgia Tech) Safety and Resilience of Large-scale Networks March 3, 2022

28 /51



Training INNs
Well-posedness condition + promoting robustness

Challenge 4: training of robust and well-posed INNs J

© loss function £
@ training data (U;, 7)Y,

N
A,g}icr‘}bﬁ zﬁ(’y},Cxi +¢) +A Lipyy,
1=

x; = ®(Ax; + Bu; + b)

oo (A) <,

@ v < 1is a hyperparameter and A > 0 is a regularization parameter
@ training optimization problem is solved via SGD
@ at each step of SGD, x; = ®(Ax; + Bu; + b) is solved using the average-iterations
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Training INNs
Well-posedness condition + promoting robustness

Challenge 4: training of robust and well-posed INNs J

© loss function £
@ training data (U;, 7)Y,
N
A,gicr,lb,c Zlﬁ@z‘, Crit+c) +A Lip,,
1=
z; = ®(Ax; + Bii; + b)

foo(A) <7,
@ v < 1is a hyperparameter and A > 0 is a regularization parameter

@ training optimization problem is solved via SGD
@ at each step of SGD, x; = ®(Ax; + Bu; + b) is solved using the average-iterations

foo(A) <y =  ITst. A=T — diag(|T|1,) + vIn. J
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Implicit Neural Networks
Comparison with the literature

State-of-the-art architectures:

Implicit Deep Learning (IDL)

@ /~-norm well-posedness and robustness analysis

@ results in the green boxes

@L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. SIMODS, 2019

Monotone operator equilibrium networks (MON)

@ /5-norm well-posedness and robustness analysis
o Lip,, < +/rLipy with r size of the input

@ E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In NeurlPS, 2020

@C. Pabbaraju, E. Winston, and J. Z. Kolter. Estimating Lipschitz constants of monotone deep equilibrium
models. In ICLR, 2021
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Numerical Experiments
Lipschitz bound for INNs
o MNIST dataset: 28 x 28 pixel handwritten digits between 0 — 9, 60, 000 training images

and 10,000 test images.

@ implicit neural network order: n = 100 and v = 0.95
@ loss function: cross entropy

Test error vs Lipschitz constant on MNIST handwritten digits Improvements:
o ® \=10" @ (A =0): two orders of magnitude
201 ® (=107 wrt. IDL and wrt. MON
A=10"°
S A=10"* @ (A =1072): three orders of
5 A=10"° magnitude wrt. IDL and one
5] ® =0 order of magnitude wrt. MON
£ 101 ® DL
F * ® MON @ (\=10"2): four orders of
51 magnitude wrt. IDL and two
° orders of magnitude wrt. MON
T T T . . T T o
10! 10? 10% 10* 10°

Lipschitz constant
@ Pareto-optimal curve
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Numerical Experiments
Empirical robustness of INNs

@ perturbation: inversion attack u,qy = u + € sign(%1784 —u)

LLLLLLLLLLLLLLL

GlolslH]alalal ¢
elo]sld]alslal s
slolslH]alalz] o
-
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Numerical Experiments

Empirical robustness of INNs

Accuracy vs perturbation on MNIST handwritten digits

1.0
— A=10""
— A=10"2 i
\—10-25 @ (A =0): improved robustness
0.8 1 =
A =103 than IDL and MON
— 104 )
i: 1875 @ (X > 0): improved robustness at
5007 Y —o sizable perturbations but losing
s DL some percentage accuracy in
< 04 clean performance
0.2
0.0 ; . . .
0.0 0.1 0.2 0.3 0.4 0.5

l~ amplitude of perturbation

Tradeoff between clean performance and robustness J
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Numerical Experiments

Empirical robustness of INNs

Accuracy

Accuracy vs perturbation on MNIST handwritten digits

0.6 1

(=]
>
L

0.2 4

—_ A=10"
— A=10"2
[ A — 10—2‘5
A=10"3
A=10"*
A=10"°
— =0

IDL

0.0
0.0

T T
0.1 0.2 0.3 0.4 0.5
{~ amplitude of perturbation

@ (A =0): improved robustness
than IDL and MON

@ (A > 0): improved robustness at
sizable perturbations but losing
some percentage accuracy in
clean performance

