Control systems and locally convex topologies1

Saber Jafarpour2

Queen’s University

Meeting on System and Control Theory,
Waterloo, 5-6 May 2014

1Joint work with Professor Andrew D. Lewis
2PhD student in Department of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada
In geometric control theory, a control system is described by the following differential equation

$$\dot{x} = f(u, x),$$

where the right hand side is a parametrized family of vector fields $f : \mathcal{U} \times M \to TM$, with \mathcal{U} being the control set.

The trajectories of the control system are the solutions of this differential equation for a locally essentially bounded control $u(\cdot)$.
In the literature, there are many different regularity assumptions on f.

In one approach,\(^3\) it is assumed that the control set \mathcal{U} is a topological space and the parametrized vector field $f : \mathcal{U} \times M \to TM$ has first derivatives continuous with respect to x and u.

Although this is a general and coherent approach, but it has the deficiency of not accounting for stronger regularity when it is present.

\(^3\)For example in the book “Mathematical Control Theory” by Sontag.
In another approach,4 it is assumed that the control set \mathcal{U} is an open subset of Euclidean space and the parametrized vector field $f : \mathcal{U} \times M \rightarrow TM$ is of class C^ν, for $\nu \in \mathbb{Z}_{\geq 0} \cup \{\infty\} \cup \{\omega\}$.

This approach includes general regularity classes, but it is restrictive in terms of control sets (the control set is an open subset of \mathbb{R}^k).

It seems that there is no coherent approach for studying different regularity classes of control systems in the literature.

4For example in the book “Foundation of Optimal Control Theory” by E. B. Lee & L. Markus
In this talk we give a unified framework for studying regularity class C^{ν}, for $\nu \in \mathbb{Z}_{\geq 0} \cup \{\infty\} \cup \{\omega\}$.

In particular, our framework includes the real analytic class.

In order to construct such a framework, we first assume that

1. The control set \mathcal{U} is an arbitrary topological space.
2. The parametrized vector field $f : \mathcal{U} \times M \to TM$ is of class C^{ν} with respect to x, when u is fixed.

We call this a C^{ν}-parametrized vector field.
Idea: Consider C^ν-parametrized vector fields f as maps from the space of parameters to the space of vector fields.

We denote by $\Gamma^\nu(TM)$ the set of all vector fields of class C^ν on M.

$\Gamma^\nu(TM)$ is a vector space.

Correspondence

If $f : \mathcal{U} \times M \to TM$ is a C^ν-parametrized vector field, then the corresponding map $\hat{f} : \mathcal{U} \to \Gamma^\nu(TM)$ is defined as

$$\hat{f}(u)(x) = f(u, x).$$

In order to impose useful conditions on \hat{f}, we will use a topology on $\Gamma^\nu(TM)$.
Locally convex topologies

Locally convex space

A **locally convex space**, is a vector space \(V \) equipped with a family of seminorms \(\{ p_{\alpha} \}_{\alpha \in A} \).

- **Comparison**: Locally convex spaces can be considered as a generalization of normed spaces.
- Similar to normed spaces, one can define a topology on a locally convex space using seminorms.
- One can define similar notions such as boundedness, continuity and measurability for locally convex spaces.
Suppose that V is a vector space with norm $\| \cdot \|$ and U is a topological space.

Continuity

A map $f : U \to V$ is **continuous at** $u \in U$ if for every $\epsilon > 0$, there exists a neighbourhood N_u of u such that

$$\| f(v) - f(u) \| < \epsilon, \quad \forall v \in N_u$$
Suppose that V is a locally convex space with seminorms $\{p_\alpha\}_{\alpha \in A}$ and U is a topological space.

Continuity

A map $f : U \rightarrow V$ is **continuous at** $u \in U$ if for every $\alpha \in A$ and every $\epsilon > 0$, there exists a neighbourhood N_u of u such that

$$p_\alpha(f(v) - f(u)) < \epsilon, \quad \forall v \in N_u$$
We define a locally convex structure on $\Gamma^\nu(TM)$ using a family of seminorms.

