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Introduction

@ In geometric control theory, a control system is described by
the following differential equation

x = f(u,x),

where the right hand side is a parametrized family of vector
fields f : U x M — TM, with U being the control set.

@ The trajectories of the control system are the solutions of this
differential equation for a locally essentially bounded control

u(+).
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Introduction

@ In the literature, there are many different regularity
assumptions on f.

@ In one approach,? it is assumed that the control set I/ is a
topological space and the parametrized vector field
f:U x M — TM has first derivatives continuous with respect
to x and wu.

@ Although this is a general and coherent approach, but it has
the deficiency of not accounting for stronger regularity when it
is present.

3For example in the book “Mathematical Control Theory® by Sontag
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Introduction

@ In another approach,* it is assumed that the control set I/ is
an open subset of Euclidean space and the parametrized
vector field f : U/ x M — TM is of class C¥, for
v € ZsoU{oo} U{w}.

@ This approach includes general regularity classes, but it is
restrictive in terms of control sets (the control set is an open
subset of R¥).

@ It seems that there is no coherent approach for studying
different regularity classes of control systems in the literature.

*For example in the book “Foundation of Optimal Control Theory” by E. B.

Lee & L. Markus
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Introduction

@ In this talk we give a unified framework for studying regularity
class C”, for v € Z>q U {oo} U {w}.

@ In particular, our framework includes the real analytic class.

@ In order to construct such a framework, we first assume that

© The control set U is an arbitrary topological space.
@ The parametrized vector field f : U x M — TM is of class C”
with respect to x, when u is fixed.

@ We call this a C¥-parametrized vector field.
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Space of vector fields

o Idea: Consider C”-parametrized vector fields f as maps from
the space of parameters to the space of vector fields.

@ We denote by [V( TM) the set of all vector fields of class C”
on M.
e [Y(TM) is a vector space.

Correspondence
If f:U x M— TM is a C¥-parametrized vector field, then the
corresponding map f : U — 'V(TM) is defined as

F(u)(x) = f(u, x).

@ In order to impose useful conditions on . we will use a
topology on I'’(TM).

6/15



Locally convex topologies

Locally convex space

A locally convex space, is a vector space V equipped with a
family of seminorms {py taca-

o Comparison: Locally convex spaces can be considered as a
generalization of normed spaces.

@ Similar to normed spaces, one can define a topology on a
locally convex space using seminorms.

@ One can define similar notions such as boundedness,
continuity and measurability for locally convex spaces.
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Normed topology

Suppose that V is a vector space with norm || - || and U is a
topological space.

A map f : U — V is continuous at u € U if for every € > 0,
there exists a neighbourhood N, of u such that

If(v) — f(u)| <e, Yv e N,
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Locally convex topology

Suppose that V is a locally convex space with seminorms {p, }aca
and U is a topological space.

A map f: U — V is continuous at v € U if for every « € A and
every € > 0, there exists a neighbourhood N, of u such that

pa(f(v) — f(u)) <e, YveN,
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Locally convex topologies on space of vector fields

We define a locally convex structure on [V(TM) using a family of
seminorms.

@ For defining the locally convex structure on I'V(TM), we
separate the cases v € Z~o, v = o0 and v = w.

o If £ € TY(TM), then jm&(x) can be considered as the first m
terms in Taylor series of £ around x.

@ We define a fiber norm || - || on the space of jets in a specific
way (not presented here).

o We define cg(Z>0; R>o) as

CO(ZZO;R>O) = {(ag, ai,az,.. ) ‘ a; € Rzo, :ln;o aj = 0}
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Locally convex topologies on space of vector fields

The CO"-structure on 'V(TM) is the locally convex structure on
I'Y(TM) defined using the seminorms,

Pk (&) = sup{|livé(X)[l | x € K}, K € M compact;

Case Vv = 0

P m(§) = sup{|imé(X)|| | x € K}, m € Z>o, K C M compact;

Case v = w

Pk a(§) = sup{aoar . .. amllimE(X) || | x € K, m € Z>o},
a=(ap,a1,...) € cg(Z>0; R>g), K C M compact.
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C?-control systems

@ Using the CO"-topology, we can define a C”-control system as
A C¥-control system is a triple X = (M, f,U), where
@ M is a differentiable manifold,
@ U is a topological space, and

© f:UXM— TMis a C”-parametrized vector field such that
f:U — TY(TM) is continuous in CO”-topology.

@ The third condition is a checkable condition, using the
seminorms for CO”-topology on I'"(TM).
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Main Theorem

These CO"-topologies helps us to prove the following fundamental
result.

Theorem

Consider the control system
x = f(u,x),

where f : U x M — TM is a C”-parametrized vector field for

v € ZsoU{oo} U{w}. If the curve 7 : U — I(TM) is continuous
in CO"-topology on [V(TM), then the trajectory of the system
starting at xp exists, is unique and is C*~! dependent on the xg.

This result relies on a deep and difficult theorem about
time-varying vector fields®.

®S. Jafarpour and A. D. Lewis. “Mathematical models for geometric control

theory”. In: ArXiv e-prints (Dec. 2013). arXiv:1312.6473 [math.0C].
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http://arxiv.org/abs/1312.6473

A classical result

One can show that for v = 1, our main theorem is just the classical
existence and uniqueness result for M = R".

Existence and Uniqueness Theorem

Suppose that f : R x R” — R" is a Cl-parametrized vector field

on R” u: T — R is a locally essentially bounded curve and
M, Ny, No, ..., N, > 0 such that

(u(t), x)[ < M,

‘ (,u(t) N;, Vje{l,2,...,n},

holds for almost every t, in a neighbourhood of xp. Then the
trajectory of the system for the control yu starting at xp exists, is
unique and depends continuously on the initial condition.
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Example

Control-affine systems with vector fields in [V( TM) are C”-control
systems.

Example
Consider a control-affine system with f : R” x M — TM defined as

f(u,x) = fo(x —{—Zuf

such that f; € IV(TM) for every i € {0,1,...,m}.

One can show that f : R™ — [¥(TM) is continuous in
CO"-topology, so X = (M, f,R™) is a C”-control system. So
trajectories for control-affine systems depend in a regular manner
on initial conditions when an open-loop control has been fixed.
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