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Advanced sampling ChE210D 

Today's lecture: methods for facilitating equilibration and sampling in complex, 

frustrated, or slow-evolving systems 

Difficult-to-simulate systems 
Practically speaking, one is always limited in the length and time scales accessible from simula-

tion.  The former relates to the maximum system size that can be used (in terms of number of 

atoms), and the latter to the length of the run that can be performed (in terms of number of MD 

integration or MC steps).   

If the intrinsic, physical time scale for some system of interest is beyond that accessible from 

simulation, we cannot investigate it using straightforward dynamical methods like molecular dy-

namics because it will be challenging to equilibrate the system.  However, if we are only inter-

ested in thermodynamic and not kinetic properties, then we can construct artificial dynamics in 

the system that accelerate convergence towards equilibrium.  Such methods inevitably involve a 

Monte Carlo component.   

What makes a system difficult to sample in an equilibrium sense?  Typically, these systems have 

frustrated or rugged energy landscapes.  This means that the underlying potential energy surface 

contains many deep minima separated by high energy barriers.  At low temperatures, it is chal-

lenging for the system to move between the relevant low-energy regions because it must sur-

mount these barriers—a rare event process that takes time.  

A wide range of methods have been designed to accelerate equilibration in simulations of sys-

tems with rugged energy landscapes.  Here, we will only review a small selection of these.  Some 

kinds of systems that might fall into this category include: 

• systems with strong electrostatic interactions  

• fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds) 

• macromolecular and polymeric systems 

• biomolecular systems (proteins, lipids) 

• self-organizing or self-structuring systems (micelles, bilayers) 

• supercooled liquid and amorphous systems at very low temperature 
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Simulated tempering 
The simulated tempering algorithm is equivalent to a canonical Monte Carlo simulation in which 

the temperature changes randomly.  That is, there are two kinds of moves: 

• energy fluctuation moves – single-particle displacements, orientational displacements, 

etc.  The usual canonical acceptance criteria, at the current temperature, are used. 

• temperature fluctuation moves – the temperature is periodically increased or decreased 

by fixed amounts so that the temperature can acquire one of a fixed set of values 

𝑇min, 𝑇min + Δ𝑇, 𝑇min + 2Δ𝑇, … , 𝑇max. 

These temperature fluctuations help the system equilibrate by allowing it to fluctuate to higher 

temperatures where it can more readily cross energy barriers. 

In these simulations, the microstate is now a function of both the configurations and the temper-

ature: 

℘(𝐫𝑁 , 𝑇) ∝ 𝑒−𝛽𝑈(𝐫𝑁) 

What is the acceptance criterion for a temperature change?  We want all temperatures to appear 

with equal probability.  That is, if we measured the distribution of temperature over the simula-

tion run, we would want it to be roughly uniform.  To do this, we introduce a weighting function 

in temperature: 

℘(𝐫𝑁, 𝑇) ∝ 𝑒−𝛽𝑈(𝐫𝑁)+𝜂(𝑇) 

This means that the acceptance criterion for a random temperature perturbation 𝑇2 = 𝑇1 + Δ𝑇 

is given by 

𝑃12
acc = min[1, 𝑒−(𝛽2−𝛽1)𝑈+𝜂(𝑇2)−𝜂(𝑇1)] 

= min[1, 𝑒−𝑈Δ𝛽+Δ𝜂] 

The distribution of temperatures is found by integrating this joint probability over configurations: 

℘(𝑇) ∝ ∫ ℘(𝐫𝑁 , 𝑇)𝑑𝐫𝑁 

= 𝑍(𝑇, 𝑉, 𝑁)𝑒𝜂(𝑇) 

= 𝑒𝜂(𝑇)−𝛽𝐴(𝑇) 

To achieve a uniform distribution in temperature, we demand that this expression is constant.  