Tradeoff between clean performance and robustness J
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< 041 clean performance
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|
| —
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Presentation outline

@ Robustness of neural networks

o implicit neural networks
@ well-posedness using contraction theory

@ robustness via Lipschitz bounds

o Resilience of dynamic flow networks

o dynamic flow networks

o dichotomy in asymptotic behavior

@ robustness of transportation networks to failures
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Dynamic Flow Networks

Definition and Examples

A network of interconnected compartments £
density of the ith compartment is x;:

& = F}"(z) — FP*'(2) = fi(2), N

e F/"(x) inflow to compartment i -

o vt tflow f tment i i
Ut (x) outflow from compartment i Fm(CU) frout (.Cl?)

Power networks
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Dynamic flow problem

Problem statement

Real-world dynamic flow networks:

@ have wide-spread disturbances @ interact with decision-makers

@ have complex interconnections @ interact with stochastic environments

Robustness of flow networks with respect to transient failures (adversarial attacks or random disturbances) J

Transient stability of dynamic flow = region of attractionJ
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Dynamic Flow Networks
Contraction approach

For a dynamic flow network,
conservation law 1) f(z) = 1} f(y) Y,y = 1) Df(x) =0 Vz

If f satisfies the conservation law then

Q 11 (Df(x)) =20
@ if additionally f is cooperative, then uq(Df(x)) =0

Cooperative vector field

| A\

f is a cooperative vector field if 6f1(x) > 0, for every x and every i # j

Dynamic flow networks with the conservation law are not contracting J
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Weakly-contracting systems

Definition and properties

& = G(t,x) is weakly-contracting wrt || - ||

w(DG(t,z)) <0, for all z,¢

Dichotomy for weakly-contracting systems

For a weakly-contracting system & = G(x), either
@ G has no equilibrium and every trajectory is unbounded, or
@ G has at least one equilibrium x* and every trajectory is bounded,

o if the norm || - || is a p-norm, p € {1,000} and f is piecewise real analytic, then every
trajectory converges to the set of equilibria,

@S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled

oscillators. IEEE Transactions on Automatic Control, Feb. 2021a
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Weakly-contracting systems

Definition and properties

& = G(t,x) is weakly-contracting wrt || - ||

uw(DG(t,x)) <0, for all x,¢

Contracting systems

For a contracting system & = G(x), then

@ G has a unique equilibrium z* and every trajectory converges to it.

@ S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled

oscillators. IEEE Transactions on Automatic Control, Feb. 2021a
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Transportation Networks
Modeling

Macroscopic models of traffic network

@ segments of the roads are modeled as network of compartments £
@ vehicles flow from compartment to compartment

@ density of link 7 is x; € [0,Z;] with jam density T;.

& = F"(z) — F?"(2) = fila),

Demand and supply of link 4 s
d;
(demand) x; — di(x;) increasing
(supply) x; > si(T;) decreasing Flow
Density T;
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Transportation Networks
Modeling

input links  other links J 1

P ~~ —— ,
L= R U 0 L%QV‘“

Input metering

Fin(2) = min{u;, s;(z;)} First-In-First-Out (FIFO rule)
Fy"'(2) = o”(z)d;(z;),
Fixed routing ratios ol
in v u e = i 1
F@) = BY Sjecn (@) = { B ey de(@n) }

v

Conservation of vehicles

@ Link ¢ is in congestion if a¥(x) < 1

o RV =1 o .
Zzeﬁu I @ Link i is in free-flow if a¥(z) =1

The transportation network & = f(x) satisfies the conservation law

1, Df(x)=0
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Transportation Networks