- For defining the locally convex structure on $\Gamma^\nu(TM)$, we separate the cases $\nu \in \mathbb{Z}_{>0}$, $\nu = \infty$ and $\nu = \omega$.
- If $\xi \in \Gamma^\nu(TM)$, then $j_m\xi(x)$ can be considered as the first m terms in Taylor series of ξ around x.
- We define a fiber norm $\| \cdot \|$ on the space of jets in a specific way (not presented here).
- We define $\mathbf{c}_0(\mathbb{Z}_{\geq 0}; \mathbb{R}_{>0})$ as

$$\mathbf{c}_0(\mathbb{Z}_{\geq 0}; \mathbb{R}_{>0}) = \{(a_0, a_1, a_2, \ldots) \mid a_i \in \mathbb{R}_{\geq 0}, \lim_{i \to \infty} a_i = 0\}.$$
Locally convex topologies on space of vector fields

The CO^ν-structure on $\Gamma^\nu(TM)$ is the locally convex structure on $\Gamma^\nu(TM)$ defined using the seminorms,

Cases $\nu \in \mathbb{Z}_{>0}$

$$p^K_\nu(\xi) = \sup\{\|j_\nu \xi(x)\| \mid x \in K\}, \ K \subseteq M \text{ compact};$$

Case $\nu = \infty$

$$p^K_\infty(m)(\xi) = \sup\{\|j_m \xi(x)\| \mid x \in K\}, \ m \in \mathbb{Z}_{\geq 0}, \ K \subseteq M \text{ compact};$$

Case $\nu = \omega$

$$p^K_\omega(a)(\xi) = \sup\{a_0a_1 \cdots a_m\|j_m \xi(x)\| \mid x \in K, m \in \mathbb{Z}_{\geq 0}\},
\quad a = (a_0, a_1, \ldots) \in c_0(\mathbb{Z}_{\geq 0};\mathbb{R}_{>0}), \ K \subseteq M \text{ compact}.$$
C^ν-control systems

- Using the CO^ν-topology, we can define a C^ν-control system as

C^ν-control system

A C^ν-control system is a triple $\Sigma = (M, f, U)$, where

1. M is a differentiable manifold,
2. U is a topological space, and
3. $f : U \times M \to TM$ is a C^ν-parametrized vector field such that $\hat{f} : U \to \Gamma^\nu(TM)$ is continuous in CO^ν-topology.

- The third condition is a checkable condition, using the seminorms for CO^ν-topology on $\Gamma^\nu(TM)$.
Main Theorem

These C^{ν}-topologies helps us to prove the following fundamental result.

Theorem

Consider the control system

$$\dot{x} = f(u, x),$$

where $f : \mathcal{U} \times M \to TM$ is a C^{ν}-parametrized vector field for $\nu \in \mathbb{Z}_{>0} \cup \{\infty\} \cup \{\omega\}$. If the curve $\hat{f} : \mathcal{U} \to \Gamma^{\nu}(TM)$ is continuous in C^{ν}-topology on $\Gamma^{\nu}(TM)$, then the trajectory of the system starting at x_0 exists, is unique and is $C^{\nu-1}$ dependent on the x_0.

This result relies on a deep and difficult theorem about time-varying vector fields5.

A classical result

One can show that for $\nu = 1$, our main theorem is just the classical existence and uniqueness result for $M = \mathbb{R}^n$.

Existence and Uniqueness Theorem

Suppose that $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a C^1-parametrized vector field on \mathbb{R}^n, $\mu : \mathbb{T} \to \mathbb{R}$ is a locally essentially bounded curve and $M, N_1, N_2, \ldots, N_n > 0$ such that

\[
|f(\mu(t), x)| \leq M,
\]

\[
\left| \frac{\partial f}{\partial x^j}(\mu(t), x) \right| \leq N_j, \quad \forall j \in \{1, 2, \ldots, n\},
\]

holds for almost every t, in a neighbourhood of x_0. Then the trajectory of the system for the control μ starting at x_0 exists, is unique and depends continuously on the initial condition.
Control-affine systems with vector fields in $\Gamma^\nu(TM)$ are C^ν-control systems.

Consider a control-affine system with $f : \mathbb{R}^m \times M \rightarrow TM$ defined as

$$f(u, x) = f_0(x) + \sum_{i=1}^{m} u^i f_i(x),$$

such that $f_i \in \Gamma^\nu(TM)$ for every $i \in \{0, 1, \ldots, m\}$. One can show that $\hat{f} : \mathbb{R}^m \rightarrow \Gamma^\nu(TM)$ is continuous in CO^ν-topology, so $\Sigma = (M, f, \mathbb{R}^m)$ is a C^ν-control system. So trajectories for control-affine systems depend in a regular manner on initial conditions when an open-loop control has been fixed.