This means that we should choose: 

𝜂(𝑇) = 𝛽𝐴(𝑇) 
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We do not know the free energies at the different temperatures a priori.  Instead, we must iter-

atively determine them over the course of a simulation.  Many methods can be used to do this, 

including: 

• flat histogram methods –the flat histogram coordinate is the temperature 

• multiple histogram-reweighting – we maintain a histogram of energies at each tempera-

ture and periodically use the reweighting equations to determine the relative free ener-

gies for each temperature 

• free energy perturbation – we use, for example, Bennett’s method between adjacent 

temperatures to compute free energy differences at periodic intervals in the simulation 

How do we compute properties at a temperature of interest from this approach?  We can use 

the WHAM-based reweighting equation applied to all temperatures and all trajectories.  We first 

compute a configurational weight according to 

𝑤𝑖 =
𝑒−𝛽𝑈𝑖

∑ 𝑒𝛽𝑗𝐴𝑗−𝛽𝑗𝑈𝑖𝐽
𝑗=1

 

Here, 𝑖 is an index over simulation observations.  The inverse temperature 𝛽 corresponds to an 

arbitrary reweighting temperature 𝑇.  One should choose 𝑇min ≤ 𝑇 ≤ 𝑇max for good statistical 

accuracy. 

For an arbitrary observable 𝑋, we can then compute averages and distributions using 

⟨𝑋⟩ =
∑ 𝑤𝑖𝑋𝑖𝑖

∑ 𝑤𝑖𝑖
 

℘(𝑋) ∝ ∑ 𝑤𝑖𝛿𝑋𝑖,𝑋

𝑖

 

Replica exchange 
The simulated tempering approach is useful for facilitating equilibrium because it allows the sys-

tem to explore multiple temperatures.  It has two drawbacks, however: 

• We need to compute the free energies 𝐴(𝑇𝑗) at every temperature in order to properly 

sample all temperatures. 

• We need to wait for the system to traverse the entire temperature range many times in 

order to accumulate good statistics at each.  This can be a very long time if we have many 

temperatures. 



 

© M. S. Shell 2009 4/10 last modified 11/30/2022 

An alternative approach, which has become the method of choice for sampling challenging sys-

tems is the replica exchange method.  It overcomes these limitations by having the following 

general construction: 

• 𝐽 simulations (“replicas”) of the same system are performed simultaneously at different 

temperatures 𝑇𝑗.  

• Each simulation is evolved independently, either through MD or MC methods, at the cor-

responding temperature. 

• At set intervals, replica swap moves are performed between adjacent temperature repli-

cas.  In a swap move, the instantaneous configurations are exchanged between the two 

temperatures. 

Swap move acceptance criterion 

The replica exchange simulation performs a Markov chain in the entire 𝐽-system ensemble.  We 

need to determine the acceptance criterion for performing swap moves.  To do that, we need to 

determine the total probability of one microstate in the entire ensemble.  Here, a microstate is 

the list of all of the positions in each of the replicas, 𝐑 = (𝐫1
𝑁 , 𝐫2

𝑁 , … , 𝐫𝐽
𝑁).  Since the replicas do 

not interact (there are no energy terms between atoms in different replicas), we can write 

℘(𝐑) = ∏ ℘𝑗(𝐫𝑗
𝑁)

𝑗

 

Using canonical probabilities in each replica, 

℘(𝐑) = ∏
𝑒−𝛽𝑗𝑈(𝐫𝑗

𝑁)

𝑍𝑗
𝑗

 

Consider a swap move between two temperatures 1 and 2.  Initially the configuration in temper-

ature 1 is 𝐫1
𝑁 and in temperature 2 is 𝐫2

𝑁.  The acceptance criterion for the move stems from the 

detailed balance equation, 

𝑃12,swap
acc = min [1,

℘(𝐑2)

℘(𝐑1)
] 

