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Introduction

In geometric control theory, a control system is described by
the following differential equation

ẋ = f (u, x),

where the right hand side is a parametrized family of vector
fields f : U ×M → TM, with U being the control set.

The trajectories of the control system are the solutions of this
differential equation for a locally essentially bounded control
u(·).
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Introduction

In the literature, there are many different regularity
assumptions on f .

In one approach,3 it is assumed that the control set U is a
topological space and the parametrized vector field
f : U ×M → TM has first derivatives continuous with respect
to x and u.

Although this is a general and coherent approach, but it has
the deficiency of not accounting for stronger regularity when it
is present.

3For example in the book “Mathematical Control Theory” by Sontag
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Introduction

In another approach,4 it is assumed that the control set U is
an open subset of Euclidean space and the parametrized
vector field f : U ×M → TM is of class C ν , for
ν ∈ Z≥0 ∪ {∞} ∪ {ω}.
This approach includes general regularity classes, but it is
restrictive in terms of control sets (the control set is an open
subset of Rk).

It seems that there is no coherent approach for studying
different regularity classes of control systems in the literature.

4For example in the book “Foundation of Optimal Control Theory” by E. B.
Lee & L. Markus
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Introduction

In this talk we give a unified framework for studying regularity
class C ν , for ν ∈ Z≥0 ∪ {∞} ∪ {ω}.
In particular, our framework includes the real analytic class.

In order to construct such a framework, we first assume that
1 The control set U is an arbitrary topological space.
2 The parametrized vector field f : U ×M → TM is of class Cν

with respect to x , when u is fixed.

We call this a C ν-parametrized vector field.
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Space of vector fields

Idea: Consider C ν-parametrized vector fields f as maps from
the space of parameters to the space of vector fields.

We denote by Γν(TM) the set of all vector fields of class C ν

on M.

Γν(TM) is a vector space.

Correspondence

If f : U ×M → TM is a C ν-parametrized vector field, then the
corresponding map f̂ : U → Γν(TM) is defined as

f̂ (u)(x) = f (u, x).

In order to impose useful conditions on f̂ , we will use a
topology on Γν(TM).
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Locally convex topologies

Locally convex space

A locally convex space, is a vector space V equipped with a
family of seminorms {pα}α∈A.

Comparison: Locally convex spaces can be considered as a
generalization of normed spaces.

Similar to normed spaces, one can define a topology on a
locally convex space using seminorms.

One can define similar notions such as boundedness,
continuity and measurability for locally convex spaces.
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Normed topology

Suppose that V is a vector space with norm ‖ · ‖ and U is a
topological space.

Continuity

A map f : U → V is continuous at u ∈ U if for every ε > 0,
there exists a neighbourhood Nu of u such that

‖f (v)− f (u)‖ < ε, ∀v ∈ Nu
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Locally convex topology

Suppose that V is a locally convex space with seminorms {pα}α∈A
and U is a topological space.

Continuity

A map f : U → V is continuous at u ∈ U if for every α ∈ A and
every ε > 0, there exists a neighbourhood Nu of u such that

pα(f (v)− f (u)) < ε, ∀v ∈ Nu
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Locally convex topologies on space of vector fields

We define a locally convex structure on Γν(TM) using a family of
seminorms.

For defining the locally convex structure on Γν(TM), we
separate the cases ν ∈ Z>0, ν =∞ and ν = ω.

If ξ ∈ Γν(TM), then jmξ(x) can be considered as the first m
terms in Taylor series of ξ around x .

We define a fiber norm ‖ · ‖ on the space of jets in a specific
way (not presented here).

We define c0(Z≥0;R>0) as

c0(Z≥0;R>0) = {(a0, a1, a2, . . .) | ai ∈ R≥0, lim
i→∞

ai = 0}.
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Locally convex topologies on space of vector fields

The COν-structure on Γν(TM) is the locally convex structure on
Γν(TM) defined using the seminorms,

Cases ν ∈ Z>0

pνK (ξ) = sup{‖jνξ(x)‖ | x ∈ K}, K ⊆ M compact;

Case ν =∞

p∞K ,m(ξ) = sup{‖jmξ(x)‖ | x ∈ K}, m ∈ Z≥0, K ⊆ M compact;

Case ν = ω

pωK ,a(ξ) = sup{a0a1 . . . am‖jmξ(x)‖ | x ∈ K ,m ∈ Z≥0},
a = (a0, a1, . . .) ∈ c0(Z≥0;R>0), K ⊆ M compact.
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C ν-control systems

Using the COν-topology, we can define a C ν-control system as

C ν-control system

A C ν-control system is a triple Σ = (M, f ,U), where

1 M is a differentiable manifold,

2 U is a topological space, and

3 f : U ×M → TM is a Cν-parametrized vector field such that
f̂ : U → Γν(TM) is continuous in COν-topology.

The third condition is a checkable condition, using the
seminorms for COν-topology on Γν(TM).
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Main Theorem

These COν-topologies helps us to prove the following fundamental
result.

Theorem

Consider the control system

ẋ = f (u, x),

where f : U ×M → TM is a C ν-parametrized vector field for
ν ∈ Z>0 ∪{∞}∪{ω}. If the curve f̂ : U → Γν(TM) is continuous
in COν-topology on Γν(TM), then the trajectory of the system
starting at x0 exists, is unique and is C ν−1 dependent on the x0.

This result relies on a deep and difficult theorem about
time-varying vector fields5.

5S. Jafarpour and A. D. Lewis. “Mathematical models for geometric control
theory”. In: ArXiv e-prints (Dec. 2013). arXiv:1312.6473 [math.OC].
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A classical result

One can show that for ν = 1, our main theorem is just the classical
existence and uniqueness result for M = Rn.

Existence and Uniqueness Theorem

Suppose that f : R× Rn → Rn is a C 1-parametrized vector field
on Rn, µ : T→ R is a locally essentially bounded curve and
M,N1,N2, . . . ,Nn > 0 such that

|f (µ(t), x)| ≤ M,∣∣∣∣ ∂f∂x j (µ(t), x)

∣∣∣∣ ≤ Nj , ∀j ∈ {1, 2, . . . , n},

holds for almost every t, in a neighbourhood of x0. Then the
trajectory of the system for the control µ starting at x0 exists, is
unique and depends continuously on the initial condition.
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Example

Control-affine systems with vector fields in Γν(TM) are C ν-control
systems.

Example

Consider a control-affine system with f : Rm×M → TM defined as

f (u, x) = f0(x) +
m∑
i=1

ui fi (x),

such that fi ∈ Γν(TM) for every i ∈ {0, 1, . . . ,m}.
One can show that f̂ : Rm → Γν(TM) is continuous in
COν-topology, so Σ = (M, f ,Rm) is a C ν-control system. So
trajectories for control-affine systems depend in a regular manner
on initial conditions when an open-loop control has been fixed.
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