Cooperative behavior and diverging junctions

([ F X R N N N A NN NN NN 1 congested
Y I R Iy rrry; >V > )
% \
[ ]
- 3
Brooks ; u
e Berkeléy Monte
1 - Hills. Vista
out _ ol p=d
Fl (x) — R12) 82 (:BQ)’ : ‘? Berkeley Pan:‘rﬁmm
SouthWest. Claremont.
Fin . RU FOut . Bevke\cy®= T Hms//r
5 (z) = Ry FY™ () = s2(z2), A o
RY . R oo | L
H meryvi
F3*(z) = RYFY™ (z) = ., s2(22) T /_J l] g 45 Nl

ashore Qakmore

Ofs(x) _ Rj 0sa(x2) )\
Orz ~— RY Oxa <0 J ”/
Za

Diverging junctions: source of non-cooperative behavior in traffic flow J
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Transportation Network

Cooperative domain

Cooperative domain

M ={z € [0y,Z] | f{*(x) = di(z;), fori € LI with v div. junction }.

7

free-flow

@ Intuition: in domain M, the downstreams of diverging /
junctions are in free-flow froe-flow

Theorem: traffic in cooperative domain

The transportation system & = f(z)

@ is cooperative on the domain M

@ satisfies py (Df(x)) =0, for every z € M

@S. Jafarpour and S. Coogan. Resilience of input metering in dynamic flow networks. In American Control Conference,

2022
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Transportation Networks
Free-flow equilibrium point

vl ke® l k
The network routing matrix [Rpl = { ko bR E and the

0 otherwise. /\

v, ke O,leR
input routing matrix [Rg|x = { k )

0 otherwise.

P=(I-Ro)'Rp

Theorem: free-flow equilibrium point

Let the input metering u be strictly feasible and define z¢(u) = d; '(ff(u)) where

e _Jug, 1 €R,
fi(“)_{[Pu]i, ico.

Q 2°(u) is the unique equilibrium point in M

@ at the equilibrium point z¢(u), every link is in free-flow.

SJ (Georgia Tech)
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Transportation Network
Region of attraction

Theorem: region of attraction

Let t — y(t) be the solution to Cooperative extension h:
y = h(y), v v a’(z) zeM,
) o"(@) s p7(a) = { &)
y(0) == 1 x g M.

and let t* = min{t € Rxg | y(t) € M} f() = h(z)

O lim; o y(t) = z°(u) @ h is cooperative on [0, ]

@ every trajectory of f starting from o f(z) = h(z) for every z € M
[0y}, y(t*)] converges to z°(u).

@S. Jafarpour and S. Coogan. Resilience of input metering in dynamic flow networks. In American Control Conference,
2022
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Transportation Network
A simple example

(2)
= > ® 2 @)
Forie {1,...,4} For input metering u =5

o free-flow equilibrium 2¢(u) = (5, 10, 5, 5)T

z; € [0, 30]
: , e t — y(t) trajectory of cooperative extension

di(x;) = min{15, z; }

si(x;) = min{15,30 — z;} @ at ¢t* = 24.29 we have

y(t*) = (20.97, 15, 22.5, 7.5)T € M

routing ratios
RV _ i =24, Thus [04,(20.97, 15, 22.5, 7.5)7] is region of
‘ i=1,3 attraction of z¢(u). )

March 3, 2022
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Thank you for your attention!
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Backup slides
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Adversarial perturbations
Features and mitigation

Feature of adversarial perturbations:

@ exist for a large class of learning algorithms y=38
@ transfer across models (not always!)
@ not caused by overfitting (empirical evidence)

y=3

0,005 x

How to mitigate the effect of adversarial perturbations?

Adversarial training Robust optimization
@ improve training using an attack @ use over-approximation of the output
@ easy to implement @ hard to implement in training
@ no provable guarantee @ provide guarantees
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Implicit Neural Networks
A general framework

@ A large and flexible class of neural networks:
includes feedforward neural networks

- - C h1 -
x — - i 0
k—1 0 Ag_1 0 0 k—1
v 0 0 A ol " 0
58(—2 k=2 .- :Ck_Q 0
.11 . o . Ll
0 O 0 A :
2 1 2
x 0
B8 0 0 0 0__9:_ | 4o,
S
xk—l
xZ—2
y=1[A, 0 0 ... 0]| .
J;Q
- ml -
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Implicit Neural Networks
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