Here, 𝐑2 corresponds to the set of configurations in which 𝐫1
𝑁 and 𝐫2

𝑁 are transposed to different 

temperatures.  We have: 
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℘(𝐑1) =
𝑒−𝛽1𝑈(𝐫1

𝑁)

𝑍1
×

𝑒−𝛽2𝑈(𝐫2
𝑁)

𝑍2
× ∏

𝑒−𝛽𝑗𝑈(𝐫𝑗
𝑁)

𝑍𝑗

𝐽

𝑗=3

 

℘(𝐑2) =
𝑒−𝛽1𝑈(𝐫2

𝑁)

𝑍1
×

𝑒−𝛽2𝑈(𝐫1
𝑁)

𝑍2
× ∏

𝑒−𝛽𝑗𝑈(𝐫𝑗
𝑁)

𝑍𝑗

𝐽

𝑗=3

 

Plugging these probabilities into the acceptance criterion, 

𝑃12,swap
acc = min [1, 𝑒𝛽1𝑈(𝐫1

𝑁)+𝛽2𝑈(𝐫2
𝑁)−𝛽1𝑈(𝐫2

𝑁)−𝛽2𝑈(𝐫1
𝑁)] 

Notice that the partition functions in the denominator cancel.  This means that we do not need 

to know the free energies in each temperature when evaluating the acceptance criterion.  It is 

because we swap systems at two temperatures, rather than perturb a single system’s tempera-

ture, that we no longer need to know the free energy (as compared to simulated tempering). 

Simplifying the above expression, 

𝑃12,swap
acc = min[1, 𝑒Δ𝛽Δ𝑈]     where Δ𝛽 = 𝛽2 − 𝛽1 , Δ𝑈 = 𝑈(𝐫2

𝑁) − 𝑈(𝐫1
𝑁) 

Notice that we are required to compute the potential energy difference between the instanta-

neous configurations in the two temperature replicas. 

Swap moves are performed like any other MC moves: the move is proposed, the acceptance 

criterion is computed, a random number is drawn, and it is decided whether or not to perform 

the move.  Unlike many other MC moves, swap moves are very inexpensive to perform: they only 

require the current energies in each temperature, which is typically maintained throughout the 

simulation anyways. 

Considerations for acceptance ratios and the temperature schedule 

Consider a swap between two temperatures 𝑇2 > 𝑇1.  We expect that the configuration drawn 

from the higher temperature will have a higher energy.  That is, 𝑈(𝐫2
𝑁) > 𝑈(𝐫1

𝑁).  Thus the quan-

tity Δ𝛽Δ𝑈 will most often be negative, which will make the acceptance probability small.  For 

very large temperature differences, this quantity becomes even more negative.  The result is that 

the temperatures must be spaced close enough together in order to achieve a good rate of ac-

cepted swaps. 

We can think about this problem in terms of the distributions ℘1(𝑈), ℘2(𝑈)  between neighbor-

ing temperatures.  If there is a substantial overlap, we will have a high frequency of swap move 

acceptance: 
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These considerations play into the way in which we pick the temperatures in our replica exchange 

simulation?:  

• 𝑇min - typically we pick a minimum temperature to be the temperature of interest that is 

difficult to simulate 

• 𝑇max - one chooses a high temperature where free energy barriers can be crossed, but not 

so high as to require many intermediate temperatures 

• 𝐽 - the number of temperatures is usually chosen so as to achieve ~50% acceptance of 

swap moves between adjacent replicas 

• 𝑇𝑗 - for a system with a constant heat capacity, it can be shown that a constant rate of 

acceptance between adjacent temperatures corresponds to an exponential distribution 

in temperature, equivalently, a power law in replica number.  Thus, one normally picks  

𝑇𝑗 = 𝑇min (
𝑇max

𝑇min
)

𝑗
𝐽−1

 

Scaling with system size 

As the system size grows, the distribution in energy at a given temperature becomes increasingly 

narrow with respect to the average energy, as 1/√𝑁.  Without overlap between the energy fluc-

tuations of adjacent temperatures in the replica exchange scheme, few swap moves will be ac-

cepted.  Thus, as the system size increases, more and more intermediate temperature replicas 

are needed to achieve a 50% acceptance ratio.  This makes the method challenging to apply to 

very large systems. 

Evaluating properties and distributions 

Rigorously, all of the configurations at each temperature (regardless of whether they swapped in 

from other temperatures) converge to a canonical distribution at that temperature.  Thus, we 

℘(𝑈) 

𝑈 

𝑇2 > 𝑇1 

𝑇1 

℘(𝑈) 

𝑇2 > 𝑇1 

𝑇1 

swaps frequently accepted  swaps infrequently accepted  𝑈 
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could compute the averages of properties at each temperature 𝑇𝑗 by simply averaging over the 

configurations at that temperature.  A trajectory is therefore considered the evolution of config-

urations at a given temperature. 

However, we can also compute an average at any arbitrary temperature between the minimum 

and maximum in our simulation by using a reweighting approach.  When a replica exchange sim-

ulation is performed, we can collect histograms or histories of each potential energy visited in 

each temperature, 𝑈𝑖𝑗.  We can then use the reweighting equations to compute the free energies 

and configurational weights at each temperature.  With the computed configurational weights, 

we can express the average of any property as a weighted sum over all temperature trajectories: 

𝑤𝑖𝑗 =
𝑒−𝛽𝑈𝑖𝑗

∑ 𝑒𝛽𝑙𝐴𝑙−𝛽𝑙𝑈𝑖𝑗𝐽
𝑙=1

 

⟨𝑋⟩ =
∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗

𝑛
𝑖=1

𝐽
𝑗=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑖=1

𝐽
𝑗=1

 

℘(𝑋) ∝ ∑ ∑ 𝑤𝑖𝑗𝛿𝑋𝑖𝑗=𝑋

𝑛

𝑖=1

𝐽

𝑗=1

 

Implementation 

To maintain the different replicas, one typically uses a parallel computing scheme, in which one 

computer node (or processor) is assigned to each replica.  When swaps are performed, all nodes 

stop evolving the system in time and a master or head node sorts through and makes the swap 

moves.  This involves parallel communication between the different nodes and the head node. 

At each interval where swaps are performed, any number of swaps could be attempted. Typically, 

one chooses the number of swap attempts to be the number of temperature replicas.  The swaps 

can be attempted in serial order, from lowest/highest to highest/lowest temperature, or in ran-

dom order. 

In a MC simulation, the evolution of the system in between swaps can be governed by any num-

ber of MC moves that accomplish changes in the potential energy, such as single particle dis-

placements. 

In a MD simulation, the evolution in between swaps can be performed using short MD trajecto-

ries.  These moves can be considered hybrid MC/MD moves with good energy conservation such 

that they are always accepted.  After a round of swap moves, one picks random velocities for 

each atom at every temperature 𝑗 from a Boltzmann distribution at the corresponding 𝑇𝑗.  These 
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velocities are used to start the short MD trajectory before another round of swap moves is per-

formed.   

An alternative approach in MD would be to rescale the velocities in the configurations to the 

new temperature after a swap move.  This approach was first derived by Sugita and Okamoto 

[1999].  Here, random new velocities are not picked at any time.  Instead, after swapping config-

urations, the momenta are scaled by a factor √𝑇new 𝑇old⁄ , where 𝑇new is the new temperature 

into which the configuration was swapped and 𝑇old is the temperature from which it came.  This 

approach requires a thermostat to be used during the MD trajectories.  While the velocity rescal-

ing approach is more frequently used in the literature than the hybrid approach (with random 

resampling), it is not necessarily more efficient and either approach is valid. 

Variants 

Here, we considered a replica exchange simulation where the replicas differed in temperature.  

This is often also called parallel tempering for its similarity to simulated tempering.  However, 

we are not limited to temperature.  One can have replicas differ in chemical potential or pressure 

if the individual simulations are GCMC or 𝑁𝑃𝑇 simualtions, respectively.  Two-dimensional rep-

lica exchange methods allow replicas to differ in both temperature and chemical potential or 

pressure. 

Another way to facilitate sampling is to modify the potential energy function itself.  Here, one 

wants to perturb the energy function so that the underlying energy landscape is smoother and 

easier to sample.  For example, one systematically scale the partial charges from zero to their full 

values as one moves from replica to replica.  This approach is often called Hamiltonian exchange.  

The appropriate form of the acceptance criterion is derived as before, but with different potential 

energy functions in each simulation 𝑈𝑗: 

𝑃12,swap
acc = min [1, 𝑒𝛽1𝑈1(𝐫1

𝑁)+𝛽2𝑈2(𝐫2
𝑁)−𝛽1𝑈1(𝐫2

𝑁)−𝛽2𝑈2(𝐫1
𝑁)] 

In evaluating this acceptance criterion, one must evaluate the cross-energies 𝑈2(𝐫1
𝑁) and 𝑈1(𝐫2

𝑁) 

between two replicas with each swap move, since the energy function is no longer constant be-

tween them. 

In all of these cases, we can use multiple histogram reweighting techniques to express the aver-

age or distribution of any property as a weighted average over all temperatures 𝑗 and trajectory 

configurations 𝑖. 
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Extended ensemble molecular dynamics 
One way to enhance the exploration of phase space in MD at lower temperatures is bias the 

ensemble probabilities to artificially broad fluctuations in potential energy.  This enables the sys-

tem to hop over higher-energy barriers more frequently.  Ultimately, the behavior of the system 

under normal conditions can be recovered by standard reweighting procedures.  We have already 

discussed this approach in the context of MC simulations.  Now, we consider an MD implemen-

tation.  

We add to our MD simulation a weighting function that biases the configurational probabilities, 

in the same way that we did during our discussion of biased sampling: 

𝑈w(𝐫𝑁) = 𝑈(𝐫𝑁) − 𝑘𝐵𝑇𝜂(𝑈(𝐫𝑁)) 

Here, 𝜂(𝑈) is a weighting function with dimensionless units, and it only depends on the potential 

energy.  The equations of motion are derived as before.  For an atom 𝑖: 

𝐟𝑖
w = −

𝑑𝑈w

𝑑𝐫𝑖
 

= −
𝑑𝑈

𝑑𝐫𝑖
+ 𝑘𝐵𝑇

𝑑𝜂(𝑈)

𝑑𝑈

𝑑𝑈

𝑑𝐫𝑖
 

= 𝐟𝑖 (1 − 𝑘𝐵𝑇
𝑑𝜂(𝑈)

𝑑𝑈
) 

In other words, the force on each atom in the weighted ensemble is scaled by a term involving 

the derivative of the weighting function evaluated at the energy of the current configuration.  If 

the weighting function is a constant, no scaling occurs. 

In order for this approach to work, the weighting function must be a continuous function.  One 

typically uses splines or other mathematical constructs so that an analytical derivative can be 

computed.  

How do we determine the weighting function?  We can fit it to estimates of the probability dis-

tribution function.  In the canonical ensemble, we have the relationship 

℘(𝑈)

℘w(𝑈)
∝ 𝑒−𝜂(𝑈) 

If we want the weighted distribution to be approximately flat, we can choose 

𝜂(𝑈) = − ln ℘(𝑈) + const 

Notice that we will have to fit the weighting function to discrete histogram calculation, since 𝜂 

must be continuous.  It is for this reason that it becomes difficult to evaluate 𝜂 to high statistical 
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accuracy using MD techniques.  Still, broadening the energy distribution even a little bit may 

speed equilibration in MD simulations. 


